
 

 

 

   

Yolanda Bolea, Vicenç Puig
 



Advanced Control Systems Group (SAC) 

IRI Institut de Robòtica i Informàtica Industrial (CSIC-UPC) 

Universitat Politècnica de Catalunya (UPC) 

Pau Gargallo, 5, 08028 Barcelona, Spain 

 
#
 

 

Abstract: The purpose of this paper is to present a multivariable linear parameter varying (LPV) 

controller with a gain scheduling Smith Predictor (SP) scheme applicable to open-flow canal systems. 

This LPV controller based on SP is designed taking into account the uncertainty in the estimation of 

delay and the variation of plant parameters according to the operating point. This new methodology can 

be applied to a class of delay systems that can be represented by a set of models that can be factorized 

into a rational multivariable model in series with left/right diagonal (multiple) delays, as, e.g.  the case 

of irrigation canals. A multiple pool canal system is used to test and validate the proposed control 

approach. 
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I. INTRODUCTION 

 

Distributed parameter systems (Belforte et al., 2002), usually considered as models with a very large 

number of states could be approximated with low order linear time invariant (LTI) models in order to 

use classical linear control design tools, as it is usual in control engineering practice. However, 

simplified LTI parameter models lose all information about the spatial structure of the original system 

and cannot account for it, although they are satisfactory from an input-output point of view. Hence, 

simplified model structures that still preserve the information about the non-linearity, the influence of 

the operating point and the system spatial structure are needed to design a satisfactory control. Such 

structure can be provided by linear parameter varying (LPV) models consisting of a linear lumped 

model in which the system parameters are function of external measurements, or by quasi-LPV models 
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when the parameters vary according to states and/or operating conditions of the system (Rugh and 

Shamma, 2000). LPV models (Bamieh and Giarre, 2002 ) (De Caigny et al., 2009 ) are suitable for gain-

scheduling (GS) control design. Conventional GS techniques have been widely used for designing 

controllers for multiple industrial applications (where the system parameters are varying) (see, e.g. Leith 

and Leithead, 2000). The conventional GS is a heuristic method (Shamma, 1991) that consists in 

dividing the parameter space into small regions (operating points), in which the plant is regarded as a 

LTI system. Then, LTI controllers are designed for each operating point to achieve a synthetic controller 

with the use of interpolation. The heuristic gain scheduled controllers normally guarantee control system 

stability when the parameters vary slowly, although sometimes it may lead to instability or chaotic 

behavior. In fact, the main known drawback of this technique is that it does not guarantee stability and 

performance rigorously and it does not provide a systematic design procedure. On the other hand, LPV 

GS design can be formulated as a convex optimization problem based on linear matrix inequality (LMI) 

constraints, with stability and performance guarantees (Becker and Packard, 1994) (Apkarian, 1995a) 

(Apkarian, 1995b). In recent years, a significant numbers of contributions to the LPV theory can be 

found in the literature (Boudaoud et al., 2014) (Castillo et al., 2015) (Guoyan et al., 2015) (Hwanyub 

and Sung, 2015) (Liang et al., 2015) (Masubuchi and Kurata, 2011)(Sato and Peaucelle, 2013) (Wang et 

al., 2015) (White et al., 2013).  

The main contribution of this paper is to propose a multivariable control design methodology 

applicable to open-flow canal systems. Open-flow canals involve mass energy transport phenomena they 

behave as intrinsically distributed parameter systems that can be approximated by means of LPV as 

discussed in (Bolea, 2014b).  The proposed control approach is based on a LPV GS controller coupled 

with a delay-scheduling MIMO Smith Predictor that considers model uncertainty extending the results 

presented in (Sanchez-Peña, 2009) for the LTI case where a robust controller designed from Youla 

parametrization is used.  In the proposed methodology, a set of necessary and sufficient conditions under 

which a model can be separated into diagonal left and right pure delays and a rational matrix is 



