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Summary 

 

In recent years, contactless energy transfer systems have been developed and 

investigated widely. As evident, the transfer energy is performed without physical 

connection. This technology is classified according to power level and place of use. 

However, the most commonly used one is inductive contactless energy transfer system 

due to its higher efficiency. The inductive contactless system is responsible to deliver the 

electrical energy to the loads by means of a long winding loop and sliding transformers. 

In this system, the output converter and load are directly connected to the secondary side 

of transformer. Moreover, the secondary side transformer has the capability to move 

along the primary winding loop. According to this capability, and also possibility to 

construct long contactless system, it can be used as an electrical energy delivery system 

for mobile receivers. Also, the ICET technologies improve the safety of the final user by 

means of the elimination of electrical shocks. It is resulted from using a high-frequency 

resonant transformer which provides electrical isolation. This feature is particularly 

important in wet environments such as in swimming pools, gardens and bathrooms.  

Therefore, it is a good alternative system for implementing in the residential area instead 

of conventional systems. 

 

Implementation of the inductive contactless system in residential area presents several 

challenges. In this dissertation, several solutions are presented and discussed. In the first 

chapter, the concept of the contactless energy transfer system is explained. Also, the 

chapter classifies the contactless system according to the technology and the output 

power. In chapter two, a new adaptive control algorithm for the fully-controlled 

contactless energy transfer system is presented. The new adaptive algorithm operates 

dynamically with the load changes, resulting in maximum efficiency in all the load 

conditions. Moreover, the mathematical framework of the contactless system with new 

adaptive algorithm is presented. In chapter three, a partially-controlled inductive 

contactless system as an alternative to the fully-controlled topology is introduced. The 

features of the new topology are analyzed by considering several modulation techniques, 

including frequency modulation, phase modulation and quantum modulation. The 
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performance of the new topology is evaluated and the best modulation technique is 

identified. The chapter is finished with the design of the new topology with the best 

modulation technique. In chapter four, the analysis, design and implementation of a 

simple and cost-effective technique to supply the residential contactless energy transfer 

system with multiple mobile loads is presents. The topology is based on the cascaded 

connection of a closed-loop buck converter and a high frequency resonant inverter 

operating in open loop which is loaded by several output passive rectifiers. The proposed 

system includes a sliding transformer to supply the mobile loads, leading to a safe and 

flexible location of loads. The theoretical analysis and design of the proposed system is 

based on a mathematical model derived using the first harmonic approximation. Selected 

experimental results are included to verify the system features. Finally, the dissertation 

concludes with remarks regarding the results.   
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This chapter introduces the concept of contactless energy transfer (CET) system. From a 

historical review to the description of the typical applications, the chapter classifies the CET 

systems according to the technology and the output power. Likewise, a problem formulation 

is presented in order to highlight the present unsolved problems for the inductive CET 

system. Moreover, the main objectives of this thesis also is presented. 
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1.1. HISTORICAL CONTEXT AND CURRENT STATE 

 In the last decades, the dream of transfer energy without using the cables it seemed out of 

reach. The people watched the science fiction movies and were being surprised about these 

phenomena. Nicola Tesla (1856-1943) introduced this technology in 1899-1900. He did 

several experiments on wireless reception and transmission through the air.  For example, 

he was remote supply of 200 light bulbs through the ground from a distance of about 40 km 

[1]. 

 

 After Nicola Tesla for a long time any person did not work on this technology. However, 

the first reported researches on the so-called energy transport by inductive coupling date 

from the 1960s [2]. Although this technology has been known for many years, but always 

remained immature. Nevertheless, the first commercial application as toothbrushes appeared 

in the 1990s. In the last decade, few companies were interested in constructing these kind of 

devices. The reasons were probably the doubts on user safety and the lack of standards and 

regulations. 

  

 The first general guidelines were published in 1998 by scientific committee [3]. The focus 

of these guidelines was avoiding any kind of health risks concerning the exposure of the 

population to electromagnetic fields. This recommendation makes the restriction for the 

immersed body proportion, public exposure as a function of the operating frequency and the 

size of the coils. However, they are not relevant according to [4]. Therein, due to these 

restrictions the size of the coils for common applications is about 40mm to 100mm which 

could transfer less than 30mW. 

 

 In 2008, the Wireless Power Consortium (WPC) created the protocols related to inductive 

CET systems. These protocols are created in order to unify the companies work related to 

the CET technology. Although at that time only eight companies were included in this 

consortium and were being active in this domain, thanks to its great success nowadays more 

than 100 companies are in this consortium. Basically the WPC aims to set the standard for 

interoperable wireless charging [5]. In July 2010, the new standards are prepared which 

called ‘Qi’. These new standards are designed for 5W.  
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1.2 .  CONTACTLESS ENERGY TRANSFER SYSTEM  

Despite the work of Tesla, nowadays the popular way to transfer the energy is conductive 

wires. Moreover, the reasons for the popularity of energy transfer by electrical conduction 

are:  

• Good efficiency due to small loss  

• Low cost for installation and copper guiding material 

• Easy to install and convenient to use  

• Good tracking of energy flow  

However, the cable networks distribute energy all the way from the power plants up to 

the homes, industrial areas and office buildings. Nevertheless, the energy transfer by 

electrical conduction has some disadvantages: 

• Electrical shocks due to the physical contacts (not safe). 

• Electrical wiring is a big problem for many plant engineers or production system 

designers. 

• Installing the wires to rewiring as production lines need to be changed to repair 

damaged cables and connections, electrical wiring represents an ongoing cost and risk 

for downtime in manufacturing plants. 

• Limits to use the wires in specific places (swimming pool, garden, etc.). 

• The miles of electrical wiring that snake around any manufacturing facility, hanging 

down from ceilings and extending across corridors between equipment, have been 

viewed as a necessary aspect of industrial automation. 

Therefore, in this decade the companies are so interested in replacing the conductive 

transfer energy by contactless system. In addition, it can be interesting to know about 

somewhere contactless energy transfer is an ideal application [6]: 

• The mobile equipment has to cover long distances  

• A variable, extendable track layout is required  
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Fig.1.1. Classification of CET systems 

 

• High speeds have to be achieved  

• The energy transfer has to be maintenance free  

• Additional environmental contaminants are not permitted in sensitive areas  

• The operation takes place in wet and humid areas  

 

The CET systems are becoming increasingly feasible as flexible and relatively safe 

suppliers of energy. This technology can be generally divided into four groups based on the 

medium used: acoustic, light (optical), capacitive and the largest group of inductive coupled 

CET systems (see in Fig.1.1). In addition, the CET systems are used in power range from 

µW (sensors, actuators, biomedicine, etc.) till several hundred kW (cranes, electrical 

vehicles, fast battery charging, etc.) [8]–[40]. 

 

1.2.1. ACOUSTIC CET SYSTEMS 

Fig.1.2 shows the basic principle of operation of the acoustic CET system [8]. The power 

electronic circuits convert the electrical energy into a pressure wave by a transmitting 

transducer. The produced wave is transferred through a medium (air, living tissue, etc.). 

After that, it is received by the receiving transducer which is positioned along the path of the 

sound wave. Finally, the inverse process converts the sound wave into electrical energy. In 

the final stage, a rectifier with capacitive filter supplies a load.  In this technology normally 

piezoelectric materials are used for transmitting and receiving transducers. 
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Fig.1.2. Basic principles of an acoustic CET system. The transmitting transducer (T) and the receiver (R). 

 

Typically, the efficiency of the acoustic CET is low in comparison to the other CET 

systems. However, the efficiency can be notable when the distance between the receiver and 

transmitter is short [8]-[13]. Some applications such as biomedical (power range up to 100 

mW, efficiency up to about 40%) or through-wall application (for example, sensors in 

nuclear systems) are using this technology [14]-[15]. 

 

1.2.2.  LIGHT CET SYSTEM 

Fig.1.3 shows the operation of light or optical CET system. In light CET system, the 

laser diodes are responsible to generate the optical power beam. This energy is transferred 

through the medium. Then, the photovoltaic diodes (PV) converts power beam into the 

electrical energy. Although the optical system is able to transfer massive amounts of energy, 

the actual application is limited. The main reason is that the efficiency is low in long 

distances due to its dispersion losses. The power level of this technology is in the range 

below 1W up to dozens W. Also, the efficiency for optical-electrical conversion is around 

 

 
 

Fig.1.3. Basic principles of a light CET system. The transmitting transducer (T) and the receiver (R). 
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20% - 50% [10], [16]-[17]. Normally, this technology is employed in spacecraft platforms 

and terrestrial technologies [16]-[17]. 

 

1.2.3. CAPACITIVE CET SYSTEM 

Fig.1.4 illustrates the operation principle of capacitive CET system. It consists of a high 

frequency primary resonant converter, two primary and secondary plats, output converter 

and capacitive filter. When secondary side plates are placed additionally to the primary side 

ones, the alternating electrical field is produced. Therefore, the current is flowing through 

them and the energy is transferred to the load without any direct electrical connection. As a 

consequence of this principle of operation, freedom of movement for secondary side plates 

is obtained. Also, an inductor (not shown in the figure) is normally connected in series with 

the secondary coupling plates. This inductor increases the output power and regulates the 

equivalent coupling capacitor. Finally, a full bridge rectifier with capacitive filter is 

implemented to supply the load. Generally, to provide electrical isolation and increasing the 

coupling capacitance, the surface of the coupling metal plates is coated with dielectric 

materials [18]-[20]. 

 

As a consequence of employment an electrical field in this technology, surroundings 

becomes less of an issue.  Moreover, the electromagnetic interference (EMI) is reduced 

thanks to the constrained nature of the electric field between the plates. In this system, the  

 

 

 

Fig.1.4. Basic principle of the capacitive CET system. 

 



Chapter one 

 

8 

 

 

 

Fig.1.5. Basic principle of the inductive CET system. 

 

power level and efficiency is in the range of 5-50 W and 50%, respectively [11]-[13]. The 

applications are mainly in soccer playing robots, mobile phones, sensors for respiratory 

devices, bio potential measurement system, etc. [19]-[20]. 

 

1.2.4. INDUCTIVE CET SYSTEM 

The basic principle of the inductive contactless energy system (ICET) is shown in 

Fig.1.5. The resonant converter in the primary side is responsible to convert the DC voltage 

into a high frequency AC voltage. Then, the high frequency AC energy is transferred via 

high frequency transformer to the secondary side receiver. Note that the direct electrical 

connection between the primary and secondary side does not exist. Therefore, the load can 

be a movable (linearly or/and rotating). Also, as a consequence of this property electrical 

shock can be eliminated. Normally, a diode rectifier with capacitive filter is implemented as 

a secondary side converter. Nevertheless, an active rectifier is used in some applications for 

stabilizing DC or AC loads [22]-[33]. 

 

The ICET system can be implemented by different transformer cores. These transformers 

are chosen according to the power range and air gap length. Therefore, several ICET systems 

such as cascaded transformers, multiple secondary side winding and sliding transformer with 

long primary winding can be formed. 
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Fig.1.6. Basic principle of the inductive ICET with cascaded transformers. 

 

1.2.4.1. ICET WITH CASCADED TRANSFORMERS 

Fig.1.6 illustrates the basic principle of ICET with cascaded transformer. The DC/AC 

power converter in collaboration with resonant elements generates the square voltage 

waveform. The range of this square voltage is about 200-600 V and 20-60 kHz. The 

produced voltage is used to supply the primary winding of rotatable transformer located on 

the first axis of the robot. Then, voltage is converted by secondary AC/DC/AC power 

converters. The secondary side converters are using PWM technique to generate variable 

frequency AC voltage for supply three-phase motors. As evident from the figure, the 

secondary side of each transformer is connected to the primary side of the second rotatable 

transformer located on the second joint of the robot. In this system, several transformers can 

be added to create the arrangement of an AC bus throughout the robot. Usually, this topology 

applies to robots [21]-[25] and multilayer optical disc [26] where the output power rang for 

these devices are 10-20 kW [21]. 

 

1.2.4.2. ICET WITH MULTIPLE SECONDARY WINDING 

In Fig.1.7 the ICET with multiple secondary winding is illustrated. The secondary side of 

the primary transformer is equipped with multiple winding. From the figure, this topology 

gives the possibility to supply several isolated loads [27]-[28]. Moreover, the secondary side 

of this system is implemented by AC/DC/AC or AC/AC active converters to meet the 

required energy. 
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Fig.1.7. Basic principle of the inductive ICET with multiple secondary winding. 

 

Nowadays, several companies have been working on this technology. For example, 

‘ABB’ has developed WISA factory to communication and wireless power supply system 

for sensors and actuators [29]-[31]. In this factory, a coreless single winding which 

constructed as a frame is implemented in the primary side. This primary winding is coupled 

with multiple secondary windings to feed sensors and actuators. The application is mainly 

airborne radar systems which uses a rotating transformer with double parallel connected 

secondary windings for power supply [32]. 

 

1.2.4.3. ICET WITH SLIDING TRANSFORMER 

Fig.1.8 shows ICET system with a long primary winding loop and sliding transformer.  

Normally, the ICET system with sliding transformers are used in some application in which 

long distance is required [34]-[35]. Generally, two types of geometry are used in this 

technology for the primary winding loop including long linear and circular. In this system, 

the output converter and load are directly connected to the secondary side of transformer. 

Moreover, the secondary side transformer has the capability to move along the primary 

winding loop. According to this capability, and also the possibility to construct long 

contactless, it can be used as an electrical energy delivery system for mobile receivers [35]. 

The core materials are chosen depending on the application. Usually, the amorphous or nano 

crystalline magnetic materials are preferable.  
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Fig.1.8. Basic principle of the inductive ICET with sliding transformers. 

 

The length of primary winding loop in this system is in the range of 1-70 m and the power 

range is about 1-200kW [36]-[37]. 

 

1.3. LOW POWER ICET SYSTEM 

According to a large number of ICET applications, it can be classified into low and high 

power ICET system. The low power ICET applications are the widespread group of 

applications which works with low power energy. Furthermore, the ranges of power transfer 

in these applications are between 1W to 20W. Nowadays, there are many companies that 

have come up with innovative solutions of powering or charging consumer electronic 

devices using ICET. A few of these companies are Witricity, Powermat Fujitsu etc. 

Moreover, this technology can be used in different devices as tooth brush, inductive cooker, 

bio-medical application, desktop peripherals and mobile phones, etc. Below some of these 

applications are be explained in detail.  

 

1.3.1. INDUCTION COOKERS 

Although it seems that induction cookers are a new application, the initial researches and 

patents date from the early 1900s. Moreover, first induction cookers were implemented in 

the 1970s by the Westinghouse Electric Corporation [42]. Nowadays, several companies are 

working on this application, such as Bosch, Miele, Siemens, Electrolux, etc. In this 

application, the primary coil produces the magnetic field. This magnetic field creates Eddy 
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current in the secondary side, resulting the heating Joule effect.  The output power of this 

application is in the range of 1 to 2 kW and the operating frequency is about 20 kHz to 50 

kHz. 

 

1.3.2. ELECTRIC TOOTHBRUSHES 

Shock proof devices are the most popular applications of ICET. This feature can be 

implemented in some devices which are used in a wet environment or even immersed in 

water. The first rechargeable toothbrushes were made in 1990s. In this application the 

primary and secondary side are fully isolated therefore can protect users from electrical 

shocks (for example Sonicare electrical toothbrushes by Philips [43]). Generally, the 

ferromagnetic core is used in this system, resulting in high coupling between the coils. The 

range of operation frequency is around 10 kHz and the transferred power energy is between 

10 to 15W.  

 

1.3.3. TRANSCUTANEOUS ENERGY TRANSFER  

The medical domain is one of the best research areas of ICET systems. Thanks to the 

diversity and the advantages of this technology, it can be used to supply surgically 

implemented devices. In the medical domain, this technology is specifically called 

transcutaneous energy transfer (TET) systems. For example, TET systems can be used in 

heart assist devices to circumvent left ventricular dysfunctions [44]. Normally, standard way 

to supply heart assist devices has been wire which passed through the skin. However, this 

way develops additional risks associated to the apparition of infections. To solve this 

problem, a resonant converter with special transformer has been designed in [45]. The power 

range in this application is 10W and the operating frequency is 205.1 kHz. In addition, 

another TET system which was designed for implementable artificial heart is in [46]-[47]. 

In this application the power transfer is 20W and frequency is 50 kHz. 
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1.3.4. DESKTOP PERIPHERALS AND MOBILE PHONES 

The ICET technology is so popular in the mobile phones domain. The first ICET 

prototype for recharge a mobile phone was proposed in [49]-[50] early 2000s. There are 

many manufactures which are interested in this domain. For example, A4 Tech produces an 

application called battery-free optical mouse which is the present desktop application [51]. 

This application is supplied by ICET system and is working in the range of 1W.  Also, the 

HP Touchstone is used to recharge the phone and the Palm device [52]. The range of transfer 

power is 5W and the connection to the computer is via the USB.  On the other hand, the first 

CET table was proposed by Fulton Innovation for supplying multiple fixed devices [53]. 

There are several products in this market, which are operating similarly. For example, eZone 

charger [54], MojoPad [55], Powermat product line [56]. The power transfer in these 

applications are less than 5W and only can supply low power devices. 

 

1.4.  HIGH POWER ICET SYSTEM 

High power CET systems have also a large number of applications. Moreover, better 

efficiency (in high power) and safety are two clear reasons for the popularity of this 

technology. The range of power transfer in this system is between some kilowatts to 

hundreds of kilowatts. The high power contactless power transfer has found applications in 

people movers, industrial transport and automation, mining, military and aviation, electric 

vehicles, etc. Below some of these applications will be introduced.  

