
Autonomous Agents and Multi-Agent Systems manuscript No.
(will be inserted by the editor)

An Agent-Based Model of the Emergence and Evolution of a
Language System for Boolean Coordination

Josefina Sierra-Santibáñez

Received: 30 April 2017 / Accepted: 16 February 2018

Abstract This paper presents an agent-based model of the emergence and evolution of a
language system for Boolean coordination. The model assumes the agents have cognitive
capacities for invention, adoption, abstraction, repair and adaptation, a common lexicon for
basic concepts, and the ability to construct complex concepts using recursive combinations
of basic concepts and logical operations such as negation, conjunction or disjunction. It also
supposes the agents initially have neither a lexicon for logical operations nor the ability to
express logical combinations of basic concepts through language. The results of the exper-
iments we have performed show that a language system for Boolean coordination emerges
as a result of a process of self-organisation of the agents’ linguistic interactions when these
agents adapt their preferences for vocabulary, syntactic categories and word order to those
they observe are used more often by other agents. Such a language system allows the un-
ambiguous communication of higher-order logic terms representing logical combinations of
basic properties with non-trivial recursive structure, and it can be reliably transmitted across
generations according to the results of our experiments. Furthermore, the conceptual and
linguistic systems, and simplification and repair operations of the agent-based model pro-
posed are more general than those defined in previous works, because they not only allow
the simulation of the emergence and evolution of a language system for the Boolean coordi-
nation of basic properties, but also for the Boolean coordination of higher-order logic terms
of any Boolean type which can represent the meaning of nouns, sentences, verbs, adjectives,
adverbs, prepositions, prepositional phrases and subexpressions not traditionally analysed
as forming constituents, using linguistic devices such as syntactic categories, word order
and function words.

Keywords Origins and Evolution of Language · Agent-Based Models · Boolean
Coordination · Logical Representations and Reasoning · Language Games

This work has been partially supported by funds from the Spanish Ministry for Economy and Competitiveness
(MINECO) and the European Union (FEDER funds) under grant GRAMM (TIN2017-86727-C2-1-R), grant
APCOM (TIN2014-57226-P), and grant 2014-SGR-890.

Josefina Sierra-Santibáñez
Department of Computer Science, Technical University of Catalonia, Barcelona, Catalonia, Spain
E-mail: Maria.Josefina.Sierra@upc.edu

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina
The final publication is available at Springer via http://dx.doi.org/10.1007/s10458-018-9384-1

montse aragues
Texto escrito a máquina



2 Josefina Sierra-Santibáñez

1 Agent-Based Models of Language Emergence and Evolution

The question of the origins and evolution of language has received much interest in the last
two decades. It has been approached from different disciplines such as anthropology, histor-
ical linguistics, evolutionary biology or artificial intelligence. In particular, in artificial in-
telligence agent-based models, implemented and tested in computer simulations, have been
used to study the emergence and evolution of language [23], [9], [33], [12]. Depending on
whether these models emphasise the role of biological evolution or the role of cultural evo-
lution, agent-based models can be classified into two areas: Biolinguistics, which assumes
that the structure of language is determined to a large extent by biological aspects [18];
and Evolutionary Linguistics, which supposes that language is primarily shaped by cultural
factors [36,48].

Agent-based models involve a population of autonomous agents that interact with each
other playing language games. A language game [58] is typically an interaction between two
agents, a speaker and a hearer. The speaker has a communicative goal, conceptualises the
world for language, transforms this conceptualisation into an utterance, and communicates
that utterance to the hearer. The hearer tries to parse the utterance, reconstruct its meaning,
and map it onto its own internal representation of the world. Speaker and hearer normally
use extralinguistic means to determine the outcome of a language game and, depending on
that outcome, employ different strategies to expand and adapt their internal languages in
order to be more successful in future language games.

The agents in these models are initially endowed with some cognitive abilities that are
assumed to be necessary to take part in the particular language game studied and to develop
a language system that enables the population to succeed in their linguistic interactions (e.g.
the ability to construct complex concepts, or to use and detect linguistic devices such as word
order, syntactic categories or case markers). In the simulations, the agents are made to play a
series of language games where they configure possible language systems and try them out.
The goal of the experiments is to find out whether the population as a whole communicates
effectively, and to observe the conceptualisations and linguistic constructions that emerge in
the population as a result of the processes of collective invention and negotiation, as well
as the evolution over time of several features of the emerging language systems, such as the
average size of the agents’ lexicons, the vocabulary and grammatical constructions preferred
by the population, or the stability of such language systems across different generations.

Constructing agent-based models of different aspects of language emergence and evolu-
tion, and testing their effectiveness through agent-based simulations or robotic experiments
is not only useful for understanding the origins and evolution of language, it also provides
valuable insight for guiding the design of truly autonomous agents which should be able to
construct symbolic representations of unpredictable environments by themselves, and com-
municate such representations to human or artificial agents using some form of natural lan-
guage. In particular, a large body of work on the origins and evolution of language has been
concerned with the grounding of language, i.e. how words and sentences get their mean-
ing [44,53,51,48]. Language acquisition and language use play a very important role in the
development of grounded representations, which is one of the major outstanding problems
facing Artificial Intelligence (AI) according to [57], who state that ”The lack of a compre-
hensive understanding of grounding is a major impediment to the development of genuinely
intelligent systems that can generate their own representations and that know what they are
doing”, and also that ”A sound grounding capability provides basic infrastructure for cogni-
tion and intelligence. Consequently, how, and how well an agent is grounded is of significant
interest and crucial importance in AI.”



Emergence and Evolution of a Language System for Boolean Coordination 3

Theories of language evolution study language change at two different levels: that of
language systems and that of language strategies. Language systems capture the regularity
observed in some part of the vocabulary or the grammar of a language [47], for example,
colour terms, case markers, tense-aspect distinctions or coordination. Language systems
group a set of paradigmatic choices both on the side of meaning (the conceptual system)
and on the side of form (the linguistic system). The conceptual system contains the semantic
distinctions that are expressible in the language system and can therefore be used as building
blocks for conceptualisation. The linguistic system includes the syntactic categories, lexicon
and/or grammatical constructions necessary to turn a conceptualisation into a concrete ut-
terance. Linguists call the approach underlying a language system a language strategy. A
natural language, such as Chinese, English or Spanish, comprises many different language
systems, which are closely integrated.

Agent-based experiments in evolutionary linguistics aim to explain how particular lan-
guage systems and language strategies may emerge and evolve [50]. Examples of language
systems that have been studied using agent-based models are: (1) case systems to express the
role of participants in events [46,7]; (2) tense-aspect distinctions [21]; (3) agreement mark-
ers to group words together [8]; (4) word-order-based phrase-structure to indicate how the
arguments of different properties and relations in an utterance relate to each other [52,19];
or (5) vocabularies in co-evolution with semantic categories [51,31,32].

In this paper we study the emergence and evolution of a language system for coordi-
nation, a linguistic phenomenon which involves combining syntactic categories using co-
ordinators like and, or and but, in order to communicate logical combinations of certain
concepts. A range of different categories may undergo coordination, as can be seen in the
following examples:
a. Terry [np\s [jumps] and [runs]].
b. Jo read the [n[book] or [magazine]].
c. John ran [s\s[in Pittsburgh yesterday] and [in Cleveland today]].
d. [s/np [Joan bought] or [Peter found]] the dog.
e. After the fight, John was [n/n[bloody] but [unbowed]].

The fundamental principle of coordination is that any pair of categories of the same
Boolean type can be coordinated to produce a result of the same category [11]. A Boolean
type is simply one that eventually produces a Boolean category after applying to all of its
arguments. In fact, any category producing a nominal or sentential result is Boolean. Thus,
nouns, sentences, adjectives, adverbs, prepositions, prepositional phrases and verbs, among
others, can be coordinated.

The previous examples share the property that the coordinator appears as a Boolean
operator that has been distributed past the coordinate categories. For example, ‘Terry and
Sandy studied’ can be read as ‘Terry studied and Sandy studied’, where the Boolean operator
applies not only to the proper nouns but to the complete coordinate clauses. This form of
coordination, known as Boolean coordination and exhibited by the previous sentences, is
the type of coordination we will focus on.

There is also a different type of coordination, often referred to as nonBoolean coordi-
nation, that falls outside the scope of this paper. Examples of nonBoolean coordination are
‘Terry and Sandy met’, ‘Broke is strong enough to carry Jody and Francis’, ‘the dogs and
the cats fought’ or ‘the professors and the dean met’. To represent the meaning of these sen-
tences, a scheme is needed to coordinate noun phrases to produce sets, which can then be
interpreted collectively or distributively. Furthermore, such scheme must be able to account
for examples coordinating singular and plural noun phrases, as in the examples.



4 Josefina Sierra-Santibáñez

Boolean coordination is not only an interesting and well studied linguistic phenomenon,
understanding how logical combinations of concepts can be constructed and communicated
using language is of great value to AI. Logical operations such as negation, conjunction or
disjunction allow building complex concepts from simpler ones. Logical combinations are
frequently used in natural language descriptions of objects, events, actions and situations,
as well as in the definition of new concepts from previous ones. The ability to construct
and communicate logical combinations plays, therefore, a crucial role in the construction
of sound grounded representations by autonomous agents from their interactions with the
environment and other agents. Logical operations are also very important for intellectual
development [38], because they allow the generation of structured units of meaning and lay
the foundations for deductive reasoning. In [39,40], we proposed a language game called
the evaluation game and used it to study the emergence of logical operations, such as con-
junction, negation or disjunction, from a semantic point of view. In the present paper, we
focus on the linguistic expression of logical combinations, using syntactic devices such as
syntactic categories, word order and function words.

The rest of this paper is organised as follows. Firstly, we describe the conceptual system
of a language system for Boolean coordination. In particular, we specify the formalism the
agents use to represent the concepts they try to communicate in the language game studied
in this paper, which addresses the communication of logical combinations of basic concepts.
Secondly, we present the linguistic system of a language system for Boolean coordination.
Specifically, we introduce the grammatical formalism the agents use to represent the syntac-
tic categories and lexicon they construct during the simulations, and the linguistic devices
they may use to express the relation between the Boolean operator of a logical combination
and its arguments in a sentence. Thirdly, we describe the particular type of linguistic interac-
tion that allows the agents to construct a language system for Boolean coordination, paying
special attention to cognitive abilities for invention, adoption, abstraction, repair and adap-
tation. Fourthly, we present the results of some experiments which study the emergence of
such a language system and its transmission across generations. And finally, we summarise
the main contributions of the paper.

2 Conceptual System

We consider a scenario in which a group of agents try to communicate about subsets of
objects of the set of all the objects pasted on a white-board situated in front of them [49].
We assume the agents are capable of detecting some properties of the objects, e.g. whether
they are light, dark, or in upper, lower, left or right position. These properties allow them to
build perceptually grounded representations of the subset of objects that constitutes the topic
of the language game they participate in at a given moment. For the purposes of this paper,
such properties are represented by unary predicate symbols (or constants of type Ind→ Bool
of higher-order logic1) in the agents’ memories. In particular, the formalism the agents use
to represent the meanings they build during the simulations is the simply typed λ -calculus,
and specifically higher-order logic.

We also suppose that, at the beginning of a simulation run, the agents have already learnt
to perform some Boolean operations, such as negation(¬), conjunction(∧) or disjunction(∨),
at the semantic level. These operations are represented in their memories using logical con-

1 Bool is the type of Boolean values and Ind the type of individuals. See section 2.1.1 for a definition of
symple types in the λ -Calculus.



Emergence and Evolution of a Language System for Boolean Coordination 5

nectives such as and, not and or, or more generally the polymorphic coordination com-
binators Coorσ (and) and Coorσ (or) defined in section 3.2, and the negation operator Negσ

defined in section 3.3. These logical operators allow the agents to build complex meanings
such as ‘the objects which are either up or to the left, but not both’, which is
a logical combination of basic properties and can be represented by the higher-order logic
term2 λx.and(or(up(x))(le(x)))(not(and(up(x))(le(x)))).

Furthermore we assume that, at the beginning of a simulation run, the agents have a
common lexicon for referring to basic properties. However, they do not have lexical entries
for logical operators (e.g. and,not,or). Therefore, they cannot communicate the logical
terms they can construct with such operators to other agents. The goal of the simulations
is that the agents learn to express such complex meanings and jointly construct a set of
linguistic conventions that allows the communication of higher-order logic terms expressing
Boolean combinations of basic concepts.

2.1 Simply Typed λ -Calculus

The λ -calculus offers an elegant solution not only to the problem of providing denotations
for the basic expressions of a language but also for productively composing these basic
meanings into larger units. It was invented by Church [13], with the goal of defining a
uniform language with which to describe functions. But in this paper, we will apply it to
natural-language: firstly, as a formalism in which to represent the meanings of the basic ex-
pressions of a language; and secondly, as the compositional method that defines the meaning
of higher-order logic terms expressing logical combinations of basic concepts in terms of
the meanings of these concepts.

2.1.1 Simple Types

In first-order logic there are two types of expressions: terms and formulas. In the simply
typed λ -calculus there are infinitely many types of expressions. These types are all con-
structed from a finite set of basic types. A common choice of basic types in linguistics
consists of a type Bool of Boolean values for propositions and a type Ind of individuals. The
full set of types is then built up hierarchically by closing the set of basic types under the
construction of total function types.