 

 

 

presented. Surprisingly, these conditions are satisfied by multiple pool open flow canal systems. The 

varying parameters are measured in real time and used to schedule the controller parameters. The “delay 

scheduling” Smith predictor scheme is used to compensate most of the estimated delay. However, there 

is still a remaining delay due to the inaccuracy in its estimation that will be represented as unstructured 

(multiplicative) dynamic uncertainty in a robust control framework. Performance is quantified as an 

induced L2 norm, as part of a mixed sensitivity problem (MSP) with measured varying parameters. This 

problem can be solved by means of the standard LPV theory using LMI optimization (Becker and 

Packard, 1994). In order to design the controller, the region of parameter variations is approximated by a 

polytopic region that reduces the number of LMIs to be solved to a finite number, one for each vertex of 

the polytopic region (Apkarian, 1995a) (Apkarian, 1995b). To validate the proposed LPV GS controller 

a two-pool open flow canal system is used.  

The structure of the paper is as follows: In Section II, the LPV a description of a multiple pool canal 

plant is presented. In Sections III and IV, the formulation, synthesis and implementation of a gain-

scheduling LPV controller in conjunction with a “delay scheduling” Smith predictor (LPV SP) are 

presented. In Section V, the proposed methodology is applied to a two-pool canal. Conclusions are 

drawn in Section VI. 

 

II.  MULTIPLE POOL IRRIGATION CANAL SYSTEMS 

 

An irrigation canal is an open-flow hydraulic system, whose objective is mainly to convey water from 

reservoirs down to its final users. To achieve this aim, hydraulic gates are operated in order to control 

the water levels downstream of the pools (Figure 1). In this figure, a simplified view of our canal of 

study is presented. It receives water of a source, reservoir, and lets the water freely flow by gravity 

following the slope. The following variables are considered to define the input–output behavior of the 

canal as a dynamic system: the water levels idy  at the downstream end of each pool are the outputs to be 

controlled and the gate openings ui are the manipulated control inputs. The overall objective of the 



 

 

 

control scheme is to drive automatically the gate openings to ensure that the downstream levels reach 

and keep their prescribed set-points in spite of the disturbances. 
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Figure 1. Irrigation canal system 

 

 

 

 

Open-flow canals involve mass energy transport phenomena which behave as intrinsically distributed 

parameters systems. Their complete dynamics is represented by non-linear partial differential hyperbolic 

equations, Saint-Venant equations, which have no analytic solution for arbitrary geometry. They express 

the conservation of mass (1), and momentum principles (2) in a one-dimensional free surface flow  

(Barré de Saint Venant, 1871) (Chow, 1959): 
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Here q = q(x,t) is the flow [m
3
/s], A = A(x,t)  is the cross-sectional area [m

2
], t is the time variable [s], 

x is the spatial variable [m], measured in the direction and the sense of the movement, g is the gravity 

[m/s
2
], I0 is the bottom slope and If is the friction slope.  

However, Saint-Venant equations are not useful for designing a controller using linear theory as 

already noticed by (Litrico and Fromion, 2006). Instead, a simplified control-oriented model (around a 

given operating point) is proposed (Bolea et al., 2014b), that extends the IDZ (integral delay zero) model 

proposed in (Litrico, 2004) to the LPV case, with the aim of designing the control through the proposed 

methodology explained in detail in the next sections. According to this modeling approach, the single 

reach canal reach dynamics (relation between upstream and downstream levels, yu and yd, and 

downstream flow, qd, and upstream flow, qu) for low frequencies can be approximated by 

                11 12( ) ( ) ( ) ( ) ( )u u dy s P s q s P s q s                                                              (3) 
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with τu and τd are the upstream and downstream transport delays and Au and dA  are the upstream and 

downstream backwater areas, all depending on the operating point.  

