
Final Degree Project 
 

Bachelor's degree in Industrial Technology 

Engineering 
  

 
 

 

Music Quartet based on a PSoC 

 

 

 

 

REPORT 

 

 
 

 

 

 

 

 Author:  Antonio Martínez García  

 Director:  Manuel Moreno Eguilaz 

 Submission:  January 2017  
 
 

 
 

 

 

 

 

 

 

 

Escola Tècnica Superior 
d’Enginyeria Industrial de Barcelona 



 



Music quartet based on a PSoC  Page 1 

 

Abstract 

This report details the migration process of the Quartet code from a Microchip PIC24 

microcontroller, which was previously migrated by Pau Mendieta from a Microchip PIC18 

microcontroller, to a CY8CKIT-042-BLE PSoC 4 microcontroller manufactured by Cypress 

Semiconductor. It also explains how several improvements, both in sound quality and 

program functionality, have been implemented into the final program once the migration was 

completed. 

The original Quartet code, developed by Victor Timofeev, synthesized 4 different voices 

(two guitars, a violin and a bass) coordinated by a conductor task, each of which played 

from its own music sheet, which was stored in ROM. The sound samples were generated 

using amplitude modulation: the characteristic waveform of the instrument (also stored in 

ROM) and its amplitude envelope (generated through software) were multiplied, and later 

exported through an 8-bit PWM running at 78 kHz. These could later be played on speakers 

with the help of an RC filter. 

The project was carried out by continuously testing the software on the actual 

microcontroller. Moreover, data was extracted from these tests and compared with the 

simulation of Pere Domenech’s PIC18 code. A great use of the example projects provided 

by Cypress Semiconductor, which demonstrate the features of the PSoC 4 through simple 

applications, has also been made. It was also essential to analyze different signals with an 

oscilloscope at the laboratory. 

The program obtained after completing the project exports the audio signal through a 16-bit 

PWM running at 92 kHz and includes an extra voice (a second violin), more accurate 

characteristic waveforms and improved amplitude envelopes, as well as added functionality, 

such as an extra octave and a wider note frequency range. 

The report first presents the basic operation of the original code, which was carefully studied 

at the beginning of the project. Then, it explains how the OS (FreeRTOS) and the program 

were migrated, along with the extensive troubleshooting process that followed. Moreover, it 

details the improvements that were made once the code worked correctly. Finally, 

suggestions are made for future improvements. 



Page 2  Report 

 

Contents 

ABSTRACT _______________________________________________________ 1 

CONTENTS _______________________________________________________ 2 

1. GLOSSARY ___________________________________________________ 5 

2. PREFACE ____________________________________________________ 6 

2.1. Prior works related to this project..............................................................................6 

2.2. Motivation ..................................................................................................................7 

2.3. Previous requirements ..............................................................................................7 

3. INTRODUCTION _______________________________________________ 8 

3.1. Objectives .................................................................................................................8 

3.2. Scope of the project ..................................................................................................8 

4. BASIC QUARTET OPERATION __________________________________ 10 

4.1. The Conductor ........................................................................................................10 

4.2. The Instruments ......................................................................................................10 

4.3. The Synthesizer ......................................................................................................11 

4.4. Pulse Width Modulation ..........................................................................................13 

5. SOFTWARE MIGRATION _______________________________________ 14 

5.1. FreeRTOS migration...............................................................................................14 

5.2. FreeRTOS configuration .........................................................................................14 

5.2.1. Co-operative scheduler .................................................................................................... 14 

5.3. Introducing the TCPWM block ................................................................................15 

5.4. Quartet code migration ...........................................................................................16 

5.4.1. Changes made to the amplitude modulation .................................................................. 16 

5.4.2. Changes made to the PWM ............................................................................................ 17 

6. QUARTET TROUBLESHOOTING ________________________________ 18 

6.1. Adjusting temp_dac ................................................................................................19 

6.2. Increasing clock speed ...........................................................................................20 

6.3. Extracting data from the PSoC 4 ............................................................................21 

6.4. Comparison between PSoC 4 and PIC18 ..............................................................23 

6.4.1. Testing conditions ............................................................................................................ 23 

6.4.2. S2.f ................................................................................................................................... 24 

6.4.3. Temp1 .............................................................................................................................. 25 

6.4.4. S2.t ................................................................................................................................... 25 

6.4.5. Temp2 .............................................................................................................................. 26 

6.4.6. Temp_dac ........................................................................................................................ 27 



Music quartet based on a PSoC  Page 3 

 

6.4.7. Comparison conclusions ................................................................................................. 27 

6.5. Temporal analysis .................................................................................................. 28 

6.5.1. PWM frequency verification ............................................................................................ 28 

6.5.2. Interrupt frequency .......................................................................................................... 28 

6.5.3. Timer implementation...................................................................................................... 29 

6.5.4. Interrupt frequency verification ........................................................................................ 30 

6.5.5. Tickless idle ..................................................................................................................... 32 

6.6. Final corrections ..................................................................................................... 33 

6.6.1. PWM block variation ....................................................................................................... 33 

6.6.2. Sound quality correction .................................................................................................. 34 

7. QUARTET IMPROVEMENTS ___________________________________ 35 

7.1. 16-bit PWM ............................................................................................................ 35 

7.2. New amplitude envelopes ...................................................................................... 36 

7.3. Waveform tables with 128 data points ................................................................... 39 

7.3.1. Data interpolation ............................................................................................................ 39 

7.3.2. Data reading method ....................................................................................................... 40 

7.3.3. Program modifications .................................................................................................... 40 

7.4. Waveform tables with 256 data points ................................................................... 41 

7.4.1. Interpolated data .............................................................................................................. 41 

7.4.2. Code modifications .......................................................................................................... 43 

7.5. Waveform tables with 512 data points ................................................................... 43 

7.6. Broadening the note frequency range ................................................................... 44 

7.6.1. Duration modifications ..................................................................................................... 44 

7.6.2. Change into the integer type ........................................................................................... 44 

7.6.3. Command re-structure .................................................................................................... 44 

7.7. Adding an extra octave .......................................................................................... 45 

7.8. Adding an extra voice ............................................................................................ 46 

7.8.1. Notelist and sound channel ............................................................................................. 46 

7.8.2. Synthesizer modifications ................................................................................................ 46 

7.8.3. FreeRTOS related modifications .................................................................................... 47 

8. FINAL QUARTET ANALYSIS ___________________________________ 50 

8.1. Resource usage (4 voices) .................................................................................... 50 

8.2. Temporal analysis (4 voices) ................................................................................. 50 

8.2.1. PWM frequency ............................................................................................................... 50 

8.2.2. Interrupt frequency .......................................................................................................... 51 

8.2.3. Tempo ............................................................................................................................. 51 

8.2.4. Computational effort of synthesizing a sound sample .................................................... 52 

8.2.5. Computational effort of adjusting temp_dac ................................................................... 53 

8.2.6. Command processing ..................................................................................................... 54 

8.3. Resource usage (5 voices) .................................................................................... 55 

8.4. Temporal analysis (5 voices) ................................................................................. 55 



Page 4  Report 

 

8.4.1. Interrupt duration .............................................................................................................. 55 

9. FUTURE IMPROVEMENTS _____________________________________ 56 

9.1. Bluetooth .................................................................................................................56 

9.2. Utilizing hardware blocks ........................................................................................56 

9.3. Adding new instruments .........................................................................................56 

9.4. Multiple sound outputs ............................................................................................57 

9.5. Widening the range of note durations .....................................................................57 

10. PLANNING __________________________________________________ 58 

11. BUDGET ____________________________________________________ 59 

12. ENVIRONMENTAL IMPACT _____________________________________ 60 

CONCLUSION ____________________________________________________ 61 

BIBLIOGRAPHY __________________________________________________ 62 

 



Music quartet based on a PSoC  Page 5 

 