 

1.4.1. ELECTRICAL VEHICLES AND ICET CHARGING 

The idea of electrical vehicles (EV) is an old idea. In the 1900s with the beginning of 

automotive era this idea arose [57]. However, with the advent combustion engine in the early 

20th century, the EVs went out of the market. Nowadays, due to global warming and the idea 

of environmentally friendly, this application came back to the markets. Although this 

technology initially had a lot of technical problems, with the development of cost-effective 

and fast charging battery it can be an alternative for the conventional vehicles.    
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Fig.1.9.  Electrical vehicles and ICET charging system. 

 

The standard way for charge replenishment of EVs has been via conductive wires between 

the charging station and vehicle. However, this common way has some disadvantages such 

as inconvenience source, electrical shocks in wet and damp conditions and no easy 

automation. According to the mentioned problems, the ICET system can be used as an 

alternative system for the battery charging. 

 

Fig.1.9 shows the ICET technology for charge replenishment of the vehicle. In primary 

side the power converter in collaboration with primary compensation is responsible to supply 

the primary track. In the secondary side the transformer is directly connected to the 

secondary compensation, power converter and battery. The charging process is started when 

the vehicle is placed on the primary winding. The energy is transferred towards the 

secondary winding and then it makes charging replenishment of EVs. 

 

Fig.1.10 illustrates the principle of operation of the electrical train with ICET technology 

for charge replenishment. The charging process is similar to the electrical vehicles. The 

primary windings are located in the railway and secondary winding is located in the cabins. 

By implement this technology, the train can be recharged statically or dynamically. 

 

1.4.2. INDUSTRIAL TRANSPORT AND AUTOMATION 

ICET system can be used in industrial environment as a transporter or platform system 

[59]. This application can be installed as overhead or floor. The principle of operation of this 
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Fig.1.10. Electrical train with ICET rechargeable technology. 

 

system is so similar to ICET with sliding transformers. In other words, the long primary 

winding loop is implemented as a primary side and the secondary side is a sliding 

transformer. Furthermore, the contactless system is a good alternative in undergrounds with 

high risk of explosion [60]. 

 

1.4.3. MILITARY AND SPACE SYSTEMS. 

Several applications of ICET systems have been presented for military and space system 

area. In a military application where the sealing of compartments is vital, the contactless 

energy transfer can be used as an alternative supply system. Also, a satellite rotary 

connection has been proposed [61] for space application. 

 

1.5.  ICET SYSTEMS FOR RESIDENTIAL AREA 

Nowadays, with the advancement of technology and entry the technology into the 

residential area, the development and investigation on this issue seems essential. In the 

previous section, several ICET applications have been explained which are possible to use 

in residential areas, for example, electrical toothbrush, induction cooker, ICET charging, etc. 

Generally, according to the place of use of the residential ICET applications, it is possible to  
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Fig.1.11. Indoor ICET distribution energy. 

 

classify these applications in two groups. The first group is indoor ICET applications and 

the second one is outdoor ICET applications. Below these applications are explained. 

 

1.5.1. INDOOR ICET APPLICATIONS 

This section introduces some ICET applications which can be used in the interior parts 

of the building. In this case, many low power ICET products can be mentioned. For example, 

a toothbrush in the toilet or ICET charging in privet room and etc. The number of these 

applications are so high, but it is interesting to note that the companies have paid a little 

attention to the distribution of energy by the ICET system in residential areas. Hence, the 

focus of this thesis is related to this issue. 

 

Fig.1.11 shows the distribution of energy in the residential area with ICET system. From 

the figure, the primary winding in collaboration with sliding transformer is responsible to 

transfer the energy from the source to the loads. The primary winding is located around the 

flat and give the possibility of movement to the sliding transformers along the primary 

winding. The new distribution system is a good alternative for conventional one, due to its  
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Fig.1.12. Diagram of the ICET system with various mobile clamps 

 

benefits such as movable plugs and elimination of electrical shocks. These features are 

significant in humid environments such as indoor swimming pool and bathroom. 

 

A diagram of the reference topology to supply residential loads is shown in Fig.1.12. This 

system consists of a resonant converter (RC), a primary winding loop, secondary side 

transformer frequency and various mobile clamps. The RC is responsible to generate a high-

frequency AC voltage to supply the mobile loads through the long primary winding loop of 

the sliding transformer. This feature offers the possibility to construct long ICET systems 

for mobile clamps. 

 
 

Fig.1.13 illustrates the electrical representation of the conventional topology to supply 

the residential loads. It consists of a series resonant network connected in series with the 

primary side of n sliding transformers excited by the full-bridge resonant inverter. The 

secondary side of each clamp is formed by an active full-bridge rectifier and a capacitive 

filter. The magnetizing inductances of the high frequency transformers are modelled by 

parallel equivalent inductors (Lm1,…, Lmn). Note that in the primary side, the (small) leakage 

inductance of the transformer is absorbed by the large discrete inductance (Lr). The 

secondary side leakage inductance (Ls1) is included in the schematic.  
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Fig.1.13. Schematic of the conventional ICET with multiple mobile clamps. 

 

Fig1.14. shows the control diagram of the conventional approach to supply multiple 

mobile loads. From the figure, there are a primary side control and several secondary side 

controls (depending on the number of loads). Several control approaches could be applied 

to the primary side resonant inverter to regulate the resonant current. However, several 

challenges are introduced as a consequence of using a long primary winding loop, which is 

explained in section 1.6. Moreover, the secondary side controllers are used to regulate the 

output voltages against changes in the input and output powers. More details on these 

controllers can be found in [80], [81]. 

 

1.5.2.  OUTDOOR ICET APPLICATIONS 

In general, outdoor applications include all type of ICET systems which are used in 

exterior parts (parking and garden) of residential area. Usually, these areas are exposed to 

the rain and humidity. Hence, this area needs a safe electrical system against the electrical 

accidents. The ICET system is a good choice thanks to the electrical shock proof.  

 
                                                                   (a)                                                              (b) 

 

Fig. 1.14. Control diagram of the conventional topology: (a) resonant inverter control and (b) clamps control 
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Fig.1.15. Outdoor ICET distribution energy. 

 

Fig. 1.15 shows the outdoor ICET energy distribution system in garden application. 

According to the figure, several movable loads can be supplied with this system. Therefore, 

some loads such as a grass cutter has more possibility for movement. Also, the position of 

the lampposts in the garden could be changed as desired place. 

 

1.6. PROBLEM FORMULATION  

The performance of ICET systems has been extensively studied from different 

perspectives such as high efficiency DC/DC converter [62]-[63], magnetic shield [64], 

analyzing and modeling of coupling system [65]-[69], control method and proper system 

design [70]-[72], and high efficiency coupling [73]. It should be mentioned that these 

achievements are applicable only to the single clamp system. In fact, there are many 

unsolved problems to apply these methods to a multiple clamp system.  

 

Feeding multiple loads is one of the interesting advantages besides eliminating the last 

wire. The practical application scenario here is a long winding loop with sliding transformers 

supplying power for various electronic devices such as wearable devices, mobile phones, 

and laptops. The characteristics of these devices are normally different in size, power 

requirement and charging conditions. Therefore, to supply the aforementioned devices, 

several challengeable problems should be solved. Over the past few years, several research 

Resonant converter

Primary winding

Sliding transformer
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studies have done to address such a multiple clamp system from different perspectives [74]- 

[82]. In [74] the coupled mode theory has been used to explore the effect of multiple loads 

on power transfer efficiency. A new circuit model for an ICET system with multiple load 

has been presented in [75]. Moreover, [76] presented a new method to design the circuit 

parameters with several clamps. [77] discussed the power distribution for a system with two 

mobile clamps. Reference [78] and [79] discussed the optimal load analysis and effect of 

coupling between multiple clamps, respectively.  

 

Despite of numerous publications in the field of ICET systems with multiple clamps, few 

attempts have been made to bring this technology into the residential area where the 

distribution system is traditionally based on copper cables and fixed point sockets [80]-[82]. 

In fact, this distribution system is a very good technical solution to the supply of fixed and 

heavy loads such as refrigerators, washing machines, air conditioning, etc. However, for 

residential mobile loads such as laptops and mobile phones, ICET technology will drastically 

improve flexibility. Note that this kind of loads includes internal post-regulators (they are 

active loads), so that excellent output voltage regulation is not strictly required for ICET 

systems in this particular case.  

 

In this application as a consequence of the long primary winding loop and the mobile load 

flexibility, the information about the load consumption is not available in the primary side 

of the full bridge inverter. This problem can be solved by using a wireless communication 

system. However, this design decision will drastically increase both the system cost and the 

bandwidth communication required to send output side data to the primary side control. 

Therefore, the design and implementation of the control system that provides a high 

efficiency without communication system can be considered as a complex trend.  

 

Several approaches can be adopted to regulate the inverter current including constant and 

variable input reference current(iref) [80]- [81]. By using constant iref, high efficiency can be 

only reached at full load conditions [80]. With variable iref, the efficiency is improved for 

low load conditions, but at the expense of increasing the complexity of the current control 

loop. In [81], the current reference is online updated by estimating the load consumption 

through indirect measures. On the other hand, the output voltages in the conventional 
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topology depend on the load conditions, so that a separated control system is required for 

each clamp. Although, the output voltage can be correctly regulated, the cost of the system 

is drastically increased in the case of high number of clamps (because of the sensing circuit, 

control system and driver needed by each active full-bridge rectifier). To sum-up, the 

conventional topology to supply multiple loads is complex and expensive.  

 

1.7. RESEARCH OBJECTIVES AND THESIS ORGANIZATION 

In this section the main objectives of this thesis are introduced. The main focus of this 

thesis is the application of the ICET system with multiple clamps in residential area. 

According to the mentioned problems, several challenges are identified which will be 

address in this thesis.  The main objectives are listed below: 

 

 Adaptive control algorithm for the fully-controlled ICET topology with multiple 

clamps: As mentioned before, the ICET system with long primary loop has an 

efficiency problem (especially in low load condition) as a consequence of lack of 

communication channel to inform the resonant converter about the load consumption. 

Therefore, the adaptive control algorithm is essential to update the reference input 

current without communication line. Few studies have been done to address this 

problem, while this problem should be considered as an important issue in residential 

applications. A new adaptive control algorithm to improve the efficiency problem will 

be presented in chapter 2. This control algorithm is based on the characteristics of the 

input control signal it estimates the load consumption without using a communication 

channel.  

  

 Analysis and design of a partially-controlled ICET system with multiple clamps: In 

this application, several control approaches can be implemented to control the primary 

resonant converter. The main control techniques include frequency, phase and 

quantum modulation. These control techniques, have benefits and drawbacks which 

should be considered in the implementation of this application. In chapter 3, these 

control approaches will be analyzed and compared. Moreover, the design of the 

resonant elements and the high frequency transformer will be presented. 
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 Simple and cost-effective design for partially controlled ICET system: The 

conventional topology is a complex system due to the need for an especial control 

algorithm. This complexity raises by increasing the number of clamps. On the other 

hand, the conventional topology is an expensive system as a consequence of the high 

number of required control systems. In this case, for input side and each clamp the 

separated control system is necessary. Thus, the design of a simple and cost-effective 

system to supply the multiple loads could be an interesting issue. In chapter4, a new 

simple and cost-effective topology of a partially controlled ICET system will be 

presented.  

 

 

 Build a prototype to validate the theoretical analysis: To validate the theoretical 

results, a high frequency DC/DC resonant converter prototype with two clamps has 

been built and tested. The maximum power and efficiency of the prototype is around 

10W and 80%, respectively. The experimental results will be presented in chapter 4. 

 

1.8. CONCLUSION 

The current application of CET systems and also several classifications of the ICET 

systems have been introduced in this chapter. Moreover, the state-of-the-art relevant to an 

ICET system with multiple clamp has been presented. According to these studies, several 

unsolved problems can be mentioned. In fact, the main focus of this thesis is to find the best 

solutions for these problems. These solutions will be presented in detail in the next chapters.  
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The conventional ICET system without a communication line only has a good efficiency 

at full load condition. In this system, the resonant converter cannot be informed about the 

load consumption. Therefore, at low load conditions, the value of input reference current 

cannot be updated. This chapter presents a new adaptive control algorithm for fully-

controlled ICET system with multiple clamps. The new adaptive algorithm operates 

dynamically with the load changes, resulting in maximum efficiency in all the load 

conditions. In addition, a mathematical framework of the contactless system with new 

adaptive algorithm is presented. Moreover, the operation of the new control system with load 

step changes is analyzed and tested.   
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2.1. INTRODUCTION 

  As mentioned above, in residential area, the implementation of the ICET system with 

long primary winding loop and sliding transformer introduces several challenges. The most 

challenging aspect is the lack of communication line to inform the resonant converter about 

the load consumption. This problem could be solved by using a wireless communication 

system. However, this design drastically increases the system cost due to the high bandwidth 

communication required to send output side data to the primary side controller. Therefore, 

the system without communication is preferable. 

 

In the system without communication, the control scheme is based on estimating the load 

consumption. In [80], the estimation of the load consumption is based on the nominal 

component values. This method is not accurate due to the tolerance of the components and 

the temperature effect during operation. Moreover, the complex control method should be 

applied to the primary side inverter to obtain the maximum efficiency. In [81] the estimation 

is based on the power matching in the resonant tank. This method is so complex and the 

estimation is almost wrong due to the lack of precise measurement of the real power. Also, 

the presented algorithm is only applicable for one clamp situation. By adding more number 

of clamps, the estimation gets wrong. The last negative point is that the impact of load step 

changes is not evaluated. 

 

This chapter presents a new adaptive algorithm for supply multiple clamps. The 

presented algorithm is based on the estimation of the load consumption by using an indirect 

information from the primary control signal. The proposed algorithm is applicable to the 

multiple mobile clamp and it deals with the load step changes. The mathematical foundation 

and simulation results of the proposed control will be presented in the following sections.  

 

The main contributions of this chapter are: 1) the large-signal averaged model, which is 

very useful to devise the control scheme for ICET system with multiple clamps and 2) an 

adaptive control algorithm which provides excellent properties such as fast transient 

response and high efficiency in all the load conditions 
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2.2. MATHEMATICAL MODELING 

  The purpose of this section is to present the mathematical framework of the contactless 

system with the new adaptive algorithm. In this release, the averaged model of the system is 

presented. Also, some explanation about up maximum is presented. Note that in this study 

the effect of the magnetizing and leakage inductances are neglected. With this 

approximation, the mathematical modeling is strongly simplified. Its impact will be 

examined in the discussion of the simulation results. 

 

2.2.1. STATE-SPACE MODEL  

 The topology of the conventional ICET system was shown in Fig 1.13. The topology 

consists of a series resonant tank (neglecting the parasitic inductances) with multiple active 

output rectifiers and output filters. This topology is controlled using quantum modulation; 

see [81] for more details. Using this modulation technique, the state-space model of the 

conventional topology can be presented as follows: 

 

𝑑𝑖𝑟

𝑑𝑡
=

1

𝐿𝑟
[𝑉𝑖𝑢𝑝𝑠𝑔𝑛(𝑖𝑟) − 𝑟𝑟𝑖𝑟 − 𝑣𝑐𝑟 − ∑

𝑣𝑜𝑗

𝑛𝑗

𝑛𝑐𝑙

𝑗=1

𝑢𝑠𝑗𝑠𝑔𝑛(𝑖𝑜𝑗)] , 𝑗 = 1, 2, … , 𝑛 (2-1) 

 

𝑑𝑣𝑐𝑟

𝑑𝑡
=

1

𝐶𝑟
∙ 𝑖𝑟 (2-2) 

 

𝑑𝑣𝑜𝑗

𝑑𝑡
=

1

𝐶𝑜𝑗
[
𝑖𝑟𝑢𝑠𝑗

𝑛𝑗
−

𝑣𝑜𝑗

𝑅𝑜𝑗
] (2-3) 

 

where Vi, ir and vcr are the input voltage, resonant inductor current and resonant capacitor 

voltage, respectively. vo is the output voltage and Cr and Lr are resonant elements. The 

primary and secondary control signals (up, us) are discrete-time variables which show the 

selected mode of operation: u=1 corresponding to energizing mode and u=0 to de-energizing 

mode. 
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The state-space model equations are discontinuous and then not directly applicable to the 

control design. Therefore, below some assumptions are considered to derive a control 

dynamic model. 

 

2.2.2. NOMINAL SOLUTION 

  According to the standard design, the resonant variables are nearly pure sinusoidal 

signals. In addition, slow variations are expected in the amplitude and phase of these signals 

in comparison with the switching period [83]. In steady state, the resonant inductor current 

and capacitor voltage can be expressed as 

 

𝑖𝑟 = 𝐼𝑟 sin 𝜔0 𝑡 (2-4) 

 

𝑣𝑐𝑟 = 𝑉𝑐𝑟 sin(𝜔𝑜𝑡 − 𝜑) (2-5) 

 

where ir and vcr are fast variables and Ir and Vcr are slow variables. It should be noticed that 

the state variables using quantum modulation operate exactly at resonant frequency (i.e., 

𝜔 = 𝜔0). Therefore, the phase angle of the resonant current is forced to be always zero. 