III. MIMO LPV SMITH PREDICTOR  

 

A. Problem set-up  

 

Let us consider a time-delayed MIMO LPV system
1
: 

 

( , ) ( , ).* ( , )mG s G s D s                                                               (6)     

 

where “.*” is the element-wise matrix product (Hadamard product) and  

 

                                                           
1 For simplicity and with abuse of notation, LPV systems are presented as transfer functions in this section, although computations are performed entirely 

using the state space representation. 
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The time varying parameter vector (t) can be measured (estimated) in real time and can be used to 

adapt the controller using a gain-scheduling controller scheme as in (Apkarian, 1995a) (Bolea et al., 

2014a). Time delays are compensated using a “delay scheduling” MIMO Smith predictor scheme 

(Figure 2). However, since there is always an error in the delay estimation (even when the time delay 

variation with the operating point is modeled), a remaining delay due to the inaccuracy in its estimation 

still is present. This may be represented as unstructured dynamic uncertainty in a robust control 

framework, which we assume here as LTI. The uncertain model is obtained from the Smith Predictor 

structure (Figure 2), between input u and the feedback output f: 
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The model uncertainty in the delay can be covered by the following global dynamic uncertain set of 

models: 
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with W(s) = w(s)I and w(s) a SISO stable non-minimum phase linear model. 
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Figure 2. MIMO Smith Predictor 

 



 

 

 

B. Left/right delay factorization 

 

In (Sanchez-Peña et al., 2009), it has been proved that a left/right decomposition should be used to 

obtain an accurate bound of model uncertainty in case of using a MIMO Smith Predictor. Here, the LPV 

extension of this reasoning is presented: 
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To find these left ( )(θτ l
i ) and right delays ( )( r

i ), we need to solve the following linear equation: 
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with x( )nm n mH  , and 1n (0n) a column vector of ones (zeros) of length n. According to (Sanchez-Peña 

et al., 2009) and considering the LPV case, for MIMO systems in general, there exists a solution to the 

previous linear equation if and only if the following relations hold: 
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This seems an artificial condition, but surprisingly, it is satisfied by multiple pool open flow canals, as 

the ones presented in Section II and Section V by means of an example. For these particular system 

structures, less restrictive conditions can be stated, as will be proved next. 

 

C.  Delay uncertainty 

 



 

 

 

Once the factorization of the plant's model which separates delays from rational part has been made, 

the delay uncertainty is considered. The uncertain model of the plant is: 
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Due to its diagonal structure, uncertainty and nominal delay commute, i.e )()()()( Δ=Δ rlrlrlrl DD . Here, 

the nominal (delayed) model has been defined as Go(s,) and the rational (delay-free) part as Gm(s,). 

 

The uncertain model is obtained from the Smith Predictor structure (Figure 2) between input u and the 

feedback output f: 
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A simple way to include delay uncertainty in the set of models is to cover it completely with global 

uncertainty that does not distinguish between the different input/output channels. In this case, we may 

rewrite Eq. (14) in the following way: 
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Then, according to (Sanchez-Peña, 2009), the uncertainty in the delay can be covered by a dynamic 

uncertain set of models as in Eq. (9). 



 

 

 

 

 

 

IV. LPV CONTROL OF THE PLANT 

 

A.  LPV General Framework 

 

The LPV plant (6) after the application of the factorization (10) and the MIMO Smith Predictor 

scheme (Figure 2), can be described by state-space equations of the form 
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where x
n
 is the state vector, u

m1
 and w

m2
 are the control and disturbance input vectors, 

respectively, z
p1

 and q
p2

 are the measured and controlled output vectors, respectively. A(), B(), 

Bw(), Cz(), Cq(), Dqu(), Dzu(), Dzw(), Dqw() are continuous matrix valued functions of the time varying 

parameter vector (t)    
l
 ,  being a polytope with r vertices. Performance is defined as requiring 

a bounded output q(t) for any bounded external signal w(t), both measured by their energy integral. The 

synthesis technique for LPV systems is based on the following results:  

 

Theorem 1. (Quadratic H  Performance) (see (Apkarian, 1995a)). The LPV system given by Eq.(16) is 

QS and has quadratic H performance if  there exists a positive definite matrix X>0 such that 
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for all admissible values of the parameter .  