1. Glossary 

BLE: Bluetooth Low Energy 

BPM: Beats Per Minute 

CAN: Controller Area Network 

CPU: Central Processing Unit 

DAC: Digital to Analog Converter 

IDE: Integrated Developing Environment 

ISR: Interrupt Service Routine 

LED: Light-Emitting Diode 

OS: Operating System 

PIC: Peripheral Interface Controller 

PSoC: Programmable System on a Chip 

PWM: Pulse Width Modulation/Modulator 

RC: Resistor-Capacitor 

RF: Radio Frequency 

ROM: Read-Only Memory 

RTOS: Real Time Operating System 

SCB: Serial Communication Block 

SRAM: Static Random Access Memory 

TCPWM: Timer Counter Pulse Width Modulator 

UART: Universal Asynchronous Receiver-Transmitter 

UDB: Universal Digital Block 

USB: Universal Serial Bus 



Page 6  Report 

 

2. Preface 

2.1. Prior works related to this project 

The origin of this project goes back to Victor Timofeev’s usage example of the OSA RTOS 

[1]. Timofeev designed a program, which he named “Quartet”, that was able to synthesize a 

4-channel melody and export it using an 8-bit PWM running at 78 kHz so that, with the help 

of an RC filter, it could be played on speakers or headphones. The original code was written 

for a PIC16 microcontroller and used the OSA RTOS as an operating system. 

In 2015 Pere Domenech, a student at ETSEIB (Escola Tècnica Superior d’Enginyeria 

Industrial de Barcelona), succeeded in migrating Timofeev’s code so that it could be 

executed using a PIC18 microcontroller [2]. He chose this microcontroller in particular 

because it is widely available at the Department of Electronics at said university. 

Two years later another student, Pau Mendieta, migrated Pere Domenech’s code so that a 

PIC24 could run it [3]. This meant a change from an 8-bit CPU to a 16-bit CPU and, 

therefore, he expected to improve the sound quality by increasing the PWM resolution. In 

the end, however, only a 9-bit PWM running at 31.25 kHz was achieved and, thus, the audio 

quality did not improve significantly. He also made the necessary changes so that the code 

could run on FreeRTOS [4], a more universal operating system which is easier to migrate. 

Other related projects include Juan Gallostra’s RF Music Festival: orquesta basada en 

microcontroladores PIC18 y RF [5] and Joan Calvet’s CAN Music Festival: Orquestra 

Basada en Microcontroladors PIC18 i un bus CAN [6]. The former designed a musical 

orchestra where each instrument was individually synthesized by four different PIC18 

microcontrollers and the conductor sent commands or notes to each instrument through RF. 

The latter pursued the same objective, but using a CAN bus instead of RF as a means of 

communication. 



Music quartet based on a PSoC  Page 7 

 

2.2. Motivation 

The reasons that justified the creation of this project are the following: 

 Learn how to program a microcontroller in C language. 

 Learn how to use a PSoC and get familiarized with its specific IDE. 

 Understand how a RTOS, more specifically FreeRTOS, works. 

 Apply the knowledge and skills learned in an engineering degree to a more practical 

case. 

 Upgrade an existing code so that it produces an improved result. 

 Learn a method of synthesizing music. 

 Deepen the personal knowledge in the fields of electronics, programming and 

music. 

 

2.3. Previous requirements 

Since the original code is written in C language, it is essential to have a certain degree of 

understanding of this programming language before the actual project can begin. In this 

case, an introductory tutorial was consulted [7]. Knowing the basics of digital electronics is 

also necessary. 

Moreover, one has to familiarize themselves with the PSoC specific IDE, PSoC Creator 4.1 

[8], in order to develop the code, transfer it to the processor and manage the chip’s 

configurable hardware blocks. With regard to these components, some of their datasheets 

have to be studied carefully, namely the PWM [9], TCPWM [10], SCB [11], Clock [12], 

Interrupt [13] and Pins [14] components. 

In addition, it is important to study the pin distribution on the kit [15] whenever cable 

connections have to be made and to understand the fundamental behavior and 

characteristics of the FreeRTOS operating system [16]. 



Page 8  Report 

 

3. Introduction 

3.1. Objectives 

This is the first time a PSoC is used in the Department of Electronic Engineering at ETSEIB. 

Therefore, the first objective of this project is to learn how to use a CY8CKIT-042 PSoC 4 

Pioneer Kit and acquaint oneself with its features. 

The second aim is to adapt both the operating system and the Quartet code so that the 

PSoC 4 is able to run them correctly. Since FreeRTOS is compatible with this 

microcontroller, this migration should not be excessively difficult. 

Another important objective is to make use of the PSoC 4’s advantages over the other 

microcontrollers to improve the resulting sound quality. This can be done in numerous ways, 

as it will be explained further on, but the most important one is to increase the PWM bit 

resolution. 

Lastly, another important feature of the PSoC is that it includes configurable analog and 

digital blocks along with the CPU core. It was thus initially thought that some of the 

operations that were originally implemented through software could be accomplished with 

hardware instead, hence relieving some of the CPU’s computational effort. However, it was 

concluded that the blocks required to do this were only available in a more complex version 

of the PSoC used. 

3.2. Scope of the project 

A significant amount of time in this project will be devoted to learning about the C 

programming language, FreeRTOS, the features of the PSoC, etc. It will also be essential to 

study carefully and understand the original Quartet code in order to migrate it correctly. 

All software modifications will be constantly tested using the corresponding hardware. This 

is made possible thanks to the USB connection between the PSoC 4 and a PC, which 

allows a fast debugging, testing and analysis of the code. As a downside, unlike the PIC 

microcontrollers, the code cannot be simulated, it must be always tested on the actual chip. 

Moreover, modifications of the original Quartet code will be considered, especially those that 

help improve the sound quality of the synthesized instruments. Nevertheless, these will only 

be studied once the migration process has been completed. 



Music quartet based on a PSoC  Page 9 

 

The project will conclude once the code has been correctly migrated and the sound quality 

of the final result is empirically verified to be superior to the older projects mentioned 

beforehand. Finally, further improvements will be suggested for future projects. 



Page 10  Report 

 

4. Basic Quartet Operation 

Before introducing the migration process, it is essential to understand the basic operation of 

the Quartet program. 

4.1. The Conductor 

The conductor is a task whose purpose is to coordinate all instruments and set the tempo of 

the song. To do so, the conductor sends a semaphore to each instrument for every 

command or note in their note list and then creates a delay that sets the tempo. 

4.2. The Instruments 

There are a total of 4 voices (a violin, two guitars and a bass) each of which is represented 

by a task. These tasks read and execute every command/note when the conductor tells 

them to. 

Every voice has a note list stored in ROM (located in the bach1067.h file), where every 

element is either a command (pause, set octave, repeat, etc) or a musical note. In the 

sinus.h file there is a table (also stored in ROM) for every instrument that contains one 

digitized period of its characteristic waveform (see Fig. 4.1). 

 

Figure 4.1: Violin characteristic waveform. Source: Victor Timofeev’s data in sinus.h 



Music quartet based on a PSoC  Page 11 

 

4.3. The Synthesizer 

The sound synthesizing is done during processor interrupts using a technique known as 

amplitude modulation synthesis (see Fig. 4.2). It consists in multiplying two signals: the 

modulator signal and the carrier signal. In this case, the carrier signal is a periodical 

repetition of the instrument’s characteristic waveform (see Fig. 4.3) and the modulator signal 

is the instrument’s envelope (see Fig. 4.4). This is done to simulate the natural evolution of 

sound. In the original code, this multiplication was done through a macro called MUL(), 

which was written in assembly code so as to speed up calculations. 

Once every sample for each voice is generated, they are added and the resulting value is 

divided by 4. 

 

Figure 4.2: Amplitude modulation synthesis conceptual diagram. Source: [2] 

Modulator Signal 

Carrier Signal 

Output Signal 



Page 12  Report 

 

 

Figure 4.3: Violin carrier signal. Source: Victor Timofeev’s data in sinus.h 

 

Figure 4.4: Violin envelope. Source: Victor Timofeev’s original Quartet code 



Music quartet based on a PSoC  Page 13 

 

4.4. Pulse Width Modulation 

Once the synthesizer has generated the output signal, this information is stored and sent 

within the width of a pulse (see Fig. 4.5). This is known as pulse width modulation. Finally, 

the resulting PWM signal passes through a low-pass filter, which eliminates the low voltage 

fraction of the signal, and thus the waveform is recovered and reproduced through 

speakers. 

