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Abstract

In this paper, a sensor fault-tolerant control (FTC) scheme using robust model predictive control
(MPC) and set-theoretic fault detection and isolation (FDI) is proposed. The robust MPC controller is
used to control the plant in the presence of process disturbances and measurement noises, while imple-
menting a mechanism to tolerate faults. In the proposed scheme, fault detection (FD) is passive based on
interval observers, while fault isolation (FI) is active by means of MPC and set manipulations. The basic
idea is that, for a healthy or faulty mode, one can construct the corresponding output set. The size and
location of the output set can be manipulated by adjusting the size and center of the set of plant inputs.
Furthermore, the inputs can be adjusted on-line by changing the input-constraint set of MPC controller.
In this way, one can design an input set able to separate all output sets corresponding to all considered
healthy and faulty modes from each other. Consequently, all the considered healthy and faulty modes
can be isolated after detecting a mode changing while preserving feasibility of MPC controller. As a case
study, an electric circuit is used to illustrate the effectiveness of the proposed FTC scheme.

1 Introduction

A control system consists of a series of components that play different roles in the closed-loop operation.
Among those components, sensors are used to acquire the real-time system-operating information to take
proper control actions and achieve some system performance. Hence, it is important for the closed-loop
system to monitor the sensor status and include mechanisms to tolerate the effect of sensor faults in order
to provide the control scheme with safety properties.

In general, there exist two types of FTC approaches [2]. The first type is called passive fault-tolerant
control (PFTC), whose principle consists in treating faults as uncertain factors and using the robustness of
controller to cope with the effect of faults as in robust control. From the technical point of view, PFTC
is relatively easy to implement but has only limited FTC capabilities. Moreover, the larger the number
of faults considered in a PFTC scheme is, the higher price of performance loss the system has to face in
a specific healthy or faulty mode. Comparatively, the other FTC strategy, namely active fault-tolerant
control (AFTC), uses a so-called fault-diagnosis module to monitor the system. After fault occurrence, the
fault-diagnosis module can extract some fault information that enables fault tolerance by means of system
reconfiguration/fault accommodation1.

1In order to tolerate the effect of faults, system reconfiguration implies that the system structure is changed, while fault
accommodation only adjusts control laws instead of changing the system structure.
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In the proposed FTC scheme, MPC is used as the control strategy, where the latest measurements are
used to update the MPC controller in real time and only the first element of the optimized control sequence
is injected into the system at each step [11]. As one of the successful advanced control techniques in the
process industry, the major advantage of MPC for the proposed FTC scheme consists in its capability to
effectively deal with system constraints [3, 10]. Moreover, for an FTC scheme, a key element is its FDI
approach. Taking the robustness requirements of FDI decisions into account, the set-based FDI approach is
chosen to implement the FDI objectives in the present work. Particularly, the FD approach is passive based
on interval observers while the FI approach is active by making use of the constraint-handling capacity of
MPC. That is, once the FD mechanism has detected a fault, the objective of MPC controller changes from
tracking the nominal reference, to driving the system state to a value where FI is possible.

In the literature, there already exist several attempts of fault-tolerant model predictive control (FTMPC),
such as the ones presented in [18, 22], which use set-membership estimation and Kalman filter-based FDI,
respectively. In [21], an on-line optimization is used based on mixed-integer programming for the active fault
isolation. In [18], the proposed FTMPC scheme used active FI, which can reduce the FI conservatism but with
high price of computational complexity because the proposed active FI method required to determine on-line
inputs that can separate sets associated to faults. In [17], a new method was proposed by the authors to
reduce the computational complexity of the work in [18], which computed separating inputs off-line. However,
since the off-line computation of separating inputs was based on partitioning an output set that included
all possible outputs under all possible system modes (healthy or faulty), it was more conservative when
comparing with the case of using the real-time measured outputs. Furthermore, a particularity of the works
in [17, 18] was that without using the notion of invariant sets, these two methods did not provide a mechanism
to check whether the considered faults were isolable or not in advance. In [22], the proposed FTMPC scheme
used the Kalman filter to implement FDI. However, its main objective was to propose an FTMPC scheme.
Thus, it did not rigourously consider some important features of MPC such as feasibility. The work in
[24] proposed a multi-sensor FTMPC scheme, which used invariant set-based passive FDI and implemented
FTC by switching among a group of sensors. Because of the use of set-based passive FDI, guaranteed FDI
conditions were generally more conservative due to the pre-imposed set separation. Moreover, this FTMPC
scheme tolerated faults by switching among a bank of sensors, which involved an economic price from the
instrumentation point of view. Moreover, for additional references related to fault-tolerant applications of
MPC, the readers are addressed to [1, 4, 5, 6, 7, 8, 20, 23], among many others.

The objective of this paper is to propose a sensor FTMPC scheme with a relatively simple system structure,
which can simultaneously deal with system constraints and tolerate faults with less conservative FI conditions.
Comparing with FTMPC schemes such as those aforementioned, the proposed FTMPC scheme has three
main novelties. First, it proposes a novel and simple active FI technique via MPC which ensures that
an output component only corresponds to one sensor fault in a pre-defined finite class of fault scenarios
and simultaneously uses the concept of invariant sets to check whether the considered faults are isolable in
advance. Second, it proposes a pragmatic robust state estimation approach for MPC controllers, which can
provide effective feasibility guarantees of MPC open-loop optimization problem for both FI and FTC. Third,
under some structural conditions (observability, disturbance and noise boundedness), the proposed scheme is
able to detect, isolate and tolerate unknown but bounded sensor faults with no need of multi-sensor hardware
redundancy.

The proposed FTMPC scheme is shown in Figure 1, which is composed of the plant, MPC controller, FDI
module, a bank of interval observers, switching logic and state estimator. In Figure 1, an MPC controller
is designed with a set of setpoints, considering that the setpoints may be different in different modes, and
the setpoints are adjusted according to the current FDI decisions (note that the arrow on the block MPC
controller means that the setpoints can be adjusted according to the FDI decisions). The FDI module 2 is
the core of this paper and is based on the proposed FDI method that interacts with the process and obtains
system-operating information to make FDI decisions. A bank of interval observers is designed to monitor the
dynamical behaviours of the system, each matching a considered healthy or faulty mode and simultaneously
estimating state sets. Switching logic is based on the decisions made by the FDI module, which adjusts
among setpoints and interval observers and makes them match the current mode. The state estimator is
designed to generate state estimations by using the estimated state set from interval observers to update the
MPC controller for computing new control actions at each step.

2In Figure 1, the texts FDI decision are used twice, which are actually the same and repeated only for simplicity of drawing.
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Figure 1: Sensor FTMPC scheme

The remainder of the paper is organized as follows. Section II introduces the FTMPC scheme. Section III
presents the FDI strategy and FI conditions. In Section IV, the FTC strategy is proposed and the feasibility
and stability of MPC are analyzed. In Section V, an example is used to illustrate the effectiveness of the
proposed scheme. In Section VI, some general conclusions are drawn.

2 System Description

In this section, the objective is to introduce the proposed FTC scheme including the plant, setpoints, interval
observers and robust MPC controller.

2.1 Plant Models

The linear discrete time-invariant plant under the effect of sensor faults is modelled as

xk+1 = Axk +Buk + ωk, (1a)

yk = GCxk + ηk, (1b)

where A ∈ Rn×n, B ∈ Rn×p and C ∈ Rq×n are time-invariant matrices, xk ∈ Rn, uk ⊂ Rp and yk ∈ Rq
are state, input and output vectors at time instant k, respectively, ωk and ηk are process disturbance and
measurement noise vectors, respectively.