 

Remark 1. According (Apkarian, 1995a), the previous problem should fulfill the following 



 

 

 

assumptions: 
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iquD   for i=1,2,..,r. 

2) )(),(),(),(  qwzuq DDCB are parameter-independent  

3)
qwqwzuzuqi DDDDCCBB

iii
 ,,,   for i=1,2,..,r. 
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Theorem 2. (Vertex Property) (see (Apkarian, 1995a)). Consider a polytopic linear parameter-varying  
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and assume A,B,C,D are affine functions of , then the following items are equivalent: 

 

(i) The system is quadratic stable with Quadratic H  performance . 

(ii) There exists a positive definite matrix X>0, which satisfies the following LMIs: 

 

 

In this case, Theorem 1 should only be verified on the vertices of the parameter polytope , which in 

turn implies that the optimization problem reduces to a finite number of LMIs, which makes such an 

approach appealing. 

 

B. LPV Gain Scheduling Control Methodology 

 

The control design specifications that will be considered are a mixture of performance and robustness 

objectives arranged as a mixed sensitivity problem (MSP) (Skogestad, 1997), 
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which is illustrated in Figure 3. Here, S is the sensitivity function and T its complement. The transfer 

functions in Eq. (19) represent weighted tracking error (or disturbance rejection), weighted control 

action and robust stability, respectively. In order to limit the control energy and bandwidth of the 

controller, a weight Wu is included in the design. Such weight is a transfer function with a crossover 

frequency approximately equal to that of the desired closed-loop bandwidth. The weight for the 

complementary sensitivity, W, captures the uncertainty of the plant model (in this case coming from the 

delay measurement error) and also limits the closed loop bandwidth. Typically, a disturbance in the 

system output is a low frequency signal, and therefore it will be successfully rejected if the minimum 

value of S is achieved over the same frequency band. This is performed by selecting a weight We, with a 

bandwidth equal to that of the disturbance in the controller design specifications. Performance is a 

combination of weighted error and control action minimization measured in terms of the energy 

integrals of the input and output signals involved. This control design problem will be solved using the 

concepts in Section III and Section IV.A, and using the fact that the time varying parameters enter 

affinely in the augmented model and are approximated by a polytopic region. 
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Figure 3. Proposed LPV feedback system scheme (MSP scheme). 

 

 

A scheduling static time varying state feedback controller which satisfies QS and performance 

specifications is designed. This controller also guarantees “frozen” closed loop pole locations inside a 

desired LMI region.  



 

 

 

Since the LPV plant is represented in polytopic form, the controller K() is designed according to: 
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where: Co is the convex hull of the polytope of vertex controllers, , 1, ,i i r  are the vertices of the 

parameter polytope  and the polytopic coordinates 0, 1, ,i i r    satisfy 
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Finally, the closed-loop system is wBxAx clclclcl  )( . 

 

 

V. CONTROL OF A TWO-POOL CANAL SYSTEM 

 

 

The test bench canal used to illustrate the proposed approach presented in this work consists of a 

multiple reach canal with two pools equipped with two sluices gates and a downstream spillway (see 

Figure 4). A servomotor is used in each gate position (u1 and u2) and there are two level sensors located 

at the end of the two canal pools (yd
1
 and yd

2
). Upstream of the first gate there is a reservoir with a 

constant level H = 3.5m. The total length of the first pool is L1 = 2km while in the in the second L2 = 

4km. The canal width, bottom slope and Manning roughness coefficient are B = 2.5m, I0 = 5.10
-4

 and n 

= 0.014. The operating range of the gate is limited to the interval U[0, 0.9]m, the gate discharge 

coefficient and gate width are Cdg = 0.6 and b = 2.5m. Finally, the downstream spillway height and 

coefficient are Ys = 0.7m and Cds = 2.66, respectively.  