Definition 1 (Simple Types) From a nonempty set BasTyp of basic types, the set Typ of types
is the smallest set such that
a. BasTyp⊆ Typ
b. (σ → τ) ∈ Typ if σ ,τ ∈ Typ

A type of the form (σ → τ) is said to be a functional type, the elements of which map
objects of type σ onto objects of type τ . For instance, the functional type (Ind→Bool) is
the type of functions from individuals to propositions, or in more familiar terms, the type of
properties or unary predicates. There are types for Boolean operations, e.g. (Bool→ Bool)
is the type of unary Boolean functions, usually assigned to the negation operator. We can
also construct second-order types, such as ((Ind→ Bool)→ (Ind→ Bool)), which is the

2 up and le are constants of type Ind→ Bool denoting the properties of being in an upper and left position
respectively. If the agents used First Order Logic instead of Higher Order Logic to represent their meanings,
they would approximate the meaning of this noun phrase by using formula (up(x)∨ le(x))∧¬(up(x)∧ le(x)).



6 Josefina Sierra-Santibáñez

type of a function mapping unary predicates into unary predicates, i.e. a property-modifier
type, which is usually assigned to adjectives, prepositional phrases and relative clauses3.

2.1.2 λ -Terms

We build up expressions in the λ -calculus out of variables and constants of the various types.
Thus, we assume for each type τ that we have the following sets.
a. Varτ : a countably infinite set of variables of type τ .
b. Conτ : a collection of constants of type τ .

Variables will be employed as in first-order logic to express binding operations such as
quantification, but they will also be used in the construction of new function terms.

Definition 2 (λ -Terms) The collections Termτ of λ -terms of type τ are defined as the small-
est sets such that
a. Varτ ⊆ Termτ

b. Conτ ⊆ Termτ

c. α(β ) ∈ Termτ if α ∈ Termσ→τ and β ∈ Termσ

d. λx.α ∈ Termτ if τ = σ → ρ, x ∈ Varσ and α ∈ Termρ

A term of the form α(β ) is said to be a functional application of α to β . If square is
a constant of type Ind→Bool and o1 is a constant of type Ind, then square(o1) will be a
term of type Bool. Similarly, if upper is a constant of type (Ind→Bool)→ (Ind→Bool),
then4 upper(square) will be a term of type Ind→Bool, and upper(square)(o1) a term of
type Bool. A term of the form λx.α is said to be a functional abstraction. The λ -calculus
gets its name from the original notation involving Greek letter λ , used by Church in the
definition of abstraction terms. Application must always involve a functional type, while
abstraction always produces a functional type. For instance, assuming x and r1 are a variable
and a constant of type Ind, and move is a constant of type Ind→ (Ind→ Bool), we have an
abstraction term such as λx.move(x)(r1), which denotes a function from individuals to the
proposition that they were moved by r1.

In this paper we will only use unary functions, although they may apply to a single
argument to produce a result which itself might be a function. The introduction of n-ary
tuples into the λ -calculus is done by composing pairs (also called products). There are
two operations, commonly referred to as currying and uncurrying that allow mapping back
and forth between functions defined in terms of products and unary functions. The result
of currying a function is to take a function defined on pairs and convert it into a function
that takes the elements of the pair one at a time to produce a result. Conversely, uncurrying
takes a function of type σ → τ → ρ , which applies to an argument of type σ to produce a
function from type τ objects into type ρ objects, and converts it into a function which takes
its arguments of type σ and τ simultaneously in the form of a pair. The important fact to
note is that currying and uncurrying establish a one-to-one relationship between objects of
type σ×τ→ ρ and those of type σ → τ→ ρ . Thus, adding products to the λ -calculus does
not really provide any additional representational power.

3 When we omit parentheses from functional types, we assume associativity is applied to the right, so that
Ind→ Ind→ Bool is equivalent to Ind→ (Ind→ Bool).

4 Assuming square and upper have the standard natural language interpretations, square(o1) will be true
if o1 denotes an object that is a square, upper(square) will denote the property of being a square situated in
an upper position, and upper(square(o1)) will be true if o1 is a square which is in an upper position.



Emergence and Evolution of a Language System for Boolean Coordination 7

Following [37], it is common in presentations of natural-language semantics for all func-
tions and relations to be in curried form. Thus rather than treat the moving relation as a bi-
nary5 relation of type (Ind×Ind)→ Bool, we curry it to produce a higher-order function
of type Ind→ Ind→ Bool. The benefit of currying from a natural language perspective is
that we have a simple term in the object language, namely move(x), to correspond to the
verb phrase ‘moves x’.

2.2 Higher-Order Logic

By higher-order logic we mean a logic that involves constants and variables of arbitrary
finite type, with every kind of object being a first-class citizen over which quantification
and abstraction may be performed [11]. We treat higher-order logic as an application of the
simply typed λ -calculus. In particular, we assume that the set of basic types of higher-order
logic is BasTyp = {Bool, Ind}. This determines the type theory of higher-order logic.

Definition 3 (Higher-Order Logical Constants) We assume the existence of the following
collection of logical constants
a. not ∈ ConBool→Bool
b. and ∈ ConBool→Bool→Bool
c. eqτ ∈ Con

τ→τ→Bool
d. everyτ ∈ Con(τ→Bool)→Bool
e. ιτ ∈ Con(τ→Bool)→τ

The reason these are called logical constants has to do with their receiving fixed in-
terpretations with respect to any model of higher-order logic: not and and are simply the
higher-order analogues of the usual operations of negation and conjunction. The indexed
constant eqτ is interpreted as the equality relation between two objects type τ .

We also have a family of universal generalized quantifiers6 for all types τ . Because λ -
abstraction is the only way to bind variables in the λ -calculus, quantifiers in higher-order
logic are not treated as binding operators, as is standard in first-order logic. Instead, we treat
quantifiers over objects of type τ as properties of properties of type τ . In particular, if τ=Ind,
constant everyInd is of type (Ind→Bool)→Bool. A formula ∀x(φ) in first-order logic will
be rendered as everyInd(λx.φ ′), where φ ′ is the translation of φ into higher-order logic. The
truth conditions will be such that everyInd(P) will denote yes∈DomBool in a model if and
only if P denotes the property that is true of every individual.

Finally, we have a constant ιτ , called the description operator, for each type τ . The
description operator is used for mapping singleton sets to the object they contain. More
precisely, ιτ(P) picks out an element a of type τ if a is the unique element that has the
property denoted by P. If P does not denote a singleton set, ιτ(P) still denotes an element of
type τ, but the identity of the element is unconstrained by the logic.

We adopt a standard set of abbreviations for the logical constants, and define some new
connectives in terms of them.

a. φ ∧ψ
def
= and(φ)(ψ)

b. ¬φ
def
= not(φ)

5 Treating move as a binary relation means interpreting move(x,r1) as ‘r1 moves x’. Currying move implies
that move(x) means ‘moves x’, and move(x)(r1) means ‘r1 moves x’.

6 Generalized quantifiers, e.g. everyτ or someτ , quantify over objects of type τ .



8 Josefina Sierra-Santibáñez

c. α =τ β
def
= eqτ(α)(β )

d. ∀xτ(φ)
def
= everyτ(λx.φ)

e. or(φ)(ψ)
def
= φ ∨ψ

def
= ¬((¬φ)∧ (¬ψ))

f. φ → ψ
def
= (¬φ)∨ψ

g. ∃xτ(φ)
def
= someτ(λx.φ)

Just as in first-order logic, we can define the existential quantifier in terms of the univer-
sal quantifier.

someτ

def
= λPτ→Bool.not(everyτ(λxτ .not(P(x))))

The definitions of logical notions for higher-order logic are as follows: a formula is an
expression of type Bool; a formula is valid if it is true in every model; and two terms are
logically equivalent if they have the same value in every model.

3 Linguistic System

As mentioned earlier, we suppose that at the beginning of a simulation run the agents have
a common lexicon for referring to basic properties. For example, the agents’ lexicons7 may
initially contain the following six lexical entries.

sup⇒ up :pr :1.0 izq⇒ le :pr :1.0 cla⇒ li :pr :1.0

inf ⇒ do :pr :1.0 der⇒ ri :pr :1.0 osc⇒ da :pr :1.0

The agents use categorial grammar to represent the linguistic system of the language
system they build during the simulations. A lexical entry e ⇒ α : A : s is an association
(e,A,α,s) between a linguistic expression e, a syntactic category A, a higher-order logic
term α , and a score s, such that α is a formal representation in higher-order logic of the
meaning of e, A is its syntactic category, and s is the score of the association. The score
of a lexical entry is a real number in the interval [0.0,1.0] that estimates its usefulness in
previous communication. For example, the first lexical entry above (i.e. sup⇒ up : pr : 1.0)
states: 1) that expression sup denotes the subset of objects that are in an upper position, or
the property of being in an upper position (i.e. up); 2) that the syntactic category of sup is pr
(i.e. a property8); and 3) that the score of this lexical entry is 1.0.

3.1 Categorial Grammar

In categorial grammar [2,6,29,30], every syntactic category corresponds to some higher-
order type, with the assumption being that expressions of each category can be assigned
meanings of the appropriate type. We assume some finite set BasCat = {np,n,s,pr} of
basic categories, which abbreviate noun phrase, noun, sentence and property respectively,
and are associated with the following higher-order types Type(np) = Ind, Type(s) = Bool,
Type(n) = Ind→ Bool and Type(pr) = Ind→ Bool. BasCat is used to generate an infinite
set of functional categories, each of which specifies (possibly complex) argument and result
categories.

7 See definition 6 on page 9 for formal definitions of lexicon and lexical entry.
8 See section 3.1 for a formal definition of the set of syntactic categories used in this paper.



Emergence and Evolution of a Language System for Boolean Coordination 9

Definition 4 (Syntactic Categories) The set Cat of syntactic categories determined by the
set BasCat is the smallest set such that
a. BasCat⊆ Cat
b. (A\B) ∈ Cat if A,B ∈ Cat
c. (B/A) ∈ Cat if A,B ∈ Cat

A category B/A or A\B is said to be a functor category, and to have an argument category
A and a result category B. A functional category of the form B/A is called a forward functor
and looks for its argument A to the right, while the backward functor A\B looks for its
argument to the left.

The fundamental operation in applicative categorial grammar is the concatenation of
an expression assigned to a functional category and an expression of its argument category
to form an expression of its result category, with the order of concatenation being deter-
mined by the functional category. For instance, np\s would be the type assigned to both
verb phrases and intransitive verbs: they look backward for a noun phrase to produce a sen-
tence. The category n/n is used for prenominal adjectives: they look forward for nouns to
produce nouns. The category n\n, on the other hand, is used for postnominal modifiers.
Similarly, (np\s)/np would be assigned to transitive verbs which look for an object noun
phrase to the right and a subject noun phrase to the left9.

The correspondence between the set of basic syntactic categories BasCat and the set of
higher-order types Typ is extended to the set Cat of all syntactic categories as follows.

Definition 5 (Type Assignment) We extend Type : BasCat→ Typ to functor categories as
follows

Type(A\B) = Type(A)→ Type(B)
Type(B/A) = Type(A)→ Type(B)

Definition 6 (Categorial Lexicon) A categorial lexicon is a relation Lex⊆ BasExp×(Cat×
Termτ) such that if a lexical entry 〈e,〈A,α〉〉 ∈ Lex, then α ∈ TermType(A).

Agents assign a score s to each lexical entry 〈e,〈A,α〉〉. Thus we abbreviate lexicon
entries such as 〈e,〈A,α〉〉 as e⇒α : A : s, where e is a basic expression, A is its syntactic
category, α is a higher-order term of type Type(A) denoting e’s meaning, and s is the score
of the lexical entry.

Categorial grammar phrase-structure rules are based on functional application, and on
the intuitive notions of B/A as a forward-looking functor and A\B as backward-looking.

Definition 7 (Application Schemes) The following phrase-structure application schemes are
assumed:

α :B/A :s1, β :A :s2 ⇒ α(β ) :B :s1·s2 (Forward)
β :A :s1, α :A\B :s2 ⇒ α(β ) :B :s1·s2 (Backward)

The forward scheme states that if e1 is an expression of syntactic category B/A with
meaning α and score s1, and e2 is an expression of syntactic category A with meaning β and
score s2, then e1 ·e2 (the concatenation of e1 and e2) is an expression of syntactic category
B with meaning α(β ) and score the product of s1 and s2. Similarly, the backward scheme
states that if e1 is an expression of syntactic category A with meaning β and score s1, and
e2 is an expression of syntactic category A\B with meaning α and score s2, then e1 ·e2 (the
concatenation of e1 and e2) is an expression of syntactic category B with meaning α(β ) and
score the product of s1 and s2.

9 We will omit parentheses within categories, taking the forward slash to be left associative, the backward
slash to be right associative, and the backward slash bind more tightly than the forward slash. Thus (np\s)/np
is equivalent to np\s/np.



10 Josefina Sierra-Santibáñez

3.2 Type-Logical Approach to Coordination

One of the best known linguistic applications of categorial grammar is to Boolean coordina-
tion. The associativity of the Lambek calculus10 [29,30], together with some polymorphic
categories required by coordinators such as and and or, allow formalising a wide range of
instances of coordination of Boolean categories, including both traditional constituents and
categories not traditionally analysed as forming constituents.

[37] introduced a categorial notion of coordination into his grammars, and this construc-
tion was later generalized by [20,26]. [43] showed how the logic of categorial-grammar
category assignments could be used to provide a syntactic basis for Gazdar’s semantic con-
ception.

The categorial-grammar approach to Boolean coordination is based on the principle that
two categories of the same Boolean type may be coordinated to produce a category of the
same Boolean type [20,26].

A Boolean type is simply one that eventually produces a Boolean category after applying
to all of its arguments.

Definition 8 (Boolean Types) The set BoolType of Boolean types is the smallest set such
that
a. Bool ∈ BoolType
b. τ → σ ∈ BoolType if τ ∈ Type and σ ∈ BoolType

Thus a Boolean type is of the form σ1→ . . .→σn→Bool, for arbitrary types σi. In fact,
any category producing a nominal or sentential result is Boolean. For instance, nouns, ad-
jectives, prepositions, prepositional phrases and verbs are all Boolean categories. Therefore,
expressions of any of these categories can be coordinated, as we saw in section 1.

