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Abstract Plasma bubbles are prevalent features of the equatorial/low-latitude ionosphere which are
seldom observed at middle and high latitudes. Understanding the influence of geomagnetic storms on
plasma bubbles’ migration to higher latitudes is an important space weather topic, since a geomagnetic
storm is an important phenomenon of space weather. This paper reports on the first observations

of postsunset/evening midlatitude plasma bubbles in the European sector during the main phase of
severe storms (Dst < —200 nT) on 6 April 2000 and 11 April 2001. Plasma depletions observed in Global
Navigation Satellite System total electron content measurements are confirmed with those observed from in
situ Defense Meteorological Satellite Program ion density measurements. The results show that the plasma
bubbles were migrating north at virtual speeds of 400 m/s and on each of the storm days they extended
as far north as ~42° (geographic latitude). It is estimated that the plasma bubbles may have grown to

a maximum apex height of approximately 4000 km. During the time of bubble occurrence, the evening
midlatitude plasma was enhanced and the equatorial ionization anomaly extended to European
midlatitudes. In addition, evidence of the upward plasma motion was found in ionosonde h,,F, and h’F
measurements, while the interplanetary electric field £, was enhanced. This was found to suggest that
the possible mechanism for the enhancement of midlatitude plasma and subsequent midlatitude plasma
bubbles occurrence was the eastward penetration electric field associated with B, southward turning.

1. Introduction

Plasma bubble irregularities are generally equatorial/low-latitude nighttime ionospheric plasma density
depletions that have adverse effects on transionospheric radio signals used by advanced technologies that
modern society has come to depend on, for example, for navigation as well as satellite timing, positioning, and
communication. These irregularities are generated by the generalized Raleigh-Taylor (R-T) instability through
various seeding mechanisms, such as neutral wind, gravity waves, and electric and magnetic fields [Hudson
and Kennel, 1975; Kelley et al., 1976; Ott, 1978; Li et al., 2009a; Abadi et al., 2015]. Until recently, the zonal elec-
tric field has been the most directly identified factor in the generation of plasma bubbles [e.g., Abdu et al.,
1992, 1997; Sekar et al., 1997; Fejer et al., 1999; Abdu, 2012; Kil, 2015]; however, recent studies [e.g., Fukao et al.,
2006; Li et al., 2009a, 2016] have shown that gravity waves could also play an important role. During daytime
the electric field is eastward and often shows an enhancement after sunset before it turns westward; this
phenomenon is known as the prereversal enhancement (PRE). The PRE causes an enhanced upward E x B
drift that rapidly lifts the F region to higher altitudes thus creating a steep electron density gradient of the
rising F region which becomes unstable to density perturbations leading to higher R-T instability growth
resulting in plasma bubble formation [Woodman, 1970; Farley et al., 1986; Kil and Heelis, 1998; Abdu, 2012;
Abadietal., 2015].

A geomagnetic storm, an important space weather phenomenon, may enhance or inhibit the development
of plasma bubble depending mainly on the perturbations in the zonal electric field at the equator caused by
the variable nature of the high-latitude and low-latitude coupling [Fejer et al., 1999; Carter et al., 2014a, 2014b;
Tulasi Ram et al., 2015; Carter et al., 2016]. When the interplanetary magnetic field (IMF) B, component turns
southward, high-latitude electric field penetrate to equatorial latitudes as prompt penetrating electric field
(PPEF), or disturbance dynamo electric field (DDEF) [Senior and Blanc, 1984; Spiro et al., 1988]. Global thermo-
spheric neutral wind circulation induced by high-latitude joule heating produce westward (eastward) daytime
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(nighttime) DDEF that generates long lasting electric field disturbances at middle and low latitudes [Blanc and
Richmond, 1980; Horvath and Lovell, 2013; Tulasi Ram et al., 2015]. During the southward turning of the IMF
B,, the solar wind moves across the southward IMF and generates the interplanetary electric field (IEF) which
is transferred from the magnetosphere to the ionospheric polar regions when the shielding is ineffective
(i.e, undershielding) resulting in PPEF. The PPEF, eastward (westward) during the daytime (nighttime),
penetrate to low latitudes within a few minutes causing disturbances that last about 2-3 h [Kelley et al., 1979;
Spiro et al., 1988; Abdu, 2012; Horvath and Lovell, 2013; Tulasi Ram et al., 2015]. If the undershielding PPEF
with eastward polarity in the postsunset sector while B, is southward (resulting in upward plasma drift) is
superposed in phase with the normal upward vertical drift due to the PRE, conditions for plasma bubble
development are significantly enhanced [Abdu, 2012].