 

2.2.3. AVERAGED LARGE-SIGNAL MODEL 

Note that as a consequence of longer time scale of output filter in comparison with the 

resonant tank the ripple associated with output filter variables can be neglected. Therefore, 

the output voltage vo is approximated by means of its time-varying averaged value. Then by 

averaging (2-1), (2-2) and (2-3) over a half switching period the resulting averaged model 

is: 

𝑑𝑖𝑟

𝑑𝑡
=

4

𝜋2𝐿𝑟
(𝑢𝑝𝑉𝑖 − 𝑟𝑟𝑖𝑟 − ∑

�̅�𝑜𝑗

𝑛𝑗

𝑛𝑐𝑙

𝑗=1

𝑢𝑠𝑗) (2-6) 

 

�̅�𝑐𝑟 =
𝜔𝑜𝐿𝑟

cos 𝜑
𝑖𝑟 (2-7) 
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𝑑�̅�𝑜𝑗

𝑑𝑡
=

1

𝐶𝑜𝑗
[
𝑖𝑟𝑢𝑠𝑗

𝑛𝑗
−

�̅�𝑜𝑗

𝑅𝑜𝑗
]              (2-8) 

 

where 𝑖𝑟 and �̅�𝑐𝑟  are defined as: 

 

𝑖𝑟 =
2

𝜋
𝐼𝑟 (2-9) 

 

    

𝑣𝑐𝑟 =
2

𝜋
𝑉𝑐𝑟 

(2-10) 

 

2.2.4. SLIDING MODE CONTROLLER 

Sliding mode control is an elegant non-linear method to control a chosen error-defined 

function (and its weighted derivatives) to zero. The elegance is hidden in the fact that actually 

the main objective of sliding mode control is to be sure that from any system state the next 

time step brings the state closer to the required state. The error convergence to zero is only 

a direct consequence of the last objective. 

 

Essentially, the sliding mode control defines a switching surface that divides the state-

space into two subspaces with different dynamic behavior. A proper control law causes the 

dynamics of the converter in both subspaces to drive in the direction of the switching surface 

and to remain on the surface, once the system state reaches the surface, for all subsequent 

time. 

 

The main requirement in the design is that the control should satisfy the reaching 

condition, which, besides, guarantees the existence of a sliding regime in the switching 

surface S. The often used reaching condition is given by: 

𝑆 ∙
𝑑𝑆

𝑑𝑡
< 0 

(2-11) 
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which allows for the determination of the control strategy: 

 

𝑢 = {
𝑢+, 𝑓𝑜𝑟 𝑆 > 0

 
𝑢−, 𝑓𝑜𝑟 𝑆 < 0

 

(2-12) 

For the construction of a sliding mode controller, it is necessary to formulate a candidate 

sliding surface. In our case the candidate sliding surface for input side is defined as (see 

Fig.2.1): 

 

 𝑆𝑝 = [𝐼𝑟𝑒𝑓 + 𝛼
𝜔𝑐

𝑆+𝜔𝑐
(𝑢𝑝)] − 𝑖𝑟 (2-13) 

where 𝛼 is a control gain and up is the primary control signal. Moreover, for the output-side 

sliding surface can be expressed as: 

 

𝑆𝑠𝑗 = 𝑣𝑜𝑗𝑟𝑒𝑓 − �̅�𝑜𝑗 (2-14) 

By inserting (2-13) and (2-14) in (2-6) and (2-8), it is possible to derive the expressions for 

the control signals as follows: 

𝑢𝑝 ≈ √
1

𝛼𝑉𝑖
∑

𝑣𝑜𝑗
2

𝑅𝑜𝑗

𝑗

1

 (2-15) 

 

𝑢𝑠𝑗 ≈
1

𝛼𝑢𝑝
∙

𝑣𝑜𝑗𝑟𝑒𝑓

𝑅𝑜𝑗
   (2-16) 

 

Equations (2-15) and (2-16) are fundamental to understand how the system works as they 

show clearly the operation of the variable α algorithm. According to these equations, we can 

mention that:  

 The value of up and usj increases by reducing the α value. 

 

 It is interesting to see that the value of up has a maximum value. This phenomenon 

happens when usj arrives to 1, the secondary control saturates (the corresponding  
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Fig.2.1. Proposed input sliding mode control scheme. 

 

output voltage is distorted) and the output power reduces. Therefore, due to the 

equation (2-15), up is reduced. 

 

 According to the equations, it is possible to identify three regions for α algorithm: 

 

 When usj are in the not saturated region, the output power is constant. By reducing α, 

up, usj increases.  

 

 When us1 is saturated and us2 is in the linear region (or vice versa, it does not matter 

which is saturated but one of the secondary controls is saturated). In this region, the 

reduction of α has two opposite effects: up tries to increase as shown in (2-15), but also 

the reduction of α produces more saturation in us1 and thus a reduction in output power 

(Po1) which tries to reduce up. The result is not easy to predict (increase or decrease in 

up). 

 

 When both us1 and us2 are saturated. By reducing α, the total output power decreases 

significantly and thus up decreases. Both output voltages are saturated. 
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Table.2.1. Optimal alpha values for several load conditions. 

 

2.3. STATIC 𝜶 ALGORITHM 

In this section the principle of operation of the static α algorithm in different load 

conditions is evaluated. The main purpose of this section is to show the operation and 

limitations of static α algorithm and find the optimum value for α in different load conditions. 

Note that in this section the value of α is chosen in open loop (α is not used and the value of 

α is fixed manually). It should be also mentioned that a converter with two clamps is 

considered for all the simulation results. 

 

Fig.2.1. shows the schematic of the proposed input sliding mode control system based 

on (2-13). According to the figure, up is filtered to eliminate the ripple and noise. Then, the 

filtered signal goes into α generator block in order to produce the optimal α. Finally, the 

optimal α is multiplied by �̅�𝑝 and produces the reference current iref. 

 

Table.2.1 shows the information about the correct operation (without output voltage 

distortion and optimum α) of the system in several load conditions. As it can be seen, the 

results are achieved in open loop and the optimum α for several load conditions is different. 

According to Table.2.2, the maximum necessary α in which the system could operate 

correctly (no optimum) for all the load conditions is 23. The �̅�𝑝 is changing  as a function of 

the load condition  and it seems that it is the key factor to predict the load consumption. 

 

According to Table.2.2, the maximum �̅�𝑝  is achieved with optimum value of primary 

side current (𝑖�̅�). In fact, the control system should automatically find the maximum �̅�𝑝  in 

order to arrive to the optimum value for primary side current. The idea is to first run the  

Loads Po1 Po2 Pot αmin(OL) �̅�𝑝 ipeak(𝑖�̅�) Imax(io1,io2) ipeak-imax 

FL  /   FL 1000 1000 2000 16 0.6269 14.7 11.4 3.3 

FL    / 10%FL 1000 100 1100 23 0.3815 13.4 11.5 1.9 

55%FL/ 55%FL 550 550 1100 12.5 0.5 9.6 6.3 3.3 

10%FL/ 10%FL 100 100 200 17 0.1571 5.1 1.2 3.9 
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Table.2.2. Searching for the optimal alpha values manually. 

Load conditions α �̅�𝑝 Comments 

FL/FL 17 0.6127 More �̅�𝑝 than necessary  

FL/FL 16 0.6300 Optimum (minimum) �̅�𝑝 

FL/FL 15 0.6178 Distortion on vo1 and/or vo2 

10%FL/10%FL 18 0.1567 More �̅�𝑝than necessary 

10%FL/10%FL 17 0.1601 Optimum (minimum) �̅�𝑝 

10%FL/10%FL 16 0.1386 Distortion on vo1 and/or vo2 

FL/10%FL 24 0.3812 More �̅�𝑝than necessary 

FL/10%FL 23 0.3851 Optimum (minimum) �̅�𝑝 

FL/10%FL 22 0.3754 Distortion on vo1 and/or vo2 

55%FL/55%FL 13.5 0.4860 More �̅�𝑝than necessary 

55%FL/55%FL 12.5 0.5007 Optimum (minimum) �̅�𝑝 

55%FL/55%FL 11.5 0.4702 Distortion on vo1 and/or vo2 

 

 

 

Table.2.3. Searching for the optimal α values manually with more precision. 

Loads α Output 

distortion 
�̅�𝑝 �̅�𝑝- 

�̅�𝑝(-) 

Loads α Output 

Distortion 
�̅�𝑝 �̅�𝑝-   

�̅�𝑝(-) 

FL  /   FL 15.8 No 0.6344 0.0014 10%FL/FL 24.1 No 0.3810 0.0008 

FL  /   FL 15.7 No 0.6358 0.0012 10%FL/FL 23.9 No 0.3818 0.0012 

FL  /   FL 15.6 No 0.6370 0.0011 10%FL/FL 23.7 No 0.3830 0.0012 

FL  /   FL 15.5 No 0.6381 0.0003 10%FL/FL 23.5 No 0.3842 0.0005 

FL  /   FL 15.4 Yes 0.6384 0.0002 10%FL/FL 23.3 Yes 0.3847 0.0011 

FL  /   FL 15.3 Yes 0.6386 -0.0026 10%FL/FL 23.1 Yes 0.3858 -0.0007 

FL  /   FL 15.2 Yes 0.6360  10%FL/FL 22.9 Yes   
10%FL/10%FL 18.2 No 0.1557 0.0012 55%FL/55%FL 12.8 No 0.4965 0.0020 
10%FL/10%FL 17.9 No 0.1569 0.0011 55%FL/55%FL 12.7 No 0.4985 0.0014 
10%FL/10%FL 17.6 No 0.1580 0.0010 55%FL/55%FL 12.6 No 0.4999 0.0016 
10%FL/10%FL 17.3 No 0.1590 0.0007 55%FL/55%FL 12.5 No 0.5015 0.0007 
10%FL/10%FL 17.0 Yes 0.1597 0.0002 55%FL/55%FL 12.4 Yes 0.5022 0.0009 
10%FL/10%FL 16.7 Yes 0.1599 -0.0003 55%FL/55%FL 12.3 Yes 0.5031 -0.0027 

10%FL/10%FL 16.4 Yes 0.1596  55%FL/55%FL 12.2 Yes 0.5004  

 

system with the maximum necessary initial value of α (see Table.2.1) then reduce α and 

searching for maximum �̅�𝑝 in order to find the optimum primary side current. 

 

 Table.2.3 is an extension of Table.2.2 with more detailed information. As it can be seen, 

maximum �̅�𝑝 is achieved at optimal value of α, but a distortion of the output voltage is 

observed at this optimal α value. Fig.2.2 shows the relation between �̅�𝑝and α for FL/FL 

condition. According to the Fig.2.2, the starting point of α should be 16 and this value should  
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Fig.2.2. Relation between �̅�𝑝 and α in FL/FL condition. 

 

be reduced in order to climb to the peak value of �̅�𝑝 . The problem is that the output voltage 

is distorted for the peak value of �̅�𝑝. One possible solution to avoid this distortion is to stop 

the searching for α when the error between the current value of �̅�𝑝 and its previous value is 

lower than a certain threshold. According to Table.2.3, this threshold could be 0.001. By 

using this new searching algorithm, the solution for α is 15.5 for FL/FL condition. This value 

for α guarantees the minimum α with no distortion in the output voltage. 

 

2.4. BASIC DYNAMIC 𝜶 ALGORITHM 

 The purpose of this section is to present the dynamic α algorithm for a system with two 

clamps. In previous section, the static α algorithm was presented and discussed. In this 

section, by applying the new adaptive algorithm, we try to solve the previous problems and 

then to guarantee the maximum efficiency for all the load conditions. 

 

 Fig.2.3 shows the flowchart to find the optimal α (𝛼𝑜𝑝). According to the flowchart,  α 

has an initial value 𝛼𝑚𝑎𝑥= 24, in order that the system starts working without distortion for 

any load condition.. α is reduced step by step (-0.1) by the counter and the current up is 

compared  with the previous one (�̅�𝑝(−)). If up is smaller than up (−), then the flowchart 

founds the maximum up (see Fig. 2.2). In addition, α comes back to one step before and it  



Chapter two 

 

34 

 

 

Fig.2.3. Flowchart for α generation. 

 

 

 

 

 

Fig.2.4. Main waveforms with dynamic α (Ro1 = Ro2 = 12.9). Top: average primary side current (red), input 

reference current (blue), output current (black), up (blue) and α (black). Bottom: output voltage (red) and 

reference output voltage (black). 

   

Yes

No

max



up > up (-)



opt
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Fig.2.5. Main waveforms with dynamic α (Ro1=Ro2=129). Left: average primary side current (red), input 

reference current (blue), output current (black), up (blue) and α (green). Right: output voltage (red) and 

reference output voltage (black). 

 

 

 
Fig.2.6. Main waveforms with static α (Ro1=12.9, Ro2=129). Left: average primary side current (red), input 

reference current (blue), output current (black), up (blue) and α (green). Right: output voltage (red and blue) 

and reference output voltage (black). 

 

 

 

Fig.2.7. Main waveforms with dynamic α (Ro1=23.45, Ro2=23.45). Left: average primary side current (red), 

input reference current (blue), output current (black), up (blue) and α (green). Right: output voltage (red) and 

reference output voltage (black). 

 

waits in this value. This step back level guarantees the correct operation of the system 

without output voltage distortion. 

 

 Fig.2.4 shows the main waveforms of the converter in FL/FL condition. From the figure,  

α is reduced step by step (-0.1) and finally finds the maximum �̅�𝑝 in 15.2 then comes back 

one step before and waiting on 15.3. As it can be seen, the output voltage has some distortion, 

but it could be acceptable for residential application. 
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 Fig.2.5, Fig.2.6 and Fig2.7 show the main waveforms of the converter for several load 

conditions. As it can be seen, the system finds correctly the maximum �̅�𝑝 in all the cases. 

The system operates correctly with fix load and the maximum efficiency can be achieved. 

The next step is to design the system for load step changes. The current algorithm has no 

possibility to detect the load changes. Therefore, a new α generator process should be 

considered to detect the load step changes. 

 

2.5. LOAD-SENSITIVE DYNAMIC 𝜶 ALGORITHM 

 Fig.2.8 shows the α generator flowchart to find the optimal α (𝛼𝑜𝑝) including load change 

detection. In comparison with previous flowchart (Fig.2.3) the algorithm has a new input 

(𝑖𝑟)to find the load changes. According to the figure, two coefficients are introduced (𝛽, 𝛾). 

By determining these coefficients, the algorithm can detect the load changes in all the load 

conditions. In our study the values of these two coefficients are achieved by trial and error 

method. Three different modes can be defined for the new α generator system as shown in 

Fig.2.9.  

 

 Searching mode (SM): In this mode the system is searching for optimum α. 

 

 

Fig.2.8. α generator and load change detector flowchart. 

 

Load change 

detection

Optimal   

detection

Yes

Yes

No

No

opt
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up > up (-)
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Fig.2.9. Output voltage (blue, vo1/10) and α variation (red). (10% of full load to full load). 

 

 Standby mode (STM): This mode will happen after finding the optimal α. In this 

mode the value of α is fixed. 

 

 Load change mode (LCM): in this mode the load change is detected and the value of 

α increases as the maximum value. 

 

 Fig.2.10. shows the operation of the adaptive algorithm during the load step changes. The 

figure illustrates two different load step change situations (10%of full load to full load, full 

load to 10 % full load). According to the figure, the algorithm is correctly detecting the load 

change at 14s and then updating α as the initial value. The new algorithm is satisfying the 

desired behavior for finding the optimal α and also detects the load changes.  

 
(a)                                                                                  (b) 

Fig2.10. Output voltage of clamp1 (Vo1/10 blue) and α variation (red). (a):10%of full load to full load, (b): 

full load to 10 % full load). (𝛽 = 1.1 , 𝛾 = 1.03). 
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(a)                                                  (b)                                                  (c) 

Fig.2.11. Zoom in on Fig.2.10.(a). (a): Output voltage distortion during the first transition from searching mode 

to standby mode, (b): Transient response due to load change, (c): Output voltage distortion during the second 

transition from searching mode to standby mode. 

 

 Fig. 2.11 is a zoom-in of Fig. 2.10(a). It clearly shows the output voltage distortion during 

the transitions between operational modes. As expected, the output waveform during load 

step changes has distortion which is the natural response of the system. This interval is short 

and the control system quickly eliminates it. 

 

 Fig.2.12 shows the performance of the dynamic α algorithm to regulate the reference 

current. From the figure, iref is reducing during the SM (according to the α step changes) and 

finally arrives to the optimal value. Then, during STM keeps the optimal value till the load 

step change is happening. After that, the reference current is updated and the process for SM 

is started again. It should be noticed that the optimal value always can be achieved in this 

control algorithm therefore the maximum efficiency is reached in all the load conditions.  

 

 An efficiency comparison between the conventional and proposed control systems is 

presented in Table.2.4. From the table, the maximum efficiency in both cases is achieved in 

FL/FL condition as 97%. As it was mentioned in section 1.6, in the conventional control 

system, the fixed reference input current is selected accordance with the maximum efficiency 

which is obtained in FL/FL condition. Therefore, in this load condition, the same results are 

expected for both control configurations. However, by reducing the load value, the efficiency 

in the conventional topology is drastically reduced while the proposed control system has 

the efficiency always more than 93% in all the load conditions. This improvement is more 

obvious in low load condition.  For example, in 10%FL/ 10%FL condition, the proposed 
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(a)                                                                   (b) 

Fig.2.12. Transient response of iref as a function of α. (a):10%full load to full load, (b): full load to 10 %full 

load). 