Examples of Boolean coordination share the property that the coordinator appears as
a Boolean operator that is distributed past the coordinate categories. Thus the semantics of
coordination can be handled by means of the following generalized coordination combinator
that applies pointwise to pairs of Boolean terms of the same type [11].

Definition 9 (Polymorphic Coordination Combinator) If σ ∈ BoolType, then Coorσ is of
type (Bool→ Bool→ Bool)→ σ → σ → σ and is defined recursively by

a. CoorBool(α)(β1)(β2)
def
= α(β1)(β2)

b. Coorγ→τ(α)(β1)(β2)
def
= λxγ .Coorτ(α)(β1(x))(β2(x))

Note that Coorσ defines a family of combinators, one for each Boolean type σ . The
parameter σ must be instantiated in order to determine a proper λ -term. For example, if li
and up are constants of type Ind→ Bool, x is a variable of type Ind, and and is the ordinary
higher-order logical constant of conjunction of type Bool→ (Bool→ Bool), the following
term denotes the property of being light and in an upper position, or the set of objects which
are at the same time light and in an upper position.

CoorInd→Bool(and)(light)(upper) (1)

≡ λx.CoorBool(and)(light(x))(upper(x))

≡ λx.and(light(x))(upper(x))

10 Lambek extended pure applicative categorial grammar according to a simple algebraic interpretation of
the slashes. In the Lambek Calculus an expression is assigned to category A/B (respectively, to category B\A)
if and only if when it is followed (respectively, preceded) by an expression of category B, it produces an ex-
pression of category A. However, applicative categorial grammar only respects one half of the biconditional.



Emergence and Evolution of a Language System for Boolean Coordination 11

Arguments of higher arity (e.g. CoorInd→(Ind→Bool)) are treated similarly, reducing their
arity one argument at a time.

To analyse the basic syntax of coordination, we need coordinator categories for every
Boolean category, where a Boolean category is simply a category whose type is a Boolean
type. In particular, we adopt the following infinite family of lexical entries [43]:

y⇒ Coorσ (and) :A\A/A Typ(A)=σ ∈BoolType

o⇒ Coorσ (or) :A\A/A Typ(A)=σ ∈BoolType

The following example illustrates simple property coordination. Note that we have short-
ened the two-step application of phrase structure schemes to one step, and that we have
simplified the semantics by using the equivalence in (1).

cla
li : pr

Lx
y

CoorInd→Bool(and)
Lx

sup
up : pr

Lx

pr\pr/pr
λx.and(li(x))(up(x)) : pr

3.3 Ambiguity and Scope Markers

The following categorial lexicon could be constructed by an agent during the simulations.
It uses three types of syntactic categories (pr, pr/pr and pr\pr/pr), an instantiation of the
negation operator (defined below), and two instantiations of the coordination combinator
(defined in section 3.2). It allows expressing all higher-order logic terms that can be con-
structed by recursively combining unary predicates (i.e. constants of type Ind→ Bool) with
negation, conjunction and disjunction.

This lexicon can be used to parse and produce expressions where the words associated
with the Boolean operators and,or are placed between the expressions associated with their
arguments, and the word associated with not is placed before the expression associated with
its argument. For example, an agent using this lexicon would produce expression ‘claysup’
to communicate the higher-order logic term and(up)(li). As we will see in the following,
the agents can construct lexicons which place the words associated with and,not and or in
different positions11.

sup⇒ up : pr : 1.0 (2)

inf⇒ do : pr : 1.0 (3)

izq⇒ le : pr : 1.0 (4)

der⇒ ri : pr : 1.0 (5)

cla⇒ li : pr : 1.0 (6)

osc⇒ da : pr : 1.0 (7)

no⇒ NegInd→Bool(not) : pr/pr : 0.86 (8)

y⇒ CoorInd→Bool(and) : pr\pr/pr : 0.93 (9)

o⇒ CoorInd→Bool(or) : pr\pr/pr : 0.75 (10)
11 Syntactic categories pr/pr or pr\pr are used to place the word associated with not before or after the

expression associated with its argument. Categories pr/pr/pr, pr\pr/pr and pr\pr\pr place the words asso-
ciated with and,or before, between or after the expressions associated with their arguments.



12 Josefina Sierra-Santibáñez

The negation operator Negσ,of type (Bool→Bool)→σ→σ for σ ∈BoolType, is defined by

a. NegBool(not)(α)
def
= not(α)

b. Negγ→τ(not)(α)
def
= λxγ .Negτ(not)(α(x))

This lexicon, however, does not allow the unambiguous communication of certain mean-
ings. For example, it generates the same expression, ‘noizqysup’, to communicate the higher-
order logic terms not(and(up)(le)) and and(up)(not(le)), which are not logically equiv-
alent. Natural language, on the other hand, provides means to mark the difference between
both meanings: not(and(up)(le)) can be expressed in English as ‘the objects which are
not both in an upper position and to the left’, and and(up)(not(le)) as ‘the objects which
are not to the left and which are in an upper position’. English does so by introducing a
word (‘both’) which indicates that the conjunction following it forms a group. Therefore,
the negation (not) applies to the entire conjunction, rather than just to the first element of
such a conjunction. Thus, a refined version of the previous lexicon could use expression
‘nogrupoizqysup’ to communicate term not(and(up)(le)) and expression ‘noizqysup’ to
communicate term and(up)(not(le)), where ‘grupo’ is a word that plays the same role as
‘both’ or ‘either’ in English, and which might have been invented by an agent during the
simulation.

A similar problem comes up if we try to use the lexicon presented above to express
term or(and(le)(do))(up), which can be paraphrased in English as ‘the objects which
are in an upper position, or down and to the left’. It generates expression ‘supoinfyizq’,
which is ambiguous with respect to the scope of words ‘y’ and ‘o’. For example, ‘y’ could
join expressions ‘inf’ and ‘izq’, or expressions ‘supoinf’ and ‘izq’. In English, a ‘comma’
is used to delimit the two main parts of the expression. In speech the disambiguating role
of punctuation marks is played by pauses, and in this work we will treat pauses as words
which indicate that the expression following them forms a group and, therefore, that the
Boolean operators which form that group are within the scope of another operator. Thus,
a refined version of the previous lexicon would generate expression ‘supogrupoinfyizq’ to
communicate term or(and(le)(do))(up).

The linguistic system constructed by the agents in the experiments described in the
present paper uses, therefore, three types of linguistic devices to indicate the relation be-
tween the word associated with a Boolean operator and the expressions associated with
its arguments in an utterance: syntactic categories, word order and function words. The
linguistic systems in [46,27,41] use only syntactic categories and word order. The agent-
based models presented in [21,8] investigate the emergence and evolution of morphological
linguistic systems, where meaning is expressed using compound word forms that have a
lexical core plus different types of markers represented by affixes12. In morphological sys-
tems the semantic relations between words are expressed through grammatical agreement,
instead of word ordering. Grammatical agreement means that certain grammatical features,
such as tense-aspect or case, are shared among words which are semantically related. The
agent-based models described in [52,19] study the emergence of word-order-based phrase-
structure, which allows the definition of atomic units (containing a single word) and group
units (consisting of several atomic and/or non-atomic units), thus introducing hierarchical
structure. It is worth noting that the functional syntactic categories used in the present paper
also generate hierarchical structure, because they allow concatenating a subexpression of a
functional syntactic category (i.e. A\B or B/A) and a subexpression of its argument category
(i.e. A) to form an expression of the result syntactic category (i.e. B).

12 Affixes are groups of letters attached to words.



Emergence and Evolution of a Language System for Boolean Coordination 13

[42] also uses syntactic categories, word order and function words as linguistic devices,
and it argues that the higher expressiveness of the resulting linguistic system, which al-
lows the unambiguous communication of every propositional logic formula, compensates
for the added difficulty of parsing and producing sentences with function words. However,
the approach proposed in the present paper is more general than that of [42], because it uses
higher-order logic and categorial grammar instead of propositional logic and definite clause
grammars, and therefore it allows formalising not only the coordination of expressions de-
noting basic properties (i.e. constants of type Ind → Bool of higher-order logic), but also
the coordination of expressions denoting higher-order logic terms of any Boolean type.

4 Language Game

The language game used in the experiments is played by two agents, a speaker and a hearer,
randomly chosen from the population.

1. The speaker chooses a meaning (a higher-order logic term) from its conceptualisations
of the subset of objects that constitutes the topic of the language game13, generates a lin-
guistic expression for that term using its lexicon or invents a new one, and communicates
that expression to the hearer.

2. The hearer tries to interpret the expression communicated by the speaker. If it can parse
it using its lexicon, it extracts a meaning; otherwise, the speaker communicates the
meaning it had in mind to the hearer, and the hearer tries to adopt the lexical entries
necessary to generate the expression used by the speaker to communicate that meaning.

3. A language game succeeds if the hearer can parse the expression communicated by the
speaker and if its interpretation of that expression is logically equivalent to the meaning
the speaker had in mind; otherwise, the language game fails. Depending on the outcome
of the language game, the hearer expands its lexicon or adapts the scores of its lexical
entries to be more successful in future language games.

4.1 Generation and Invention

At the early stages of a simulation run the agents cannot use their lexicons to generate ex-
pressions for most meanings, because they all begin with a common lexicon for basic prop-
erties, but no lexicon for Boolean operations. In order to let language get off the ground, the
agents are allowed to invent new expressions for those meanings they cannot communicate
using their lexicons. A new expression E for a higher-order logic term F of the form not(α)
or ⊗(α)(β ), where ⊗ is a dyadic Boolean operator (and,or), is invented as follows: a new
word is invented for F’s main functor (not, ⊗), an expression is generated for each argu-
ment (α and/or β ), and the two or three expressions produced are concatenated in random
order14. New words are sequences of letters randomly chosen from a finite alphabet. In the
experiments described in the present paper, we also assume that set of sequences of letters
the agents can generate to invent new words is so large that homonymy never arises in the
language constructed by the population.

13 A conceptualisation of a subset of objects (i.e. a meaning) is a higher-order logic term that is true for all
the objects in the subset and false for the rest of the objects in the speaker’s and hearer’s context.

14 If F is a constant of type Ind→ Bool, i.e. a basic property, invention is not necessary, because an entry
for F already exists in the common lexicon.



14 Josefina Sierra-Santibáñez

For example, if at the beginning of a simulation run an agent knows the lexicon for
basic properties described in section 3.3 (which consists of lexical entries 2 to 7) and needs
to express a meaning of the form and(up)(li), it can invent a new word for the Boolean
operator and (for example plus), use the words in his lexicon for up and li (i.e. sup and cla),
and invent the expression supclaplus by concatenating the three words in random order.

Once an agent can generate an expression for a particular meaning using its lexicon, it
does not invent new expressions for that meaning. Instead, it selects the expression with the
highest score from the set of all the expressions it can generate for that meaning. The score
of an expression generated using some lexical entries is computed multiplying the scores of
those lexical entries.

The score of a lexical entry indicates the confidence an agent has that such a lexical entry
could be understood by the rest of the agents in the population. Given that the scores of the
lexical entries associated with basic properties are always equal15 to 1.0, the product of the
scores of the lexical entries used in the generation of an expression is, in fact, the product of
the scores of each word associated with a Boolean operator occurring in such an expression.
This product tries to capture the confidence an agent has that the rest of the agents in the
population would be able to parse such an expression, on the one hand, and the probability
that the rest of the agents in the population would be able to construct a partial parse tree of
such an expression if they cannot parse it completely, on the other. This is so, because the
agents apply simplification and repair operations to learn the meanings of unknown words
as the play language games, and they need to construct such partial parse trees of unknown
expressions for this purpose. In order to assess the probability that an agent would be able to
construct a partial parse tree for a sentence, we take into account the following facts: 1) every
time the agent finds an unknown word for a Boolean operator in the sentence, the agent must
carry out a search process to determine what parse subtree might be associated with it; 2)
the search process for each unknown word takes place within the search processes generated
by the unknown words preceding it in the sentence. Therefore, the number of options the
agent must consider in order to find a partial parse tree for a sentence gets multiplied by the
branching factor of the seach space associated with the unknown word every time the agent
finds a new instance of an unknown word in the sentence. This multiplicative effect of each
instance of an unknown word in the difficulty of constructing a partial parse tree for a given
sentence is the reason why we compute the score of a sentence generated using some lexical
entries multiplying the scores of such lexical entries, and the score of a meaning obtained
by parsing a sentence using some lexical entries (see section 4.2) multiplying the scores of
such lexical entries16.

The agents’ abilities to parse and generate expressions by using their categorial lexi-
cons and the phrase-structure application schemes described in section 3.1 have been im-
plemented in Prolog17 [15,14]. In particular, a chart parser [24,25,5,22] and an expression
generator for the categorial lexicons used in the experiments have been designed.

15 The reason for this is that the lexical entries for basic properties are part of the common lexicon of basic
concepts initially shared by all the agents in the population.

16 It should be noted that although the choice of words for expressing different Boolean operators is inde-
pendent of each other, the choice of a lexical entry for expressing a particular operator in a given sentence
is always the same for all the occurrences of such an operator in the higher-order term expressed by such a
sentence. Likewise, the choice of a lexical entry for parsing a particular word in a given sentence is always
consistent for all the occurrences of such word in the sentence.