 

Figure 4.5: Example of information being stored and sent using PWM. Source: own. 



Page 14  Report 

 

5. Software migration 

5.1. FreeRTOS migration 

The migration process began by testing an example project provided by Cypress 

Semiconductor in which FreeRTOS was specifically implemented for the PSoC 4 BLE [17]. 

The project was built using PSoC Creator 4.1 [8]. 

This example basically detects when the SW2 switch or the CapSense Slider are pressed 

and sends a message through one UART accordingly. Once tested correctly it was possible 

to move on to the configuration of the OS. 

5.2. FreeRTOS configuration 

For the Quartet code to work correctly it is necessary to change some parameters inside the 

FreeRTOS configuration. This is done by editing the FreeRTOSConfig.h header file. Apart 

from disabling pre-emption (see section 5.2.1), at first all other options were left at their 

default setting. 

5.2.1. Co-operative scheduler 

FreeRTOS allows the pre-emption of tasks, which means that during a tick interrupt (the 

OS’s own software-generated interrupt) a higher priority task can force the running task out 

of running state, replacing it. 

In case of the Quartet code, a context switch (changing which task is running) only happens 

when the instruments enter the blocked state to wait for the conductor to give a semaphore 

to them. Therefore, the co-operative task scheduler was chosen, which is equivalent to 

disabling pre-emption. 



Music quartet based on a PSoC  Page 15 

 

5.3. Introducing the TCPWM block 

The next logical step in the migration process is to test the PSoC 4’s TCPWM block and 

understand how it works. In order to do this, a TCPWM example provided by Cypress 

Semiconductor was consulted [18]. 

In this example project, the brightness of a LED is controlled using the TCPWM block. Once 

it was successfully tested in separate, all necessary code and configuration was then moved 

to the FreeRTOS example to check if both projects were compatible. More specifically, it 

was necessary to: 

- Replace all previously existing blocks in the TopDesign.cysch file with the TCPWM 

block (see Fig. 5.2). 

- Enable the interrupt component linked to the TCPWM block (TC_ISR). This is done 

using the following command in the main() function: 

TC_ISR_StartEx(InterruptHandler); 

- Start the TCPWM component and configure its parameters. This is also done in the 

main() function, even though the latter can also be done by directly editing the 

block’s properties: 

PWM_Start(); 

PWM_WritePeriod(65300u); 

- Edit the ISR function so that it handles the TC_ISR interrupt (see Fig. 5.1). 

- Remove unnecessary code from the first example. 

 

Figure 5.1: ISR function that handles the TCPWM interrupt. Source: [18] 



Page 16  Report 

 

 

Figure 5.2: TCPWM block, located in the TopDesign.cysch file, which controls the brightness of a green 

LED. Source: [18] 

After completing these steps, the TCPWM example worked as expected inside the 

FreeRTOS project. Now that the operating system’s functions were available and the 

TCPWM block was implemented, all in the same project, it was possible to proceed to the 

migration of the actual Quartet code. 

5.4. Quartet code migration 

The first step in the code migration was to copy all Quartet-specific files (sinus.h, 

bach1067.h and elochka.h) into the project’s folder. After doing so, Pau Mendieta’s code [3] 

had to be implemented into the project’s main.c file. Nevertheless, some modifications were 

still necessary. 

5.4.1. Changes made to the amplitude modulation 

As explained in the previous chapter, the final step in the synthesizing process is to multiply 

two signals, which was originally done using assembly language to multiply two variables. 

Since migrating this piece of code would not be trivial (the assembly language would be 

drastically different) and the PSoC 4’s processor is more powerful than the PIC24’s, this 

operation was implemented as a simple product between two variables in C language, 

which is more costly (computationally). 



Music quartet based on a PSoC  Page 17 

 

5.4.2. Changes made to the PWM 

All of the code related to the sound synthesizing had to be introduced into the function that 

handles the interrupts while respecting the structure seen in section 5.3 (see Fig. 5.1). The 

main difference is that the interrupt has to be cleared at the start of the function and that the 

pulse width is modulated with the PWM_WriteCompare(temp_dac) command, where 

temp_dac is the variable that holds the final synthesized sample of all 4 voices. 

It is also important to fit the period of the PWM so that its frequency matches the desired 

value. In order to achieve a PWM frequency of 78 kHz while using a 24 MHz clock, the 

period has to be 300 (see calculation below). 

 



Page 18  Report 

 

6. Quartet troubleshooting 

The aim of the migration process described in the previous chapter was to achieve the 

same acoustic result with the PSoC 4 as the one obtained with the PIC microcontrollers. 

The migrated program did produce sound, but it was significantly different than what was 

expected. The main issues were: 

- The sound was highly saturated. 

- The notes played by the program were of a much higher frequency than they should 

be. 

- The melody could only be distinguished when playing one instrument at a time. If 

two or more instruments were played simultaneously they fell out of synchronization 

and the sound became distorted. 

- The tempo was far slower than the original. 

- The sound had an overall poor quality. 

In this chapter, the process of detecting and solving the mistakes that caused these faults 

will be explained in detail. This has been the most challenging and time-consuming part of 

the project. Hence, to simplify it, several characteristics of the resulting sound (listed below) 

have been evaluated for every possible fix made to the project, in accordance with the 

legend presented in table 6.1. 

- Clarity: A highly saturated audio signal has a loud cracking sound added to it 

(similar to white noise). This makes it bothersome to listen to and sometimes even 

makes it difficult to identify the melody that is being played. High clarity will imply little 

saturation and vice versa. 

- Accuracy of note frequency: Musical notes have a characteristic frequency. 

Therefore, a synthesizer that works correctly should generate an audio signal with 

the frequency of the desired note. 

- Quality: This is a more subjective parameter. Higher quality here will imply a more 

detailed and realistic sound. 

- Correct interaction between instruments: Troubleshooting is made easier by 

analyzing a single voice, but it is also important to check that the sum of all 4 voices 

plays correctly. 



Music quartet based on a PSoC  Page 19 

 

 

Symbol Meaning 

+ Slight improvement 

++ Significant improvement 

+++ Critical improvement 

/ No difference 

- Slight worsening 

-- Significant worsening 

--- Critical worsening 

? Not tested 

Table 6.1: Legend of the symbols used to describe the improvement/worsening of the audio result 

Evaluation tables are always relative to the best configuration that has been found at a 

particular point. Obviously, changes that have a positive effect on the result are kept and 

those that do not are discarded. 

6.1. Adjusting temp_dac 

At first, it was thought that temp_dac, the variable that holds the final synthesized sample, 

was not properly adjusted to the range of values accepted by the PWM. Since the PWM 

period was set to 300, any temp_dac value outside the range of 0-300 would produce 

unexpected results. 

In the original code, once all of the 4 voices were added the result was divided by 4 and, 

later, an offset of 128 was added. This last operation was done because the waveform 

tables include negative values. However, since the multiplication operation used in this case 

is slightly different, the values produced by the migrated code were of a higher order, and 

thus the variable had to be divided by a higher number. 

Several combinations of divisor and offset were tested and evaluated empirically. With a 

single active voice, the best result was achieved by dividing by 512 (shifting 9 bits to the 

right) and adding an offset of 220. The sound became slightly less saturated, but most of 

the issues persisted (see table 6.2). It was therefore reasonable to assume that there was a 

more serious problem with the migrated code that remained undetected and was 



Page 20  Report 

 

responsible for the poor quality of the result. 

Clarity + 

Accuracy / 

Quality / 

Correct interaction ? 