Although plasma bubbles are primarily a feature of the equatorial/low-latitude region, a few studies have
reported on their occurrence at midlatitudes. The plasma bubbles and associated irregularities at these lati-
tudes are thought to be either an extension of the equatorial plasma bubbles which have risen to high apex
heights and extended to higher latitudes along the magnetic field lines or local irregularities triggered by the
Perkins instability [Li et al., 2009al. A study by Sahai et al. [2001] reported observations of small-scale inten-
sity depletions over Asian midlatitudes (specifically Japan) that were drifting at velocities of 20 m/s in the
southwest direction during the recovery period of the 12 February 2000 storm. They suggested that these
depletions were generated from the interaction between mesoscale traveling ionospheric disturbances and
enhanced regions of the equatorial ionization anomaly (EIA) based on total electron content measurements
and therefore associated the depletions to equatorial plasma depletions. Looking at the same storm over
the same region, Ma and Maruyama [2006] showed that the midlatitude plasma bubble’s vertical drift was
decreasing with altitude and time and concluded that since it was drifted northeast, it was triggered by the
PPEF in the equator. However, although Li et al. [2009a] reported on low and midlatitudes plasma bubbles
in the Chinese and Japanese sectors during the 10 November 2004 storm, they found that the midlatitude
plasma bubbles over the Chinese sector were not linked to equatorial electrodynamics but may be due to
the coupling between the Perkins and sporadic E (i.e., E;) layer instabilities as these bubbles were observed
simultaneously with spread F and E; layer.

In this paper we investigate postsunset plasma bubbles that were observed from ionospheric total electron
content (TEC) measurements over the European midlatitudes following storm commencements of two severe
storms (i.e,, Dst < —200 nT as defined by Loewe and Prélss [1997]) on 6 April 2000 and 11 April 2001. The results
suggest that these depletions are related to equatorial plasma bubbles as they are observed simultaneously
with or after equatorial plasma bubbles seen from the Defense Meteorological Satellite Program (DMSP) ion
densities and during the EIA extension to midlatitude regions.

2. Data

Parameters of the solar wind, i.e., zcomponent of the IMF, i.e., IMF B,, and IEF E, as well as auroral index (AE) and
the symmetric component of the ring current index (SYM-H) have been used to examine the temporal evolu-
tions of the two storms studied. In this study, the 1 min IMF B, and |EF £, measurements from the Advanced
Composition Explorer (ACE) satellite are shifted to a dynamic model bow shock nose location and were
obtained from the NASA Goddard Space Flight Center’'s OMNIWEB interface (https://omniweb.gsfc.nasa.gov./
form/omni_min.html). The 1 min geomagnetic indices, i.e., AE and SYM-H, were obtained from the World Data
Center for Geomagnetism, Kyoto University (wdc.kugi.kyoto-u.ac.jp) and were used to determine the strength
of the geomagnetic and auroral activities, respectively. Note that SYM-H essentially gives the same informa-
tion about the strength of the ring current as the well established Dst index [lyemori, 1990; lyemori and Rao,
1996; Wanliss and Showalter, 2006] but sampled at higher temporal resolution than Dst.

Global Navigational Satellite System (GNSS) TEC observations are used to understand the impact of the storms
under investigations on the ionosphere, in particular the appearance of plasma bubbles at European midlat-
itudes. Vertical TEC from several European GNSS stations, see Table 1 for coordinates, were obtained at 30 s
temporal resolution and elevation cutoff of 30° using an algorithm developed at Boston College. This algo-
rithm uses L1 and L2 GPS frequencies (i.e., 1575.42 and 1227.60 MHz, respectively) to derive slant TEC and
applies differential satellites code biases published by the University of Bern and receiver biases estimated by
minimizing TEC variability between 02:00 and 06:00 local time to get absolute values [Seemala and Valladares,
2011].In this algorithm slant TEC are mapped to vertical TEC, henceforth TEC, by using a thin shell model at an
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Table 1. Geographic and Geomagnetic Coordinates of Ground-Based Instruments Used

in This Study
Station  Geographic  Geographic = Geomagnetic =~ Geomagnetic  Local Time
Code Latitude Longitude Latitude Longitude (Hours)
GPS
ANKR 39.89 32.76 32.24 104.97 UT+2.18
BUCU 44.46 26.13 39.26 99.37 UT+1.74
EBRE 40.82 0.49 33.87 76.40 UT+0.03
GENO 44.42 8.92 38.79 84.19 UT+0.59
GRAS 43.75 6.92 37.90 82.35 UT+0.46
MAD2 4043 355.75 33.52 72.49 UT-0.28
MARS 43.28 5.35 37.27 80.93 UT+0.36
MATE 40.65 16.70 34.01 90.18 UT+1.11
NICO 35.14 33.39 28.64 105.15 UT+2.23
NOTO 36.88 14.99 28.75 88.08 UT+1.00
TUBI 40.79 29.45 35.07 101.91 UT+1.96
VILL 40.44 356.05 33.52 72.73 UT-0.26
lonosonde
EB040 40.80 0.50 33.84 76.40 UT+0.03