17 In particular, the Ciao Prolog System [10], available from www.clip.dia.fi.upm.es, has been used.



Emergence and Evolution of a Language System for Boolean Coordination 15

4.2 Interpretation and Adoption

In a language game the hearer tries to interpret (i.e. parse) the expression E communicated
by the speaker using its own lexicon. However, at the early stages of a simulation run the
agents cannot parse most of the expressions communicated by the speakers, because they all
begin with a common lexicon for basic properties, but no lexicon for Boolean operations.
When this happens, the speaker communicates the higher-order logic term F it had in mind
to the hearer, and the hearer tries to adopt the lexical entries necessary to generate the ex-
pression E used by the speaker to communicate F. That is, the hearer tries to construct some
lexical entries that allow interpreting expression E as meaning F; and it adopts such lexical
entries, if it can construct them.

Once an agent can parse an expression using its lexicon, it selects the meaning with the
highest score from the set of all the meanings it can obtain by parsing that expression as
its interpretation I of the expression communicated by the speaker. The score of a meaning
obtained by parsing an expression using some lexical entries is computed multiplying the
scores of those lexical entries18.

Although in real life people do not communicate the meaning they have in mind to their
interlocutors, as the speaker does in a language game when the hearer cannot parse the ut-
terance, they usually provide some form of contextual or gestural feedback. Actually, some
capacity for intention-reading seems to be necessary for language acquisition [54]. Stud-
ies on syntax emergence and evolution such as [8,21,27,7,41,42,52,19] also use language
games in which the meaning intended by the speaker is communicated to the hearer. The
difficulty of studying language evolution leads researchers to focus on particular aspects
of it, assuming results from research works addressing issues such as lexicon and concept
formation [44,31,39,51], or speech evolution [16,59].

4.3 Simplification through Abstraction

Invention and adoption allow the agents to construct and learn associations between ex-
pressions and meanings. For example, when an agent acting as speaker cannot express a
meaning F using its lexicon, it invents an expression E to communicate F, and constructs
an association of the form E ⇒ F :C, where C is the syntactic category19 of expression E.
Similarly, an agent acting as hearer who cannot parse the expression E communicated by
the speaker using its lexicon also constructs an association E ⇒ F :C, where E and F are
the expression and the meaning used by the speaker, respectively. From these associations
the agents construct new lexical entries that they incorporate to their lexicons and use in
succeeding language games to generate and interpret other sentences.

However, the agents do not build lexical entries directly from the associations E⇒ F :C
they construct during the invention or adoption steps of a language game. They apply two
simplification rules to such associations, in order to generalise them and remove from them
those parts they can generate using lexical entries which already belong to their lexicons.

Let us illustrate how these simplification rules work with an example. Suppose an agent
constructs association supyizq⇒ and(le)(up) : pr during the invention or adoption steps of
a language game. Instead of adding this association to its lexicon as a new lexical entry, it

18 The same arguments as those used in section 4.1 can be used to justify the method used to compute the
score of a particular meaning obtained by parsing a given expression.

19 In the experiments, the syntactic category C of the expressions invented by the agents is pr.



16 Josefina Sierra-Santibáñez

first tries to simplify it using its previous knowledge of language, i.e. the lexical entries in its
lexicon. For example, subexpression ‘sup’ of ‘supyizq’ can be generated by lexical entry 2
(i.e. sup⇒ up :pr :1.0). Therefore, association supyizq⇒ and(le)(up) : pr can be simplified
by: 1) eliminating subexpression ‘sup’ from its left-hand side; 2) replacing constant up in the
semantic part of the right-hand side with a variable of the same type, and abstracting over
it; and 3) transforming the syntactic category on the right-hand side (i.e. pr) into a functor
category pr\pr whose argument is the syntactic category of the subexpression removed from
the left-hand side (i.e. the syntactic category of ‘sup’), and whose direction (i.e. forward or
backward) is determined by the position the subexpression removed (i.e. ‘sup’) occupied
in the original expression of the left-hand side (i.e. ‘supyizq’). The result is the following
association, which is both simpler and more general:

yizq⇒ λβInd→Bool and(le)(β ) : pr\pr (11)

The particular type of simplification illustrated in the previous example, which trans-
forms association supyizq⇒ and(le)(up) : pr into association yizq⇒ λβInd→Bool and(le)
(β ) : pr\pr by using lexical entry sup⇒ up :pr :1.0, gives rise to the first simplification rule
introduced in this paper (defined as follows).

Rule 1 (Backward Simplification) An agent can simplify an association of the form e1 ⇒
α :c1 into association e3⇒ λxτ α ′ :c2\c1, if there is a proper subterm γ of α such that
1. expression eγ of syntactic category c2 can be generated to communicate the higher-order
logic term γ using the agent’s lexicon;
2. there exists a non-empty expression e3 such that eγ · e3 (i.e. the concatenation of expres-
sions eγ and e3) is e1; and
3. α ′ is the result of replacing term γ with variable xτ in α , where τ is the type of γ and xτ

is a variable of type τ .

Similarly, using lexical entry 4 (i.e. izq⇒ le :pr :1.0), an agent can eliminate subexpres-
sion ‘izq’ from the left-hand side of association 11, replace constant le with variable α of
type Ind→Bool, abstract over α , and add a forward argument to the syntactic category of
‘yizq’, obtaining

y⇒ λαλβ and(α)(β ) : (pr\pr)/pr

an instance of y⇒ Coorσ (and) :A\A/A with σ = Ind→ Bool (see section 3.2).
The type of simplification illustrated in the above example, which transforms association

yizq⇒ λβInd→Bool and(le)(β ) : pr\pr into association y⇒ λαλβ and(α)(β ) : (pr\pr)/pr
by using lexical entry izq⇒ le:pr:1.0, gives rise to the second simplification rule introduced
in this paper (defined as follows).

Rule 2 (Forward Simplification) An agent can simplify an association of the form e1⇒ α :
c1 into association e3⇒ λxτ α ′ :c1/c2, if there is a proper subterm γ of α such that
1. expression eγ of syntactic category c2 can be generated to communicate the higher-order
logic term γ using the agent’s lexicon;
2. there exists a non-empty expression e3 such that e3 · eγ (i.e. the concatenation of expres-
sions e3 and eγ ) is e1; and
3. α ′ is the result of replacing term γ with variable xτ in α , where τ is the type of γ and xτ

is a variable of type τ .

Thus, when an agent constructs an association E⇒F :C as a result of an invention or
adoption step in a language game, and the meaning F of such an association is either a



Emergence and Evolution of a Language System for Boolean Coordination 17

conjunction or a disjunction of basic properties, or the negation of a basic property20, the
agent applies simplification rules 1 and 2 to such an association until it cannot be further
simplified. During the simplification process backward simplification has precedence over
forward simplification. Finally, the association resulting from this simplification process is
added to the agent’s lexicon as a new lexical entry, so that the agent can use it in succeeding
language games to parse/generate other sentences. The initial score µ of new lexical entries
constructed in this way is set to 0.5 in the experiments described in this paper.

In [41,42], simplification is performed by applying two induction operations, called
simplification and chunk, to the grammar rules constructed by an agent. These operations
adapt the induction rules proposed in [27,56] to the type of grammar rules used in [41,
42]. The forward and backward simplification rules defined in the present paper differ from
those used in [41,42] in applying deduction to infer the meaning and syntactic categories of
unknown subexpressions (i.e. expressions which cannot be generated or parsed by known
grammar rules), instead of inducing new grammar rules from previous ones and inventing
syntactic categories for unknown subexpressions. Furthermore, forward and backward sim-
plification eliminate the need to introduce the induction rules chunk I and chunk II proposed
in [27], since the application of a forward (or backward) simplification rule achieves in a
single step the combined effect of applying the rules simplification and chunk in [41,42].

The rule of simplification in [41,42] achieves generalisation by replacing subterms with
new variables at the semantic level and known subexpressions with non-terminals of their
syntactic categories at the syntactic level. However, it does not allow inferring the syntactic
categories of unknown subexpressions, as forward (or backward) simplification rules do.
The two rules chunk I and chunk II in [41,42] are therefore needed to allow generalisation
of grammar rules involving unknown subexpressions. They achieve such generalization by
inventing new syntactic categories for unknown subexpressions, and using non-terminals of
such categories in the generalised versions of grammar rules involving unknown subexpres-
sions. The forward (backward) simplification rules proposed in the present paper, instead of
inventing new syntactic categories for unknown subexpressions, deduce the meanings and
syntactic categories of such subexpressions from the meanings and syntactic categories of
the subexpressions surrounding them in a given utterance, in accordance with the Lambek
Calculus’ algebraic interpretation of operators / and \ (see section 3.2); and construct the
meanings and syntactic categories of such unknown subexpressions by applying functional
abstraction at both the semantic level and the syntactic level. In particular, forward (or back-
ward) simplification generalises an association at the semantic level by replacing a term
γ with a variable xτ of the same type and applying λ -abstraction to xτ , and it generalises
the same association at the syntactic level by replacing syntactic category c1 with functor
category c1/c2 (or c2\c1), which is more general than c1 because it depends on category c2.

The repair meta-operators build-hierarchy and build-or-extend-group proposed in [52]
are different from the simplification rules defined in the present paper, those used in [41,42],
or the repair operators described in the next subsection. They build group-units by combin-
ing existing units, or extend the set of constituents of an existing group-unit with another
unit. This is automatically done to some extent by the categorial grammar phrase-structure
schemes implemented in the parsing and production algorithms used in the present paper,
and by the parsing and production algorithm of Definite Clause Grammars built in Prolog
and used in [41,42]. But the meta-operators build-hierarchy and build-or-extend-group also

20 In the experiments, the agents do not try to simplify associations between expressions and more complex
meanings, except in the case of learning the expressions used by other agents to refer to the grouping operator
id, which we discuss in the next subsection in the context of repair operations.



18 Josefina Sierra-Santibáñez

establish co-reference relations between the variables occurring in the semantic and syn-
tactic parts of the component units of a group-unit. This is necessary in [52], because the
meanings the agents communicate to each other consist of a conjunction of atomic formu-
las containing only n-ary predicate symbols and free variables which may occur in more
than one atomic formula, and the role of syntax is to specify the co-reference (i.e. equality)
relations of the arguments (i.e. variables) of the different atomic formulas in a given mean-
ing. The simplification rules proposed in the present paper do not deal with co-reference
relations between variables, because there are no free variables in the higher-order logic
terms the agents use to represent the meanings they communicate to each other, nor in the
propositional logic formulas used to represent the meanings of expressions in [41,42].

The build-hierarchy meta-operator in [52] also decides which of the arguments involved
in a group-unit is going to be the referent of the group-unit, and determines on that basis the
syntactic and the semantic categories of the group-unit. In the experiments described in the
present paper, the agents also build group-units when they parse or produce an utterance,
because the phrase-structure application schemes build higher order logic terms of the form
α(β ) to express the meaning of expressions constructed by concatenating two subexpres-
sions whose meanings are α and β respectively, and they also assign syntactic categories to
the expressions resulting from concatenating two subexpressions, using the syntactic cate-
gories of the subexpressions. However, the meaning and syntactic category of a group-unit
constructed in this manner are determined by the meanings and syntactic categories of its
constituents in the present paper. So if the agents need to explore the space of possible
compositions of a given pair of subexpressions, they must assign different meanings and
syntactic categories to such subexpressions, and the phrase structure application schemes
do the rest of the work automatically. In [41,42], the meanings and syntactic categories of
group-units are also determined by the meanings and syntactic categories of its constituents,
but in this case the Definite Clause Grammar rules built by the agents during the simula-
tions may specify different ways of constructing the meanings and syntactic categories of
group-units from those of their constituents.

Finally, the meta-operator coercion in [52] plays a similar role to rule chunk II in [41,
42], which is also subsumed by the forward and backward simplification rules defined in
the present paper. The difference is that the meta-operator coercion in [52] adds a lexical
category to a word unit, and the simplification rules proposed in the present paper add a
new lexical entry for that word to the agent’s lexicon, which associates the word with a new
syntactic category in [41,42], and with an inferred syntactic category in the present paper.

4.4 Repair

In the first step of a language game, the speaker tries to generate an expression to com-
municate a higher-order logic term F that allows discriminating the subset of objects that
constitutes the topic of the language game from the rest of the objects in the context. As
mentioned earlier, if the speaker can generate an expression for term F using its lexicon, it
selects the expression E with the highest score from the set of all expressions it can generate
for F. However, if it realises that expression E is ambiguous, for example sentence ‘noizqy-
sup’, generated using lexical entries 2, 4, 8 and 9, can be parsed as not(and(up)(le)) or
as and(up)(not(le)), it applies a repair operation to lexical entry 9, replacing it with 12,
which introduces a new syntactic category grpr for expressions constructed by applying a
coordination operator to expressions of category pr.

y⇒ CoorInd→Bool(and) : pr\grpr/pr : 0.93 (12)



Emergence and Evolution of a Language System for Boolean Coordination 19

Apparently this contradicts the principle that any pair of categories (e.g. pr) can coordi-
nate to produce a result of the same category (e.g. pr instead of grpr). But it only prevents
the direct application of a negation or coordination operator to the expression resulting from
coordinating a pair of categories, because a new word playing the same role as ‘both’ or
‘either’ in the examples of section 3.3 is also introduced in order to enable the transforma-
tion of the expression resulting from coordinating a pair of expressions into an expression of
the same syntactic category as the coordinate expressions, and therefore the application of
negation or coordination operators. In section 3.3, the new word introduced by the agent was
‘grupo’, and we will also use this word in the examples of this section. But it is important
to note that in the experiments the agents invent different words, which play the same role
as ‘grupo’.