Table 6.2: Sound evaluation after adjusting the temp_dac variable 

6.2. Increasing clock speed 

Before starting a more detailed analysis of the migrated code’s behavior, it was decided that 

it would be interesting to increase the frequency of the clock that controls the TCPWM 

block. Until now, it had been running at the same frequency as the external clock 

(EXTCLK), 24 MHz. 

However, the TCPWM block allows clocks to operate up to a maximum of 48 MHz [10]. 

Choosing this clock speed means that, if the same PWM frequency is kept, the PWM period 

should now be 600, thus doubling its resolution. In other words, the temp_dac variable 

would be able to hold double the amount of different values than it previously could. This 

would be equivalent to a 9-bit resolution. 

After testing this modification (see recording #1 of the annex), the quality increased slightly 

but so did the saturation (see table 6.3). Still, overall this version of the migrated code 

sounded better. 

Clarity - 

Accuracy / 

Quality + 

Correct interaction ? 

Table 6.3: Sound evaluation after increasing the clock speed to 48 MHz 

 



Music quartet based on a PSoC  Page 21 

 

6.3. Extracting data from the PSoC 4 

Once the PWM resolution and the adjustment of the temp_dac variable were discarded 

from being responsible for the major sound issues, a more detailed and comprehensive 

analysis of the code’s behavior was deemed necessary. 

Up to this point all data had been extracted from the PSoC using breakpoints in PSoC 

Creator 4.1. This procedure was enough to check the state of variables at certain points of 

execution, but it made saving large amounts of data almost impossible (saving data from 

each interrupt, for example). Therefore, it was necessary to find another way to extract 

information. 

This was done by following an online tutorial that demonstrated how to implement the printf 

C function into the PSoC (by default the function compiles without errors, but it does nothing 

when called) [19]. 

First, a UART (SCB mode) block was placed into the TopDesign.cysch file with its standard 

configuration. Then, it was assigned to the correct pins, P1.5 and P1.4 (see Fig. 6.1) and, 

afterwards, a cable connection was made from P1.5 to P12.6 and from P1.4 to P12.7 (see 

Fig. 6.2). 

 

Figure 6.1: Pin assignment of the UART block. Screenshot taken from PSoC Creator 4.1. 



Page 22  Report 

 

 

Figure 6.2: PSoC 4 after making the cable connections for the UART block (green cables). Source: own. 

The following steps consisted in increasing the heap size, which is done in the “System” tab 

in the .cydwr file, and adding the _write() function to the main.c file (see Fig. 6.3). Moreover, 

the UART block has to be started with the UART_Start() command. 

 

Figure 6.3: Additional code necessary for the implementation of the printf function. Source: [19]. 

Finally, the program PuTTY [20] was installed in order to receive the information that the 

PSoC would be transmitting through USB. 



Music quartet based on a PSoC  Page 23 

 

6.4. Comparison between PSoC 4 and PIC18 

In order to discover what had gone wrong in the migration process, a comprehensive 

comparison of the PSoC and PIC18’s behavior was done. The PSoC’s data was extracted 

using the UART block (as seen in section 6.3), while the PIC18 was analyzed by simulating 

Pere Domenech’s code [2] with the use of MPLAB IDE [21]. 

6.4.1. Testing conditions 

Both systems were tested in the following conditions: 

- Only one voice (the violin) was playing. 

- The only note played was b0 (in Quartet notation) with a base scale of 0 and a 

duration of 4. 

- The variables whose values were stored for every interrupt were: 

 S2.f: Works as an index for selecting values from the tables in sinus.h. 

 temp1: Holds the value read from the tables in sinus.h. 

 S2.t: Increases by one every 64 interrupts and is used to generate the 

amplitude envelope. 

 temp2: Holds the value of the amplitude envelope. 

 temp_dac: Holds the value after the amplitude modulation and before it is 

adjusted. 



Page 24  Report 

 

6.4.2. S2.f 

 

Figure 6.4: Evolution of the S2.f variable during interrupts both in the PSoC and the PIC18. Source: own. 

The different evolutions of S2.f shown in Fig. 6.4 are simply due to how each microcontroller 

treats the integer type. On the one hand, the PIC18’s integer type is 16 bits and thus has to 

reset itself to its lowest value once it reaches its highest permitted value (32768). On the 

other hand, the PSoC integer type is 32 bits by default, and allows S2.f to keep increasing. 

Since this variable is used as an index, this difference should not be important. In any case, 

the code was executed after changing S2.f into int16 in the PSoC to check whether there 

was a difference in sound, but there was none. 



Music quartet based on a PSoC  Page 25 

 

6.4.3. Temp1 

 

Figure 6.5: Evolution of the temp1 variable during interrupts both in the PSoC and the PIC18. Source: 

own. 

As Fig. 6.5 illustrates, temp1 is read correctly from sinus.h. 

6.4.4. S2.t 

 

Figure 6.6: Evolution of the S2.t variable during interrupts both in the PSoC and the PIC18. Source: own. 

Fig. 6.6 shows how the behavior of S2.t is the same, with only a phase difference between 

them. Several tests were made and this phase difference kept changing. This caused the 



Page 26  Report 

 

envelope’s evolution to change, but only slightly, as it will be seen in the following sections. 

It was possible to fix this phase difference by modifying the counter that controls the 

variable, but it did not have any influence on sound. 

6.4.5. Temp2 

 

Figure 6.7: Evolution of the temp2 variable during interrupts both in the PSoC and the PIC18. Source: 

own. 

 

Figure 6.8: Temp2 plotted as a function of S2.t both in the PSoC and the PIC18. Source: own. 

Temp2 displays the same phase difference due to S2.t (see Fig. 6.7), but the amplitude 

envelope is correct, as Fig. 6.8 shows. 



Music quartet based on a PSoC  Page 27 

 

6.4.6. Temp_dac 

 

Figure 6.9: Evolution of the temp_dac variable during interrupts both in the PSoC and the PIC18. Source: 

own. 

Here the PSoC’s temp_dac had to be divided by 260 so that it could be compared to the 

PIC18. The difference seen in figure 6.9 is again due to the phase difference in S2.t. 

Otherwise, the variable evolution is correct. 

6.4.7. Comparison conclusions 

After comparing the behavior of the most important variables in the synthesizing process, it 

was concluded that: 

1. The migrated program reads values from the tables in sinus.h correctly. 

2. The migrated program creates the amplitude envelopes correctly. 

3. The migrated program carries out the modulation operation correctly. There is only a 

difference in scale, which forces a different final adjustment of the temp_dac 

variable. 



Page 28  Report 

 

6.5. Temporal analysis 

Since the comparison done in section 6.4 did not reveal any significant differences, it was 

decided to carry out a temporal analysis of the PSoC’s behavior. 

6.5.1. PWM frequency verification 

 

Figure 6.10: Oscilloscope capture of the PWM signal. Source: own. 

The PWM signal was analyzed in the laboratory using an oscilloscope. As seen in Fig. 6.10, 

its frequency is correct: 78 kHz. 

6.5.2. Interrupt frequency 

Here one of the critical differences between the original and migrated programs was 

detected. Since the interrupt component in the PSoC had been linked to the TCPWM block 

and the “Interrupt on terminal count” option was selected, the interrupts were also 

happening at a 78 kHz frequency. However, in the original code the interrupt frequency was 

10 kHz. 

In order to fix this, a separate timer that controlled the time between interrupts had to be 

implemented. 



Music quartet based on a PSoC  Page 29 

 

6.5.3. Timer implementation 

An example project provided by Cypress Semiconductor [22] was consulted as a starting 

point to implement the timer into the project. Once compiled, properly setup and 

programmed, this example had a LED blinking every second and changing color every 3 

seconds. 

After testing it, some modifications were made so that every second an interrupt happened 

and either switched the LED on or off (without changing color). This simplified example 

project would be easier to introduce into the main project. 

First, the Timer Counter block was copied into the main project. Its period was changed to 

4896 so that, once connected to the 48 MHz clock and the interrupt component, it produced 

interrupts with a frequency of 10 kHz. The resulting TopDesign.cysch file is shown in Fig. 