 

 

 

 

Table.2.4. Efficiency in different load conditions. 

 

control system improves the efficiency in nearly 46.2 points compared to the conventional 

result. This improvement is a consequence of the adaptive reference input current which is 

updated by changing the load conditions. 

 

2.6. CONCLUSION 

 A new adaptive control algorithm for the contactless system with multiple mobile loads 

has been presented in this chapter. The presented control system operates by using indirect 

information about the load conditions. The estimation of the load consumption is obtained 

by measuring and filtering the input control signal.  The new control algorithm can guarantee 

the maximum efficiency for all the load conditions. Therefore, make the possibility to have 

a contactless system with a long primary winding loop with high efficiency. Moreover, a 

theoretical tool for the analysis of the proposed control algorithm has been introduced. The 

Loads Po1 (W) Po2(W) Ptot(W) Conventinal 

Eff.(%)  

   α algorithm 

Eff. (%) 

FL  /   FL 1000 1000 2000 97 97 

FL    / 10%Fl 1000 100 1100 65 95 

55%FL/ 55%FL 550 550 1100 62 94 

10%FL/ 10%FL 100 100 200 47 93.2 
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averaged large-signal model is obtained based on the space-state model of the system. Then, 

the control design procedure is applied to the averaged model. The proposed control 

algorithm is detecting the optimal value of the reference input current in all the load 

conditions. Also, the control system can update the value of the reference input current 

during the load step changes. An efficiency more than 93% is achieved in all the load 

conditions
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This chapter presents a partially-controlled ICET system as an alternative to the 

conventional fully-controlled topology. The features of the new topology are analyzed by 

considering several modulation techniques, including frequency modulation (FM), phase 

modulation (PM) and quantum modulation (QM). The performance of the new topology is 

evaluated and the best modulation technique is identified. The chapter ends with the design 

of the new topology with the best modulation technique. 
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3.1. INTRODUCTION 

  The ICET with the fully-controlled system was presented in [80]-[83]. As mentioned in 

chapter one, the conventional system with fully-controlled algorithm is complex and 

expensive. Therefore, to find a simple and cost effective product, this study has been done. 

In this study, a partially-controlled ICET system as an alternative to the conventional fully-

controlled topology is presented [84]. The features of the new topology are analyzed by 

considering several modulation techniques, including frequency modulation (FM), phase 

modulation (PM) and quantum modulation (QM). Note that, in this chapter, the presented 

control systems for FM and PM are operating in open loop and QM is operating in closed 

loop without access to the load information (vo, io…). This is done to facilities the generation 

of the driving signals for the switches in the QM, which are in general more complicate 

compared to FM and PM techniques. 

 

 The chapter also presents a detailed design process for the resonant transformer. The 

effects of several parameters such as resonant frequency, magnetizing inductance and 

characteristic impedance are considered in the design process. The proposed design 

improves the system efficiency and guarantees a unity gain. Then, the evaluation of the 

complete system under several load conditions and load step changes is presented. The 

achieved result shows the excellent performance of the proposed system in steady-state and 

transient state.  

 

The main contributions of this chapter are: 1) a new topology to supply ICET system 

with multiple clamps, 2) the identification of the best control technique for the proposed 

topology, 3) the design procedure of the resonant components that fulfill the desired 

specifications in terms of system efficiency and voltage gain, 4) the performance evaluation 

of the complete system, including input PFC stage, resonant inverter and load post-

regulators. 
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Fig.3.1. General diagram of the ICET system with two clamps. 

 

 

3.2. ICET SYSTEM UNDER STUDY 

Fig.3.1 shows the general configuration of the ICET system with multiple clamps. This 

topology consists of a power factor converter (PFC), a resonant transformer (RT) and two 

mobile clamps with output converters. The system is connected to a single-phase input 

voltage source (Vi) with 230 Vrms and 50 Hz frequency. The RT is the key element in this 

system and it is responsible to eliminate the direct electrical connection between the input 

source and the loads. The input PFC and the output DC/AC inverters are conventional 

topologies. They are using a closed-loop control system with the aim of providing a unity 

power factor and well-regulated output voltages. 

 

Fig.3.2 illustrates the schematics of the RT system with sliding transformer and two 

mobile clamps. The input DC voltage (Vb) is inverted into a high frequency AC voltage (vp) 

by means of the inverter (INV). A high frequency resonant voltage is delivered to the mobile  

 

Fig. 3.2. Schematic of the resonant transformer with sliding transformer and two mobile clamps. 
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Fig.3.3. Electrical circuit representation of the RT system with sliding transformer and two mobile clamps 

 

clamps via a series resonant circuit and a long primary winding loop through the sliding 

transformer. As explained in chapter1, the mobile clamps have the possibility to move along 

the primary winding loop. 

 

Fig.3.3 illustrates the electrical circuit representation of the RT system with two mobile 

clamps. Note that the transformer is modeled by three parasitic elements: a parasitic resistor 

(Rp), a magnetizing inductance (Lm) and an output leakage inductance (Ls). The (small) input 

leakage inductance is absorbed by the discrete primary side inductance (Lp). It is interesting 

to note that the magnetizing inductance has a small value in this application (50µH). This 

fact will have a significant impact on the RT operation as will be explained below. In this 

model, two transformers are connected in series at the input side and in parallel with the 

corresponding loads at the output side. This is a consequence of the primary winding loop 

shown in Fig.3.2. 

 

3.3. ICET SYSTEM WITH FREQUENCY MODULATION TECHNIQUE 

During the last decades, the frequency modulation technique has been studied in the 

literature [84]-[90]. This control technique has been applied for different topologies such as 

parallel, series and series- parallel converters. Generally, the series resonant (SRC) topology 

has been applied to the ICET system with multiple clamps due to its benefits [90]. In series  
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Fig.3.4. Frequency modulation diagram of the input converter. 

 

  

  

  

 

 

resonant converter, operation above resonance frequency is preferred because it offers higher

efficiency [90]. Therefore, the regulation of the output voltage against load variation can be 

achieved by varying the switching frequency. This principle of operation can be applied to

multiple  mobile clamps in  order  to  achieve  a  fixed  output  voltage for  different  load 

conditions. Note that the specification for the output voltage is 450V and the loads will be

varied from 176Ω (full load) to 1760Ω (10% full load). 

 

Fig.3.4 depicts the configuration of the frequency modulator. Note that this scheme is an 

open loop control system, which does not require the measure of any signal from the resonant 

circuit. In other words, the control input of the modulator is maintained constant for a 

specified number of clamps and a particular design of the resonant circuit components. This 

open loop operation is not really a problem since the input PFC and the output converters 

operate in closed loop. In the ICET system with sliding transformer, the loads are moving 

along the distance of the primary loop. Thus, the system is notably simplified by assuming 

that the resonant converter operates in open loop (with no need to measure the voltage around 

the mobile loads). 

 

Fig.3.5 shows the gain curves of the designs 100kHz, 200kHz and 1MHz. Each figure 

has three curves corresponding to different load combination (see details at figure caption). 

The frequency axis is normalized as a function of the resonant frequency, i.e., fs / fo, where 

fo = 1 / 2 π (sqrt (Lp*Cp)).  In view of these figures, the following comments can be made: 

 

 

 



Analysis and design of a partially-controlled ICET system 

 

47 

 

 

  
      Design 100kHz: Gain curves at clamp 1        Design 100kHz: Gain curves at clamp 2 

 

 

  
        Design 200kHz: Gain curves at clamp 1         Design 200kHz: Gain curves at clamp 2 

 

 

 

  
        Design 1MHz: Gain curves at clamp 1           Design 1MHz: Gain curves at clamp 2 

 

 
Fig.3.5. Gain  curves  for  different  designs  and  load  combination. Blue:  Ro1=Ro2=176,  Red:   Ro1=Ro2=1760, 
Pink:  Ro1=176, Ro2=1760. Note that 176 corresponds to full load and 1760 to 10% of full load.  
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               Design400 kHz: Gain curves at clamp 1 Design400 kHz: Gain curves at clamp 2

Fig.3.6. Gain curves for design 400kHz. Blue: Ro1=Ro2=176, Red:  Ro1=Ro2=1760, Pink:  Ro1=176, Ro2=1760.  

 

 With design 100kHz, the peak of the gain curves is placed in the same location (fs/fo 

= 0.88). This is the limit point between capacitive (ZCS) and inductive (ZVS) 

operating region. The gain = 1 is in the inductive region at fs/fo = 0.94, as desired. 

The gain is nearly constant at fs/fo = 0.94 (small output voltage variation is expected 

for the entire range of load resistors). 

 

 With design 200kHz, the peak of the gain curves varies with the load resistors. 

Fortunately, the gain = 1 point is always located in the inductive region (i.e., ZVS 

can be guaranteed for all the load range). This point can be identified as fs/fo = 0.88. 

A higher output voltage variation is expected in this case for fs/fo = 0.88, in 

comparison with design 100kHz results. 

 

 With design 1MHz, we can identify several problems: 1) the gain = 1 cannot be 

achieved for all the considered loads, 2) when gain = 1 is achieved, the frequency 

variation necessary to obtain this gain is high. This suggests that a closed-loop 

regulator is necessary to maintain this gain. Note that, in design 100kHz and 200kHz, 

the modulator can operate in open loop fixing the frequency as fs/fo = 0.94 and fs/fo = 

0.88, respectively. 

 

The next step is to find a new design with the maximum possible switching frequency and 

gain = 1 for all the considered loads. Fig.3.6 shows the gain curves for the design 400kHz. 

We choose fs/fo = 0.8 as the constant switching frequency with gain = 1. A certain output 
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voltage variation is expected in this design (see, for example, the gain at fs/fo = 0.8 in the 

clamp2 for Ro1 = 176, Ro2 = 1760). 

 

The output voltages (vo1 and vo2), switching frequency (fs), average input current (ii), 

efficiency (η) and total output power (Pt) is presented in Table.3.1, Table.3.2 and Table.3.3 

for the following load conditions: Full load, 50 % full load, and 10 % full load. Note that, 

the design 1MHz is not considered in this study. This design does not accomplish the output 

voltage specifications. As evident from the tables, the maximum efficiency is achieved in 

design 400kHz. Therefore, for the open-loop FM system, we have identified a design trade-

off between efficiency and voltage deviation (as a function of load). 

 

Table.3.1. Design of 100kHz for two clamps with FM control. 

Design   Ro1 (Ω)   Ro2 (Ω) vo1/Vb vo2/Vb ii (A) fs (kHz) η (%) Pt (W) 

100kHz 176 176 0.924 0.924 5.16 94.2 84.61 1964.7 

100kHz 176 325 0.887 0.980 4.04 94.2 80.22 1458.4 

100kHz 176 1760 0.859 1.082 3.02 94.2 72.46 984.78 

100kHz 325 325 0.934 0.934 3.01 94.2 73.99 1005.6 

100kHz 325 1760 0.8984 1.027 2.11 94.2 61.69 585.8 

100kHz 1760 1760 0.978 0.9 1.29 94.2 37.96 220.4 

 

 

Table.3.2. Design of 200kHz for two clamps with FM control. 

Design Ro1 Ro2 vo1/Vb vo2/Vb ii (A) fs (kHz) η (%) Pt (W) 

200kHz 176 176 0.994 0.994 5.45 177 92.83 2276.7 

200kHz 176 325 0.950 1.090 4.30 177 89.04 1723.1 

200kHz 176 1760 0.911 1.249 3.16 177 80.63 1135.7 

200kHz 325 325 1.014 1.014 3.14 177 83.79 1184 

200kHz 325 1760 0.947 1.141 2.07 177 71.53 666.3 

200kHz 1760 1760 1.038 1.038 1.15 177 47.99 248.3 
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Table.3.3. Design of 400kHz for two clamps with FM control. 

Design Ro1 Ro2 vo1/Vb vo2/Vb ii (A) fs (kHz) η (%) Pt (W) 

400kHz 176 176 0.928 0.928 4.48 325 98.44 1984.6 

400kHz 176 325 0.865 1.072 3.59 325 94.33 1523.9 

400kHz 176 1760 0.859 1.297 2.73 325 85.01 1044.3 

400kHz 325 325 0.972 0.972 2.71 325 89.30 1089 

400kHz 325 1760 0.893 1.150 1.80 325 75.55 611.9 

400kHz 1760 1760 0.991 0.911 0.96 325 52.32 226.04 

 

3.4. ICET SYSTEM WITH PHASE MODULATION TECHNIQUE 

Phase modulation (PM) is another possibility to control the state of the full-bridge 

inverter switches (S1, S2, S3, and S4) [91]-[94]. In this section, the characteristics of the SRC 

with multiple clamp are analyzed for different designs. As mentioned in previous section, 

the specification for the output voltage is 450V and the loads will be varied from 176Ω (full 

load) to 1760Ω (10% full load). Advantages and limitations of PM are revealed through 

simulation results. In particular, the efficiency and voltage deviations are compared to the 

results obtained with FM. 

 

Fig.3.7 illustrates the implementation of the PM. The principle of operation of this 

modulator is shown in Fig 3.8. From the figure, a ramp signal is compared with two control 

parameters γ1 and γ2 to generate the state of the full-bridge inverter switches. The ramp signal 

is synchronized with the zero crossing points of the resonant current, ip. In this way, the 

modulator is robust to the variation of the resonant tank components (due to tolerance, age, 

temperature…). In other words, possible changes in these values are immediately known by 

the modulator by means of the online measuring of the resonant current. The parameter γ1 

defines the time delay between the resonant current and the input voltage to the resonant 

tank. This delay guarantees ZVS operation for all the load range. The parameter γ2 is used 

to choice the desired output voltage. 
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Fig.3.7.  Phase modulation diagram of the input converter. 

 

 

 
 
Fig3.8. Principal waveforms of the phase modulation. 

 

 

 

 Fig.3.9 shows the main waveforms of the SRC single-clamp with PM for two values of 

γ1, γ2 and output resistor.  Note that the time delay between the input voltage and the resonant 

current is fixed due to the constant value of γ1. This point can be easily observed by 

measuring the time delay between the zero to top value of the input voltage and the zero 

crossing point in the resonant current. Note that the variation of γ2 produces a change in the 

duration of the zero voltage interval of the input voltage. In general, the output voltage 

reduces as the zero voltage interval increases.   
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Fig. 3.9. Main waveforms of the SRC single-clamp with PM (design 100kHz). (Left) γ1 = 0.7, γ2 = 0.55 

and Ro = 176 Ω. (Right) γ1 = 0.7, γ2 = 0.35 and Ro = 1760 Ω. Blue: 0.05*input voltage, red: resonant 

current,pink: ramp signal, green: γ1. yellow: γ2, light blue: magnetizing current, black: secondary side 

current
 

 

 

 

 Fig.3.10 shows the gain curves of the SRC with PM. Each graph corresponds to a 

particular design (100 kHz, 200 kHz, or 1000 kHz) and a fixed value for γ1 (0.7, 0.75, or 

0.85). The gain curves are depicted as a function of the parameter γ2 (from 0.35 to 0.7). As 

state above, the parameter γ1 defines the time delay between the resonant current and the 

input voltage to the resonant tank. In particular, the time delay decreases as γ1 increases. This 

parameter also has a certain influence on the voltage gain. In general, the output voltage 

increases as the parameter γ1 increases. On the other hand, the parameter γ2 is normally used 

to choice the desired output voltage. Note that the output voltage increases as the parameter 

γ2 increases. 

 

 What is even more important is to observe that the gain curves are load dependent. If we 

fix a constant value for γ1 and γ2, the output voltage varies with the load resistor. This is 

probably the main limitation of the SRC with PM. Remember that with FM, the output 

voltage is practically independent of the load when the gain is around 1. In PM, it is possible 

to achieve gain = 1 in all the considered designs by varying γ1 and γ2. This means that open 

loop operation is not allowed in PM. Therefore, a closed-loop control should be designed in 

order to get the specified output voltage. 
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   Design 100kHz, γ1 = 0.7                  Design 100kHz, γ1 = 0.75               Design 100kHz, γ1 = 0.85 

  

                         

Design 200kHz, γ1 = 0.7                   Design 200kHz, γ1 = 0.75             Design 200kHz 5, γ1 = 0.85 

 

      

    Design 1MHz, γ1 = 0.7               Design 1MHz, γ1 = 0.75                Design 1MHz, γ1 = 0.85 

    

  

Fig.3.10. Gain of the SRC with PM as a function of γ2 for one clamp. Blue: Ro = 176 Ω (FL), Red: Ro = 352Ω 
(50% FL) Pink: Ro = 1760 Ω (10% FL).  

 

 Below we will analyze the features of the SRC with PM and γ1 = 0.7 (constant value from 

now on) in Table 3.4, 3.5 and 3.6 for one clamp. We have chosen this value due to the output 

voltage is in general lower with γ1 =0.7 and thus it is easier to achieve the desired gain = 1 

(note that it is not always possible to obtain gain = 1 with γ1 = 0.75 or 0.85). It is interesting 

to note that, in general, better efficiency is achieved with PM in comparison with the results 

obtained with FM (except of design 1MHz).  
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Table.3.4. Design 100kHz for one clamp with PM control. 

γ1 γ2 load vo/Vb ii fs/fo Pout η % PM η % FM 

0.7 0.45 full 1.0062 3.06 1 1164.9 84.6 62.1 

0.7 0.40 50% full 1.0776 1.93 0.99 667.97 76.0 47.5 

0.7 0.35 10% full 1.2653 0.87 0.98 184.21 47.0 29.8 

 

 

Table.3.5. Design 200kHz for one clamp with PM control. 