Continuing with the example, if the speaker’s lexicon does not contain a lexical entry for
a word that transforms expressions of syntactic category grpr into expressions of syntactic
category pr, the speaker, in addition to replacing lexical entry 9 with lexical entry 12, adds
lexical entry 13 to its lexicon. Constant id, used in the semantic part of 13, represents the
identity function, which maps every higher-order logic term into itself. Therefore, from
the semantic point of view, we could say that id plays the same role as placing a pair of
parentheses around the term to which id is applied.

grupo⇒ id : pr/grpr : 0.5 (13)

Note that it is possible that the speaker had created already a lexical entry similar to 13 in a
previous language game. In this case this step is skipped. For example, if the speaker tries
to repair lexical entry 10 after having applied a repair operation to lexical entry 9, it will
only replace lexical entry 10 with 14, where grpr is the syntactic category of the expression
resulting from coordinating two expressions of category pr, which was introduced when
lexical entry 12 was created. That is, it does not create a lexical entry that can be used to
transform an expression of syntactic category grpr into an expression of syntactic category
pr, because a lexical entry that can be used for that purpose (i.e. 13) already exists in its
lexicon21.

o⇒ CoorInd→Bool(or) : pr\grpr/pr : 0.75 (14)

It is easy to check that the refined lexicon (consisting of entries 2 to 8, 12, 13 and 14)
generates unambiguous expressions for the examples considered in section 3.3, i.e. it pro-
duces expression ‘nogrupoizqysup’ to communicate term not(id(and(up)(le))), expres-
sion ‘noizqysup’ for term and(up)(not(le)), and expression ‘supogrupoizqyinf’ for term
or(id(and(do)(le)))(up). The score of lexical entries created by repair operations (e.g.
lexical entry 13) is initially set to 0.5. But the score of lexical entries which are modifications
of lexical entries which already belonged to the agent’s lexicon is the score of the original
lexical entry (e.g. lexical entry 14 modifies lexical entry 10).

Thus, repair operations may involve two steps: 1) the replacement of a lexical entry
for a coordination operator (e.g. lexical entry 9) by a repaired lexical entry for the same
coordination operator (e.g. lexical entry 12); and 2) the addition of a lexical entry for a new

21 On the other hand, if a repair operation had been applied to a sentence that contained the logical operator
’or’ before any repair operation had been applied to a sentence that contained the logical operator ’and’,
lexical entry 10 would have been replaced with lexical entry 14 in step 1, and lexical entry 13 would have
been added to the agent’s lexicon in step 2. Later on, if the agent applies a repair operation to a sentence
containing ’and’, it would replace lexical entry 9 with lexical entry 12 and step 2 would not be applied.



20 Josefina Sierra-Santibáñez

word whose meaning is id and which plays the same role as ‘both’ or ‘either’ in the English
sentences used as examples in section 3.3.

In step 1, a lexical entry for a coordination operator (and, or) is replaced with a lexical
entry for the same coordination operator whose syntactic category has the same functional
structure as that of the original entry, except that it produces a result of syntactic category
grc instead of c. Syntactic category grc is constructed by the agent22, unless there is a lexical
entry in its lexicon that already uses this category. There are three possible cases depending
on the position in the sentence of the word associated with the coordination operator:

– Infix: If the word associated with the coordination operator is placed between the expres-
sions associated with its arguments, the syntactic category of the original lexical entry
is c\c/c, and the syntactic category of the repaired lexical entry is c\grc/c, where c is
the syntactic category of the coordinate expressions.

– Prefix: If the word associated with the coordination operator is placed before the expres-
sions associated with its arguments, the syntactic category of the original lexical entry
is c/c/c, and the syntactic category of the repaired lexical entry is grc/c/c.

– Suffix: If the word associated with the coordination operator is placed after the expres-
sions associated with its arguments, the syntactic category of the original lexical entry
is c\c\c, and the syntactic category of the repaired lexical entry is c\c\grc

In step 2, a lexical entry that introduces a new word which plays the same role as ‘both’
or ‘either’ in English is created (e.g. lexical entry 13), if the agent’s lexicon does not have
another word that can be used for that purpose. We have already explained that the meaning
of the new word is id, the identity function, and that its syntactic category must be a func-
tional category that transforms an expression of syntactic category grc into an expression
of syntactic category c, where c is the syntactic category of the coordinate expressions. The
direction of such a functional category (forward or backward) depends on the direction of
the functional category of the lexical entry for not that was used in the generation of the
ambiguous expression that triggered the application of the repair operation.

– Prefix: If the syntactic category of the lexical entry used for not is c/c (i.e. the word
associated with the negation operator is placed before the expression associated with its
argument), the syntactic category of the new lexical entry should be c/grc.

– Suffix: If the syntactic category of the lexical entry used for not is c\c (i.e. the word
associated with the negation operator is placed after the expression associated with its
argument), the syntactic category of the new lexical entry should be grc\c.

Repair operations are therefore triggered by the generation of ambiguous expressions
to communicate meanings of the form not(and(α)(β )) or not(or(α)(β ))23. It should be
noted, however, that once an agent has applied a repair operation to the lexical entry of a co-
ordination operator (and,or), it cannot use the repaired lexical entry to generate expressions
for higher-logic terms of the form not(and(α)(β )), not(or(α)(β )), or(and(do)(le))(up)
or and(up)(or(do)(le)). It must reconceptualise these terms in such a way that they use the
grouping operator id, which is required to apply negation or coordination operators to ex-
pressions resulting from coordinating a pair of constituents of the same Boolean type. Thus,
instead of using the previous higher-order logic terms as meanings, the agent must reconcep-
tualise such meanings as not(id(and(α)(β ))), not(id(or(α)(β ))), or(id(and(do)(le)))

22 We describe repair operations for arbitrary syntactic categories c, because they are applicable to lexical
entries for coordinators of expressions of any Boolean type. However, in the experiments, c is always pr.

23 They could have been triggered by the generation of ambiguous expressions for other types of meanings,
e.g. and(α)(not(β )) or and(α)(or(β )(γ)). But in the present experiments this is not the case.



Emergence and Evolution of a Language System for Boolean Coordination 21

(up) and and(up)id(or(do)(le))) respectively before trying to communicate them to other
agents.

In the previous section we saw how simplification operations applied to associations
constructed during the invention or adoption steps of a language game allow the agents to
expand their lexicons by adding new lexical entries for coordination and negation operators.
These entries correspond to words and syntactic categories for coordination (and,or) and
negation (not) operators that a given agent may invent when it acts as a speaker in a language
game or that it learns from other agents when it acts as a hearer. However, we have not
explained yet how the agents learn the expressions used by other agents to refer to the
grouping operator id. This is done as follows.

Suppose an agent acting as speaker tries to communicate to the hearer a higher-order
logic term F of the form not(id(⊗(α)(β ))), where ⊗ is a dyadic coordination operator
(and, or), and α and β are terms of the same Boolean type. If the speaker can generate
an unambiguous expression E for F, it communicates E to the hearer. If the hearer cannot
parse E, but it can understand the expressions used by the speaker for not and ⊗, and it has
applied a repair operation to the lexical entry for ⊗ in past language games, then the hearer
constructs an association of the form E ′⇒ id(⊗(α)(β )) :c as follows.

1. If the word enot used by the speaker to communicate operator not is associated with a
lexical entry of the form enot ⇒ not :c/c :s, then E ′ will be the result of removing prefix
enot from E, i.e. the concatenation enot ·E ′ will be equal to E.

2. If the word enot used by the speaker to communicate operator not is associated with a
lexical entry of the form enot ⇒ not :c\c :s, then E ′ will be the result of removing suffix
enot from E, i.e. the concatenation E ′ · enot will be equal to E,

Next, the hearer applies simplification to association E ′⇒ id(⊗(α)(β )) : c, using sub-
term ⊗(α)(β ) of id(⊗(α)(β )) and subexpression e⊗(α)(β ) of E ′, where e⊗(α)(β ) is the ex-
pression generated by the hearer to communicate⊗(α)(β ) using the same lexical entries for
⊗,α and β that were used by the speaker. In particular, the result of applying simplification
to association E ′ ⇒ id(⊗(α)(β )) : c, using subterm ⊗(α)(β ) and subexpression e⊗(α)(β ),
may be of one the following forms24

1. eid⇒ id :c/grc, if the lexical entry used by the speaker for id was a prefix; or
2. eid⇒ id :grc\c, if the lexical entry used by the speaker for id was a suffix.

The main difference is that in the former case forward simplification is applied, because
e⊗(α)(β ) is a suffix of E ′, i.e. concatenation eid ·e⊗(α)(β ) is equal to E ′; whereas in the lat-
ter backward simplification should be used, because e⊗(α)(β ) is a prefix of E ′. It should be
noted that simplification of a term α using a subterm γ1 takes precedence over simplifi-
cation of α using another subterm γ2, if γ2 is a proper subterm of γ1. This explains why
E ′⇒id(⊗(α)(β )) :c is simplified using subterm ⊗(α)(β ), instead of subterms α or β .

And finally, the hearer adds the association resulting from the simplification process
described above to its lexicon as a new lexical entry.

Although both simplification operations (section 4.3) and repair operations (section 4.4)
modify an agent’s lexicon, there are important differences between them. The former are
applied when a new association is created in the invention or adoption steps of a language
game. They try to generalise the association so that it can be used to express and parse more

24 We use again an arbitrary syntactic category c to describe the adoption of lexical entries constructed
during the application of repair operations, because the mechanisms proposed are applicable to lexical entries
for coordinators of expressions of any Boolean type. However, in the experiments, c is always pr.



22 Josefina Sierra-Santibáñez

meanings. Repair operations, on the other hand, specialise lexical entries which are too gen-
eral and can therefore generate ambiguous expressions. Simplification rules operationalise
the pattern-finding ability children develop according to the usage-based theory of language
acquisition [54]. Whereas repair operations implement cognitive processes associated with
a particular type of grammar invention and overgeneralisation examples reported in studies
of children language acquisition [55].

4.5 Adaptation

Coordination of the agents’ preferences for lexical entries is necessary, because different
agents may invent different words to refer to the same Boolean operator, and they may place
these words in different positions (prefix, infix or suffix) with respect to the positions of
the expressions associated with the arguments of such a Boolean operator. Although [46,
27,19] also study the acquisition of word-order based syntax, they do not address the issue
of coordination of the agents’ preferences for lexical entries, because the populations in
their experiments consist only of two agents, which necessarily share the same history of
linguistic interactions. In the experiments discussed in the present paper coordination is
achieved through a process of self-organisation of the agents’ linguistic interactions, which
takes place when these agents update the scores of their lexical entries in order to adapt their
preferences for lexical entries to those they observe are used more often by other agents.

The agents update the scores of their lexical entries at the last step of a language game,
when the speaker communicates the meaning it had in mind to the hearer, and only in the
case in which the speaker can generate at least one expression for the meaning it is trying
to communicate using its lexicon and the hearer can parse the expression communicated by
the speaker. If an agent acting as speaker can generate several expressions to communicate
a given meaning, it chooses the expression with the highest score, and temporarily stores
the rest of the expressions in a set called competing expressions; similarly, if an agent acting
as hearer can obtain several meanings by parsing an expression, it selects the meaning with
the highest score and stores the rest in a set called competing meanings. In a language game
only the agent playing the role of hearer updates the scores of its lexical entries. However,
as all the agents in the population play both the role of speaker and that of hearer in different
language games, all of them have ample opportunity to update the scores of their lexical
entries during a simulation.

If the meaning interpreted by the hearer is logically equivalent to the meaning the
speaker had in mind, the language game succeeds, and the hearer adjusts the scores of its
lexical entries both at the level of interpretation and at that of generation: 1) It increases the
scores of the lexical entries it used for obtaining the meaning the speaker had in mind and
decreases the scores of the lexical entries it used for obtaining competing meanings. 2) It
tries to simulate what it would have said if it had been in the speaker’s place, i.e. it tries
to express the meaning the speaker had in mind using its own lexicon; and it increases the
scores of the lexical entries that generate the expression used by the speaker, and decreases
the scores of the lexical entries that generate competing expressions.

If the meaning interpreted by the hearer is not logically equivalent to the meaning the
speaker had in mind, the language game fails, and the hearer decreases the scores of the
lexical entries it used for obtaining its interpretation of the expression communicated by the
speaker.

The scores of lexical entries are updated by using the following formulas. The original
score s of a lexical entry is replaced with the result of evaluating expression 15 if the score



Emergence and Evolution of a Language System for Boolean Coordination 23

is increased, and with the result of evaluating expression 16 if the score is decreased.

minimum(1, s+δ
+
h ) (15)

maximum(0, s−δ
−
h ) (16)

In our experiments, the following values for parameters δ
+
h ,δ−h and µ have been used25:

δ
+
h = 0.1,δ−h = 0.1 and µ = 0.5. This choice is based on the research described in [17],

which proposes a formal framework for studying the evolution of conventions in multi-
agent systems and a general method for analysing convention problems in multi-agent sys-
tems; and applies such a method to the study of agent-based models of the emergence and
evolution of language, focusing on the naming game [45] and specifically on several strate-
gies proposed in the literature for updating the scores of associations between words and
meanings.

An additional feature of the adaptation mechanism used in the experiments described in
the present paper is that if the score of a lexical entry becomes zero after a language game,
such a lexical entry is deleted from the agent’s lexicon.

In [17] the dynamics of a multi-agent system consisting of a population of autonomous
agents playing the naming game is described by means of a system of stochastic equations,
and its evolution is investigated by studying the properties of a deterministic system which
approximates the average dynamics of the stochastic system. In particular, in this framework
an agent design is said to solve a convention problem if: (1) the deterministic dynamical
multi-agent system it induces converges to a state of agreement for almost all initial condi-
tions, i.e. the set of initial conditions for which no agreement is reached has zero measure;
and (2) agreement is reached in a reasonable amount of time for any population, i.e. the time
required to reach it does not grow too fast as a function of the size of the population.