6.11. 

 

Figure 6.11: TopDesign.cysch file of the main migrated project after introducing the Timer Counter block. 

Source: Adaptation of [18] and [22]. 

 



Page 30  Report 

 

Some modifications to the code in main.c were also necessary: 

- The Timer block has to be started in main(): 

Timer_Start(); 

- The interrupt associated with the timer has to be cleared at the start of the interrupt 

handler function (replacing the PWM interrupt): 

Timer_ClearInterrupt(Timer_INTR_MASK_TC); 

The modified project was tested with positive results (see recording #2 of the annex): the 

note accuracy improved significantly, even though it was not yet correct, and so did the 

sound quality (see table 6.4). Still, the program did not sound as intended. 

Clarity / 

Accuracy ++ 

Quality ++ 

Correct interaction ? 

Table 6.4: Sound evaluation after changing the interrupt frequency. 

6.5.4. Interrupt frequency verification 

Just as with the PWM, an oscilloscope was used to measure the frequency of interrupts. In 

this case, however, an output pin had to be configured (see Fig. 6.12). It was initialized to 0 

and was set to 1 (OutputPinSW_Write(1u)) at the start of the interrupt handler function and 

back to 0 (OutputPinSW_Write(0u)) at the end of it. 

 

Figure 6.12: Software output pin in the TopDesign.cysch file. Source: Own. 



Music quartet based on a PSoC  Page 31 

 

 

Figure 6.13: Oscilloscope capture of the interrupt signal. Source: own. 

In Fig. 6.13 the high level represents the amount of time spent inside an interrupt. This 

result is quite surprising: Not only is the interrupt frequency wrong (54 kHz), but also there is 

a second, unexpected interrupt that happens almost immediately after the first. 

After further testing, it was concluded that the OS was responsible for this, because, if it was 

disabled (by never starting the task scheduler), the interrupt behavior was perfectly correct 

(see Fig. 6.14). 

 

Figure 6.14: Oscilloscope capture of the interrupt signal while FreeRTOS was disabled. Source: own. 

 

 



Page 32  Report 

 

6.5.5. Tickless idle 

After learning that the OS was somehow interfering with the interrupts, it seemed 

reasonable to examine the FreeRTOS configuration file carefully. Everything seemed to be 

in order, except for this line: 

#define configUSE_TICKLESS_IDLE         2 

The FreeRTOS reference manual [23] was consulted so as to learn more about it. 

Apparently, if the tickless idle is active (set to 1 or 2), and only the Idle task (the task that 

runs when no other tasks are able to) is running, then the microcontroller enters a low 

power state. This means that the tick interrupt, during which the OS can select a new task to 

enter the running state, is stopped. This could explain the weird behavior experienced 

before. 

Testing (see table 6.5) revealed that the interaction between instruments was perfectly 

correct (see recording #3 of the annex): all of them were audible and synchronized. Sound 

quality also seemed to improve. As a downside, there was more saturation than before. 

Clarity - 

Accuracy + 

Quality ++ 

Correct interaction +++ 

Table 6.5: Sound evaluation after disabling the tickless idle. 

The case of note accuracy bears special mention. The root of this issue lies in a macro 

called ‘Hz’ located in elochka.h: 

#define     Hz  *64L*256/10000 

This macro’s purpose is to translate a frequency measured in Hertz into the number of 

points in the sinus.h tables that have to be skipped during each interrupt. In other words: the 

program is designed to be coherent with the note frequencies only when the interrupt 

frequency is 10 kHz. This is why the notes played are now correct. 



Music quartet based on a PSoC  Page 33 

 

6.6. Final corrections 

6.6.1. PWM block variation 

The saturation noted in the previous section became worrying, as there was no way of 

adjusting the temp_dac variable that completely solved it. Therefore, a different block that 

could also work as a PWM was tested. The TCPWM block that was being used previously 

was replaced by the PWM block [9] (see Fig. 6.15). 

 

Figure 6.15: TopDesign.cysch file of the main migrated project after replacing the TCPWM block with a 

PWM block. Source: Adaptation of [18] and [22]. 

The main disadvantadge of this new block is that the maximum clock frequency it allows is 

12 MHz. This means that the PWM resolution will be lower (around 7-8 bits) because the 

period will necessarily be lower too. 

 



Page 34  Report 

 

Clarity +++ 

Accuracy / 

Quality --- 

Correct interaction / 

Table 6.6: Sound evaluation after switching the PWM block. 

After evaluating the resulting sound (see table 6.6), the saturation disappeared (see 

recording #4 of the annex). However, the quality got significantly worse. 

6.6.2. Sound quality correction 

Further analysis of the code revealed that the sinus.h tables were not being read correctly 

now. More specifically, the negative values were being converted into positive ones. To 

solve this, all of the tables in sinus.h, along with the temp1 variable, were changed into the 

integer type (in the original code they belonged to the character type). 

Clarity / 

Accuracy / 

Quality +++ 

Correct interaction / 

Table 6.7: Sound evaluation after changing the sinus.h tables into the integer type. 

After verifying that the tables were now being read correctly, the sound was re-evaluated 

(see table 6.7). It seemed that, with the increase in quality achieved, the sound result was 

finally equivalent to that of the previous projects (see recording #5 of the annex). Therefore, 

the migration process had finished. 



Music quartet based on a PSoC  Page 35 

 

7. Quartet improvements 

This chapter will be devoted to explaining the improvements made to the migrated Quartet 

program. Most of them are designed to improve sound quality, but some add extra 

functionality to the program as well. 

7.1. 16-bit PWM 

The most effective way to improve sound quality was to increase the PWM bit resolution. In 

order to do this, an existing project by Ganesh Raaja was consulted [24]. This project 

consisted in achieving a high resolution PWM by combining lower resolution PWM blocks 

(see Fig. 7.1). 

 

Figure 7.1: Implementation of the 16-bit PWM. Source: Adaptation of [24]. 

The PWM1 block has two 8-bit outputs with a difference in duty cycle of one clock. The 

output is selected by the hardware cmp_sel signal, which is the output signal of the PWM2 

block. A 24 MHz clock is used for the PWM1 block (because it was the maximum frequency 

it allowed), while the PWM2 clock is the terminal count output from PWM1. 



Page 36  Report 

 

There are also several functions that need to be added to the code in main.c. The first two 

are the functions that start and stop the entire 16-bit PWM (see Fig. 7.2). 

 

Figure 7.2: Functions that start (top) and stop (bottom) the 16-bit PWM. Source: [24]. 

It is also necessary to implement the function that writes the compare value (pulse width) to 

the 16-bit PWM (see Fig. 7.3). 

 

Figure 7.3: Function that writes the compare value to the 16-bit PWM. Source: [24]. 

The sound that resulted from introducing the high resolution PWM improved greatly when 

compared to the previous version of the program (see recording #6 of the annex). 

7.2. New amplitude envelopes 

The next upgrade consisted in changing the amplitude envelopes along with the way they 

were generated. Instead of being created using simple operations during interrupts, they will 

be stored in ROM, having already been calculated previously. This will allow less linear 

envelopes that will give the sound a more natural evolution. 

Fig. 7.4, 7.5 and 7.6 show the original and new amplitude envelopes for every instrument. 



Music quartet based on a PSoC  Page 37 

 

 

Figure 7.4: Comparison between the original and new amplitude envelopes of the bass. Elaborated from 

Victor Timofeev’s code. 

 

Figure 7.5: Comparison between the original and new amplitude envelopes of the violin. Elaborated from 

Victor Timofeev’s code. 

 

Figure 7.6: Comparison between the original and new amplitude envelopes of the guitar. Elaborated from 

Victor Timofeev’s code. 



Page 38  Report 

 

These new envelopes were stored in arrays inside the sinus.h file. Lastly, the code which 

previously generated the envelope had to be replaced (see Fig. 7.7). 

 

Figure 7.7: Comparison between the original (left) and new (right) code inside the synthesizer that deals 

with the bass’s envelope. Adapted from Victor Timofeev’s code. 