In this paper, only sensor faults important/critical to system performance/safety are considered. That
is, the matrix G only takes a finite number of fault scenarios into account. Furthermore, without loss of
generality, only the single-fault case is considered here. But, in principle, the proposed approach can also
be extended to handle the multiple faults if G contains the signatures of the multiple fault scenarios. In
the single-fault case, G can take q + 1 values identified by q + 1 diagonal (interval) matrices. The diagonal
elements of the matrix G will correspond to the statuses of sensors such that G can have a finite number of
configurations Gi (i ∈ I = {0, 1, ..., q}), where G0 is the identity matrix denoting the healthy sensor mode
and Gi (i 6= 0) is a diagonal interval matrix to model the i-th sensor fault with

Gi = diag(1 . . .

i

↓
fi . . . 1),

where diag(·) denotes the diagonal matrix and fi denotes an interval modelling the fault magnitude in the
i-the sensor and satisfying

fi ⊆ [0, 1).

Furthermore, a diagonal interval matrix to describe the considered fault magnitudes corresponding to all the
sensors is defined as

Gf = diag(f1 . . . fi . . . fq),
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where each diagonal element of Gf corresponds to the considered interval of fault magnitude in one sensor.
Besides, the state and input constraints of the system are denoted as

X ={x ∈ Rn : |x− xc| ≤ x̄, xc ∈ Rn, x̄ ∈ Rn}, (2a)

U ={u ∈ Rp : |u− uc| ≤ ū, uc ∈ Rp, ū ∈ Rp}, (2b)

respectively, where the vectors xc, uc, x̄ and ū are known and constant. Note that, here and in the remaining
of the paper, the absolute values and the inequalities are understood element-wise. For example, it should
be understood that (2a) is composed of n inequalities where the i-th one is denoted as |xi − xci | ≤ x̄i, x

c
i ∈

R1, x̄i ∈ R1.

Assumption 2.1 Matrix A is a Schur matrix and the pairs (A,GiC) for all i ∈ I are detectable.

Assumption 2.2 The disturbance and noise vectors ωk and ηk are bounded by known sets

W ={ω ∈ Rn : |ω − ωc| ≤ ω̄, ωc ∈ Rn, ω̄ ∈ Rn}, (3a)

V ={η ∈ Rq : |η − ηc| ≤ η̄, ηc ∈ Rq, η̄ ∈ Rq}, (3b)

respectively, where the vectors ωc, ηc, ω̄ and η̄ are known and constant.

Definition 2.1 An r-order zonotope Z is defined as Z = g⊕HBr, where g and H are called the center and
segment matrix of this zonotope, respectively, Br is a box composed of r unitary intervals and the symbol ⊕
denotes the Minkowski sum.

Definition 2.2 The interval hull �X of a zonotope X = g⊕HBr ⊂ Rn is the smallest box that contains X
(i.e., �X = {x : |xi − gi| ≤‖ Hi ‖1}), where Hi is the i-th row of H, and xi and gi are the i-th components
of x and g, respectively.

Note that Assumption 2.1 is made to guarantee that the proposed scheme can work and the corresponding
details on this assumption will be explained in next sections. Moreover, under Assumption 2.2, the sets W
and V can be rewritten into zonotopes.

Assumption 2.3 The considered sensor faults can persist sufficiently long time such that the FDI module
has enough time to detect and isolate the faults.

Remark 2.1 The interval matrix G in (1) models the considered fault magnitude intervals, while the actual
magnitude of the i-th sensor fault is a particular but unknown value denoted as Gi with Gi ∈ Gi.

2.2 Output Setpoints

When the system operates in the i-th sensing mode, the control objective of the closed-loop system is defined
to regulate around a given output setpoint y∗i , i.e., in the absence of uncertainties,

lim
k→∞

(yk − y∗i )→ 0,

where y∗i denotes the output setpoint corresponding to the i-th sensor mode.
In this paper, a sensor FTC scheme is proposed, where the reference model for the generation of setpoints

corresponding to the i-th sensor mode is given as

xrefk+1 = Axrefk +Burefk + ωc, (4a)

yrefk = mid(Gi)Cx
ref
k + ηc, (4b)

where mid(·) computes the center of interval matrices and urefk , xrefk and yrefk denote the reference input,
state and output vectors at time instant k. Here, only the system regulation case is considered. Based on
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(4), if the i-th output setpoint y∗i is considered at steady state, the corresponding state-input setpoint pair
satisfies [

A− I B
mid(Gi)C O

] [
x∗i
u∗i

]
=

[
−ωc

y∗i − ηc
]
, (5)

where O and I denote the zero and identity matrices with compatible dimensions, respectively and the
solution (x∗i ,u

∗
i ) of (5) is a state-input setpoint pair corresponding to y∗i .

Remark 2.2 The steady state of a mode describes a phase where no mode switching occurs and all system
signals are in their own sets, while the transient state corresponds to a phase from the steady state of a mode
to that of another mode, which is induced by mode switching (e.g. faults).

Remark 2.3 Sensor faults imply the loss of some available system-operating information. Due to some
changes in the system dynamics and the existence of disturbances and noises, there will be no guarantee
that the coresponding output setpoints will be exactly achieved. Note that the given output setpoints may
be different in different modes. An example explaining this possibility considers that (5) is solvable after
faults. But, the corresponding solutions may not satisfy the constraints. In this case, the setpoints can be
properly changed to satisfy both solvability of (5) and constraints by accepting a certain degree of performance
degradation.

Assumption 2.4 Under the constraints (2), (5) is solvable for all i ∈ I.

In this paper, it is assumed that (5) is solvable as in Assumption 2.4. In case that (5) is not solvable, one
possible remedy is to degrade the output performance (i.e., change the corresponding output setpoint) such
that (5) is solvable. Since there are q + 1 modes (healthy or faulty) considered, q + 1 state-input setpoint
pairs should be considered. In the remaining contents of the paper, for the sake of simplicity, ωc and ηc are
considered to be zero. Additionally, notice that, since (5) may have multiple solutions (see also the case when
A− I is singular), in this case, one can select one solution according to particular performance specifications
out of a group of solutions.

2.3 Interval Observers

Considering that there are q+ 1 sensing modes, a bank of interval observers is designed to monitor the plant,
each matching one mode. In this paper, all the interval observers are designed based on the Luenberger
structure. For the j-th mode, if the actual fault magnitude is denoted as Gj (i.e., Gj ∈ Gj), the corresponding
Luenberger observer is designed as

x̂jk+1 =(A− LjGjC)x̂jk +Buk + Ljyk + (−Lj)η̂k + ω̂k, (6a)

ŷjk =GjCx̂
j
k + η̂k, (6b)

where x̂jk and ŷjk are the estimated state and output vectors and η̂k and ω̂k are artificial signals that emulate
the effect of ηk and ωk on the plant (1) with η̂k ∈ V and ω̂k ∈W , respectively. Thus, by introducing Gj , W
and V into (6) to replace Gj , ωk and ηk, respectively, the corresponding interval observer can be obtained
as

X̂j
k+1 =(A− LjGjC)X̂j

k ⊕ {Buk} ⊕ {Ljyk} ⊕ (−Lj)V ⊕W, (7a)

Ŷ jk =GjCX̂
j
k ⊕ V, (7b)

where X̂j
k and Ŷ jk are the corresponding estimated state and output sets. Note that, since the real fault

magnitude Gj is unknown, Gj is used to replace Gj in the interval observer (7).