With respect to the question whether an agent solves a convention problem, the impor-
tant properties of such a deterministic dynamical system are: (i) if all the states in which
the agents agree on a convention are stable stationary states of the deterministic system; and
(2) if the rest of the stationary states of the deterministic system are unstable. [17] argues
that such properties can be investigated by studying the behaviour of the so-called agent’s
response function, because the stationary states of the deterministic system correspond to
the fixed points of the response function, and the stability of such stationary states can be
also determined by analysing the behaviour of such a function.

Specifically, for a population of autonomous agents playing the naming game, where
the agents do not generate homonyms, update the scores of their lexical entries only when
they play the role of hearer, and delete those lexical entries whose scores become zero after
a language game, [17] shows that the agent’s response function is well defined, and that if
δ
+
h = 0.1,δ−h = 0.1 and µ = 0.5, then such a response function is sufficiently adaptive and

amplifying. Intuitively, this means that the population will always succeed in establishing
a common language in a reasonable amount of time, because if the response function is
sufficiently adaptive then the equilibrium states are reached fast enough, and if the response
function is amplifying then the population will never get stuck in a suboptimal behaviour26.

The formal framework and results described in [17] are applicable to the convention
problem studied in the present paper, because the language game the agents play in our

25 µ is the initial score agents assign to the lexical entries they create during simplification or repair.
26 Adaptation captures the speed at which an agent can adapt to a new situation, which determines the time

it takes for a population to agree on a common language. Amplification relates to the extent to which an agent
is able to escape from a behaviour which represents a suboptimal fixed point of its response function. This is
achieved by amplifying small deviations from suboptimal equilibrium states, thus making them unstable.



24 Josefina Sierra-Santibáñez

experiments is an instance of the naming game, and the agents in the populations we use:
(1) do not generate homonyms; (2) update the scores of their lexical entries only when they
play the role of hearer; and (3) delete those lexical entries whose scores become zero after
a language game. In the language game studied in our experiments, the agents should agree
on a lexicon for naming three Boolean operators and,or,not and one grouping operator
id. However, the linguistic expression of such operators not only requires specifying the
word (or name) that should be assigned to each operator, but also the position where such
word should be placed with respect to the expressions associated with its arguments (i.e.
prefix, infix or suffix). Therefore, a “name” in the naming game played by the agents in our
experiments consists of two parts: (1) the word which is associated with an operator; and
(2) a specification of whether such a word should be placed before, between or after the
expressions associated with the arguments of such an operator in the sentence.

5 Experiments

The agent-based model proposed in this paper has been implemented in Prolog, and tested
by conducting a series of experiments which study both the emergence of a language system
for Boolean coordination and its transmission across generations.

The first goal of the experiments we have carried out is to show that the conceptual and
linguistic systems proposed, as well as the simplification and repair operators defined in pre-
vious sections can be operationalised, and that they allow a single agent to effectively con-
struct and learn a language system for Boolean coordination. The second goal is to show that
such simplification and repair operators, coupled with the adaptation mechanisms described
in section 4.5, enable a population of autonomous agents to construct a shared language
system for Boolean coordination and to transmit it to succeeding generations.

In order to provide empirical evidence that a language system for Boolean coordination
actually emerges in a population of autonomous agents, we have chosen a score update
strategy (i.e. only hearer), and some parameter values (i.e. δ

+
h = 0.1,δ−h = 0.1 and µ =

0.5) for which the population will always succeed in establishing a common language in a
reasonable amount of time according to [17]. A detailed discussion of the effects of using
different strategies for updating the scores of lexical entries (e.g. speaker and hearer versus
only hearer), choosing different values for the initial score of lexical entries (µ) and update
parameters (δ+

h ,δ−h ), or allowing homonymy to be introduced in the language constructed
by the population falls outside the scope of this paper, but it can be found in research works
focusing on the study of the emergence and evolution of conventions in multi-agent systems
such as [28], [1] and [17].

In all the experiments described in this section, the agents start with a common lexicon
for 600 basic properties27. Then they play a series of language games about higher-order
logic terms which recursively combine basic properties using negation, conjunction and
disjunction. Such higher-order logic terms, which are randomly generated, may have be-
tween one and five nested Boolean operators (and,or,not). The depth of their syntactic
trees ranges from two to six. For example, term [[and,ri],le], which represents proposi-
tional formula right∧ left, is an example of an easy term with syntactic tree of depth two,
which contains a single Boolean operator. On the other hand, term [[or,[[and,li],up]],

[not,[[or,li],up]]], which represents formula light↔ upper, is an example of a term

27 Basic properties are propositional constants representing properties such as being light, dark, in an upper
or lower position, or on the right or left side of the whiteboard. [21,8,19] also use simulations with software
agents and initialise the agents with a common vocabulary for basic concepts.



Emergence and Evolution of a Language System for Boolean Coordination 25

of medium difficulty with syntactic tree of depth four and four Boolean operators. In order
to allow the agents to have enough opportunity to learn the language constructed by others,
45% of the terms generated during a simulation contain a single Boolean operator, 20% have
two Boolean operators and syntactic trees of depth three, 18% have three Boolean opera-
tors and syntactic trees of depth three or four, 12% have four operators, and 5% have five
Boolean operators and syntactic trees of depth five or six.

We monitor the evolution over time of four measures, in order to observe the evolu-
tion of the population’s global performance in the experiments studying the emergence and
evolution of a language system for Boolean coordination. Time in this context should be
understood as the number of games played by the population. Thus, the value of variable t
at a given moment in a simulation is the number of games played so far by the population.

– Communicative success S(t) is the average of successful language games in a sliding
window of consecutive language games containing the games in the interval [t−w+1, t]
if w < t, or the games in the interval [1, t] if t ≤ w.

– Lexical variability V (t) is the average of language games in a sliding window of con-
secutive language games containing the games in the interval [t−w+ 1, t] if w < t, or
the games in the interval [1, t] if t ≤ w, such that either: (1) the hearer does not un-
derstand correctly the expression communicated by the speaker, or (2) the hearer does
understand correctly the expression communicated by the speaker, but the hearer would
use an expression different from the expression used by the speaker to communicate the
meaning the speaker had in mind. This measure captures the dissimilarity between the
agents’ internal languages (i.e. the sets of preferred lexical entries of the form expres-
sion⇒meaning: syntactic category: score stored by each individual agent). In previous
papers [41] and [42], we monitored the evolution of coherence C(t) rather than lexical
variability V (t). The relation between both measures is V (t) = 1−C(t). We use lexical
variability in the present paper, because the curve associated with lexical variability can
be clearly distinguished from the curve associated with communicative success on the
graphs.

– Invention I(t) is the average number of inventions per agent in past language games,
i.e. it is the total number of words invented by all the agents in the population in the
language games contained in the interval [1, t] divided by the size of the population.

– Adoption A(t) is the average number of adoptions per agent in past language games, i.e.
it is the total number of games in which an agent adopts an expression used by another
agent in the games contained in the interval [1, t] divided by the size of the population.

The first series of experiments we have conducted study language emergence for differ-
ent population sizes. Figures 1 to 4 show the evolution over time of communicative success,
lexical variability, invention and adoption for such experiments. In all the experiments de-
scribed in this paper, the length w of the sliding window used for computing communicative
success and lexical variability is of fifty games28. For each population size, the curves de-
scribing the evolution of communicative success, lexical variability, invention and adoption
on the corresponding graph show the average of fifty simulation runs with different random
seeds29. Standard deviations have also been computed and are represented by the shaded
region drawn around each curve.

28 The length of the sliding window used in the experiments described in [41,42] was of ten games, and
that used in the experiments described in [8] of fifty games.

29 The results described in [41,42] are the average of ten simulation runs, whereas those reported in [8] are
the average of fifty simulation runs.



26 Josefina Sierra-Santibáñez

It can be observed that for the population sizes considered in this paper the curves de-
scribing the evolution of communicative success and lexical variability follow the S-shaped
curve typically observed in the spreading of new language conventions in human popula-
tions [1]. This is also the case for the experiments described in [41] and [42].

Fig. 1 Evolution of communicative success, lexical variability, invention and adoption in an experiment with
ten agents. The results shown are the average of fifty simulation runs with different random seeds.

The results of the four experiments we have carried out to study the emergence of a
language system for Boolean coordination with different population sizes are summarised
in table 1. Each row describes the results of one experiment. The population size of the
experiment is shown in the first column, the maximum number of games required to reach
full communicative success (i.e. S(t) = 1.0) in the fifty simulation runs of that experiment
in the second column, the minimum number of games required to reach full communicative
success in the fifty simulation runs in the third column, the maximum number of games
required to reach null lexical variability30 (i.e. V (t) = 0.0) in the fifty simulation runs of
that experiment in the fourth column, and the minimum number of games required to reach
null lexical variability in the fifty simulation runs in the fifth column.

For the experiments we have carried out, it can be observed that the time to convergence
(to reach full communicative success) does not grow too fast with respect to the population
size. In particular, for the experiments shown in table 1, the time to convergence is less than
6 ·n2 · ln(n), where n is the population size31.

30 Note that null lexical variability means that all the agents in the population prefer the same expression
(both word and position) for naming the Boolean operators (and,or,not) and the grouping operator (id).

31 In [17], the number of words invented per object in the naming game is estimated to be in O(n), where n
is the population size, and the time for n/2 words to spread in the population in O(n2 · ln(n)). The asymptotic



Emergence and Evolution of a Language System for Boolean Coordination 27

Fig. 2 Evolution of communicative success, lexical variability, invention and adoption in an experiment with
twenty agents. The results shown are the average of fifty simulation runs with different random seeds.

Number of games to reach full communicative success and null variability in emergence experiments
Pop. Max number of games Min number of games Max number of games Min number of games
size to reach S(t) = 1.0 to reach S(t) = 1.0 to reach V (t) = 0.0 to reach V (t) = 0.0
10 1280 349 1292 386
20 3703 1231 3704 1234
40 7941 4020 7957 4075
80 21230 10583 21232 10587

Table 1 Maximum and minimum number of games to reach full communicative success (S(t) = 1.0) and
null lexical variability (V (t) = 0.0) in the fifty simulation runs of each experiment studying language emer-
gence. Each row displays the results of one particular experiment, which consists of fifty simulation runs with
different random seeds and a population of the size indicated in the first column.

The minimum and maximum average number of games played by each agent until full
communicative success and null lexical variability are reached in the experiments study-
ing language emergence are shown in table 2. These results are computed by dividing the
corresponding values in table 1 by the population size of each experiment.

[42] describes an experiment in which ten agents32 play language games about proposi-
tional logic formulas that represent recursive combinations of basic concepts using negation,
conjunction and disjunction. In this experiment, full communicative success is reached in
1050 games and full coherence (i.e. null lexical variability) in 1250 games. The main qual-
itative difference between the results in [42] and those obtained in the present paper is that
the time span between reaching full communicative success and reaching null lexical vari-

notation O(g(n)) is defined as follows. For a given function g(n), we denote by O(g(n)) the set of functions
O(g(n)) = { f (n) : there exist positive constants c and n0 such that 0≤ f (n)≤ c ·g(n) for all n≥ n0}.

32 The experiments described in [56,8] also use a population of ten agents.



28 Josefina Sierra-Santibáñez

Fig. 3 Evolution of communicative success, lexical variability, invention and adoption in an experiment with
forty agents. The results shown are the average of fifty simulation runs with different random seeds.

Games per agent to reach full communicative success and null variability in emergence experiments
Pop. Max number of games Min number of games Max number of games Min number of games
size played per agent played per agent played per agent played per agent

to reach S(t) = 1.0 to reach S(t) = 1.0 to reach V (t) = 0.0 to reach V (t) = 0.0
10 128 34.90 129.20 38.60
20 185.15 61.55 185.20 61.70
40 198.52 100.50 198.92 101.87
80 265.37 132.29 265.40 132.34

Table 2 Maximum and minimum average number of games played by each agent until full communicative
success and null lexical variability are reached in the fifty simulation runs of each experiment. Each row
displays the results of one experiment, which consists of fifty simulation runs with different random seeds
and a population of the size indicated in the first column.

ability is larger in [42] than in the experiments studying language emergence described in
the present paper. This might be due to the fact grammar rules whose scores reach zero are
not eliminated in [42]. In a similar experiment described in [41], in which ten agents play
language games only about non-recursive logical formulas constructed from basic concepts
using negation and ten binary Boolean functions, full communicative success is reached in
1950 games, and full coherence (i.e. null lexical variability) in 4600 games33. As it can be
observed, the time span between reaching full communicative success and reaching null lex-
ical variability is greater than in [42]. A plausible explanation for this might be the higher
number of Boolean operators (eleven versus three) used in the semantic representations of

33 The number of games required to reach full communicative success (or full coherence) reported in [41,
42] is the maximum number of games required in the ten simulation runs carried out in those experiments.



Emergence and Evolution of a Language System for Boolean Coordination 29

Fig. 4 Evolution of communicative success, lexical variability, invention and adoption in an experiment with
eighty agents. The results shown are the average of fifty simulation runs with different random seeds.

this experiment, and the facts that most of these Boolean operators are not commutative, and
that grammar rules whose scores reach zero are not eliminated either in [41].

It should also be noted that the score update strategy used in [41] and [42] is similar to
that used in the present paper (i.e. only hearer with score update parameter values δ

+
h = 0.1

and δ
−
h = 0.1). However, the parameter value used for initializing the scores of new lexical

entries in [41] and [42] was µ = 0.1, whereas in the present paper is µ = 0.5. This difference,
together with the facts that the results reported in [41,42] correspond to the average of ten
independent simulation runs instead of fifty simulation runs and that the length of the sliding
window used in these papers was of ten games instead of fifty games, may also account for
the differences between the results obtained in those papers and the present one.