The change in sound was subtle, but when listening carefully it was verified that the 

instruments sounded more natural (see recording #7 of the annex). In fact, the effect can be 

observed in the actual recordings (see Fig. 7.8). The original waveforms in the audio 

recording were more linear and artificial, whereas the new ones present more variability. 

 

 

Figure 7.8: Comparison between the 16-bit PWM recording with the original envelopes (top) and with the 

new ones (bottom). Source: own. 



Music quartet based on a PSoC  Page 39 

 

7.3. Waveform tables with 128 data points 

Another way of improving the sound quality of the program is to increase the number of 

data points that make up one period of the characteristic waveform of every instrument. 

More specifically, the original amount of 64 values will be doubled. The result will be more 

realistic sounding instruments. 

7.3.1. Data interpolation 

The first step in this process is to interpolate the original data points to create a continuous 

function. The original values were previously amplified (multiplied by 4) so that there was 

room to create intermediate points. This was done for different pieces of the entire set of 

points, as finding a function that described the entire waveform would be too complicated. 

Fig. 7.9, 7.10 and 7.11 compare the original and new waveforms for every instrument. 

 

Figure 7.9: Comparison between the original bass waveform and the new one with double the amount of 

data points. Elaborated from Victor Timofeev’s data in sinus.h. 

 

Figure 7.10: Comparison between the original violin waveform and the new one with double the amount 

of data points. Elaborated from Victor Timofeev’s data in sinus.h. 



Page 40  Report 

 

 

Figure 7.11: Comparison between the original guitar waveform and the new one with double the amount 

of data points. Elaborated from Victor Timofeev’s data in sinus.h. 

7.3.2. Data reading method 

Before going into the modifications needed to implement the new sinus tables, it is essential 

to understand how and when the program reads every data point. 

The data in the sinus tables represents one period of each instrument’s waveform. This 

implies that, in order to play a note with a characteristic frequency of F [Hz], the entire 

waveform has to be read F times per second. If the waveform is comprised of 64 individual 

data points, a single point has to be read 64·F times per second. 

However, since data points can only be read during interrupts, it is more practical to speak 

of interrupts instead of seconds. As seen in previous chapters, the interrupt frequency is 10 

kHz: 10000 interrupts happen every second. Therefore, a single data point has to be read 

64·F/10000 times per interrupt. 

7.3.3. Program modifications 

With 128 points, every single point will have to be read 128·F/10000 times per interrupt. 

However, if the interrupt frequency is kept constant, the program will simply read data points 

faster and consequently skip the interpolated ones, thus creating exactly the same sound as 

before. Therefore, the interrupt frequency must be doubled so that these extra points 

become useful. 

The line that reads from the sinus table has to be changed (for every voice) so that the 

index resets at 127 instead of 63, ensuring that the entire waveform is read: 

temp1 = bass[*((char*)&S1.f+1) & 0x7F]; 

The counter that controls when the next point of the envelope is selected must also be 



Music quartet based on a PSoC  Page 41 

 

changed, otherwise the volume will decay too fast. Previously it counted up to 64 before 

reading the next point of the envelope; now it must count up to 128 (see Fig. 7.12): 

 

Figure 7.12: Fragment of code where the counter prs controls the increase of Sx.t variables, which in 

turn serve as an index for the temp2 tables. Adapted from Victor Timofeev’s code. 

Even though mathematically the “Hz” macro in elochka.h could have been kept as it was, 

conceptually it made more sense to change it: 

#define     Hz  *128L*256/20000 

After testing the code a notable improvement in sound was confirmed (see recording #8 of 

the annex). 

7.4. Waveform tables with 256 data points 

After verifying it was possible to create more accurate waveform tables, it was decided to 

double the amount of data points again. This will now require an interrupt frequency of 40 

kHz. Since the rest of the procedure is identical, it will only be mentioned briefly. 

7.4.1. Interpolated data 

The resulting data can be found in Fig. 7.13, 7.14 and 7.15. 



Page 42  Report 

 

 
Figure 7.13: Bass characteristic waveform made up of 256 data points. Elaborated from Victor 

Timofeev’s data in sinus.h. 

 

Figure 7.14: Violin characteristic waveform made up of 256 data points. Elaborated from Victor 

Timofeev’s code. 



Music quartet based on a PSoC  Page 43 

 

 

Figure 7.15: Guitar characteristic waveform made up of 256 data points. Elaborated from Victor 

Timofeev’s code. 

7.4.2. Code modifications 

The modified lines (changed in the same manner as in section 7.3.3) are presented below: 

temp1 = bass[*((char*)&S1.f+1) & 0xFF]; (this has to be done for every voice) 

if (prs & 0x100)  

#define     Hz  *256L*256/40000 

The result was another significant improvement in sound (see recording #9 of the annex). 

7.5. Waveform tables with 512 data points 

The next step could be doubling again the number of data points, but it would require a 

significant modification of the table reading method. This is because the line that generates 

the index requires a conversion into the character type, which can only hold values up to 

255. Therefore, unless the data-reading was re-structured, it would not be possible to read 

up to 512 data points because the index would never surpass 255. 

It would also require an interrupt frequency of 80 kHz, which surpasses the PWM frequency 

initially desired (78 kHz). However, it is also true that, as it will be explained later, the PWM 



Page 44  Report 

 

frequency at this point was actually higher. In the end, it was decided not to introduce this 

modification because it would be too troublesome for the expected improvement in sound. 

7.6. Broadening the note frequency range 

The play() instruction, which is used to play a certain note with a specific duration, stores 

these two sources of information in the same variable. It does so by assigning bits 5 and 6 

to the duration and bits 0-4 to the note. Since notes are represented with its index from the 

frequency table (C2, the lowest available note, is represented by 0; C#2 is represented by 1 

and so on), any note with an index higher than 31 (0001 1111 in binary) will start mixing up 

both sources of information. In short, the higher notes inside the frequency table cannot 

actually be played. 

7.6.1. Duration modifications 

In order to solve this, the duration information was assigned to bits 6 and 7 instead. This 

implied a modification of the play() instruction (in elochka.h): 

#define play(note,duration)     (((duration-1) << 6) | note) 

It was also necessary to change the line that read the frequency table so that it included the 

extra bit assigned to note information (in main.c): 

f = Freq[S->cBaseNote + (cmd & 0x3F)]; 

Finally, the line that recovered the duration information had to move it an extra bit (in 

main.c): 

n = cmd >> 5; 

7.6.2. Change into the integer type 

Because of the extra bit, which surpasses the character type maximum capacity (255), all 

variables that store commands have to be changed into the integer type. This includes all of 

the notelists, as well as the variables “cmd” and “n”. 

7.6.3. Command re-structure 

Previously, bit 7 was used to distinguish commands (stop, repeat, etc) from notes. Now this 

information had to be moved to the next bit, bit 8. Doing this meant re-defining all of the 

commands (see Fig. 7.16). 



Music quartet based on a PSoC  Page 45 

 

 

Figure 7.16: Definition of all commands after changing the discriminating bit from bit 7 to 8. Adapted 

from Victor Timofeev’s code. 

7.7. Adding an extra octave 

Another modification made was adding an extra lower octave. The procedure to do this 

consisted in: 

1. Adding the notes belonging to this new octave at the start of the frequency table. 

2. Since now some instruments will have to go 3 octaves up, and originally the program 

was designed to go up a maximum of 2 octaves, more bits have to be saved from 

the setbase() command: 

S->cBaseNote = (char)(cmd & 0x3F); 

3. Commands have to be re-structured again (see Fig. 7.17): 

 

Figure 7.17: Definition of all commands after adding the extra octave. Adapted from Victor 

Timofeev’s code. 



Page 46  Report 

 

7.8. Adding an extra voice 

The last improvement made to the Quartet program consisted in adding another voice. The 

idea was to introduce another violin that played an octave lower than the original one, thus 

creating a harmonized effect between both (see recording #10 of the annex). 