γ1 γ2 load vo/Vb ii fs/fo Pout η % PM η % FM 

0.7 0.55 full 1.0391 3.02 1 1242.3 91.4 83.5 

0.7 0.45 50% full 1.0178 1.52 1 595.92 87.1 74.1 

0.7 0.35 10% full 1.0651 0.45 1 130.52 64.0 41.2 

 

 

Table.3.6. Design 1MHz for one clamp with PM control. 

γ1 γ2 load vo/Vb ii fs/fo Pout η % PM η % FM 

0.7 0.70 full 0.9458 2.55 1.08 1029.2 89.7 93.6 

0.7 0.60 50% full 1.0044 1.51 0.99 580.40 85.5 88.2 

0.7 0.35 10% full 1.0129 0.41 0.98 118.04 64.0 59.1 

 

 Fig.3.11 shows the main reason behind these results. The figure shows the input voltage 

of the resonant tank and the input current of the converter with the PM and FM. Note that, 

in PM, the input current is zero during the 0V interval of the input voltage. In FM, the input 

current is always continuous (no zero current interval is present). The average current 

flowing from the source is nearly the same in both modulation techniques given that the 

input and output voltages and the output resistor coincide in both cases. However, the 

average positive current and the average negative current are higher in FM, thus producing 

higher conduction losses and lower efficiency in the converter. In design 1MHz, the 

switching frequency is so high (10 times higher than in design 100kHz) that the difference 

between the average positive current in both modulation techniques is negligible. The same 

argument is valid for the average negative current. In this discussion, “average positive 

current” means the averaged value of only the positive current; the negative current is not 

considered (it is assumed to be zero) when calculating the averaged positive current. A 

similar definition can be used for “average negative current”. In this case, the positive current 

is assumed to be zero. 
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(a)                                                                                            (b) 

   

 

Fig.3.11. Input voltage of the resonant tank (top) and input current of the converter (bottom) for γ1 = 0.7, γ2 

= 0.45 and Ro = 176 Ω (design 100kHz): (a) PM, (b) FM. 

  

 Fig.3.12, Fig.3.13 and Fig3.14 show the gain curves of the two-clamps SRC with PM. 

For design 100kHz, the gain curves are depicted in Fig.3.12. In this case, the gain = 1 is 

reached for all the considered loads. The parameter γ1 is fixed at 0.7 and γ2 is modified in 

order to get different output voltages. For design 200kHz, the gain curves are shown in 

Fig.3.13. The gain = 1 is also reached for all the considered loads. However, in this case, the 

parameter γ1 must be varied according to the load in order to get the desired gain = 1. In fact, 

if γ1 is maintained at 0.7 in design 200kHz, the gain is lower than 1 for several load 

combinations. For design 1MHz, the gain curves are depicted in Fig.3.14. In this design, it 

is not possible to guarantee a gain = 1 for all considered loads. Note that γ1 has been increased 

from 0.7 to 0.95 with the aim to enlarge the gain, but even in this situation the gain is lower 

than 1 in some cases. 

 

 This low gain feature for design 200kHz was previously observed in the two-clamped 

SRC with FM. In that case, the problem was solved by reducing the natural switching 

frequency fo from 1 MHz to 400 kHz. In fact, design 400kHz was the design with highest 

switching frequency and gain = 1 in FM. In the case of PM, it is not possible to get gain = 1 

with design 400kHz. The gain is lower than 1 for some load combinations due to γ1 is chosen 

lower than 1 (i.e., the resonant circuit does not operate at maximum gain in order to guarantee 

ZVS for all the load range). Actually, it has been found that it is necessary to reduce the 

natural switching frequency below 400 kHz to achieve unity gain.  In fact, the design with 

highest switching frequency and gain =1 in PM is design 250 kHz. 
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          Ro1 = 176, Ro2 = 176, γ1 = 0.7      Ro1 = 352, Ro2 = 352, γ1 = 0.7      Ro1 = 1760, Ro2 = 1760, γ1 = 0.7

                blue: vo1, vo2                                            red: vo1, vo2              pink:  vo1, vo2 

 

   
                     

    

        

Ro1 = 176, Ro2 = 352, γ1 = 0.7 Ro1 = 176, Ro2 = 1760, γ1 = 0.7 Ro1 = 352, Ro2 = 1760, γ1 = 0.7

blue: vo1, red: vo2 blue: vo1, pink: vo2 red: vo1, pink: vo2

Fig.3.12. Gain curves for design 100 kHz as a function of the parameter γ2 for two clamps. 

 

 

The gain curves for design 250 kHz are shown in Fig.3.15. Note that design 250kHz is a 

valid design. It provides a gain = 1 for all the load range with the highest switching 

frequency. As a negative point, both control parameters γ1 and γ2 must be online calculated 

to get the desired gain (i.e., complex control implementation). 

 

Table.3.7, Table.3.8 and Table.3.9 present the information about gain, efficiency, input 

current and total power of the proposed system with phase modulation technique. These 

results are obtained in several design conditions. As evident, design 250kHz has more 

efficiency. Therefore, in this study it can be considered as the best design for PM technique.  

 

It should be mentioned that the following results are measured operating the two-clamp 

SRC in open loop. The parameters γ1 and γ2 are tuned manually in order to get a gain as near 

as possible to 1. In a real scenario, this converter with PM must be operated in closed-loop. 
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          Ro1 = 176, Ro2 = 176, γ1 = 0.95    Ro1 = 352, Ro2 = 352, γ1 = 0.85    Ro1 = 1760, Ro2 = 1760, γ1 = 0.7  

  blue: vo1, vo2 red: vo1, vo2 pink:  vo1, vo2 

      
                     

             

Ro1 = 176, Ro2 = 352, γ1 = 0.85 Ro1 = 176, Ro2 = 1760, γ1 = 0.8 Ro1 = 352, Ro2 = 1760, γ1 = 0.7

blue: vo1 red: vo2 blue: vo1 pink: vo2 red: vo1 pink: vo2 

    Fig.3.13. Gain curves for design 200 kHz as a function of the parameter γ2 for two clamps. 

 

 

 

    
      Ro1 = 176, Ro2 = 176, γ1 = 0.95     Ro1 = 352, Ro2 = 352, γ1 = 0.95      Ro1 = 1760, Ro2 = 1760, γ1 = 0.8  

blue: vo1, vo2 red: vo1, vo2 pink:  vo1, vo2 

       
     Ro1 = 176, Ro2 = 352, γ1 = 0.95    Ro1 = 176, Ro2 = 1760, γ1=0.95     Ro1 = 352, Ro2 = 1760, γ1=0.85  

blue: vo1  red: vo2 blue: vo1  pink:  vo2 red: vo1  pink:  vo2 

Fig3.14. Gain curves for design 1MHz as a function of the parameter γ2 for two clamps. 
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   Ro1 = 176, Ro2 = 176, γ1 = 0.95            Ro1 = 352, Ro2 = 352, γ1 = 0.95          Ro1 = 1760, Ro2 = 1760, γ1=0.95  

                    blue: vo1, vo2                                     red: vo1, vo2                                      pink:  vo1, vo2 

     
            

        

Ro1 = 176, Ro2 = 352, γ1 = 0.95 Ro1 = 176, Ro2 = 1760, γ1=0.95 Ro1 = 352, Ro2 = 1760, γ1=0.95

blue: vo1 red: vo2 blue: vo1 pink: vo2 red: vo1 pink: vo2 

Fig.3.15. Gain curves for design 250 kHz as a function of the parameter γ2 for two clamps. 

 

 

 

 

Table.3.7. Design 100kHz for two clamps and PM control. 

Design Ro1 Ro2 γ1 γ2 vo1/Vb vo2/Vb ii (A) fs/fo(kHz) η (%) Pt (W) 

100kHz 176 176 0.7 0.65 0.99 0.99 5.62 0.93 89.17 2255.3 

100kHz 176 325 0.7 0.65 0.92 1.02 3.98 0.93 87.79 1572.4 

100kHz 176 1760 0.7 0.52 0.92 1.16 2.92 0.93 85.89 1128.7 

100kHz 325 325 0.7 0.53 0.99 0.99 2.95 0.93 84.94 1127.7 

100kHz 325 1760 0.7 0.47 0.93 1.07 1.81 0.93 77.26 629.29 

100kHz 1760 1760 0.7 0.42 1.02 1.02 0.96 0.93 55.41 239.41 
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Table.3.8. Design 200kHz for two clamps and PM control. 

Design Ro1 Ro2 γ1 γ2 vo1/Vb vo2/Vb ii (A) fs/fo(kHz) η (%) Pt (W) 

200kHz 176 176 0.95 0.72 1 1 5.42 0.88 94.34 2301.1 

200kHz 176 325 0.85 0.67 0.93 1.07 3.95 0.88 93.03 1653.8 

200kHz 176 1760 0.8 0.58 0.83 1.14 2.33 0.89 89.85 942.15 

200kHz 325 325 0.85 0.58 0.98 0.98 2.68 0.88 91.62 1105 

200kHz 325 1760 0.7 0.58 0.89 1.07 1.49 0.89 87.60 587.41 

200kHz 1760 1760 0.7 0.5 1 1 0.74 0.88 69.10 230.11 

 

Table.3.9. Design 250kHz for two clamps and PM control. 

Design Ro1 Ro2 γ1 γ2 vo1/Vb vo2/Vb ii 

(A) 

fs/fo(kHz) η (%) Pt (W) 

250kHz 176 176 0.95 0.85 1 1 5.4 0.86 94.7 2301.1 

250kHz 176 325 0.95 0.7 0.91 1.09 3.92 0.86 92.75 1636.3 

250kHz 176 1760 0.95 0.53 0.81 1.21 2.23 0.86 92.01 923.34 

250kHz 325 325 0.95 0.59 1 1 2.78 0.85 91.97 1150.6 

250kHz 325 1760 0.85 0.52 0.9 1.11 1.52 0.86 88.85 607.44 

250kHz 1760 1760 0.8 0.45 1 1 0.72 0.86 71.02 230.11 

 

  To facilitate the efficiency comparison between PM and FM, Table.3.10 collects the 

efficiency results obtained with these modulation techniques in the two-clamped SRC 

system. The efficiency results are presented as a matrix form which shows the achieved 

results for different load conditions. The load condition for each element of the matrix is 

defined below: 

 

𝜂(%) =

[
 
 
 
 
 

FL/FL
 

FL/50%FL
 

FL/10%FL
 

50%FL/FL
 

50%FL/50%FL
 

50%FL/10%FL
 

10%FL/FL
 

10%FL/50%FL
 

10%FL/10%FL
 ]
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Table.3.10. Efficiency results for selected designs operating with the PM and FM. (*) maximum frequency for 

which gain = 1 is reached in FM, (**) maximum frequency for which gain = 1 is reached in PM. 

Design              PM 

 

           FM 

 

100 kHz 𝜂(%) = [
89.17 87.79 85.89
87.79 84.94 77.26
85.89 77.26 55.41

] 𝜂(%) = [
84.61 80.22 72.46
80.22 84.94 61.69
72.46 61.69 37.96

] 

 

200 kHz 𝜂(%) = [
94.34 93.03 89.85
93.03 91.62 87.60
89.85 87.60 69.10

] 𝜂(%) = [
92.83 89.04 80.63
89.04 83.79 71.53
80.63 71.53 47.99

] 

 

400 kHz (*) 

 

         - 𝜂(%) = [
98.44 94.33 85.01
94.33 89.30 75.55
85.01 75.55 52.32

] 

 

250kHz (**) 𝜂(%) = [
94.70 92.75 92.01
92.75 91.97 88.85
92.01 88.85 71.02

] 
 

             - 

 

 

3.5. THE ICET SYSTEM WITH QUANTUM MODULATION TECHNIQUE 

 The quantum modulation with only energizing mode produces a high gain in the SRC 

with low magnetizing inductance [82]. Therefore, in an open loop control system, the unity 

gain can never be achieved for SRC topology with two different load conditions. Thus, 

voltage regulation with a closed-loop system is necessary in this case. This section 

introduces a QM implementation with both energizing and free resonant modes that allows 

to achieve unity gain for all the load conditions [95]-[97]. The advantages and limitations of 

this new modulator are highlighted by comparing the performance with the FM and PM 

configurations. 

 

Fig.3.16 shows the closed-loop control system based on the QM technique. A direct 

measurement of the output voltage is not available in this ICET system, then the output 

voltage is estimated by rectifying and filtering the transformer voltage at the primary side. 

This voltage is called vt from now on. The estimation of the output voltage is compared with 

the reference Vref (the desired output voltage) in order to decide between energizing and free 

resonant modes. The updating of these modes is synchronized with the zero crossing of the 

current ip. 
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Fig.3.16. Quantum modulation diagram of the input converter. 

 

Fig.3.17 illustrates the principle of operation of the quantum modulator technique. 

According to the figure, the signal u´1 is synchronized with the zero current detection of the 

resonant current ip. The resulting signal u1 is used to drive the switches (S1 to S4). 

 

 Fig.3.18 shows the main waveforms for maximum (176 Ω) and minimum (1760 Ω) loads. 

In both figures, the estimation is close to the reference voltage (500 V in this case). It should 

be noticed that the peak value of vt tracks the output voltage with a smaller error. This error 

can be identified as the voltage in the parasitic elements of the system (Rp, output diodes).  

Assuming that the error is low and nearly constant for all the loads, the reference voltage can 

be adjusted to compensate it (we need vo = 450 V, then we choose Vref = 500 V in order to 

compensate the voltage across the parasitic elements). The following results in Table.3.11, 

Table.3.12, Table.3.13 and Table.3. 14 are measured operating the two-clamp SRC with the 

new QM configuration. 

   

Fig.3.17. Principal waveforms for the quantum modulation. 
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Fig.3.18. Waveforms with QM control for Ro = 176 Ω (left) and Ro = 1760 Ω (right). Blue: transformer input 

voltage (vt), red:10*ip, pink: vo, black: estimation of the converter output voltage. 

 

 

 

Table.3.11. QM control with design of 100kHz for two clamps. 

Design Ro1 Ro2 vo1/Vb vo2/Vb ii (A) fs /fo (kHz) η (%) Pt (W) 

100kHz 176 176 1.037 1.037 6.40 0.88 85.81 2474.6 

100kHz 176 325 0.989 1.105 4.95 0.88 82.4 1827.8 

100kHz 176 1760 0.910 1.203 3.34 0.88 74.35 1119.3 

100kHz 325 325 1.050 1.050 3.68 0.88 76.55 1268.5 

100kHz 325 1760 0.965 1.155 2.34 0.88 65.28 689.20 

100kHz 1760 1760 1.068 1.068 1.35 0.87 43.2 262.47 

 

 

Table.3.12. QM control with design of 200kHz for two clamps.  

Design Ro1 Ro2 vo1/Vb vo2/Vb ii (A) fs /fo (kHz) η (%) Pt (W) 

200kHz 176 176 0.989 0.989 5.49 0.83 91.10 2250.8 

200kHz 176 325 0.944 1.1 4.33 0.80 88.20 1721.4 

200kHz 176 1760 0.820 1.248 2.71 0.80 78.13 952.84 

200kHz 325 325 1.023 1.023 3.17 0.80 84.27 1204.1 

200kHz 325 1760 0.905 1.185 1.91 0.80 73.34 632.73 

200kHz 1760 1760 1.046 1.046 1.03 0.80 54.05 251.77 
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Table.3.13. QM control with design of 1MHz for two clamps. 

Design Ro1 Ro2 vo1/Vb vo2/Vb ii (A) fs /fo (kHz) η (%) Pt (W) 

1MHz 176 176 0.799 0.799 3.35 0.655 92.63 1396.4 

1MHz 176 325 0.690 0.996 2.67 0.615 92.98 1118.5 

1MHz 176 1760 0.553 1.346 1.51 0.606 82.45 560.30 

1MHz 325 325 0.843 0.843 2.01 0.615 90.93 817.65 

1MHz 325 1760 0.575 1.223 1.26 0.519 63.89 362.26 

1MHz 1760 1760 0.928 0.928 0.71 0.505 61.85 198.17 

 

 

 

Table.3.14. QM control with design of 250kHz for two clamps. 

Design Ro1 Ro2 vo1/Vb vo2/Vb ii (A) fs /fo (kHz) η (%) Pt (W) 

250kHz 176 176 0.964 0.964 5.27 0.80 90.17 2138.4 

250kHz 176 325 0.891 1.061 3.89 0.80 89.17 1561 

250kHz 176 1760 0.804 1.266 2.56 0.79 80.56 928.15 

250kHz 325 325 1.013 1.013 3.066 0.80 85.57 1180.7 

250kHz 325 1760 0.877 1.193 1.81 0.79 75.67 616.37 

250kHz 1760 1760 1.035 1.035 0.977 0.79 56.06 246.50 

 

Fig.3.19 shows the impact of the modulation technique on the principle of operation of 

the single-clamp SRC. In fact, we are comparing the transformer primary- and secondary-

side currents in QM, FM and PM for full load and 10% full load conditions. It is evident that 

QM produces a significant ripple in the resonant currents which is not noticeable in the FM 

and PM. The main reason is that the control input in QM can take only discrete values. In 

other words, the QM can only decide if the next mode is energizing or free resonant, but this 

decision is maintained during at least a half resonant period. It is interesting to note that the 

duration of a control cycle in QM increases with Ro. Thus the control frequency of QM is 

lower as Ro increases, thus enlarging the ripple in the main waveforms. Quite the opposite, 

in FM and PM, the control inputs (switching frequency and phase, respectively) are 

continuous variables and no amplitude modulation (or ripple) is observed in the currents. 
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The efficiency comparison of several modulation techniques for single clamp situation 

is given in Table.3.15. It is clear that for design 100kHz and 200kHz the best results are 

obtained with PM. Also design 1Mhz results are better than design 100kHz results. However, 

the best results comparing the three designs are obtained with design 1MHz. Clearly the best 

efficiency is achieved with the higher switching frequency (design 1MHz). For full load, 

QM and FM has superior efficiency than PM in design 1MHz. 