Assumption 2.5 For the j-th observer, the observer gain Lj can be designed to guarantee that A− LjGjC
is a Schur matrix for all Gj ∈ Gj.
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Note that, under Assumption 2.1, Assumption 2.5 can always be satisfied. However, an example method
allowing this observer gain design can be referred to [16].

Assumption 2.6 The initial state x0 of the plant belongs to the initial set X̂j
0 corresponding to the j-th

interval observer for j ∈ I.

From the computational point of view, the implementation of interval observers is based on zonotopes.
Actually, (7) is the ideal form of interval observer. Practically, in order to propagate the dynamics of the
j-th interval observer with a zonotope, it is needed to approximate the product of an interval matrix and a
zonotope generated during the propagation with a zonotope by using Properties A.3 and A.4 in Appendix A.
This is because sensor fault magnitude Gi is considered as an interval matrix instead of a particular value in
this paper, which results in that, at each step, the generated output set is an union of a group of zonotopes
originated from the product of an interval matrix and a zonotope (see the term (A − LjGjC)X̂j

k in (7)).
Additionally, since at each iteration of the interval observer dynamics (7), the order of the estimated state
and output zonotopes increases, it is necessary to control the explosion of zonotope order. This can be done
by using Property A.5 that can over-approximate a high-order zonotope with a low-order zonotope avoiding
the problem.

2.4 Robust MPC Controller

In the proposed FTC scheme, the min-max robust MPC technique is used as the control strategy because
it allows to consider system uncertainties and constraints. The advantage of the min-max MPC technique
consists in that it can directly deal with the plant input constraints allowing easily to manipulate their bounds,
which is the key for the proposed sensor active FI approach. In this paper, the design of the min-max MPC
controller is based on [10] and the details of the min-max MPC technique and the associated properties are
omitted here. In the following, two important concepts of sets used for robust MPC are introduced.

Definition 2.3 A set X ⊆ X is a robust control invariant (RCI) set of the dynamics xk+1 = Axk+Buk+ωk
if for any xk ∈ X , there always exists uk ∈ U such that xk+1 ∈ X holds for all ωk ∈W and k ≥ 0.

Definition 2.4 A set XM ⊆ X is said to be the maximal robust control invariant (MRCI) set of the dynamics
xk+1 = Axk +Buk + ωk, if it is a RCI and contains all RCI sets inside X.

When the proposed FTC scheme is in the i-th mode, the i-th state-input setpoint pair and interval
observer should be chosen. Thus, according to [3, 10], an MPC controller corresponding to the i-th mode
can be designed as

Jk = min
u

max
w

N−1∑
j=0

‖(xk+j|k − x∗i )‖2Q + ‖(uk+j|k − u∗i )‖2R + ‖(xk+N |k − x∗i )‖2P

subject to xk+j|k∈ X,
uk+j|k∈ U,
xk+N |k∈ XM ,

xk|k= x̂k,

∀ωk+j|k ∈W, (8)

with the MPC controller internal model

xk+j+1|k = Axk+j|k +Buk+j|k + ωk+j|k,

where N denotes the prediction horizon, XM is the terminal state constraint set that is the MRCI set of the
dynamics (1a) under the constraints (2), x̂k is the system state estimation that is obtained in real time and
used to update the MPC controller to generate new control actions, u = [uk|k, uk+1|k, · · · , uk+N−1|k] is the
optimized control sequence over the prediction horizon, Q, R and P are positive-definite weighting matrices,
and w = [ωk|k, ωk+1|k, · · · , ωk+N−1|k] is the sequence of process disturbances over the prediction horizon.

3 Fault Detection and Isolation

This section presents the FD and FI methods used in the proposed FTC scheme. Both of them are based on
the notions of interval observers and set theory.
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3.1 Fault Detection

It can be observed that, based on Assumption 2.2, W and V can be rewritten in zonotopic form. Moreover,
X̂j

0 can be initialized according to Assumption 2.6 that allows to approximate X̂j
k+1 and Ŷ jk by means

of zonotopes as well. As aforementioned, by using zonotope operations, the computational complexity of
interval observers can be managed along the state dynamics evolution. Thus, the interval observer (7) can
be propagated on-line by preserving the zonotopic structure and guaranteeing the containment of system
states. If the j-th interval observer matches the current sensor mode, as long as the initial state and initial
set satisfy Assumption 2.6, it is guaranteed that

xk ∈ X̂j
k and yk ∈ Ŷ jk .

In the i-th sensor mode, the fault-modeling matrix G should take a value Gi ∈ Gi (i ∈ I) and the
i-th interval observer is used to monitor the plant if the switching logic of the FDI mechanism in Figure 1
accurately chooses it. In order to detect faults, the residual (in terms of zonotopes) of the i-th interval
observer corresponding to the i-th sensor mode is defined as

Riik =yk − Ŷ ik , (10)

where the first superscript of Riik corresponds to the i-th sensor mode while the second superscript corresponds
to the i-th interval observer.

Although all the interval observers in the bank operate simultaneously, only residual zonotopes of the
interval observer matching the current sensor mode is chosen for FD in real time. Therefore, when the system
is in the i-th sensor mode, the FD task is implemented by testing whether or not

0 ∈ Riik (11)

is violated in real time. If a violation is detected, it means that a sensor fault has occurred. Otherwise, it is
considered that the system still operates in the i-th sensor mode.

The sensitivity of the criterion (11) to faults is related to the design of interval observers and the sizes
of sets such as W and V . The satisfaction of (11) does not always imply that the system is healthy because
the FD strategy cannot be sensitive to all faults. For faults undetectable by (11), the AFTC strategy of the
proposed scheme cannot be started up to deal with the faults. Instead, only the potential PFTC ability of
the proposed scheme will be able to handle them to some extent under specific conditions. In this case, the
faults are treated as unknown uncertain factors by MPC and the robustness of MPC is used to passively
tolerate such faults.

3.2 Fault Isolation

3.2.1 Guaranteed FI Conditions.

At a time instant when a sensor fault occurs, the fault only affects one component of the system output at
that time instant. However, due to the feedback loop, the effect of the sensor fault on the remaining outputs
will be coupled after fault occurrence (i.e., more output components will be affected by the fault afterwards),
which increases difficulties of FI.