7.8.1. Notelist and sound channel 

The first step was to copy the original violin notelist, rename it and set the octave to 2 

instead of 3. Also, the switch for this new voice was created: 

#define pin_ENABLE_VIOLIN2  1      // Switch violin2 channel ON/OFF 

Furthermore, a new sound channel had to be defined: 

TSound S5;  // For channel 5 (violin2) 

7.8.2. Synthesizer modifications 

Additional code had to be introduced into the interrupt handler function so that the new voice 

was correctly synthesized (see Fig. 7.18 and 7.19). 

 
Figure 7.18: Fragment of code that synthesizes the sound sample of violin2. Adapted from Victor 

Timofeev’s code. 

 
Figure 7.19: Fragment of code that controls the evolution of the indexes of the envelope tables. Adapted 

from Victor Timofeev’s code. 



Music quartet based on a PSoC  Page 47 

 

7.8.3. FreeRTOS related modifications 

The next steps, which were more related to the OS, consisted in: 

1. Creating a flag that indicates that violin2 is playing (see Fig. 7.20). It was assigned to 

the next available bit (0001 0000). 

 

Figure 7.20: Definition of flags for all 5 voices. Adapted from Pau Mendieta’s code. 

2. Creating a task handle and a binary semaphore for the new violin2 task (see Fig. 

7.21). 

 

Figure 7.21: Definition of all task handles and binary semaphores for all 5 voices. Adapted from Pau 

Mendieta’s code. 

3. Defining the new task in the Task_Defs.h file (see Fig. 7.22). 

 

Figure 7.22: Definition of all tasks in Task_Defs.h. Adapted from Pau Mendieta’s code. 



Page 48  Report 

 

4. Creating the new task and binary semaphore in the main() function (see Fig. 7.23). 

The code for the new task can be seen in Fig. 7.24. 

 

Figure 7.23: Creation of all tasks and binary semaphores. Adapted from Pau Mendieta’s code. 

 

Figure 7.24: Violin2 task. Adapted from Pau Mendieta’s code. 

5. Editing the conductor task so that it gives the semaphore to the violin2 task as well 

(see Fig. 7.25). 



Music quartet based on a PSoC  Page 49 

 

 

Figure 7.25: Conductor task after adding the extra voice. Adapted from Pau Mendieta’s code. 

6. Re-adjusting the temp_dac variable. 

 



Page 50  Report 

 

8. Final Quartet Analysis 

A detailed analysis of the final improved Quartet program, with and without the extra voice, 

will be presented in this chapter. 

8.1. Resource usage (4 voices) 

SRAM 8.984 KB (54.8%) 

Flash 16.720 KB (12.8%) 

Stack 1280 bytes 

Heap 1024 bytes 

UDB 50% 

Table 8.1: Resources used by the final improved 4-voice Quartet program. 

Table 8.1 shows the amount of PSoC’s resources consumed by the final program. The 

SRAM and flash values show that there is enough space to add more instruments or 

improvements. UDB, which measures the amount of digital blocks used, shows that 

additional blocks could be included. 

8.2. Temporal analysis (4 voices) 

8.2.1. PWM frequency 

 
Figure 8.1: Oscilloscope capture of the final PWM signal. Source: own. 



Music quartet based on a PSoC  Page 51 

 

The PWM frequency, as shown in Fig. 8.1, has increased to 91.85 kHz because of the 

introduction of the high resolution PWM. Since it is higher than the original (78 kHz), there is 

no problem with it. 

8.2.2. Interrupt frequency 

 

Figure 8.2: Oscilloscope capture of the final interrupt signal. Source: own. 

The interrupt frequency is approximately 40 kHz (see Fig. 8.2), as was expected. The time 

spent in high level is the duration of an interrupt. The rest of it is available for the OS to carry 

out its own operations, which in this case is more than enough. 

8.2.3. Tempo 

 

Figure 8.3: Oscilloscope capture that shows the time between two consecutive eighth notes. Source: 

own. 



Page 52  Report 

 

The peaks shown in Fig. 8.3 represent the processing of two consecutive eighth notes. 

Therefore, using the time between these two notes (162.2 ms), the tempo of the song can 

be calculated: 

 

8.2.4. Computational effort of synthesizing a sound sample 

 

Figure 8.4: Oscilloscope capture that shows the amount of time required to synthesize a sound sample 

of a single voice. Source: own. 

Fig. 8.4 shows that it takes the processor 1.8 µs to synthesize one sound sample of the 

bass. Assuming it takes more or less the same to synthesize every voice, the processor 

would need around 7.2 µs to generate the sample for all 4 voices, which accounts for 60% 

of the total interrupt time (see Fig. 8.2 for the total interrupt time). 



Music quartet based on a PSoC  Page 53 

 

8.2.5. Computational effort of adjusting temp_dac 

 

Figure 8.5: Oscilloscope capture that shows the amount of time required to adjust the temp_dac variable. 

Source: own. 

It is interesting to study the amount of time required to adjust the temp_dac variable 

because in the final program this is done using a mathematical division. This was not 

possible in the PIC microcontrollers due to the high computational cost of the operation, so 

instead it was done using the binary right shift operator (>>), which is equivalent to a division 

by a power of 2. The mathematical division, however, gives more freedom when adjusting 

temp_dac, and thus allows most of the PWM resolution to be utilized. 

Fig 8.5 reveals that the time spent making this adjustment is around 4.5 µs, 37% of the total 

interrupt time. Therefore, it clearly is a costly operation, even though in this case this is not a 

problem due to how much time is available (interrupts take only about 50% of the available 

time, as seen in Fig 8.2). 



Page 54  Report 

 

8.2.6. Command processing 

 

Figure 8.6: Oscilloscope capture showing the amount of time during which the instruments are waiting 

for a command (high voltage). Source: own. 

The time spent in low voltage in Fig 8.6 represents the moment when the instruments are 

receiving a command from the conductor. The rest of it is spent waiting for the command. 

This shows how fast commands are processed. 



Music quartet based on a PSoC  Page 55 

 

8.3. Resource usage (5 voices) 

SRAM 9.008 KB (55.0%) 

Flash 17.624 KB (13.4%) 

Stack 1280 bytes 

Heap 1024 bytes 

UDB 50% 

Table 8.2: Resources used by the final improved 5-voice Quartet program. 

As it can be seen in table 8.2, the addition of an extra voice barely has an impact on the 

resources consumed by the program. 

8.4. Temporal analysis (5 voices) 

8.4.1. Interrupt duration 

 

Figure 8.7: Oscilloscope capture showing the interrupt signal (top, CH1) and the PWM signal (down, 

CH2). Source: own. 

Fig. 8.7 shows that an entire interrupt now lasts 13.53 µs, which is 1.37 µs more than the 4-

voice version. There is still enough time for the OS to carry out its tasks. 



Page 56  Report 

 

9. Future improvements 

In this chapter, suggestions for future improvements of the Quartet project will be 

presented. 

9.1. Bluetooth 

One of the important features of the PSoC that has not been used in this project is its 

capacity to communicate with external devices through Bluetooth. Such feature could be 

used to send music sheets (in the form of a header file) from a smartphone to the PSoC 

directly, for example. 

9.2. Utilizing hardware blocks 

As mentioned in chapter 3, one of the objectives of this project that could not be fulfilled 

consisted in relieving the CPU by using the configurable hardware blocks to carry out some 

of the necessary operations of the Quartet code. This would require a PSoC with the 

following blocks: 

- Waveform generators [25]: These would allow the characteristic waveforms of the 

instruments to be generated with no CPU cost and without occupying ROM storage 

space. 

- Modulation block [26]: This block would carry out the multiplication between the 

characteristic waveform and the amplitude envelope and would result in a significant 

decrease in CPU usage. Another option is to use an analog multiplier [27]. 

- High resolution DACs [28]: These would replace the PWM blocks and would not 

require an RC filter. The new analog output signal would thus be more pure. 