 

 QM, Ro = 176 Ω  QM, Ro = 1760 Ω 

  
 FM, Ro = 176 Ω                                                  FM, Ro = 1760 Ω 

  
 PM, Ro = 176 Ω                                                  PM, Ro = 1760 Ω 

  
Fig.3.19. Primary-side resonant current, ip (blue), and secondary-side current, is (red), for design 100kHz. 
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Table.3.15. Efficiency results for selected design operating with PM, FM and QM for single clamp. 

Design Load η % QM η % FM η % PM 

100kHz full 78.0 62.1 84.6 

100kHz 50% full 69.3 47.5 76.0 

100kHz 10% full 34.6 29.8 47.0 

200kHz full 88.4 83.5 91.4 

200kHz 50% full 81.0 74.1 87.1 

200kHz 10% full 49.9 41.2 64.0 

1Mhz full 93.7 93.6 89.7 

1Mhz 50% full 87.6 88.2 85.5 

1Mhz 10% full 51.6 59.1 64.0 

 

 

Table3.16. Best efficiency results for QM, FM and PM. (*)   maximum frequency for which gain = 1 is reached 

in FM, (**) maximum frequency for which gain = 1 is reached in QM and PM 

Design QM FM PM 

 

400 (*) 

 

[
98.44 94.33 85.01
94.33 89.30 75.55
85.01 75.55 52.32

] 

 

 

250 

(**) 
[
90.17 89.17 80.56
89.17 85.57 75.67
80.56 75.67 56.06

] 

 

[
94.70 92.75 92.01
92.75 91.97 88.85
92.01 88.85 71.02

] 

 

 

To facilitate the efficiency comparison between QM, FM and PM, Table.3.16 collects 

the best efficiency results obtained with these modulation techniques in the two-clamped 

SRC converter. 

 

According to Table.3.17 and Fig.3.19, it is evident that the ripple of resonant current in 

FM is less than QM. Moreover, the FM has more efficiency in full load condition in 

comparison with the PM and QM. Also, a unity gain for all the load conditions is achieved 

in open loop for FM while the QM and PM in practice need a closed-loop control. Moreover, 

the complexity and cost of QM and PM are higher than FM as a consequence of the 

implementation of the closed-loop systems. Therefore, FM is the preferred option to be used 

in the partially-controlled ICET system because of its superior performance compared to PM 

and QM alternatives. 
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Table.3.17. Comparison between modulation technique. 

Modulation Resonant 

Current ripple 

Efficiency in full 

load  

Unity gain in 

open loop 

Cost and 

complexity 

FM Low 98.44 Achieved Low 

QM High 90.17 No achieved High 

PM Low 94.7 No achieved High 

 

 

3.6. DESIGN OF THE RESONANT TRANSFORMER 

In this section, the design process of the resonant transformer for FM control is presented 

in detail. The design process includes three subsections which analyzes the effects of the 

resonant frequency, magnetizing inductance, and characteristic impedance. 

 

3.6.1. EFFECT OF THE RESONANT FREQUENCY 

Table.3.18 shows several designs for the resonant circuit as a function of the resonant 

frequency. The characteristic impedance (Zo) is maintained constant. In this section, the main 

goal is to achieve unity gain for both mobile clamps while the resonant frequency is 

considered as a variable in the designs. 

 

Fig.3.20 shows the gain curves of the RT system with two mobile clamps. These figures 

also include the value of the control input (fs/fo) required to obtain nearly unity gain in each 

particular design. As can be seen, by increasing the resonant frequency the maximum gain 

is reduced and also shifted to the left side (i.e. to lower frequency). In other words, the 

maximum gain for different designs is achieved in different control input values (fs/fo). It is 

worth mentioning that unity gain is not achieved for full load conditions with design 1MHz. 

Thus, this design is no further considered in the study. According to the figure, for the other 

designs (100kHz, 200kHz, 400kHz), the output gain can be maintained nearly constant at 

the desired value (vo/Vb =1) for all the load conditions using the specified control input. 
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Table3.18: Considered designs for the resonant circuit as a function of the resonant frequency. 

Design Zo(Ω) ωo(rad/s) Lp(µH) Cp(nF) 

100 kHz 200 2π.100k 318.3 7.96 

200 kHz 200 2π.200k 159.1 3.98 

1MHz 200 2π.1000k 31.8 0.8 

400kHz 200 2π.400k 79.5 1.98 

 

Table.3.19 lists the measured gains and efficiencies in the several designs. Note that the 

gain experiences a certain deviation as the resonant frequency rises. Also, the efficiency 

increases when the resonant frequency rises. However, the improvements in efficiency are 

more significant in comparison with the negative deviation in gain, thus the best design is 

400kHz.  

 

3.6.2. EFFECT OF THE MAGNETIZING INDUCTANCE 

Table.3.20 shows the designs for the RT system considering several values of the 

magnetizing inductance. The magnetizing inductance has a direct relation to the length of 

the primary winding loop and also the parasitic resistor (Rp). Thus, by increasing the length 

of the primary winding loop, the values of both the magnetizing inductance and the parasitic 

resistance are increased. In this section, the resonant frequency is 400 kHz and also the 

characteristic impedance is fixed at 200 ohms. 

 

Fig.3.21 illustrates the gain curves for different designs of the magnetizing inductance 

and loads. It is interesting to note that nearly unity gain is reached for the three considered 

designs. More interesting are the measured gain and efficiency results shown in Table.3.21. 

Although the natural frequency (fo) is 400 kHz for the three designs, the control input (fs/fo) 

should be reduced in order to guarantee the desired nearly unity gain as the magnetizing 

inductance (Lm) and the parasitic resistor (Rp) increase. The table also lists the switching 

frequency for the three designs. This switching frequency reduces as the values of Lm and Rp 

increases. This is a particular phenomenon noticed in the series resonant circuit topology 

with low Lm. In this topology, the measured efficiency increases by Lm and Rp; see Table.3.21. 

From design 400k_025 to design 400k_050, the efficiency increases 4.44 points which could 

be considered a notably increment. From design 400k_50 to design 400k_100, the efficiency  
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(a) 

 
(b) 

 

(c) 

 

(d) 

   

Fig.3.20. Gain curves for different designs and loads. Blue: Ro1=Ro2=176, Red: Ro1=Ro2=1760, Pink: Ro1=176, 
Ro2=1760. vo1 (left), vo2 (right). (a): design 100k, (b): design 200k, (c): design 400k, (d): design 1M.  

 
 

 

 

 



Analysis and design of a partially-controlled ICET system 

 

69 

 

Table.3.19: Measured gains and efficiencies for the two clamps RT system. 

Design fs/fo  Ro1 (Ω)  Ro2 (Ω)  vo1/Vb vo2/Vb η (%) 

 

100kHz 

0.935 

0.935 

0.935 

176 

176 

1760 

176 

1760 

1760 

0.92 

0.86 

0.98 

0.92 

1.08 

0.98 

84.6 

72.5 

48.0 

 

200kHz 

0.88 

0.88 

0.88 

176 

176 

1760 

176 

1760 

1760 

0.99 

0.91 

1.04 

0.99 

1.25 

1.04 

92.8 

80.6 

58.0 

 

400kHz 

0.80 

0.80 

0.80 

176 

176 

1760 

176 

1760 

1760 

0.93 

0.86 

0.99 

0.93 

1.30 

0.99 

98.4 

85.0 

62.3 

 

 

Table.3.20. New designs for the RT system considering several values of the magnetizing inductance. 

Design fo (kHz)  Zo (Ω) Lp (µH)  Cp (nF) Lm (uH) Rp (Ω) 

400k_025 400 200 79.5 1.98 25 0.5 

400k_050 400 200 79.5 1.98 50 1 

400k_100 400 200 79.5 1.98 100 2 

 

only increases 0.64 points. Taking into account that the last design requires a cable with 

double length, it could be concluded that the design 400k_50 is a better design (high 

efficiency and short cable length). 

 

3.6.3 EFFECT OF THE CHARACTERISTIC IMPEDANCE 

Table.3.22 shows two designs with different characteristic impedance. The resonant 

frequency and magnetizing inductance are chosen as 400 kHz and 50 µH respectively. Note  

that the switching frequency is reduced in order to guarantee the desired nearly unity gain as 

Zo decreased.  

 

Fig.3.22 depicts the current waveforms of transformer primary-side (ip) and secondary-

side (is). It is interesting to see that the primary-side current in the design 400k_Z200 is 

nearly sinusoidal. By reducing Zo, the harmonic content of this current rises. Note that the 

secondary side current operates in discontinuous conduction mode in both cases. This is 

produced by the low magnetizing inductance. However, the zero current interval is larger in 

the low impedance design, which again causes a higher harmonic content in this current. 

Table.3.23. lists the measured gain and efficiencies for these designs. It is clear to see that  
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(a) 

 

 

 
(b) 

 

 

 
(c) 

 

 

  

Fig.3.21. Gain  curves  for  different  designs  of  magnetizing  inductance  and  loads. Blue: Ro1=Ro2=176,  Red:

Ro1=Ro2=1760, Pink: Ro1=176, Ro2=1760. vo1 (left), vo2 (right). (a): design 400k_025, (b): design 400k_050,

(c): design 400k_100. 

 

higher efficiency is reached by the design 400k_Z200.For all these considerations, we can 

conclude that the high impedance design offers higher quality performance. 
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Table.3.21. Measured gains and efficiency of the designs with variable magnetizing inductance. 

Design fs (kHz) fs/fo  Ro1 (Ω)  Ro2 (Ω) Vo1/Vi Vo2/Vi η (%) 

 

400k_025 

 

352 

352 

352 

0.88 

0.88 

0.88 

176 

176 

1760 

176 

1760 

1760 

0.99 

0.90 

1.03 

0.99 

1.24 

1.03 

94.00 

82.31 

60.57 

 

400k_050 

 

320 

320 

320 

0.80 

0.80 

0.80 

176 

176 

1760 

176 

1760 

1760 

0.92 

0.85 

0.99 

0.92 

1.24 

0.99 

98.44 

85.00 

62.32 

 

400k_100 

280 

280 

280 

0.70 

0.70 

0.70 

176 

176 

1760 

176 

1760 

1760 

0.82 

0.75 

0.92 

0.82 

1.36 

0.92 

99.08 

88.15 

63.76 

 

 

Table.3.22. New designs for several values of the characteristic impedance Zo. 

Design fo (kHz)  Zo (Ω) Lp (uH)  Cp (nF) fs/fo fs (kHz) 

400k_Z25 400 25 9.95 15.91 0.43 172 

400k_Z200 400 200 79.58 1.99 0.80 320 

 

 

 

Table 3.23: Measured gains and efficiency for the designs with variable Zo. 

Design fs (kHz) fs/fo  Ro1 (Ω)  Ro2 (Ω) Vo1/Vi Vo2/Vi η (%) 

 

400k_Z25 

 

172 

172 

172 

0.43 

0.43 

0.43 

176 

176 

1760 

176 

1760 

1760 

0.914 

0.858 

0.969 

0.914 

1.201 

0.969 

91.98 

79.51 

67.12 

 

400k_Z200 

 

320 

320 

320 

0.80 

0.80 

0.80 

176 

176 

1760 

176 

1760 

1760 

0.93 

0.86 

0.99 

0.93 

1.30 

0.99 

98.4 

85.0 

62.3 

 

 

3.7. EVALUATION OF THE TRANSIENT RESPONSE 

In this section, the transient response of the complete system is evaluated. Frequency 

modulation is considered for the resonant transformer due to its simple application and the 

reaching a unity gain in all the load conditions regardless of the load values. 
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Fig.3.22. Current waveforms for transformer primary-side (top) and secondary-side (bottom). Left: design 

400k_Z25, right: design 400k_Z200. 

 

Table 3.24: Proposed parameter values for RT system. 

Parameter Symbol Value Units 

Input voltage Vi 450 V 

Resonant inductor Lp 79.5 µH 

Resonant capacitor Cp 1.98 nF 

Parasitic resistance Rp 1 Ω 

Parasitic inductance Ls 2.5 µH 

Characteristic impedance Zo 200 Ω 

Magnetizing inductance Lm 50 µH 

Transformer ratio n 1 - 

Output filter capacitor Co 10 µF 

Switching frequency fs 296 kHz 

Resonant frequency fo 400 kHz 

 

Table 3.24 shows the proposed parameter values for the RT system according to the 

previous design process. Note that the control input of the SRC topology is reduced from 

fs/fo = 0.8 to fs/fo = 0.74. With this reduction, the minimum value of the boost voltages (V1, 

V2) is increased in order to guarantee that these voltages are always higher than the output 

voltages. This is a necessary condition to avoid the control saturation of the output converter. 

 

Fig.3.23 shows the configuration of the control scheme for each of the output inverters 

(see the diagram of the power circuit in Fig. 3.1). The control has an external voltage loop, 

that forces the tracking of the reference voltage by the output voltage, an internal current  
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(a) 

 

 

 
(b) 

 
Fig.3.23. The control scheme of the output DC/AC converters shown in Fig. 3.1. (a): control loops. (b): 

modulator. 

 

 

loop, that guarantee the correct tracking of the reference current by the inductor current, and 

a pulse-width modulator. The reference voltage is implemented with a soft-start mechanism 

to reduce the interaction between the SRC converter and the output converters during the 

system start-up. Note that the output inverter is viewed from the resonant circuit as a load 

disturbance. With the soft-start, we reduce the magnitude of this load disturbance. A unipolar 

modulator is implemented to reduce switching noise at the output of the inverter. The 

switching frequency is 10 kHz (it could be increased if necessary). 

 

Fig.3.24 illustrates the main waveforms of the ICET system with the proposed design of 

RT topology. Note that the input current is sinusoidal and it is in phase with the input voltage. 

It is shown that the power factor of the system is equal to one. According to the figure, the 

intermediate voltage (Vb) and the boosting voltage (Vn) are nearly constant in an averaged 

sense in both load conditions. Only a higher ripple is noticed in these voltages at full load 

condition because of the second harmonic effect. Also the output voltages of both clamps 

are perfectly sinusoidal and with constant amplitude (230Vrms). Note that the maximum  



Chapter three 

 

 74 

 
(a) 

 

 

 
(b) 

 

 

 

 

  

 

Fig.3.24. Main waveforms of the complete ICET system. (a): Ro1=full load, Ro2= full load ; (b): Ro1=10%full 
load, Ro2= 10%full load. Left top and bottom: Input current (ii: blue) and input voltage (Vi: green) Right left

and bottom: output voltages (Vo1, Vo2: blue), intermediate voltages (Vb: pink), boost voltages (V1, V2: red). All 
the mentioned variables are defined in Fig. 3.1

value of the intermediate voltage is only 550 V. The maximum efficiency of the complete

system  is  91.23%, which  in  comparison  with  previous  results  (Table.3.16) is 7.1  points 

lower. This phenomenon is mainly caused by the power losses introduced by the input PFC

and the two output converters. 

 

Fig.3.25 evaluates the effect of a step load disturbance. Two situations are considered 

with equal loads (Ro1 = Ro2, left) and complementary loads (right). This last situation is the 

worst case condition, in which the resistive load is changed suddenly from minimum to 

maximum in one clamp and from maximum to minimum in the other clamp. Again, it is 

possible to observe that the DC values and the AC ripple of the intermediate voltages vary 

with the load condition while the output voltages are practically independent of the load 

changes. 
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Fig.3.25. Response to step load disturbances in the proposed topology with two high-voltage/high-power 

clamps. Control input: fs/fo = 0.8. Intermediate voltages: V1 and V2. Output voltages: vo1 and vo2.  

 

 

3.8.  CONCLUSION 

This chapter proposed a partially-controlled ICET system formed by an input PFC, an 

intermediate RT with sliding transformer, and several output inverters to supply the mobile 

loads. The input and output converters operate in closed loop while the resonant circuit 

functions in open loop. A comparison between different modulation techniques is presented 

in order to evaluate which of them allow the resonant converter operate correctly in open 

loop in this application. The principle of operation and results of each modulation is 

compared and discussed. From the point of view of control implementation, QM and PM 

require a complex control system while their efficiency is almost the same as FM.  The 

chapter also presents a detailed design process for the resonant transformer. Variations in 

the following parameters and their effects have been considered: 1) resonant frequency, 2) 

magnetizing inductance, 3) characteristic impedance. Measures on the voltage gain and 
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efficiency have been reported. The transient response of the complete system with frequency 

modulation is also evaluated. According to the obtained results, it is possible to conclude 

that the ICET system with multiple clamps has a good performance by using FM in open 

loop manner. It provides unity power factor, good quality output waveforms with constant 

rms, nearly constant DC intermediate voltages, and high efficiency.  
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This chapter presents the analysis, design and implementation of a simple and cost-

effective technique to supply the residential ICET system with multiple mobile loads. The 

topology is based on the cascaded connection of a closed-loop buck converter and a high 

frequency resonant inverter operating in closed loop with only a feed-forward term which is 

loaded by several output passive rectifiers. The proposed system includes a sliding 

transformer to supply the mobile loads, leading to a safe and flexible location of loads. The 

theoretical analysis and design of the proposed system is based on a mathematical model 

derived using the first harmonic approximation. Selected experimental results are included 

to verify the system features. In comparison with conventional topologies, the proposed 

system significantly improves efficiency, complexity and cost. 
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4.1.  INTRODUCTION 

The purpose of this chapter is to present the analysis, design and implementation of a 

simple and cost-effective technique to supply the residential ICET system with multiple 

mobile loads [98]. The proposed topology is based on the cascaded connection of a buck 

converter operating as a constant current source and a high frequency resonant inverter 

operating in closed loop with only a feed-forward term and loaded by passive rectifiers. The 

most promising features of the proposed topology is that the output voltages are nearly 

constant for all the load conditions even using passive rectifiers at the output side of the 

proposed ICET system. The drawback of this configuration is the poor transient response. 