Different from the passive FI approaches in references and therein, the proposed FI approach in this paper
is active by modifying the effect of controller on the plant to decouple the fault effect on the different output
components. Thus, in order to explain the proposed FI approach, it is assumed that the plant input vector
is bounded by a set Uf after FD:

Uf = {u ∈ Rp :
∣∣u− ucf ∣∣ ≤ ūf , ucf ∈ Rp, ūf ∈ Rp},

where the set Uf should satisfy the input constraint of the plant:

Uf ⊆ U. (12)

Remark 3.1 Uf is an artificially defined input set used for FI. Note that Uf is different from the hard
input-constraint set U and must be a subset of U . In this paper, the basic idea is that, during the steady-state
operation, U is used as the input-constraint set of MPC controller to maximize control performance, while
after FD, the MPC input-constraint set is adjusted from U to Uf to actively isolate faults.
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Since only sensor faults are considered in this paper, the output equation will be affected while the state-
space equation dynamics will not be affected by sensor faults. In this case, if the input vector is bounded
by a set, a state invariant set can be constructed by considering the inputs as disturbances. In this way, the
dynamics (1a) can be rewritten as

xk+1 = Axk +
[
B I

] [uk
ωk

]
. (13)

Remark 3.2 The invariant set of (13) will be used to establish guaranteed FI conditions for the proposed
approach. In general, considering uk as disturbances will increase the size of invariant set (i.e., the conser-
vatism of FI conditions) in the traditional passive set-based FDI approaches. But, since this paper aims to
propose an active FI approach by designing an input set Uf and adjusting the input-constraint set of MPC
to Uf for FI on-line, we can known that Uf is a controllable design freedom, whose size and location can be
determined by designers. Thus, the least conservative case is to design Uf as a point instead of a set and
adjust the location of this point to satisfy the FI conditions. Obviously, with respect to the traditional passive
approaches, the proposed active FI approach actually can have less FI conservatism. The details will be given
in the following contents.

In order to construct the state invariant set, some additional definitions on the set-invariance theory are
recalled, which are collected in Definitions 3.1 and 3.2.

Definition 3.1 A set X is a robust positively invariant (RPI) set of the dynamics xk+1 = Axk +Eωk if for
xk ∈ X and ωk ∈W , one always has xk+1 ∈ AX +EW ⊆ λX (0 < λ ≤ 1). When 0 < λ < 1, the RPI set X
is λ-contractive.

Definition 3.2 The minimal robust positively invariant (mRPI) set of the dynamics xk+1 = Axk +Eωk is
an RPI set contained in any closed RPI set and the mRPI set is unique and compact.

Thus, by considering uk ∈ Uf and ωk ∈ W , an RPI set of the dynamics (13) can be computed (see
[9, 15, 19] for the details of the RPI sets), which is denoted as Xf centered at

xcf = (I −A)−1(Bucf + ωc). (14)

Furthermore, in the i-th mode, the corresponding output set can be obtained as

Y if = GiCXf ⊕ V,

where Y if is centered at

yc,if = mid(G)iCx
c
f + ηc.

If G takes the value G0, the output set corresponding to the healthy sensor mode is

Y 0
f = CXf ⊕ V,

where Y 0
f is centered at

yc,0f = Cxcf + ηc.

It is known that the output set is q-dimensional. Since the aim of this paper is to implement that one
component of the output set is only matched to the status of a single sensor, this set is projected into each
dimension of the q dimensions and evaluated in a component-wise manner taking into account that each
component is bounded by an interval. Theoretically, considering uk ∈ Uf , only the i-th component of Y if is

different from that of Y 0
f due to the effect of the i-th fault, while all the other components of Y 0

f and Y if
should be the same. Furthermore, with respect to Y 0

f , another set is defined for the proposed FI strategy as

Yf = GfCXf ⊕ V,

where Yf is centered at
ycf = mid(Gf )Cxcf + ηc.

By comparing Y 0
f , Y if with Yf , one can identify the two following situations:
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• comparing G0 with Gf , due to the effect of the faults, all the components of Yf are different from those
of Y 0

f by considering that Yf is used to model the effect of faults over all sensors,

• only the i-th component of Y if (i 6= 0) coincides with that of Yf , while all the others do not coincide

with the corresponding components of Yf . This is because of the effect of the i-th fault over Y if , which
can be observed by comparing Gi and Gf .

For brevity, the l-th components of Y 0
f , Y if and Yf are denoted as Y 0

f (l), Y if (l) and Yf (l), which are

centered at yc,0f (l), yc,if (l) and ycf (l) (the l-th components of yc,0f , yc,lf and ycf ), respectively.
It can be observed that the size and position of the output set are affected by the set of inputs and the

magnitudes of faults as also emphasized in Remark 3.2. Thus, by choosing different Uf inside U , one can
obtain different output sets in different modes (healthy or faulty). This implies that one can separate the
output sets corresponding to different modes by designing Uf . Based on this idea, one gives the FI conditions
of the proposed FI approach in Proposition 3.1.

Proposition 3.1 For the plant (1) under the constraints (2), if there exists a set Uf that satisfies (12) such
that

Y 0
f (l) ∩ Yf (l) = Ø, for all l ∈ I \ {0}, (15)

all the considered sensor faults are isolable after detection in the case of persistent faults.

Proof : If the inputs are bounded by a set Uf , which can guarantee the separation of the l-th component,
i.e, Y 0

f (l) ∩ Yf (l) = Ø, after the l-th fault occurs, the l-th output component converges to the l-th interval

component of Yf instead of Y 0
f , while all the other output components converge to the corresponding com-

ponents of Y 0
f instead of Yf , respectively, which indicates that the l-th fault has occurred. Thus, if all the

components of Y 0
f and Yf are separated from each other, it implies that all the considered sensor faults are

isolable after they are detected. �

Assumption 3.1 There exists a set Uf ⊆ U such that all the considered sensor faults satisfy their corre-
sponding output-interval separation conditions described by (15).

Note that, based on Proposition 3.1 and Assumption 3.1, it can be guaranteed that the considered sensor
faults can be isolated if the inputs are bounded in Uf . Thus, Uf is a key set for the implementation of the
proposed FI method in this paper. In order to help the readers understand the role of the set Uf , Remark 3.3
is made.

Remark 3.3 Assumption 3.1 can guarantee that the proposed FI approach is able to implement FI. However,
there always exist faults, for which, one cannot find an input set that satisfies Assumption 3.1. Thus, one
needs at least a method to judge whether there exist subsets inside U , which satisfies Assumption 3.1. It is
known that the size and center of Uf directly affect the separation of the output sets. If one considers Uf as
points instead of sets, then the extreme points of U will have the highest possibility to satisfy Assumption 3.1.
If all extreme points of U cannot satisfy Assumption 3.1, it means that inside U , one cannot find an useful
input set Uf . This method can be used to test whether the proposed method can be used for a sensor FTC
application based on the proposed FTC scheme. Besides, even though there exists satisfactory Uf , in the
current paper, one only uses the trial and error method to design Uf . However, the methods proposed in
[12, 13, 20] can be used as references.

3.2.2 Fault Isolation Strategy.

It is assumed that a fault is detected at time instant kd. At this time instant, the proposed FI approach
switches the input constraint of the MPC controller from U to Uf to start an active FI phase. According
to the MPC controller formulation (8), after the input-constraint switching, if the MPC controller is still
feasible, the generated control action must satisfy

uk ∈ Uf , k > kd. (16)
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In the proposed FI method, one needs to confine the state xkd at the FD time instant inside a set that is
denoted as X̄kd , i.e.,

xkd ∈ X̄kd . (17)

Remark 3.4 In order to introduce the principle of the proposed FI method, for simplicity, we do not explain
at this moment how to obtain X̄kd . Instead, the details about X̄kd will be presented in Section 4.

In order to isolate a fault during the transition induced by the fault, one initializes a set-based dynamics
at time instant kd, i.e.,

Xk+1 = AXk ⊕Buk ⊕W, (18a)

Yk = GfCXk ⊕ V, (18b)

with
Xkd = X̄kd and uk for k ≥ kd.