9.3. Adding new instruments 

In this project, a new voice has been added to the Quartet program. This could be taken a 

step further, by adding a completely new instrument. However, it would require a certain 

degree of musical knowledge (or experimentation with real instruments) in order to be able 

to define its characteristic waveform and envelope. 

 



Music quartet based on a PSoC  Page 57 

 

9.4. Multiple sound outputs 

Another possible improvement would be to have separate sound outputs for every voice, so 

that each of them could be heard on separate speakers. This would help create a more 

realistic orchestral sensation, as well as allowing a higher bit resolution for every voice (their 

samples would no longer have to be added together and divided). 

Also related to this is the introduction of a stereo output, which would allow each speaker to 

play different audio. This would allow voices to be panned either to the right or left, making 

them easier to distinguish from one another. 

9.5. Widening the range of note durations 

Currently, the Quartet only offers 4 options for the note duration (1, 2, 3 and 4), where 1 is 

an eight note and 4 is a half note. It is possible to create longer notes by using the 

playmore() instruction, but shorter ones cannot be played. 

Therefore, another improvement could be re-structuring the play() instruction so that it 

allows a wider range of note durations, especially so that faster notes could be played. 



Page 58  Report 

 

10. Planning 

 

July         

W30 Prior works consulting     

August         

W32 C language learning     

  PSoC Creator 4.1 installation and testing 

September         

W35 C language learning     

W36 Original Quartet code examination   

W37-W38 FreeRTOS manual consulting   

W39 FreeRTOS migration     

October         

W40 Quartet migration     

W41 Quartet troubleshooting     

W42-W43 PSoC 4 vs PIC18 comparison   

November         

W44 Temporal analysis     

W45 Final migration corrections   

  Note frequency range broadening   

W47 Introduction of the 16-bit PWM   

December         

W48 New amplitude envelopes   

W49 Waveform tables with 128 and 256 data points 

W50 Addition of the extra voice and extra octave 

Table 10.1: Project planning 



Music quartet based on a PSoC  Page 59 

 

11. Budget 

 

Table 11.1: Project budget 

Concept Units Unit price [€/unit] Total price [€] 

CY8CKIT-042-BLE PSoC 4 kit 1 40.61 40.61 

PSoC Creator 4.1 - 0.00 0.00 

MPLAB IDE - 0.00 0.00 

PuTTY - 0.00 0.00 

PC 1 700.00 700.00 

Work hours 277 40.00 11080.00 

   

11820.61 



Page 60  Report 

 

12. Environmental impact 

Cypress Semiconductor’s products comply with the RoHS directive (Restriction of 

Hazardous Substances Directive) [29]. This means that the PSoC 4 does not include more 

Lead, Mercury, Hexavalent Chromium, Cadmium, PBB and PBDE than the European Union 

allows. 

The project also has an acoustic impact, which can be dangerous to human hearing. This is 

why an adequate resistance has to be selected for the RC filter, so that the audio’s volume 

is within acceptable levels. 

Therefore, it can be concluded that this project has a minimal impact on the environment. 



Music quartet based on a PSoC  Page 61 

 

Conclusion 

The objectives proposed at the start of the project have all been fulfilled at its completion. 

Some expectations, such as those of the resulting sound quality, have even been 

exceeded. The final program has a vastly improved sound quality, thanks to a significant 

increase in bit resolution and the addition of more accurate waveforms and amplitude 

envelopes. An extra octave, another voice and a wider note frequency range have also 

been added successfully. 

The project as a whole has contributed to: 

- Learning how to use the PSoC Creator 4.1 IDE and a PSoC 4 microcontroller. 

- Learning the C programming language and how to use it in a practical case. 

- Learning how to troubleshoot a microcontroller application. 

- Understanding how FreeRTOS works. 

- Learning how an audio synthesizer works and how it can be improved. 



Page 62  Report 

 

Bibliography 

[1] Victor Timofeev, OSA RTOS, [http://www.picosa.narod.ru/].  

[2] Pere Domenech, Aplicaciones musicales del sistema operativo en tiempo real OSA 

RTOS, Barcelona 2015.  

[3] Pau Mendieta, Audio application based on FreeRTOS Operating System, Barcelona 

2017.  

[4] Real Time Engineers Ltd., FreeRTOS Official Website, 

[http://www.freertos.org/RTOS.html] 

[5] Juan Gallostra, RF Music Festival: orquesta basada en microcontroladores PIC18 y 

RF, Barcelona 2015. 

[6] Joan Calvet, CAN Music Festival: orquesta basada en microcontroladores PIC18 y 

bus CAN, Barcelona 2016. 

[7] Tutorials Point, C programming, [https://www.tutorialspoint.com/cprogramming/, 
consulted on August 2017]. 

[8] Cypress Semiconductor Corporation, Official PSoC Creator Website, 
[http://www.cypress.com/products/psoc-creator-integrated-design-environment-ide] 

[9] Cypress Semiconductor Corporation, Pulse Width Modulator (PWM) 3.30 Component 
Datasheet, 2016. 

[10] Cypress Semiconductor Corporation, PSoC 4 Timer Counter Pulse Width Modulator 
(TCPWM) 2.10 Component Datasheet, 2016. 

[11] Cypress Semiconductor Corporation, PSoC 4 Serial Communication Block (SCB) 4.0 
Component Datasheet, 2017. 

[12] Cypress Semiconductor Corporation, Clock 2.20 Component Datasheet, 2017. 

[13] Cypress Semiconductor Corporation, Interrupt 1.70 Component Datasheet, 2017. 

[14] Cypress Semiconductor Corporation, Pins 2.20 Component Datasheet, 2017. 

[15] Cypress Semiconductor Corporation, CY8CKIT-042-BLE Quick Start Guide, 2015. 

[16] Real Time Engineers Ltd., Mastering the FreeRTOS™ Real Time Kernel, 2016. 

[17] Cypress Semiconductor Corporation, Free RTOS with PSoC 4 BLE, 
[https://cypress.hackster.io/42177/free-rtos-with-psoc-4-ble-82a61e, consulted on 
August 2017] 

[18] Cypress Semiconductor Corporation, TCPWM (PWM mode) example project 2.0, 



Music quartet based on a PSoC  Page 63 

 

2016. 

[19] Alan Hawse, Implementing PSoC Printf, 
[https://iotexpert.com/2017/05/10/implementing-psoc-printf/, consulted on October 
2017] 

[20] Simon Tatham, PuTTY, [http://www.putty.org/, consulted on October 2017] 

[21] MICROCHIP TECHNOLOGY INC. MPLAB IDE. 
[http://www.microchip.com/pagehandler/en-us/family/mplabx/]. 

[22] Cypress Semiconductor Corporation, TCPWM (Timer/Counter mode) example project 
3.0, 2016. 

[23] Real Time Engineers Ltd., The FreeRTOS™ Reference Manual, 2016. 

[24] Ganesh Raaja, HIGH RESOLUTION HIGH FREQUENCY PWM IN PSOC4 BLE, 
[http://www.cypress.com/blog/psoc-hacker-blog/high-resolution-high-frequency-pwm-
psoc4-ble, consulted on November 2017]. 

[25] Cypress Semiconductor Corporation, AN69133 - PSoC® 3 / PSoC 5LP Easy 
Waveform Generation with the WaveDAC8 Component, 
[http://www.cypress.com/documentation/application-notes/an69133-psoc-3-psoc-5lp-
easy-waveform-generation-wavedac8-component, consulted on January 2018]. 

[26] Cypress Semiconductor Corporation, AN62582 - AM Modulation and Demodulation, 
[http://www.cypress.com/documentation/application-notes/an62582-am-modulation-
and-demodulation, consulted on January 2018]. 

[27] Victor Kremin, Analog Multiplication with PSoC, 2010. 

[28] Cypress Semiconductor Corporation, High Resolution DAC in PSoC 3/5, 
[https://community.cypress.com/docs/DOC-12231, consulted on January 2018]. 

[29] Cypress Semiconductor Corporation, RoHS, Green and Environmental Information, 
[http://www.cypress.com/support/rohs, consulted on January 2018]. 


	portada
	memoria