For this reason, the topology is well suited to supply active DC loads with internal post-

regulators such as laptops, mobile phones and other loads taking advantage of a flexible 

location.  

 

The analysis of the proposed topology is carried out with a mathematical model based 

on the first harmonic approximation. By using the derived model, a systematic design 

procedure is introduced in order to get constant output voltages in all the loads and also for 

different load conditions. Moreover, to validate the performance of the proposed system, 

selected experimental results are compared to those obtained from the conventional 

topology.  

 

The main contributions of this chapter are: 1) a simple, efficient and cost-effective 

topology to supply residential loads with multiple clamps, 2) a mathematical model derived 

by using the first harmonic approximation which includes the effect of magnetizing and 

leakage inductances, and 3) a systematic design procedure for the resonant components. 

 

 

4.2.  PROPOSED TOPOLOGY TO SUPPLY MULTIPLE MOBILE CLAMPS 

  In this section the system description and principle of operation of the proposed system 

are explained.  
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 (a) 

 

 
                                                             (b)                                                (c) 

 

Fig. 4.1. (a) Schematic of the proposed DC/DC converter with multiple mobile clamps, (b) Buck converter 

current control and (c) resonant inverter control. 

 

 

4.2.1 DESCRIPTION OF THE PROPOSAL 

Fig.4.1.(a) shows the schematic of the proposed topology to supply n mobile clamps. The 

topology consists of a buck converter, a full-bridge resonant inverter (RI), resonant elements, 

a high frequency transformer, and diode bridge rectifiers with low-pass filters. In this system, 

the buck converter is responsible to inject a constant DC current (iz) to the RI. This constant 

current is essential to guarantee fixed output voltages (vo1, …, von) regardless of the load 

conditions. In practice, iz is fixed by applying a conventional closed-loop control to drive the 

switch Sb in accordance with the desired reference current (Iref), as shown in Fig.4.1.(b). As 

a consequence of the constant current, the voltage vz changes automatically as a function of 

the load due to the power matching issue (i.e., the input power is roughly equal to the total 

output power supplied to the n loads). Therefore, based on the proposed system, efficiency 

problem of the conventional fully-controlled ICET system (see chapter 2) is improved even 

for low load conditions. This property will be validated theoretically and experimentally in 

the next sections. On the other hand, the inverter operates with the simple zero crossing 

detection (ZCD) modulation strategy shown in Fig.4.1.(c). From the figure, the resonant 

current ir is used to match the switching frequency fs with the resonant frequency fo in a feed  
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Fig.4.2. Output waveforms of the resonant inverter. 

 

forward way. This control strategy causes constant amplitude in ir. By applying ZCD to the 

inverter on the one side and using a passive diode rectifier on the other side, the input energy 

is completely transferred to the load as a unidirectional flow (from input side to the output 

side only).  

 

Moreover, a passive diode rectifier is used for each clamp instead of the controlled 

rectifier employed in the conventional topology; see chapter 2. Also, a small parallel 

secondary side capacitor Cpi is included in the proposed topology to fix the output voltages. 

As a consequence of using diodes instead of switches, the cost and complexity of the 

proposed topology are reduced particularly in the case of high number of mobile clamps. 

 

4.2.2 DISCUSSION ON THE PROPOSAL  

The overall performance of the proposed topology is highly dependent on the buck 

converter in the first stage. The buck converter is a fundamental element to guarantee a fix 

output voltage and increase efficiency. This converter in collaboration with resonant inverter 

is responsible to produce a fix current for the secondary side resonant elements (Lm, Ls and 

Cp). The total impedance of these elements (ZLC) is in parallel with load (Ro). Therefore, by 

proper design of Cp the load effect can be neglected because of dominant value of ZLC (i.e. 

ZLC << Ro), resulting in fix output voltage regardless to the load conditions. The design 

process of Cp to obtain a fix output voltage will be explained in section 4.4. 
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The RI operates in closed-loop with only a feed-forward term to detect the zero-crossing 

of the resonant current. Fig.4.2 illustrates the output waveforms of the resonant inverter. The 

sinusoidal waveform is the resonant current ir and the square waveform is the voltage vp. In 

steady state, the current ir can be expressed as 

 

𝑖𝑟 =
𝜋

2
𝐼𝑟𝑒𝑓 𝑠𝑖𝑛(𝜔𝑜𝑡) (4-1) 

 

where ωo is the angular resonant frequency. Note that its amplitude is proportional to the 

output current of the buck converter. From Fig.4.2, the value of vp can be expressed as 

 

𝑣𝑝 =  𝑣𝑧 ∙ 𝑠𝑔𝑛(𝑖𝑟)  (4-2) 

 

 According to the figure, the two waveforms are completely in phase. Therefore, 

circulating reactive current is completely avoided, thus achieving unity power factor 

operation. Also, at fs = fo, the switches turn on and off at zero current, resulting in nearly zero 

switching losses [90]. As a consequence of both issues, the efficiency of the proposed 

topology improves significantly. Also, the principle of operation of the inverter allows that 

the voltage vz automatically changes according to the required output power while the current 

iz is fixed by the buck converter. Therefore, the proposed system can regulate the input power 

without using a feedback control loop.   

 

 It is worth mentioning that a fixed amplitude current can also be obtained in the 

resonant current using different approaches, for instance with a feedback control system 

including frequency or phase modulators. In these approaches, the input buck converter can 

be eliminated. However, in all these cases, the unity power factor provided by the proposed 

solution cannot be guaranteed, thus forcing the sliding transformer to operate in a more 

stressing condition. Taking into account the complex structure of the sliding transformer 

(long primary loop and several mobile secondary sides), the operation of the RI with only a 

single feed-forward current term is an interesting option to eliminate the flowing of reactive 

power in the sliding transformer. 
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Fig.4.3. Equivalent circuit of the proposed topology. 

 

 

4.3. MATHEMATICAL MODELING OF THE PROPOSED TOPOLOGY 

This section presents an equivalent model for the proposed topology. This model is 

employed to derive the main characteristics of the topology.  

 

4.3.1. MODEL OF THE PROPOSED TOPOLOGY 

The proposed topology can be represented by the equivalent circuit model shown in 

Fig.4.3 The model contains an input current source, two controlled sources, resonant 

components and equivalent resistors. The current source Iref represents the operation of the  

buck converter while the controlled sources characterize the operation of the resonant 

inverter. Note that the controlled current source reflects the primary side resonant current ir 

to the inverter input side. Besides, the controlled voltage source models the effect of the 

input voltage vz on the inverter output side. For simplicity, the magnetizing inductance, 

parallel capacitors and leakage inductance are assumed equal in all clamps (Lmi = Lm , Cpi = 

Cp and  Lsi = Ls). Also, a unity turns ratio is assumed for transformers (nt = 1). Moreover, the 

loads are modelled by the equivalent AC resistors (Rac1,…, Racn) which are  derived by 

applying the first harmonic approximation [99]. The value of Raci under steady state 

condition can be expressed as 

 

 

𝑅𝑎𝑐𝑖
=

𝜋2

8
𝑅𝑜𝑖                     𝑖 = 1, ⋯ , 𝑛. (4-3) 

 

where Roi  is the output resistor and n stands for the number of clamps. 
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4.3.2. ANGULAR RESONANT FREQUENCY 

The proposed topology operates at ω = ωo, where ω is the angular frequency. Therefore, 

to design and analyze the proposed system, an accurate expression for ωo should be obtained 

as an initial step to calculate the design parameters.  

 

First ωo should be determined by analyzing the total impedance Zi marked in Fig.4.3. In 

fact, the resonant frequency is defined as the frequency when the imaginary part of the total 

impedance is zero. The total impedance is a function of the series and parallel components 

which can be represented by the following equation: 

 

𝑍𝑖 = 𝑗𝜔𝐿𝑟 −
𝑗

𝜔𝐶𝑟
+ ∑ 𝑍𝑝𝑖

𝑛

𝑖=1

 (4-4) 

 

where Lr and Cr are the series components and Zpi stands for the parallel impedances shown 

in Fig.4.3. The amplitude of the parallel impedance can be written as 

 

|𝑍𝑝𝑖| =
𝜔𝐿𝑚𝑅𝑎𝑐𝑖

2 (𝜔2𝐿𝑠𝐶𝑝 − 1)(𝜔2𝐶𝑝(𝐿𝑚 + 𝐿𝑠) − 1) + 𝜔3𝐿𝑚𝐿𝑠(𝐿𝑚 + 𝐿𝑠)

𝑅𝑎𝑐𝑖
2 (𝜔2𝐶𝑝(𝐿𝑚 + 𝐿𝑠) − 1)

2
+ 𝜔2(𝐿𝑚 + 𝐿𝑠)2

 

 

(4-5) 

Note that this amplitude depends on the load by the resistor Raci. In order to get an impedance 

independent of the load, the following conditions must fulfill. 

 

𝜔𝐿𝑚𝑅𝑎𝑐𝑖
2 (𝜔2𝐿𝑠𝐶𝑝 − 1)(𝜔2𝐶𝑝(𝐿𝑚 + 𝐿𝑠) − 1) ≫ 𝜔3𝐿𝑚𝐿𝑠(𝐿𝑚 + 𝐿𝑠) (4-6) 

 

𝑅𝑎𝑐𝑖
2 (𝜔2𝐶𝑝(𝐿𝑚 + 𝐿𝑠) − 1)

2
≫ 𝜔2(𝐿𝑚 + 𝐿𝑠)2 (4-7) 

 

In this case, the impedance can be expressed as  

 

|𝑍𝑝𝑖| =
𝜔𝐿𝑚(𝜔2𝐿𝑠𝐶𝑝 − 1)

𝜔2𝐶𝑝(𝐿𝑚 + 𝐿𝑠) − 1
 (4-8) 

 

From (4-6) and (4-7), the design conditions for Cp can be written as 
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𝐶𝑝 ≫
1

𝜔2(𝐿𝑚+𝐿𝑠)
[1 +

𝑅𝑎𝑐𝑖𝐿𝑚+√4𝐿𝑠
2[2𝑅𝑎𝑐𝑖

2 +(𝐿𝑚+𝐿𝑠)2𝜔2+𝑅𝑎𝑐𝑖
2 𝐿𝑚(𝐿𝑚+𝐿𝑠)]

2𝑅𝑎𝑐𝑖𝐿𝑠
]  (4-9) 

 

 

 

𝐶𝑝 ≫
1

𝜔2(𝐿𝑚 + 𝐿𝑠)
[1 +

𝜔(𝐿𝑚 + 𝐿𝑠)

𝑅𝑎𝑐𝑖
] (4-10) 

 

 

These two conditions can be expressed as (4-11). 

𝐶𝑝 ≫
1

𝜔2(𝐿𝑚 + 𝐿𝑠)
[1 + 𝑀𝑎𝑥(𝑎, 𝑏)]        (4-11) 

 

𝑎 =
𝑅𝑎𝑐𝑖𝐿𝑚 + √4𝐿𝑠

2[2𝑅𝑎𝑐𝑖
2 + (𝐿𝑚 + 𝐿𝑠)2𝜔2 + 𝑅𝑎𝑐𝑖

2 𝐿𝑚(𝐿𝑚 + 𝐿𝑠)]

2𝑅𝑎𝑐𝑖𝐿𝑠
 

    (4-12) 

 

𝑏 =
𝜔(𝐿𝑚 + 𝐿𝑠)

𝑅𝑎𝑐𝑖
      (4-13) 

In this case, by using (4-4) and (4-8), the input impedance can be expressed as: 

 

𝑍𝑖 = 𝑗 [𝜔𝐿𝑟 −
1

𝜔𝐶𝑟
+ 𝑛 ∙

𝜔𝐿𝑚(𝜔2𝐿𝑠𝐶𝑝 − 1)

𝜔2𝐶𝑝(𝐿𝑚 + 𝐿𝑠) − 1
]       (4-13) 

 

The resonant angular frequency is obtained by setting (4-13) equal to zero (then by definition 

ω = ωo) and solving for ωo. The expression for ωo is written in (4-14) 

 

𝜔𝑜 = √
𝐿𝑚(𝑛𝐶𝑟+𝐶𝑝) + 𝐶𝑝𝐿𝑠 + 𝐶𝑟𝐿𝑟 + √𝑐

2𝐶𝑝𝐶𝑟(𝐿𝑚𝐿𝑟 + 𝐿𝑚𝐿𝑠 + 𝑛𝐿𝑟𝐿𝑠)
 

𝑐 = 𝐶𝑝[𝐶𝑝𝐿𝑚(𝐿𝑚 + 2𝐿𝑠) + 2𝐿𝑚𝐶𝑟(𝑛𝐿𝑚 − 𝐿𝑟 − 𝑛𝐿𝑠)

+ 𝐿𝑠(𝐶𝑝𝐿𝑠 − 2𝐶𝑟𝐿𝑟)] + 𝐶𝑟
2[𝑛𝐿𝑚(𝑛𝐿𝑚 + 2𝐿𝑟) + 𝐿𝑟

2] 

 

 (4-14) 
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4.3.3. OUTPUT VOLTAGE 

In Fig.4.3, the output voltage vsi is a sinusoidal signal operating at the resonant frequency. 

Its amplitude relies on the parallel impedance (Zp) and the amplitude of the resonant current  

 

𝑉𝑠𝑖 = (|𝑍𝑝𝑖| ∙ 𝐼𝑟) ∙

1

𝐶𝑝𝜔𝑜

𝐿𝑠𝜔𝑜+
1

𝐶𝑝𝜔𝑜

=
𝜔𝑜𝐿𝑚(𝜔𝑜

2𝐿𝑠𝐶𝑝−1)

𝜔𝑜
4𝐶𝑝

2(𝐿𝑠𝐿𝑚+𝐿𝑠
2)+𝜔𝑜

2𝐶𝑝𝐿𝑚−1
∙

𝜋

2
𝐼𝑟𝑒𝑓  (4-15) 

 

From Fig.4.1 and Fig.4.3, the output voltage voi is obtained by rectifying and filtering the 

sinusoidal voltage vsi. Therefore, voi can be expressed as 

 

𝑣𝑜𝑖 =
2

𝜋
𝑣𝑠𝑖 =

𝜔𝑜𝐿𝑚(𝜔𝑜
2𝐿𝑠𝐶𝑝 − 1)

𝜔𝑜
4𝐶𝑝

2(𝐿𝑠𝐿𝑚 + 𝐿𝑠
2) + 𝜔𝑜

2𝐶𝑝𝐿𝑚 − 1
∙ 𝐼𝑟𝑒𝑓  (4-16) 

 

It must be noticed that the output voltage is independent of the load conditions by assuming 

that the condition (4-11) is fulfilled.  

 

4.3.4. DESIGN CONDITION FOR THE REFERENCE CURRENT 

The last step in the mathematical modeling of the proposed topology is to determine a 

design condition for Iref. As described above, the voltage vz varies as a function of the load. 

Once the input current to the resonant converter Iref is constant, the variations in the input 

power produced by load changes modify the voltage vz. In the worst case scenario (i.e., Roi 

= Roimin), the relation between these variables can be expressed, assuming an ideal efficiency 

(100%), as: 

 

𝑣𝑧𝐼𝑟𝑒𝑓 = ∑
𝑣𝑜𝑖

2

𝑅𝑜𝑖𝑚𝑖𝑛

𝑛

𝑖=1

 (4-17) 

Moreover, to ensure a correct operation of the buck converter, its input voltage Vb must 

be always greater (or equal) than the output voltage vz. According to this condition, (4-17) 

can be re-written as follows 

 



Simple and cost effective solution for the partially-controlled ICET system 

 

87 

 

Table.4.1. Circuit parameters for the proposed design. 

Parameter Symbol Value Units 

Input voltage  Vb 15 V 

Magnetizing inductance Lm 50 µH 

Leakage inductance Ls 2.5 µH 

Switching frequency  fs 110 kHz 

Minimum load resistor  Roimin 100   Ω 

Output voltage Voi 22 V 

 

 

∑
𝑣𝑜𝑖

2

𝑅𝑜𝑖𝑚𝑖𝑛

𝑛

𝑖=1

≤ 𝑉𝑏𝐼𝑟𝑒𝑓 (4-18) 

From (14-18), the value for Iref can be limited as: 

 

𝐼𝑟𝑒𝑓 ≥ ∑
𝑣𝑜𝑖

2

𝑅𝑜𝑖𝑚𝑖𝑛 𝑉𝑏

𝑛

𝑖=1

 (4-19) 

In practice, the value of Iref must be slightly over-dimensioned in order to compensate 

the ideal assumption of 100% efficiency. 