Afterwards, the state and output set sequences can be generated by (18). In addition to the generated
state and output set sequences, due to (16), by using X̌kd+1 = Xkd+1 at time instant kd + 1 to initialize the
other set-based dynamics

X̌k+1 = AX̌k ⊕BUf ⊕W, (19a)

Y̌k = GfCX̌k ⊕ V, (19b)

the other state and output set sequences can be obtained.
According to [15], the state set sequence generated by (19a) will converge to the mRPI set of the dynamics

(13) with respect to uk ∈ Uf and ωk ∈ W , enter into and stay inside Xf . Correspondingly, the output set
sequence generated by (19b) will finally converge to Yf .

Remark 3.5 According to Definitions 3.1 and 3.2, the mRPI set is contained in any RPI set. Thus, the
state and output set sequences generated by (19a) and (19b) will enter into Xf and Yf , respectively.

Proposition 3.2 Given the plant (1) and let (18) and (19) be initialized by Xkd = X̄kd and X̌kd+1 = Xkd+1

at time instants kd and kd + 1, for all k > kd, Xk ⊆ X̌k and Yk ⊆ Y̌k will always hold.

Proof : Comparing (18) with (19), it can be observed that (19) is a set-based dynamics of (18) by considering
the input set Uf . Moreover, with Xkd+1 to initialize (19) at time instant kd + 1, i.e., Xkd+1 ⊆ X̌kd+1, it can
be obtained that, for all k > kd, Xk ⊆ X̌k and Yk ⊆ Y̌k will always hold. �

Proposition 3.3 Given the plant (1) and the state and output set sequences generated by (18) and (19),
xk ∈ Xk can hold for all k > kd. If the plant is healthy, no components of yk and Yk can persistently satisfy
yk(l) ∈ Yk(l) (l ∈ I \ {0}) for all k > kd, while if the l-th fault occurs, the l-th components of yk and Yk
can satisfy yk(l) ∈ Yk(l) for all k > kd but all the other components of yk and Yk cannot satisfy the similar
inclusions.

Proof : First, due to (16) and (17), comparing (1) and (18), xk ∈ Xk will hold for all k > kd. Second, under
Proposition 3.2, comparing (19) with (18), Xk and Yk will finally converge to Xf and Yf and remain inside,
respectively. Considering Y 0

f , Y if and Yf , for the l-th mode, i.e., G in (1b) takes a value inside Gl (l 6= 0),

under Proposition 3.1, starting from k = kd, only yk(l) ∈ Yk(l) will hold for all k > kd with Xkd = X̄kd ,
on the other hand, all the other components of yk do not lead to the same conclusion because only the l-th
component of yk is affected by the l-th fault while all the others are not affected by the l-th fault. For
the healthy mode, since all the components of Y 0

f are separate from the corresponding components of Yf ,
respectively, no components of yk can persistently be contained by the corresponding interval of Yk for all
k > kd. �

Thus, under Propositions 3.1, 3.3 and Assumption 3.1, if a considered fault is detected, using the output
set sequence generated by (18), the fault can be isolated by testing whether or not

yk(l) ∈ Yk(l), k > kd (20)

is violated for all l ∈ I \ {0} in real time. By the real-time testing of (20) for all the components, one can
obtain the following FI criteria:
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• if the plant recovers to the healthy mode after functioning in a faulty mode, for k > kd, by testing (20),
at a time instant, if all the output components violate (20), it implies that the healthy mode is isolated
at this time instant.

• if the plant changes into another fault after functioning in a faulty mode or the healthy mode, only
the output component corresponding to the current mode can always respect (20) while all the others
will finally diverge from their corresponding components of Yk, respectively. Thus, the proposed FI
approach consists in searching this unique component that indicates the fault and the corresponding
time instant indicates the FI time.

Remark 3.6 The proposed FI method is based on a precondition that the MPC controller is always feasible
after the input-constraint switching. This condition will be detailedly explained in Section 4.

4 Fault-tolerant Control

This section first proposes a pragmatic state-estimation method for the proposed FTC scheme by using the
state-estimation sets from interval observers and presents ways to guarantee the MPC feasibility and system-
constraint satisfaction. Additionally, this section also describes an FTC algorithm to explain the proposed
FTC scheme from a global point of view.

4.1 Robust State Estimation

For the proposed FTC scheme, in the i-th sensor mode, if no fault is detected, the MPC controller (8) is used
to robustly control the closed-loop system to reach the i-th output setpoint y∗i . According to the proposed
active FI approach in the previous section, if a fault is detected, the active FI procedure is triggered at the
FD time instant by adjusting the input and terminal state constraints of the MPC controller (8) from U
and XM to Uf and XMf

, respectively. By means of this active FI method, the fault can be isolated and
simultaneously, the controller can be reconfigured with the state-input setpoint pair and interval observer
corresponding to this new mode (healthy or faulty). Note that, in order to obtain an expected performance,
at the FI time instant, the input and terminal state constraints of the MPC controller are adjusted back to
U and XM again during the operation of the new mode, respectively.

Remark 4.1 The aforementioned set XMf
for active FI should the MRCI set of the dynamics (1a) under

the constraints xk ∈ X and uk ∈ Uf .

As in (8), to implement the proposed FTMPC scheme, a basic condition is to construct proper state
estimations for the MPC controller. The state estimations should be able to guarantee the feasibility of
open-loop optimization problem. Considering that, under the constraints (2), the MRCI set XM can be
constructed for the dynamics (1a) and one can obtain Proposition 4.1.

Proposition 4.1 Let XM , the terminal constraint of the MPC controller (8), be defined as the MRCI set
for the dynamics and state-input constraints (2). Then, if the initial state is inside XM and the state
measurements are available for updating the MPC controller, the system states can always be confined inside
XM and the recursive feasibility of MPC optimization problem can be ensured.

Proof : This result can be obtained using the definition of the MRCI set and its properties. �

Proposition 4.1 is based on an ideal situation that the system states are completely measurable.Unfortunately,
it is impossible to obtain the real states if the system is under the effect of process disturbances and mea-
surement noises. Instead, one has to estimate the system states and use the state estimations to update the
MPC controller for the real-time generation of control actions. In order to guarantee the feasibility with
state estimations, one still uses the MRCI set XM as the terminal state constraint during the steady-state
operation. Furthermore, the state estimations can be constructed based on the conclusion in Proposition 4.2.

Proposition 4.2 As long as the MPC controller (8) is updated by a point inside XM at each time instant,
i.e., x̂k ∈ XM , the feasibility of the receding horizon optimization is preserved such that the generated control
actions always satisfy the input constraint, i.e., uk ∈ U .
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Proof : Since XM is the MRCI set, (8) is always feasible if x̂k ∈ XM and the feasibility of optimization
problem always implies that the generated control actions satisfy uk ∈ U . �

For the system with disturbances and noises, even though the feasibility of MPC open-loop optimization
problem can be guaranteed, it only implies that one can guarantee the input-constraint satisfaction and the
state constraint may still be violated. The reason is that, under the effect of disturbances and noises, the
state estimations always have errors, which means that the generated control actions (based on those state
estimations) may not be able to steer the states to satisfy the constraints. Thus, in order to guarantee that
the system states are always inside X, one makes Assumptions 4.1 and 4.2.

Assumption 4.1 The mRPI set, denoted as Xm, with respect to unknown but bounded signals uk ∈ U and
ωk ∈W for the dynamics (13), is contained in the state-constraint set X, i.e., Xm ⊆ X.