The verification of the methodology proposed in this work is carried out by a high-fidelity irrigation 

canal simulator, which represents water dynamics by Saint-Venant equations of an accurate and 

complete way. This simulator has been developed by the “Modeling and Control of Water Systems” 

group at the Automatic Control Department, UPC (Bolea and Blesa, 2000). 

The way to represent the MIMO control model for two pool canal system is: 
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where P11, P12, P21 and P22 are the transfer functions that related the input vector (gate opening of each 

gate) with the output vector (downstream level in each pool) (Bolea, 2014). 
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where the gains, the time constants and the delays of each transfer function are the linear varying 

parameters of the model because they vary according to two gain scheduling variables (u1, u2), that 

represent the opening gates of the pool 1 and pool 2, respectively. The model structure is given by LPV 

first order plus delay time (FOPDT) transfer functions Eq. (22). In particular, for the proposed two-pool 

system (Figure 4), if t1 is the travelling time of the water to cover the first pool of length L1 and t2 is the 

travelling time of the water to cover the second pool of length L2, the different delays associated to each 

input/output channel are: 11 = t1, 12 =0, 21 = t1+t2, 22 = t2. This means that the relation between delays 

established in Eq. (11) holds.  
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Figure 4. Two-pool canal system. 

 

 

A. Identification of the canal LPV model  

 

In order to apply the control design approach presented in this paper, first the model presented in (20) 

should be estimated using data.  In the literature, there exist two main approaches for the identification 



 

 

 

of LPV models: a global (see e.g. (Bamieh, 2002) and a local (De Caigny, 2009) one. The global 

approach is based on the assumption that it is possible to perform a global identification experiment by 

exciting the system while the scheduling parameters are persistently changing the system dynamics. This 

assumption, however, may be difficult to satisfy in many cases. In the case that it is impossible to 

perform a global experiment, it is appropriate to use the local LPV identification approach, based on the 

interpolation of a set of local LTI models that are estimated using a set of local measurements, obtained 

by exciting the system at different fixed operating conditions, that is, for constant values of the 

scheduling parameters.  To estimate the parameters of the LPV model(22), a methodology inspired in 

the one proposed (De Caigny, 2009) is used as described in detail in (Bolea et al., 2014b).  

The parameters of the LPV model in Eq.(23) are estimated experimentally by applying a set of steps to 

each input (u1,u2)  that sweeps all the operating points. Each linear varying parameter depends on the 

gain scheduling variables (gate openings)  = (θ1, θ2) = (u1,u2) as indicated in Eq.(23). The identification 

of the dynamics is carried out using the LPV identification approach presented in this section, based on 

performing LTI identifications at several operating points. It is assumed that the variation of the 

parameters (K,T,) with the scheduling variable  can be approximated by a polynomial as follows : 

Kij (uj) = aij 2  uj
2
+aij 1 uj+aij 0; 

Tij (uj) = bij 2 uj
2
+ bij 1 uj+ bij 0                                                                                    (26) 

τ ij (uj) = cij 2 u1
2
+ cij 1 u1+ cij 0 

 

The values of the coefficients of the previous polynomials are shown in the Table I and have been 

obtained by interpolating the parameters at the different operating points. Then, a control model is 

developed which covers all the operation range, uj[0,0.9]  j=1,2, representing the suitable behaviour of 

the canal. The parameters of the system vary in these intervals presented in Table II with constant time 

and delay expressed in seconds. For more details in the identification procedure, see (Bolea et al., 

2014b) 



 

 

 

 

 

 

 

TABLE I 

COEFFICIENTS OF THE  POLYNOMIALS OF EQ(26) 