Table 3 shows the average number of inventions per agent I(t) at the end of a simu-
lation run and its standard deviation σI(t) for the fifty simulation runs conducted for each
experiment, the average total number of words invented by all the agents in the population
in the fifty simulation runs of each experiment (column four), and the average number of
adoptions per agent A(t) at the end of a simulation run and its standard deviation σA(t) for
the fifty simulation runs carried out for each experiment. It can be observed that each agent
adopts only a subset of the total set of words invented by all the agents in the population,
and that the total number of words invented by the population is less than 6 · n for the ex-
periments we have carried out, where n is the population size. Furthermore, the percentage
of words adopted per agent of the set of all the words invented by the population (column
seven in table 3) decreases as the population size of the experiment is increased.

Table 4 shows the maximum and minimum period of time during which the population
keeps inventing new words in the fifty simulation runs carried out in each experiment, and
the maximum and minimum period of time during which the agents keep adopting words in-
vented by other agents in the fifty simulation runs of each experiment. In particular, for each



30 Josefina Sierra-Santibáñez

Average number of inventions per agent and adoptions per agent at the end of the simulation runs
Pop. Average number σI(t) Average number Average number σA(t) Percentage of words
size of inventions of words invented of adoptions adopted per agent from

per agent I(t) by all agents per agent A(t) words invented by all
10 2.14 0.29 21.4 16.29 3.33 76%
20 2.48 0.25 49.6 27,99 4.85 56%
40 2.61 0.19 104.4 41.28 6.16 39%
80 2.73 0.13 218.4 52.23 6.38 24%

Table 3 Average number of inventions and adoptions per agent at the end of a simulation run. Each row
describes one experiment with a population of the size specified in the first column. Columns two and three
show the average number of inventions per agent and its standard deviation for the fifty simulation runs carried
out in each experiment. Columns five and six give similar information for the average number of adoptions
per agent and its standard deviation. Column four displays the average total number of words invented by
the population in the fifty simulation runs carried out in each experiment. Column seven shows the average
percentage of words adopted per agent of the set of all the words invented by the population in the fifty
simulation runs of each experiment.

simulation run si we compute gamessi
max(I), the number of games it takes for the population to

reach the maximum number of inventions in that simulation run, and gamessi
max(A), the num-

ber of games it takes for the population to reach the maximum number of adoptions in that
simulation run. The values in the second and third column of row j are the maximum and the
minimum of the set of numbers {gamessi

max(I)}i=1...50 obtained for the fifty simulation runs
of the experiment described in row j. Similarly, the values in the fourth and fifth column
of row j are the maximum and the minimum of the set of numbers {gamessi

max(A)}i=1...50

obtained for the fifty simulation runs of the experiment described in row j.
In general, as it can be observed in table 4 and figures 1 to 4, invention grows rapidly

reaching its maximum early on in each simulation run, whereas adoption reaches its max-
imum close to the time at which full communicative success is reached (see table 1). This
behavior is also observed in the experiments described in previous papers. For example, in
[42] the agents invent new words during the first 700 games, and adopt words invented by
others during the first 950 games; and in [41] the agents invent new words during the first 550
games, and adopt words invented by others during the first 1900 games34. The maximum
numbers of games during which the agents adopt words in the experiments described in [41,
42] are also close to the maximum number of games required to reach full communicative
success reported for those experiments (1050 games in [42] and 1950 games in [41]).

Figures 5 to 16 show the results of several experiments studying language transmission
across generations. The agents in the population are divided into three groups: the elder,
the adults and the young. Every tr games, the elder (approximately one third of the popu-
lation35) are replaced with new agents which have no lexical entries for Boolean operators,
the previous adults become the elder, the young the adults, and the new agents the younger
generation. As a consequence the population is completely renewed every 3 · tr games, i.e.
every three turnover intervals.

In particular, we have carried out experiments for populations of ten, twenty, forty and
eighty agents, and turnover intervals of 500 to 3000 games. In all the experiments, commu-

34 The number of games during which the agents invent or adopt words reported in [41,42] is the maximum
for the ten simulation runs carried out in those experiments.

35 The initial groups of elder, adult and young agents contain n
3 ,

n
3 +n mod(3) and n

3 agents respectively,
where n is the population size, n

3 is the integer division of n by 3 and n mod(3) the remainder.



Emergence and Evolution of a Language System for Boolean Coordination 31

Maximum and minimum number of games during which the agents keep inventing and adopting
Pop. Max number of games Min number of games Max number of games Min number of games
size to reach max(I(t)) to reach max(I(t)) to reach max(A(t)) to reach max(A(t))
10 354 75 1225 291
20 1668 280 3578 1181
40 4899 1253 7799 3861
80 11735 4227 20860 10523

Table 4 Maximum and minimum number of games during which the agents keep inventing new words in
the fifty simulation runs of each experiment (second and third columns). Maximum and minimum number of
games during which the agents keep adopting words invented by other agents in the fifty simulation runs of
each experiment (fourth and fifth columns). The population size of each experiment is in the first column.

nicative success, invention and adoption decrease significantly when new agents are intro-
duced into the population, and lexical variability increases.

In the experiments studying language transmission for a population of ten agents and
turnover intervals of lengths 1500 and 1000 (figures 5 and 6), we can observe that full
communicative success and null lexical variability are reached during a large part of most
turnover intervals. There is also a steady decrease in the average number of adoptions per
agent in succeeding generations, which can be explained by the fact that new agents learn
a language already established in the population (i.e. the language that is transmitted from
generation to generation), which uses fewer variations for expressing each Boolean operator.

In the experiment studying language transmission for ten agents and turnover interval
of length 500 games (figure 7), full communicative success and null lexical variability are
reached during the last part of most turnover intervals, although there are a few turnover
intervals where communicative success reaches values over 0.98 for a very short period
of time before the next generation of agents is introduced. The population size and length
of the turnover interval used in this experiment are similar to those used in the experiments
described in [41,42]. In [42], each generation reached communicative success and coherence
values over 0.99 and 0.98 respectively, and in [41] over 0.96 and 0.94 respectively.

The experiments studying language transmission for a population of twenty agents and
turnover intervals of lengths tr = 1500 and tr = 1000 games (figures 8 and 9) show roughly
similar patterns of behaviour to those produced by a population of ten agents and turnover
intervals of lengths 1000 and 500 respectively, except that a language system for Boolean
coordination takes more than one generation to emerge36. But once such a language system
is established in one generation, it is reliably transmitted to succeeding generations.

In the experiment studying language transmission for a population of twenty agents
and turnover interval of 500 games (figure 10), it seems that a shared language system for
Boolean coordination does not emerge until the seventh generation. From that moment on
communicative success reaches values between 0.95 and 0.99 in succeeding generations,
which means that the agents in such generations share a language system for Boolean coor-
dination which allows the unambiguous communication of at least 95% of the higher order
logic terms constructed from the common set of basic concepts communicated by the agents.

In figures 7 and 10 to 16, we can also observe that the average number of adoptions per
agent (i.e. A(t)) reaches its minimum after a certain number of generations. In these graphs,
A(t) stabilizes after reaching its minimum, and it does not decrease anymore.

36 Note that in figures 6 and 9, the length of the first turnover interval is different from 1000 games, but the
length of the rest of the turnover intervals is of 1000 games.



32 Josefina Sierra-Santibáñez

The experiments with a population of forty agents and turnover interval of 1500 games
(figure 11), and with a population of eighty agents and turnover interval of 3000 games
(figure 14) follow a roughly similar pattern of behaviour, where full communicative suc-
cess is reached at the end of each turnover interval, the main difference being the number
of games (and hence generations) a shared language system for Boolean coordination takes
to emerge. But the number of games a shared language system takes to emerge in the ex-
periment studying language transmission with eighty agents and turnover interval of 3000
games (see figure 14) is consistent with (i.e. approximately equal to) the number of games
a shared language system takes to emerge in the experiment studying language emergence
for a population of eighty agents (see figure 4 and table 1). This relation also holds for the
experiment studying language transmission with forty agents and turnover interval of 1500
games described in figure 11 and the experiment studying language emergence for a popu-
lation of forty agents described in figure 3. The number of games a shared language system
for Boolean coordination takes to emerge in any experiment studying language transmis-
sion for a population of ten or twenty agents is also consistent with the number of games a
shared language system takes to emerge in the experiment studying language emergence for
the corresponding population (see figures 1, 2, 5, 6, 7, 8, 9, 10, and table 1).

An index that might help understand the results of the experiments studying language
transmission is the number of games each agent can play during one turnover interval
ga

r = tr/n, that is, the length of the turnover interval tr divided by the population size n of the
experiment. For example, ga

r = 50 for the experiments described in figures 7 and 9, which
show a similar pattern of behaviour. Similarly, ga

r = 37.5 for the experiments described in
figures 11 and 14, which also exhibit a similar pattern of behaviour. A third group of experi-
ments we have not discussed previously consists of the experiments described in figures 10,
12 and 15, which show a similar behaviour pattern where communicative success forms a
pointed shape and reaches values between 0.95 and 0.98 in most of the turnover intervals
that take place after a language system for Boolean coordination had emerged in the popu-
lation. The number of games each agent can play in the turnover interval of the experiments
belonging to this third group of experiments is ga

r = 25.
We have also conducted two experiments where the number of games each agent can

play in the turnover interval ga
r is less than 25. The first experiment studies language trans-

mission for a population of forty agents and a turnover interval of 800 games (see figure
13). In this experiment, where ga

r = 20, communicative success forms a pointed shape and
reaches values between 0.90 and 0.94 in the last turnover intervals, which means that the
language system shared by the agents in the last generations allows the unambiguous com-
munication of at most 94% of the higher order logic terms the agents try to communicate to
each other. The second experiment studies language transmission for a population of eighty
agents and a turnover interval of 1500 games (see figure 16). In this experiment, where
ga

r = 18.75, a shared language system for Boolean coordination does not emerge in the
49500 games played by the agents during the whole simulation. However, we can observe
that communicative success keeps increasing during the simulations, reaching values close
to 0.78 in the last two turnover intervals, and that lexical variability and adoption decrease.

The above classification of the experiments we have carried out in terms of the number
of games each agent can play in the turnover interval (i.e. ga

r ) suggests that, if the agents are
allowed to play at least a certain number of games during the turnover interval, one third of
the population (i.e. the new generation) will be able to learn the language of the other two
thirds (i.e. the previous generations) before the next generation of agents is introduced into
the population. The particular number of games per agent in the turnover interval required
to ensure language transmission (e.g. ga

r = 37 or ga
r = 25) is not important. The interesting



Emergence and Evolution of a Language System for Boolean Coordination 33

fact is that we observe similar behaviour patterns in experiments with identical values of
ga

r independently of the population size of each experiment. This is so, because language
transmission only depends on whether the new agents are able to learn the language of
the rest of the population (i.e. the language that is transmitted across generations) before the
next generation of agents is introduced, so that the agents that know the language transmitted
across generations always outnumber those that must learn it.

Thus the minimum number of games per agent in the turnover interval required to guar-
antee language transmission in a given experiment is determined by two factors: (1) the
probability that a new agent will play a language game with another agent that already
knows the language that is transmitted across generations (i.e. the population percentage
that is not replaced with new agents during turnover, which is approximately 66.66% in our
experiments); and (2) the intrinsic difficulty of the language system the new agents must
learn during the turnover interval, which depends on the number of different meanings that
can be expressed, and on the complexity of the linguistic constructions used to express them.

6 Conclusions

This paper proposes an agent-based model of the emergence and transmission of a language
system for Boolean coordination. The model has been implemented in Prolog, and tested
by conducting a series of experiments in which a population of autonomous agents tries to
communicate about subsets of objects characterised by higher-order logic terms constructed
by recursively combining basic properties with higher-order logic operators such as nega-
tion, conjunction or disjunction. The results of the experiments we have performed show
that a language system for Boolean coordination emerges as a result of a process of self-
organisation of the agents’ linguistic interactions when these agents adapt their preferences
for vocabulary, syntactic categories and word order to those they observe are used more often
by other agents. Such a language system uses linguistic devices such as syntactic categories,
word order and function words; and it can be reliably transmitted across generations.

The language systems the agents build in the experiments we have carried out allow the
unambiguous communication of higher-order logic terms representing logical combinations
of basic properties with non-trivial recursive structure. Therefore, from a semantic point of
view, they are as expressive as the language systems built in the experiments described in
[42]37, and more expressive than the language systems constructed in the experiments re-
ported in [27,41]. However, the conceptual system, linguistic system, and simplification and
repair operations of the agent-based model proposed in the present paper are more general
than those defined in [42], because they do not only allow the simulation of the emergence
and evolution of a language system for the Boolean coordination of basic properties, but also
for the Boolean coordination of higher-order logic terms of any Boolean type, which can
represent the meaning of simple sentences but also of constituents such as nouns, sentences,
verbs, adjectives, adverbs, prepositions, prepositional phrases and others, taking advantage
of the expressiveness of the λ -calculus and categorial grammar.

The agent-based model proposed improves previous work on the emergence and evo-
lution of grammar by introducing an elaborate conceptual system based on the λ -calculus
and higher-order logic, which allows the formal representation of the meaning of practically
any constituent of natural language expressions. It also puts forward the use of categorial

37 See appendix A of [42] for a discussion of the expressiveness of the language systems constructed in
the experiments reported in that paper, and a proof of the ability of such language systems to unambiguously
express every propositional logic formula, which are represented in [42] using Lisp-like notation [35,34].



34 Josefina Sierra-Santibáñez

grammar, which allows formalising a wide range of instances of coordination of Boolean
categories, including both traditional constituents and categories not traditionally analysed
as forming constituents. Furthermore, it defines simplification and repair operations that in-
fer the meanings and syntactic categories of unknown subexpressions from the meanings
and syntactic categories of the subexpressions surrounding them in a given utterance, rather
than inducing new grammar rules from previous ones and inventing syntactic categories for
unknown subexpressions. In particular, the simplification operators defined in the present
paper are more general than those proposed in [27,56,41,42], and they can be formulated
in a simpler manner by applying functional abstraction both at the semantic level and at the
syntactic level of an association.