Assumption 4.2 There exists a scalar α ≥ 1 such that the initial state x0 satisfies x0 ∈ X̄ = αXm and
X̄ ⊆ XM .

Under Assumptions 4.1 and 4.2, X̄ is an RPI set corresponding to additive uncertainties uk ∈ U and
ωk ∈W for the dynamics (13) due to the fact that the positive invariance is preserved by scaling in the case
of linear time-invariant dynamics. Thus, as long as uk ∈ U holds, the system states always stay inside X̄ if
the previous states are also inside X̄.

Furthermore, if the system is in the steady-state operation of the i-th mode, the i-th interval observer
can estimate sets containing the states in real time, i.e.,

xk ∈ X̂i
k.

Thus, based on the state inclusions of the sets X̄ and X̂i
k, one has

xk ∈ X̄ ∩ X̂i
k. (21)

In this paper, for practical reasons, the following pragmatic method is proposed to obtain the state
estimation for the MPC controller (8) during the steady-state operation of the i-th sensor mode

x̂k = center(X̄ ∩ X̂i
k), (22)

where center(·) denotes the center of a set. Considering that the intersection of zonotopes is not always
a zonotope. In the case that the set X̄ ∩ X̂i

k is not centered, center(X̄ ∩ X̂i
k) represents the center of the

largest inscribed hyperbox in X̄ ∩ X̂i
k. (the hyperbox is an interval vector whose elements are intervals and

center(X̄ ∩ X̂i
k) is the middle-point vector of the interval vector).

Remark 4.2 Theoretically, any point inside the set X̄ ∩ X̂i
k can be used to update the MPC controller and

preserve its recursive feasibility. For simplicity, the proposed approach chooses the center of the intersection
as in (22). Thus, if better performance can be obtained by choosing another point in X̄ ∩ X̂i

k, it is allowed
under the framework of the proposed FTC scheme.

Proposition 4.3 Under Assumptions 4.1 and 4.2, the MPC controller (8) with the state estimation (22) is
recursively feasible during the steady-state operation. Moreover, the states xk are always confined inside X̄.

Proof : Under Assumption 4.1 and 4.2, it is known that X̄ is contained inside XM , which implies that
x̂k ∈ XM holds. At each time step, by using (22), the MPC controller (8) is always feasible. Moreover, as
long as the MPC controller is always feasible, uk ∈ U always holds, which always implies xk ∈ X̄ ⊆ X. �

When using the state estimation (22) to update the MPC controller, there always exist state estimation
errors, which are defined as

x̃k = xk − x̂k. (23)
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Moreover, since both xk and x̂k are bounded by the intersection X̄∩X̂i
k, x̃k will also belong to a bounding

set. In the worst case (i.e., X̄ coincides with X̂i
k), the bound of x̃k can be obtained as

x̃k ∈ X̄ ⊕ (−X̄). (24)

Note that because the coincidence of X̄ and X̂i
k is a low probability event, the real-time bound of x̃k is

generally less conservative than (24). Since it is assumed that the plant is stable as in Assumption 2.1 (this
assumption is necessary to assure the existence of the RPI sets of the system), the bounding of x̃k implies
the system stability with the state estimation (22).

4.2 Fault-tolerant Control

As an important part of the proposed FTC strategy, it has been emphasized that, once a fault (indexed by
j 6= i) is detected at time instant kd, the constraints of the MPC controller will be adjusted from U and
XM to Uf and XMf

to start up the proposed active FI mechanism to isolate the fault. Then, after FI, the
proposed fault-tolerant mechanism will be further initiated to tolerate the fault.

Proposition 4.4 Under Assumptions 3.1 and 4.1, the mRPI set, denoted as Xmf
, for the dynamics (13)

corresponding to uk ∈ Uf is contained in the set Xm. Moreover, XMf
is an RCI set corresponding to uk ∈ U .

Proof : Due to Uf ⊆ U , the mRPI set for the dynamics (13) corresponding to uk ∈ Uf is contained in the
mRPI sets with respect to uk ∈ U . Due to X̄ ⊆ X, both mRPI sets are contained in X. For Uf ⊆ U , XMf

can satisfy the definition as an RCI set of the dynamics under uk ∈ U , which indicates XMf
⊆ XM . �

During active FI, the constraints xk ∈ XMf
and xk ∈ X̂i

k may be violated because the mode has changed
and the obtained information is corrupted, which implies that (22) may not guarantee the feasibility of
MPC optimization problem after a mode changing. Thus, it is necessary to propose a new state-estimation
strategy to update the MPC controller for guaranteeing both active FI and feasibility during the transient-
state operation induced by the mode changing. Thus, during active FI, different from (22), a pragmatic
state-estimation method to satisfy the input constraints and serve the FI objectives is proposed as

x̂k = center(XMf
). (25)

Note that, during the FI phase, in order to establish the FI conditions on-line, one has to satisfy uk ∈ Uf
for k ≥ kd. According to the proposed FI approach, at the FD time kd, one adjusts the input and terminal
constraints from U and XM to Uf and XMf

, respectively. But, if at the FD time kd + 1, x̂kd+1 = center(X̄ ∩
X̂i
kd+1) is outside XMf

, i.e., x̂kd 6∈ XMf
, the MPC controller may become infeasible. Thus, in order to avoid

this problem, one proposes to use (25) as a pragmatic state-estimation method during the whole FI phase.

Remark 4.3 Any point inside XMf
can be used as the state estimation. But for simplicity, the center is

used. However, one can also select different points inside XMf
instead of the center as the state estimation

according to possible requirements such as energy constraints or similar.

By using (25), during the active FI phase, the feasibility of MPC open-loop optimization problem can
always be guaranteed, which implies the satisfaction of the FI conditions presented in Proposition 3.1 on-line.
It should be considered that when using the state estimations (25) to update the MPC controller instead of
using the real states, there always exist errors between the estimations and real states. In spite of the errors,
there are several reasons that support the use of this pragmatic strategy as follows:

• as a consequence of using (25) to initialize the MPC controller during the period from FD to FI,
the generated control signal uk will be constant during the transition. Since the plant is stable (see
Assumption 2.1), the state estimation errors will not grow unbounded and the system remains stable
in the BIBO (bounded-input, bounded-output) sense.

• during active FI, the feasibility of MPC open-loop optimization problem implies uk ∈ Uf . Thus, the
system states finally converge to Xf and stay inside, which proves the boundedness of state estimation
errors.
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• the proposed FI strategy can isolate faults and reconfigure the system during the transition, which
implies that the use of (25) only persists a short time. Generally, the short FI time implies the limiting
of the effect of state estimation errors.

Algorithm 1: FTC algorithm

Initialization (system mode i, interval observers, state estimator, etc);
At time instant k: FD ← FALSE, FI ← FALSE, 0 ∈ Riik , x̂k ← center(X̄ ∩ X̂i

k), Ii=I \ {i};
(Fault detection)
while FD 6= TRUE do
k ← k + 1;
Obtain Riik ;
if 0 6∈ Riik then

FD ← TRUE;
end if

end while
(Fault isolation)
At time instant kd:
1. Adjust U and XM to Uf and XMf

;
2. x̂k ← center(XMf

);
3. Initialize (18) with X̄kd = XM ;
while FI 6=TRUE do
k ← k + 1;
Obtain yk, Yk;
for l ∈ Ii do

if yk(l) 6∈ Yk(l) then
Remove l from Ii;

end if
if Length(Ii)=1 then
f ← Ii;
Break;

end if
end for

end while
(Fault-tolerant control)
At time instant ki:
1. Adjust Uf and XMf

to U and X;
2. Choose setpoint pair (x∗f , u

∗
f );

3. Select interval observer f ;
for k ≥ ki do

if X̄ ∩ X̂f
k 6= Empty then

x̂k ← center(X̄ ∩ X̂f
k );

else
x̂k ← center(XMf

);
end if

end for
return

The aforementioned points can prove the effectiveness of the FI mechanism. Moreover, for the proposed
FTC scheme, if one assumes that a fault is isolated at time instant ki, the MPC constraints will be adjusted
back to U andXM from Uf andXMf

at time instant ki for making full use of the potential control performance
of the scheme, respectively.