 

4.4.  DESIGN OF THE PROPOSED TOPOLOGY 

In this section the design procedure for the proposed topology is presented. A topology 

with two clamps is considered for the design.  

 

The necessary circuit parameters for starting the design process are listed in Table.4.1. 

Note that these values correspond to a low-power experimental prototype. The design 

process is based on the worst-case scenario (i.e., Roi = Roimin) and it is presented in the 

following steps: 

 

Step I:  In the first step, the reference current of the buck converter is determined based on 

Table.4.1 and (4-19). From (4-19), the minimum value of the reference current is Iref 

= 0.64A. This value introduces the minimum current for a correct operation of the 

buck converter. 
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Fig.4.4. Experimental set-up with two mobile clamps. 

 

 

Step II: The value of the parallel capacitor Cp for each clamp can be obtained from (4-16) as 

Cp = 80nF. According to (4-11), this value ensures a constant output voltage 

independent of the load conditions.  

 

  

 

 

  

Step III: In the final step, the values for Cr and Lr are obtained. It should be noted that the

primary  leakage  inductance  has  a  small  value.  Also,  this  value  may  experience

some changes during the operation of the system. Therefore, to eliminate the effect 

of this leakage inductance, Lr should be chosen noticeably higher. In this example

Lr is chosen equal to 40µH which is drastically higher than 2.5µH. By solving (4- 

14), Cr = 68nF is calculated.  

 

By following these steps a proper design for the proposed topology is reached. The 

theoretical design is validated experimentally in the next section. 

 

4.5. EXPERIMENTAL VALIDATION AND COMPARISON 

The predicted theoretical results are verified experimentally in this section. Also, a 

comparison between the proposed and conventional topologies is included. A high frequency 

DC/DC resonant converter prototype with two clamps has been built as shown in Fig.4.4. 

The main circuit parameters are given in Table4.2. Note that the values are chosen based on 

the design process explained in the previous section. Moreover, some selected results for the 

conventional topology will be also presented for comparison purposes. It should be 
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mentioned that a system with amplitude modulation control technique has been built and 

tested based on [82]. Table.4.3 lists the main circuit parameters of the conventional topology. 

To have a fair comparison, the values of this table are selected according to the design 

process presented in [82] to achieve the same output power, output voltage and switching 

frequency. 

 

 

4.5.1. COMPARISON BETWEEN THE CONVENTIONAL AND PROPOSED TOPOLOGIES 

Fig.4.5. shows the main waveforms of the conventional and proposed topologies. As 

shown, the conventional topology has amplitude modulation in the resonant current which 

produces higher peak value compared to the current of the proposed topology. In the 

conventional topology, the power flow from the input source to the resonant tank is decided 

by the closed-loop control system. When the amplitude current increases, the power is  

 

 

Table.4.2. Circuit parameters for the proposed topology. 

Parameter Symbol Value Units 

Input voltage of buck converter Vb 15 V 

Buck converter inductor Lb 50 µH 

Buck converter capacitor Cb 22 µF 

Series resonant capacitor Cr 68 nF 

Series resonant inductor Lr 40 µH 

Magnetizing inductances Lm1, Lm2 50 µH 

Leakage inductance Ls 2.5 µH 

Gap distance Gd 0.1 cm 

Transformer turn-ratio nt 1 - 

Parallel resonant capacitors Cp1, Cp2 82 nF 

Output filter inductors Lo1, Lo2 4 mH 

Output filter capacitors Co1, Co2 10 µF 

Minimum resistive loads Ro1min, Ro2min 100   Ω 

Output voltages vo1, vo2 22 V 

Reference current Iref 0.7 A 

RI switching frequency fs 110 kHz 

Buck converter switching frequency fb 50 kHz 

Buck converter diode  1N5817 

Buck converter  and RI switches MOSFET IRFP250N  

Driver HIP4081A 

Diode rectifier KBU4M 
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Table.4.3. Circuit parameters for the conventional topology. 

Parameter Symbol Value Units  

Input voltage  Vb 15 V  

Series resonant capacitor Cr 68 nF  

Series resonant inductor Lr 40 µH  

Magnetizing inductances Lm1, Lm2 50 µH  

Leakage inductance Ls 2.5 µH  

Gap distance Gd 0.1 cm  

Output filter capacitors Co1, Co2 20 µF  

Minimum resistive loads Ro1min, Ro2min, 100   Ω  

Transformer turn-ratio nt 1 -  

Switching frequency fs 110 kHz  

Output voltages vo1, vo2 22 V  

 

flowing into the resonant tank; when the amplitude current decreases, the input power is zero 

and the stored energy in the resonant tank is discharged in the loads. This principle of 

operation produces a higher peak current in all devices (including power switches and 

diodes). Conversely, in the proposed topology the power flow is continuous and constant, 

reducing the stress of the devices.   

 

  Fig.4.6 shows the output waveforms of the RI (voltage vp and current ir) for the proposed

topology  in  two  different  load  conditions.  As  expected, in  the  proposed  topology,  the 

current has a constant peak value independent of the load. The voltage is a (nearly) square  

 

         
 

(a)                                                                                     (b) 

 

Fig. 4.5. Measured output voltage voi (Top, 10V/div) and resonant current ir (500 mA, 50µs/div). (a) 

conventional topology, (b) proposed topology.  
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Fig.4.6. Measured resonant current ir (sinusoidal waveform, 200mA/div, 2µs/div) and voltage vp (square 

waveform, 5V/div, 2µs/div) in two load conditions for proposed topology. Full load (left) and 10%full load 

(right).  

 

wave and its amplitude depends on the load condition. As predicted by (4-17) this voltage 

changes according to the output power. 

 

Fig.4.7 shows the measured efficiency of the conventional and proposed topologies. Note 

that higher efficiency is obtained in the proposed topology. In particular, at 10 % of full load, 

the proposed topology improves the efficiency in nearly 25 points compared to the 

conventional topology result. This increase is a consequence of the input voltage vz variation 

according to the load consumption. In the conventional system there is no adaptation to load 

condition. The maximum efficiency for the proposed topology is obtained at full load, being 

80% in practice. Note that the power losses related to the buck converter are also included 

in this figure. 

 

4.5.2. PERFORMANCE IN STEADY STATE 

Fig.4.8 shows the voltage vz as a function of loads. As expected, this voltage changes 

according to the load conditions. This phenomenon is caused by the fixed input current 

provided by the buck converter. According to the figure, the maximum vz is related to the 

full load condition where the maximum power is transferred to the loads.  

 

Fig.4.9 shows the experimental results of output voltage as a function of load1 and load2 

for the proposed topology. The measures for both output voltages roughly coincide (vo1 = 

vo2) and, therefore, only the voltage vo1 is depicted in this figure.  The results show that the  
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Fig.4.7. Efficiency as a function of load. Conventional topology (grey), proposed topology (black). 

 

 

 

 
 

Fig.4.8. Measured input voltage vz as a function of load. 

 

 

 

 

 

 
 

Fig.4.9. Steady state output voltage vo1, vo2 as a function of load demand: load2=10%full load and 

load1changing (black), load2=load1 both load changing (grey), load2=full load and load1 changing (dash line) 
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 output voltage  is  approximately  constant  for  all  the  load  conditions  when  using  the 

proposed topology. 

 

Fig.4.10 illustrates the variation of output voltage vo1 for different clamp position along 

the primary winding loop. Note that the length of the primary winding loop is 120cm. The 

experimental measurement for vo1 is obtained alongside the minimum (5cm) to the maximum 

(60cm) clamp distance from the resonant inverter.  As evident, the output voltage is nearly 

constant in all the clamp positions. This interesting property is achieved due to the constant 

current ir flowing through the primary winding loop.  

 

Fig.4.11 shows the output voltage as a function of air gap variation. It should be noticed 

that the air gap is defined as the distance between primary and secondary winding. From the 

figure, by increasing the air gap the output voltage is reduced. As predicted by (4-16), the 

output voltage depends on the magnetizing inductance and leakage inductance, which vary 

with the gap distance. Therefore, the mechanism of the clamp connection to the primary 

winding loop should be considered as an important issue. In fact, a robust mechanical 

connection to the primary winding loop is necessary to guarantee constant output voltage in 

the proposed system. 

 

 

 

 
 

Fig.4.10. Experimental results of the output voltage voi as a function of clamp position along the primary 

winding loop.  
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Fig.4.11. Experimental results of the output voltage vo1 as a function of clamp air gap  

 

4.5.3. PERFORMANCE IN TRANSIENT STATE 

Fig.4.12. shows the main waveforms of the proposed topology in transient state. Fig.4.12. 

(a) shows the output voltage vo1 and current io1, respectively during the step load changes 

from full load to 10% and return to full load. As predicted theoretically, the output voltage 

in steady state is independent to the load conditions. As explained before, the proposed 

system has slow transient response which is expected from a control system without 

feedback loops.  This allows us to identify the practical application of the proposed topology 

for supplying active DC residential loads with internal post-regulators (laptops, mobile 

phones, ...).  Fig.4.12. (b) illustrates ir and vz, during step load changes. According to the 

figure, the input voltage vz is automatically changed according to the load conditions. Also, 

as a consequence of fixed input current provided by buck converter, the amplitude of the 

resonant current is fixed in all the load conditions.  

 

4.5.4. COST COMPARISON 

Table.4.4 lists the component count of the conventional and proposed topologies. From 

the point-of-view of cost, the negative point of the conventional topology is the increasing 

number of power switches with the number of clamps. In addition, the number of control 

systems including voltage and current sensors, integrated control circuits and drivers also 

increase with the number of clamps. In the case of the proposed topology, only the number 

of power diodes, capacitors and inductors increase with the number of clamps. It is worth 

mentioning that for a low number of clamps, both topologies have similar cost. However,  
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(a) 

 

 
(b) 

Fig.4.12. Main waveforms of the proposed topology in transient-state. (a) output voltage vo1 and output current 

io1, respectively (5V/div, 100mA/div, 5ms/div). (b) resonant current ir , input voltage vz, respectively (5V/div, 

500 mA/div, 5ms/div). 

 

for a high number of clamps, the cost of the conventional topology increases drastically 

compared to the cost of the proposed topology. Consequently, the proposed topology is a 

cost-effective solution when a system with a high number of clamps is required. 

 

Table.4.4. Comparison between conventional and proposed topologies. 

 

Parameters 

Conventional Proposed 

Number of elements Number of elements 

Switch 4+4n 5 

Diode 0 1+4n 

Capacitor 1+n 2+2n 

Inductor 1 2+n 

Transformer n n 

Control system 1+n 2 

Driver 1+n 2 
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4.6. CONCLUSION 

A new approach to supply mobile loads with an ICET system has been presented in this 

chapter. It is based on the cascaded connection of a buck converter operating as a constant 

current source and high frequency resonant inverter working with only a feed-forward 

control system. A theoretical tool for the analysis and design of the proposed topology has 

been introduced. The analysis starts with the development of a static model of the resonant 

converter based on the first harmonic approximation. The model is simple, predicts 

accurately the particular properties of the proposed approach, and is useful for the derivation 

of the design conditions for the converter components. In addition, a systematic step-by-step 

procedure has been proposed to design the converter components. The theoretical analysis 

has been practically validated by selected experimental results. The properties of the 

proposed approach have been compared with the properties of the conventional approach, 

resulting in higher efficiency and lower cost. In particular, the cost is more competitive as 

the number of mobile receivers of the system increases. 
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This chapter presents the overview of the proposed thesis. Also, it has a discussion on 

the main results and innovative contributions. The main results are classified into the 

different section according to the objectives of each chapter. Finally, the future works are 

presented and explained in detail. 
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5.1. OVERVIEW 

This thesis addresses the design, analysis and implementation of the ICET system with 

multiple clamps in residential areas. As mentioned, the ICET system has been developed 

and investigated widely. However, few attempts have been made to bring this technology 

into the residential area which traditionally is supplied with the conventional energy 

distribution system. The ICET system due to several benefits could be a good alternative to 

the conventional distribution system.  

 

In the preamble of this thesis, the state-of-the-art and current researches dealing with 

ICET system have been presented. Also, a classification for the ICET applications are 

introduced according to power level and place of use. In fact, the current applications are 

mostly working with single load and often not optimized. Hence, there is an obvious lack of 

design and optimization methods applicable to an ICET system with multiple clamps. The 

objectives of this thesis are used to fill this gap. To achieve this goal, the concept of the 

problem is separated into multiple subsections. These subsections present several solutions 

from different perspectives for the ICET with multiple clamps.  Such as adaptive control 

algorithm in Chapter 2 which is the key point of this thesis, which give the possibility to 

have an ICET system with long primary winding loop and always efficient. This algorithm 

operates without direct information about the load consumption and always update the input 

current as an optimal value. Moreover, a partially-controlled system has been introduced and 

compared in Chapter 3. Also, several modulation techniques have been presented and the 

principle of operation of ICET with them are discussed. Furthermore, from the cost and 

simplicity point of view, a simple and cost-effective system is presented in Chapter 4 which 

is operating well and nearly constant output voltage is achieved for all the load conditions. 

It would be indeed easy to use this information for further research and development by 

engineers and researchers. In fact, there are several unsolved challengeable problems which 

could be solved in future works. Finally, to validate the proposed modeling and optimization 

methods, a low power prototype is designed, built and successfully tested. 

 

5.2. MAIN RESULTS AND CONTRIBUTIONS 

The main results and original contributions of this thesis are presented in following points 
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 The adaptive control algorithm for ICET system with multiple clamps: A new 

control method based on the estimation of the load consumption by using an 

indirect information from the primary control signal was presented in Chapter 2. 

The proposed algorithm is applicable to the multiple mobile clamps and it deals 

with load step changes. The proposed control significantly improves the system 

efficiency, especially in low load conditions.  

 

 The partially-controlled system for the ICET applications: A new partially-

controlled system as an alternative to the conventional fully-controlled topology 

has been presented in Chapter 3. The features of the new topology were obtained 

by considering several modulation techniques, including frequency modulation, 

phase modulation and quantum modulation. The performance of the new topology 

has been evaluated and the best modulation technique has been identified. 

 

 A simple, efficient and cost-effective topology to supply residential loads with 

multiple clamps (see Chapter 4): The new topology was presented based on the 

cascaded connection of a buck converter and a high frequency resonant inverter 

loaded by several output passive rectifiers. The proposed system includes a sliding 

transformer to supply the mobile loads, leading to a safe and flexible location of 

loads. 

 

 Mathematical modeling of an ICET system by including the effect of magnetizing 

and leakage inductance (see Chapter4): The analysis of the proposed topology 

was carried out with a mathematical model based on the first harmonic 

approximation. By using the derived model, a systematic design procedure was 

introduced in order to get constant output voltages in all the loads and also for 

different load conditions. 

 

 

 Design procedure for the resonant components of the partially-controlled ICET 

system (see Chapter 4): The design process considered the effects of the resonant 

frequency, magnetizing inductance, and characteristic impedance. By taking into 

account all these parameters, the component values to have an ICET system with 
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a fixed output voltage are obtained. Moreover, the effect of each parameter on 

system performance is analyzed. 

 

 Implementation of the ICET system with two mobile clamps: A new prototype to 

supply two mobile clamps have been built and tested, as shown in Chapter 4. The 

prototype can supply the movable load such as laptop, grass cuter and tablet. The 

new system is simple and cost-effective and it is a good alternative to the 

conventional system. The maximum efficiency of the proposed system is obtained 

at full load, being 80% in practice. 

5.3. OUTLOOK AND PERSPECTIVES 

Some possible future works related to this thesis are summarized in the following points: 

 

 Considering the effect of magnetizing and leakage inductance in adaptive control 

algorithm: In the proposed adaptive control system the effect of magnetizing and 

leakage inductance is neglected in order to simplify the mathematical modeling. 

In future works these elements could be considered in the mathematical model to 

achieve a high robust control system. 

 

 Implementation of adaptive control system to validate the theoretical analysis: In 

this thesis only theoretical analysis of the adaptive control algorithm has been 

presented. In future work this algorithm could be tested experimentally. Also the 

effect of the number of clamps on the system operation should be experimentally 

tested. 

 

 Analysis the effect of different resonant tank configurations on ICET topology 

with multiple clamps: This thesis only addressed the ICET system with series 

resonant converter. As we know, several configurations such as parallel or series 

parallel could be implemented in resonant tank. The analysis of these 

configurations on ICET system with multiple clamps could be considered for 

future works. 

 

 Implementation of current source topology: This thesis focused in voltage source 

converters. It is well known that current source converters can provide different 
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features, but they are not considered for ICET systems. Therefore, the 

implementation of the ICET system with a current source for future works is 

recommended. 

 

 Prototype: Only a low power prototype has been implemented to validate the 

theoretical predictions. It could be interesting to realize a large one that integrates 

the digital control for desired detection and local activation. 

 

Despite these possible improvements, this thesis has successfully proven the feasibility 

of the ICET system with multiple clamps. Still there are many challengeable problems to 

solve in ICET systems with multiple clamps. As researchers will solve these problems, then 

a door will open to future applications for these systems. 

 

In conclusion, the ICET system has been gaining more and more success and reputation 

in industry and academic area. We strongly recommend this system for residential area due 

to its especial futures. We hope will see the first commercial product in close future. 
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