Finally, more experiments have been conducted with respect to [41,42], including dif-
ferent population sizes, turnover intervals, and fifty simulation runs with different random
seeds per experiment. The experiments studying language emergence we have carried out
show that the time to convergence (i.e. to reach full communicative success) and the number
of words invented and adopted per agent do not grow too fast with respect to the population
size. In particular, in the experiments we have conducted with population sizes between ten
and eighty agents, the time to convergence is less than 6 ·n2 · ln(n), and the total number of
words invented by the population less than 6 ·n, where n is the population size. In fact, the
percentage of words adopted per agent of the set of all the words invented by the population
decreases as the population size of the experiment is increased. All this indicates that emer-
gence experiments based on the agent-based model proposed could scale for larger popula-
tions, given that neither the computational time nor the memory space requirements grow
too fast with the size of the population. Furthermore, the experiments studying language
transmission we have performed suggest that language transmission depends on the number
of games each agent can play during one turnover interval, which is equal to the length of
the turnover interval divided by the population size. In particular, the minimum number of
games per agent in one turnover interval required to guarantee language transmission can be
determined by: (1) the probability that a new agent will play a language game with another
agent that already knows the existing language (i.e. the population percentage that is not
replaced with new agents during one turnover interval); and (2) the intrinsic difficulty of the
language system the new agents must learn during the turnover interval.

In future work, we would like to study the emergence and evolution of language strate-
gies rather than language systems. The language strategy used in [41] differs from that used
in [42] and from the language strategy proposed in the present paper. However, given that all
of them represent different approaches to solve the problem of Boolean coordination, they
could be better compared to each other within a framework that considers the emergence and
evolution of different language strategies co-existing in a given population and competing
with each other. In particular, such a framework may enable direct experimental comparison
between the approach proposed in the present paper and those used in [41] and [42]. Com-
petition between such language strategies can be modeled using agent-based models, but it
can also be studied using ecosystem simulation and grammatical evolution techniques [3,4].

A second line of research is the study and development of new language strategies based
on the co-evolution of syntax and semantics, i.e. on the coordination of the conceptual and
linguistic systems built by the individual agents, and not only on the coordination of their
linguistic systems. This may include the emergence and evolution of language systems for
Boolean coordination, non-Boolean coordination, or other aspects of language such as case-
systems or phrase-structure.

Acknowledgements I should like to express my gratitude to Manuel Alfonseca for reading several versions
of this paper and providing valuable comments.



Emergence and Evolution of a Language System for Boolean Coordination 35

References

1. Baroncheli A., Felici M., Caglioti E., Loreto V., and Steels L. Sharp transition towards shared vocabu-
laries in multi-agent systems. Journal of Statistical Mechanics, P06014, 2006.

2. K. Ajdukiewicz. Die syntaktische konnexitat. Studia Philosophica, 1:1–27, 1935.
3. M. Alfonseca and F.J. Soler-Gil. Evolving an ecology of mathematical expressions with grammatical

evolution. Biosystems, 111(2):111–119, 2013.
4. M. Alfonseca and F.J. Soler-Gil. Evolving a predator-prey ecosystem of mathematical expressions with

grammatical evolution. Complexity, 20(3):66–83, 2015. Published online DOI 10.1002/cplx.21507.
5. J. Allen. Natural Language Understanding (second edition). The Benjamin/Cummings Publishing

Company, 1995.
6. Y. Bar-Hillel. On syntactical categories. Journal of Symbolic Logic, 15:1–16, 1950.
7. J. Batali. Computational simulations of the emergence of grammar. In Approaches to the Evolution of

Language: Social and Cognitive Bases, pages 405–426. Cambridge Univ Press, 1998.
8. K. Beuls and L. Steels. Agent-based models of strategies for the emergence and evolution of grammatical

agreement. PLoS ONE, 8(3):e58960, 2013.
9. T. Briscoe, editor. Linguistic Evolution through Language Acquisition: Formal and Computational Mod-

els. Cambridge University Press, Cambridge, 2002.
10. F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo, P. López-Garcı́a, and G. Puebla. The Ciao Prolog sys-

tem. reference manual. Technical Report CLIP3/97.1, School of Computer Science, Technical University
of Madrid (UPM), August 1997. Available from http://www.clip.dia.fi.upm.es/.

11. B. Carpenter. Type-Logical Semantics. MIT Press, 1997.
12. E.A. Cartmill, S. Roberts, H. Lyn, and H. Cornish, editors. Evolution of Language, Proceedings of the

Tenth International Conference EVOLANG. World Scientific, 2014.
13. A. Church. A formulation of a simple theory of types. Journal of Symbolic Logic, 5:56–68, 1940.
14. W.F. Clocksin and C.S. Mellish, editors. Programming in Prolog. Springer, fourth edition, 1996.
15. A. Colmerauer, H. Kanoui, R. Pasero, and P. Roussel. Un système de Communication Homme-

machine en Francais, Research Report. Technical report, Groupe Intelligence Artificielle, Université
Aix-Marseille II, France, 1973.

16. B. de Boer. The Origins of Vowels Systems. Oxford University Press, 2001.
17. B. de Vylder. The Evolution of Conventions in Multi-Agent Systems. PhD thesis, Artificial Intelligence

Lab, Free University of Brussels, 2008.
18. M. Di Sciullo and C. Boeckx, editors. The Biolinguistic Enterprise. New perspectives on the Evolution

and Nature of the Human Language Faculty. Oxford University Press, 2011.
19. E. Garcia-Casademont and L. Steels. Insight grammar learning. Journal of Cognitive Science, 17(1):27–

62, 2016.
20. G. Gazdar. A cross-categorial semantics for coordination. Linguistics and Philosophy, 3:407–410, 1980.
21. K. Gerasymova, M. Spranger, and K. Beuls. A language strategy for aspect: Encoding aktionsarten

through morphology. In Experiments in Cultural Language Evolution, pages 257–276. Springer, 2012.
22. B. Grosz, K. Jones, and B. Webber, editors. Readings in Natural Language Processing. Morgan Kauf-

mann, 1986.
23. J. Hurford, M. Studdert-Kennedy, and C. Kight, editors. Approaches to the Evolution of Language:

Social and Cognitive Bases. Edinburgh University Press, 1998.
24. M. Kay. The MIND system. In Natural Language Processing, pages 155–188. Algorithmics Press, 1973.
25. M. Kay. Algorithm schemata and data structures in syntactic processing. Technical Report CSL-80-12,

Xerox Corporation, 1980. Reprinted in [22].
26. E. L. Keenan and L. M. Faltz. Boolean Semantics for Natural Language. Synthese Language Library,

no. 23. Dordrecht: Reidel, 1985.
27. S. Kirby. Learning, bottlenecks and the evolution of recursive syntax. In Linguistic Evolution through

Language Acquisition: Formal and Computational Models, pages 96–109. Cambridge University Press,
2002.

28. Dall’Asta L., Baronchelli A., Barrat A., and Loreto V. Non-equilibrium dynamics of language games on
complex networks. Physical Review, 74(3):036105, 2006.

29. J. Lambek. The mathematics of sentence structure. American Mathematical Monthly, (65):154–169,
1958.

30. J. Lambek. On the calculus of syntactic types. In Structure of Language and its Mathematical Aspects:
Proceedings of Symposia in Applied Mathematics, pages 166–178. American Mathematical Society,
1961.

31. J. Lara and M. Alfonseca. Some strategies for the simulation of vocabulary agreement in
multi-agents communities. Journal of Artificial Societies and Social Simulation, 3(4), 2000.
http://jasss.soc.surrey.ac.uk/3/4/2.html.



36 Josefina Sierra-Santibáñez

32. J. Lara and M. Alfonseca. The role of oblivion, memory size and spatial separation in dy-
namic language games. Journal of Artificial Societies and Social Simulation, 5(2), 2002.
http://jasss.soc.surrey.ac.uk/5/2/1.html.

33. C. Lyon, C. Nehaniv, and A. Cangelosi, editors. Emergence of Language and Communication. Lecture
Notes in Computer Science. Springer-Verlag, Berlin, 2007.

34. J. McCarthy. Formalizing Common Sense. Papers by John McCarthy. Ablex. Edited by Vladimir Lifs-
chitz, 1990.

35. John McCarthy. Recursive functions of symbolic expressions and their computation by machine, part I.
Communications of the ACM, 3(4):184–195, 1960.

36. JW. Minett and WSY. Wang, editors. Language Acquisition, Change and Emergence: Essays in Evolu-
tionary Linguistics. City University of Hong Kong Press, 2005.

37. R. Montague. The proper treatment of quantification in ordinary English. In Approaches to Natural
Language: Proceedings of the 1970 Stanford Workshop on Grammar and Semantics. Dordrech: Reidel,
1973. Reprinted in R. Thomanson, editor, Formal Philosophy, 247–270. New Haven: Yale University
Press.

38. J. Piaget. The Equilibration of Cognitive Structures: the Central Problem of Intellectual Development.
University of Chicago Press, 1985.

39. J. Sierra-Santibáñez. Grounded models as a basis for intuitive reasoning. In Proceedings of the Seven-
teenth International Joint Conference on Artificial Intelligence, IJCAI-2001, pages 401–406, 2001.

40. J. Sierra-Santibáñez. Grounded models as a basis for intuitive and deductive reasoning: The acquisition
of logical categories. In Proceedings of the European Conference on Artificial Intelligence, ECAI-2002,
pages 93–97, 2002.

41. J. Sierra-Santibáñez. An agent-based model studying the acquisition of a language system of logical
constructions. In Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, AAAI-
2014, pages 350–357. AAAI Press, 2014.

42. J. Sierra-Santibáñez. An agent-based model of the emergence and transmission of a language system
for the expression of logical combinations. In Proceedings of the Twenty-Ninth AAAI Conference on
Artificial Intelligence, AAAI-2015, pages 492–499. AAAI Press, 2015.

43. M. Steedman. Dependency and coordination in the grammar of Dutch and English. Language, 61:523–
568, 1985.

44. L. Steels. A self-organizing spatial vocabulary. Artificial Life, 2(3):319–332, 1995.
45. L. Steels. The origins of ontologies and communication conventions in multi-agent systems. Autonomous

Agents and Multi-Agent Systems, 1(2):169–194, 1998.
46. L. Steels. The origins of syntax in visually grounded robotic agents. Artificial Intelligence, 103(1-

2):133–156, 1998.
47. L. Steels. Modeling the cultural evolution of language. Physics of Life Reviews, 8:339–356, 2011.
48. L. Steels, editor. Experiments in Cultural Language Evolution. John Benjamins, 2012.
49. L. Steels. The Talking Heads experiment: Origins of words and meanings (Computational Models of

Language Evolution) (Volume 1). Language Science Press, 2015.
50. L. Steels. Agent-based models for the emergence and evolution of grammar. Phil. Trans. R. Soc. B,

371:20150447:1–9, 2016.
51. L. Steels and T. Belpaeme. Coordinating perceptually grounded categories through language: a case

study for colour. Behavioral and Brain Sciences, 28:469–529, 2005.
52. L. Steels and E. Garcia-Casademont. How to play the syntax game. In Proceedings of the European

Conference on Artificial Life, pages 479–486. MIT Press, 2015.
53. L. Steels and P. Vogt. Grounding adaptive language games in robotic agents. In Proceedings of the

European Conference on Artificial Life. MIT Press, 1997.
54. M. Tomasello. Constructing a Language: a Usage-Based Theory of Language Acquisition. Harvard

Univ Press, 2003.
55. M. Tomasello. Acquiring linguistic constructions. In Handbook of child psychology. Wiley Online

Library, 2006.
56. P. Vogt. The emergence of compositional structures in perceptually grounded language games. Artificial

Intelligence, 167(1-2):206–242, 2005.
57. M.A. Williams, J. McCarthy, P. Gardenfors, C. Stanton, and A. Karol. A grouding framework. Au-

tonomous Agents and Multi-Agent Systems, 19:272–296, 2009.
58. L. Wittgenstein. Philosophical Investigations. Macmillan, New York, 1953.
59. W. Zuidema and B. de Boer. Multi-agent simulations of the evolution of combinatorial phonology.

Adaptive Behavior, 18(2):141–154, 2010.



Emergence and Evolution of a Language System for Boolean Coordination 37

Fig. 5 Experiment studying language transmission: 10 agents and turnover interval of 1500 games.

Fig. 6 Experiment studying language transmission: 10 agents and turnover interval of 1000 games.

Fig. 7 Experiment studying language transmission: 10 agents and turnover interval of 500 games.



38 Josefina Sierra-Santibáñez

Fig. 8 Experiment studying language transmission: 20 agents and turnover interval of 1500 games.

Fig. 9 Experiment studying language transmission: 20 agents and turnover interval of 1000 games.

Fig. 10 Experiment studying language transmission: 20 agents and turnover interval of 500 games.



Emergence and Evolution of a Language System for Boolean Coordination 39

Fig. 11 Experiment studying language transmission: 40 agents and turnover interval of 1500 games.

Fig. 12 Experiment studying language transmission: 40 agents and turnover interval of 1000 games.

Fig. 13 Experiment studying language transmission: 40 agents and turnover interval of 800 games.



40 Josefina Sierra-Santibáñez

Fig. 14 Experiment studying language transmission: 80 agents and turnover interval of 3000 games.

Fig. 15 Experiment studying language transmission: 80 agents and turnover interval of 2000 games.

Fig. 16 Experiment studying language transmission: 80 agents and turnover interval of 1500 games.