Proposition 4.5 At the FI time ki, xki ∈ X̄ ⊆ XM holds, and as long as the MPC controller is feasible,
xk ∈ XM will always hold for all k ≥ ki.
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Proof : Under Assumption 4.2, xk ∈ X̄ ⊆ XM during the steady-state operation. At the FD time kd,
although the constraints U and XM are adjusted to Uf and XMf

, respectively, one still has uk ∈ Uf ⊆ U
with (25), which implies that the system states are contained in X̄. At the FI time ki when the constraints
are adjusted back to U and XM , xki ∈ X̄ still holds and the feasibility of (8) guarantees xk ∈ XM for all
k ≥ ki. �

Remark 4.4 Under Assumptions 4.1 and 4.2, xk ∈ X̄ and xk ∈ XM can always hold based on Proposi-
tions 4.3 and 4.5. Thus, the set X̄kd (introduced in Section 3.2.2) can be defined as X̄kd = X̄ or X̄kd = XM .
Additionally, without Assumptions 4.1 and 4.2, a more conservative alternative can be X̄kd = X. Note that,
any of these three sets can be used to do the initialization for the proposed FI method.

It is assumed that the j-th (healthy or faulty) mode (j 6= i) is isolated, at time instant ki, the system should
be reconfigured. Furthermore, under Proposition 4.5, for k ≥ ki, if the intersection X̄ ∩ X̂j

k is not empty,

x̂k = center(X̄ ∩ X̂j
k) is used for the MPC controller as the estimation of the current state, otherwise, (25)

should continue to be used. Note that, after reconfiguration, it is guaranteed that, along system functioning,
X̄∩X̂j

k 6= Ø will persistently hold after a specific time instant as long as no any other mode switching occurs.

Remark 4.5 Even though after the system is reconfigured at time instant ki, one cannot assure that, at the
first several time instants after k = ki, X̄ ∩ X̂j

k is always non-empty due to a transition before entering the
steady-state operation of the j-th mode. Thus, during the transition, one can still use (25) as a remedy if
X̄ ∩ X̂j

k is empty. However, after the transition, X̄ ∩ X̂j
k can always be non-empty and be used for state

estimations during the new steady-state operation.

In order to summarize the proposed FTC scheme, the whole FTC procedure has been formalized as
Algorithm 1. Note that, in Algorithm 1, Length(·) denotes to obtain the number of elements in a set, Break
is to terminate a loop and f ← Ii means to assign the only remaining element inside Ii to f . Additionally,
although this paper mainly focuses on FDI, the sensor recovery process from healthy to faulty can also be
detected and isolated as explained in Section 3.2.2. Thus, the terms fault detection and isolation and fault-
tolerant control generally describe all the considered mode transition (from healthy to faulty, faulty to faulty
and faulty to healthy).

5 Illustrative Example

In this section, an electric circuit taken from [14] is used as the case study of the proposed FTC approach.
This circuit is shown in Figure 2, where the inputs are the power sources V1(t) and V2(t), the states are
composed of the capacitor voltage vC(t) and the inductor currency iL(t), and the outputs are the voltages
of the capacitor and the resistor R3.

Figure 2: Circuit chart
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The dynamics of this circuit are given in [14], whose system matrices are as follows:

A =

[
− 1
ReqCp

R1

ReqCp
1
L ( R2

Req
− 1) − 1

L (R1R2

Req
−R3)

]
, B =

[
1

ReqCp
0

− R2

LReq

1
L

]
,

E =

[
α1

ReqCp
1
L (α2 − R2

Req
α1)

]
, C =

[
1 0
0 R3

]
,

where the values of the relevant parameters are given as R1 = 30Ω, R2 = 1000Ω, R3 = 20Ω, L = 80mH,
Cp = 50µF, Req = R1 + R2 and α1 = α2 = 1. The only difference of this current case study from that in
[14] is that the measurement noises are considered in this example in order to better illustrate the proposed
FTC scheme. With a sampling time of 1/15s, the dynamics of the circuit can be discretized as

xk+1 = Adxk +Bduk + Edwk, (26a)

yk = GCdxk + ηk, (26b)

with

Ad =

[
0.8706 3.8835
−0.0024 0.2395

]
, Bd =

[
0.1294 0.0667
−0.0809 0.0833

]
, Ed =

[
0.1294
0.0024

]
, Cd =

[
1 0
0 20

]
,

where G models sensor modes. In this example, three modes are considered, which are denoted as G0, G1

and G2, respectively. Moreover, in (26), the process disturbances and measurement noises of the circuit are

bounded, which are denoted as |ω| ≤ 1.5 and |η| ≤
[
0.1 0.1

]T
. Besides, all the relevant designing parameters

in this example are presented as follows:

• observer gains3:

L0 =

[
0.4706 0.1942
−0.0024 −0.013

]
, L1 =

[
9.4110 0.1942
−0.0485 −0.013

]
, L2 =

[
0.4706 3.8835
−0.0024 −0.2605

]
.

• considered fault magnitudes:

G1 =

[
[0, 0.1] 0

0 1

]
, G2 =

[
1 0
0 [0, 0.1]

]
, Gf =

[
[0, 0.1] 0

0 [0, 0.1]

]
.

• real fault magnitudes4: G1 =

[
0.05 0

0 1

]
, G2 =

[
1 0
0 0.05

]
.

• output setpoints: y∗0 =
[
4 2

]T
, y∗1 =

[
0 2

]T
, y∗2 =

[
4 0

]T
.

• state-input setpoint pairs:

u∗0 =
[
0.313 1.333

]T
, u∗1 =

[
−2.313 −1.333

]T
, u∗2 =

[
2.627 2.667

]T
,

x∗0 =
[
4 0.1

]T
, x∗1 =

[
0 0.1

]T
, x∗2 =

[
4 0

]T
.

• initial conditions: x0 =
[
0 0

]T
, X̂0 =

[
0
0

]
⊕
[
0.1 0
0 0.1

]
B2.

• system constraints:

U = {u :
[
−3 −3

]T ≤ u ≤ [3 3
]T }, X = {x :

[
−20 −10

]T ≤ x ≤ [20 10
]T }.

• input set for active FI: Uf = {u :
[
0 2

]T ≤ u ≤ [1 3
]T }.