 

 aij 2 aij 1 aij 

0 

bij 2 bij 1 bij 0 cij 2 cij 1 cij 0 

u
1


[0
,0

.9
],

 j
=

1
 

i=
1

 

2.38 -7.40 6.38 1308.45 -1925.01 2222.66 881.42 -1398.14 844.37 

i=
2

 

3.77 -6.08 2.56 -296.43 204.64 1855.92 580.47 -1281.38 1883.06 

u
2


[0
,0

.9
],

j=
2
 

i=
1

 

1.77 2.70 -4.96 989.05 -1502.23 2360.87 0 0 0 

i=
2

 

5.20 -7.98 3.10 -5.95 -107.73 1521.78 -550.77 362.99 959.47 

 

 

 

TABLE II 

INTERVAL BOUNDING PARAMETER VARIATIONS 

 

Parameter K11 K21 K12 K22 

Interval [1.65, 5.25] [0.15,  1.5] [-4.35,  -1.1] [0.12,  1.7] 

 

Parameter T11 T21 T12 T22 

Interval [1550, 1920] [1800,  1900] [1800,  2100] [1430,  1500] 

 

Parameter 11 21 12 22 

Interval [300, 580] [1200,  1650] 0 [840,  1010] 

 

 

 

B. LPV control design 

 

A LPV controller is designed following the method explained in Section IV. The LPV delay is 

compensated by a LPV SP, but there is an error in this estimation. This delay uncertainty (Eq.(14)) is 

covered with global dynamic uncertainty by the following weight (Figure 5, down) (Skogestad, 1997): 
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To test the improvement of the robust LPV control vs the robust LTI control (Sanchez-Peña, 

2008), a comparative study is carried out. In the LTI case, the nominal delays and their uncertainty are 

as follows (time is expressed in minutes)(see Eq. (13)): 
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The approach to select the LTI weight that covers this delay error is the same as in the LPV case. 

In the LPV case the weight is the following (Figure 5, top): 
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Figure 5. Global  Wδ  (top) LPV case, (down) LTI case. 

 

 

 

In Figure 6, the LPV vs LTI controllers are compared around one operation point: u1[0,0.3], 

u2[0.2,0.5]. It can be observed that the LPV control is faster and with lower overshoot in both pools (h1 

and h2). Besides, the control signals of both gates are less aggressive in the LPV case and, as a 

consequence, the voltage consumption of both gates is lower than the consumption in the LTI case. In 

Figure 7 both controllers are simulated over all the operation range and the previous observations also 

apply. Clearly the LPV controller is more efficient in controlling the canal, which agrees with the 

theory. It can also be noticed that the degree of coupling of the second pool with respect to the first one 

is lower in the LPV controller case. 

 

 



 

 

 

 

 
Figure 6. LPV and LTI control in the operation point u1[0,0.3], u2[0.2,0.5].  (Top) Desired and measured downstream 

levels of pool 1 and pool 2. (Down) Signal control of actuator of gate 1 and gate 2. 
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Figure 7. LPV and LTI control in a scenario (all operation range). (Top) Desired and measured downstream levels of pool 

1 and pool 2. (Down) Signal control of actuator of gate 1 and gate 2. 
 

 

 

VI. CONCLUSION 

 

In this paper is presented a new LPV robust controller with an LPV generalization of the extension of 

the classical Smith Predictor to MIMO systems with multiple uncertain delays presented in (Sanchez-

Peña, Bolea and Puig, 2008). This novel methodology that presents a set of necessary and sufficient 



 

 

 

conditions under which a model can be separated into diagonal left and right pure delays and a rational 

matrix is. These conditions are satisfied by multiple pool open flow canal systems Therefore, a gain-

scheduling LPV MIMO SP controller based in the new method explained in this paper is used for 

controlling a multi-pool canal system. This LPV controller, compared with LTI control when applied to 

a two-pool canal system, shows very promising and satisfactory results. 
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