• prediction horizon: N = 2,

• MPC controller parameters: Q =

[
1 0
0 1

]
,R =

[
0.1 0
0 0.1

]
. P =

[
1 0
0 1

]
.
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Figure 3: Output sets of active FI

For the three modes, three interval observers are designed as in (7). Considering that uk ∈ Uf and
ωk ∈W , the output sets corresponding to the FI conditions in Proposition 3.1 can be constructed, which are
presented in Figure 3. Since Yf is generated from the multiplication of an interval matrix and a zonotope, it
is quite difficult to accurately compute it. Thus, as a pragmatic idea, a box outer-bounding Yf (i.e., the red
set in the figure) instead of Yf is used to check the FI conditions. In Figure 3, it can be observed that two
components of Yf are disjoint from those of Y 0

f , respectively, which means that the considered sensor faults
can be isolated by the proposed FI approach.
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Figure 4: FD of fault 1

In this simulation, for simplicity, one only illustrates the process from the healthy mode to a faulty mode
and omits the process of sensor recovery from a faulty mode to the healthy mode because they are using the
same principle. Thus, the same scenario is defined for both faults: from time instants k = 1 to 45, the plant
is healthy, while from time instants k = 46 to 90, a sensor fault occurs.

Remark 5.1 In Figures 4 and 8, Rik(1) and Rik(2) denote the first and second components of Rik from the
i-th interval observer at time instant k, respectively. For the remaining figures, the notations Yk(1), Yk(2),
y(1), y(2), xk(1), xk(2), uk(1) and uk(2) have the similar meaning.

The FD and FI simulation results of the first sensor fault are shown in Figures 4 and 5, respectively. In
Figure 4, it is shown that a fault is detected at k = 47, i.e., 0 6∈ R0

47. Then, the active FI process is started,

3L1 and L2 are obtained using mid(G1) and mid(G2), respectively.
4G1 and G2 denote the actual fault magnitudes, i.e., G1 ∈ G1 and G2 ∈ G2. Note that the occurrence of any fault magnitude

inside G1 and G2 can be isolated if they can be detected.
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Figure 5: FI of fault 1
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Figure 6: Control inputs of Scenario 1
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Figure 7: Comparison of states and state estimations 1

18



i.e., (18) is initialized and (20) is tested in real time for FI (see Figure 5). At k = 50, the first component
of yk respects its bound Yk(1), i.e., y50(1) ∈ Y50(1), while the second component violates its bound, i.e.,
y50(2) 6∈ Y50(2), which indicates that the first sensor fault is isolated. Finally, the first state-input setpoint
pair is used for FTC at k = 50.

In Figure 5, before the occurrence of the first fault, it can be observed that the expected output y∗0 is
well regulated (the outputs are shown in Figure 5 as the red stars), while after the first fault, we degrade the
performance specification from y∗0 to y∗1 . Then, after system reconfiguration at k = 50, the output setpoint y∗1
can be well regulated as well. In Figure 6, the generated inputs uk are presented, where we can see that the
input constraints can be well satisfied during the whole process. Besides, in order to show the effectiveness
of the proposed state-estimation method (22), a comparison between the real states and their estimations is
shown in Figure 7.
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Figure 8: FD of fault 2
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Figure 9: FI of fault 2

Similar to the first scenario, the FD and FI simulation results of the second fault are shown in Figures 8
and 9, respectively. In Figure 8, it is shown that a fault is detected at k = 46. In Figure 9, the second
sensor fault is isolated at time instant k = 51 and simultaneously the controller is updated with the second
state-input pair corresponding to the second scenario. Similarly, the outputs are shown in Figure 9 as the
red stars, where y∗0 and y∗2 are well regulated before the second fault and after reconfiguration, respectively.
The generated control inputs for the second scenario are shown in Figure 10, which presents that the input
constraints are always satisfied. In Figure 10, during active FI, it is seen that only five control actions are
generated and only five steps are needed to isolate the second fault. In Figure 11, a comparison between
the real states and their estimations is shown. According to these results, we can see the effectiveness of the
proposed sensor FTC scheme.
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Figure 10: Control inputs of Scenario 2
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Figure 11: Comparison of states and state estimations 2

6 Conclusions

In this paper, a sensor and actuator FTC scheme using robust MPC, interval observer-based FD and set-
based active FI is proposed. In this FTMPC scheme, the FI conditions are established on-line by the MPC
controller. With MPC, in comparison with the passive methods, the FI conditions can be simplified by the
active FI method proposed in this paper. In order to make the proposed FTMPC scheme work, one has
to obtain the feasibility, stability and constraint satisfaction and also to propose a state-estimation method
for the robust MPC controller. Currently, several pragmatic methods have been developed based on several
assumptions to obtain the feasibility, stability, constraint satisfaction and state estimations such as (22),
(25), Assumptions 2.1, 4.1 and 4.2. For example, for invariant set construction and feasibility guarantees, the
proposed FTC scheme relies on Assumption 4.1. Thus, there still exists space to improve the performance
of this FTMPC scheme and reduce different types of conservatism such as relaxing the assumptions and
developing more efficient state-estimation methods during both transient-state and steady-state phases.

The main contribution of this paper has been to propose a novel FTMPC framework based on MPC
and interval observers. Additionally, as aforementioned, a novel state-estimation method has been proposed
to guarantee the recursive feasibility of MPC open-loop optimization problem. This means that, if better
state-estimation approaches can be found, Assumption 4.1 can potentially be removed and the FTC scheme
can further be improved with those state-estimation approaches. In the future research, aside the faulty state
estimation improvements, the key points are to find better ways to relax the assumptions, apply Uf directly
as the input-constraint set of the MPC controller during the active FI phase instead of using a fixed point
inside Uf and develop a systematic method to compute the set Uf instead of the current trial and error
method to find a satisfactory Uf .
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A Appendix

Property A.1 Given two zonotopes X1 = g1 ⊕H1Br1 ⊂ Rn and X2 = g2 ⊕H2Br2 ⊂ Rn, their Minkowski
sum is X1 ⊕X2 = {g1 + g2} ⊕ [H1 H2]Br1+r2 .

Property A.2 Given a zonotope X = g ⊕HBr ⊂ Rn and a suitable matrix K, KX = Kg ⊕KHBr.

Property A.3 Given a family of zonotopes denoted by X = g⊕MBr (g ∈ Rn is a real vector and M ∈ Rn×r
is an interval matrix), a zonotope inclusion �(X) is defined by

�(X) = g ⊕ [mid(M) H]Br+n,

where H is a diagonal matrix that satisfies

Hii =
∑r

j=1

diam(M)ij
2

, i = 1, 2, · · · , n,

where diam(·) obtains the diameter of an interval matrix.

Property A.4 Given the dynamics Xk+1 = AXk ⊕ Buk, where A and B are interval matrices and uk is
the input at step k, if Xk is a zonotope with the center gk and segment matrix Hk, Xk+1 is bounded by

Xe
k+1 = gk+1 ⊕Hk+1Br,

with

gk+1 =mid(A)gk + mid(B))uk,

Hk+1 =[J1 J2 J3],

J1 =seg(�(AHk)),

J2 =
diam(A)

2
gk,

J3 =
diam(B)

2
uk,

where seg(·) obtains the segment (or generator) matrix of a zonotope.

Property A.5 Given a zonotope X = g ⊕ HBr ⊂ Rn and an integer s (with n < s < r), denote by
Ĥ the matrix resulting from the reordering of the columns of the matrix H in decreasing Euclidean norm.
X ⊆ g ⊕ [ĤT Q]Bs where ĤT is obtained from the first s − n columns of matrix Ĥ and Q ∈ Rn×n is a
diagonal matrix whose elements are Qii =

∑r
j=s−n+1 | Ĥij |, i = 1, . . . , n.
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