ionospheric altitude of 350 km. TEC from several of GNSS stations used showed signatures of plasma deple-
tions and therefore the rate of TEC index (ROTI), as defined by Pi et al. [1997], from these stations was derived
to determine the temporal evolution of small-scale fluctuations. This parameter is often used to study iono-
spheric fluctuations [e.g., Basu et al., 1999; Nishioka et al., 2008; Li et al., 2009b; Oladipo and Schiiler, 2013], since
the 5 min ROTI detects ionospheric structures with a few kilometers spatial resolution, while plasma bubbles
have scale sizes of the order of a hundred kilometers [Nishioka et al., 2008]. In situ ion density measurements
obtained from DMSP F12, F13, and F15 satellites at altitudes of ~850 km were analyzed and used to con-
firm TEC detected plasma bubbles. In addition, ground-based measurements from an ionosonde in Roquetes,
Spain (EB040: 40.8°N, 0.5°E; magnetic latitude 33.8°) were used for further investigation and insight on the
origin of these irregularities.

3. Results and Analysis

3.1. The 6 April 2000 Storm

Figures 1a-1e show temporal evolution of the IMF B, component, solar wind speed, IEF E,, and magnetic
indices AE and SYM-H during the period 4-8 April 2000, while Figures 1f-1j show the same parameters but for
the period 9-13 April 2001. From plots in Figures 1a- 1e we observed that a storm commenced on 6 April 2000
when IMF B, turned strongly southward from around 16:00UT. It remained in this polarity for about 8.75 h, until
roughly 00:45 UT, and reached a minimum of approximately —33 nT at ~23:12 UT. After the southward turning
of IMF B, the solar wind speed sharply increased from 365 km/s (16:45 UT) to 585 km/s (16:50 UT), reaching a
maximum of 637 km/s the next day (7 April) ~ 09:12 UT. IEF £, also sharply increased from 1 mV/m (16:45 UT)
to 12 mV/m (17:16 UT), reaching a maximum of 19 mV/m at ~23:12 UT. Subsequent to the southward turning
of IMF B,, a geomagnetic storm commenced with a sudden storm commencement at 16:40 UT, as indicated
by a vertical red dashed line in Figures 1a-1e. During this storm, the AE index increased sharply reaching
a maximum of 2481 nT at around 17:50 UT and SYM-H decreased to a minimum of —320 nT at ~00:10 UT
on 7 April.

During this storm, GNSS TEC measurements from PRN 1 and PRN 16 over Spain (i.e., EBRE, MAD2, and VILL)
exhibited plasma depletions between ~19:35 and 21:10 UT (~19:35-21:10 LT) on 6 April 2000 (i.e., during
the main phase of the storm), as seen in the top panel plots of Figure 2. Note that the color bar shows the
geographic latitude range of the ionospheric pierce points (IPP), indicating that the latitudes at which these
depletions are observed fall roughly between 40°N and 42°N, corresponding to apex heights of roughly 3300
and 4000 km. To get an idea of the width and depth (i.e,, minimum dTEC) of the bubbles, the TEC data were
detrended using a fourth-order polynomial to remove as much of the diurnal trend as possible. The TEC
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Figure 1. Interplanetary magnetic field B,, solar wind V;,,, interplanetary electric field IEF E,, and geomagnetic indices AE and SYM-H during the period

(a—e) 4-8 April 2000 and (f-j) 9-13 April 2001.
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Figure 3. lon densities measurements from DMSP satellites F12 and F15 on 6 April 2000. (a) Blue asterisks represent the
location of the GNSS receivers; the red triangle represents the location of the ionosonde, while also showing the DMSP
satellites tracks. (b—d) The geomagnetic latitude (MLAT) and geographic latitude (GLAT) of the observations.

deviations/perturbations shown in the middle panel plots of Figure 2 reveal that the bubbles had widths of
16-38 minutes, and depth range of 6-9 TEC unit (TECU, 10'® el m~2). Corresponding to these bubbles, ROTI
(shown in bottom panel plots of Figure 2) reached a maximum of about 0.6-1.1 TECU/min. These ROTI val-
ues correspond to weak amplitude scintillation (S, < 0.4) caused by the presence of small-scale ionospheric
irregularities such as plasma bubbles [Beach and Kintner, 1999; Basu et al., 1999]. The ROTI values associated
with the bubbles observed in this study are also similar to those observed by Nishioka et al. [2008], Li et al.
[2010], and Oladipo and Schiiler [2013] for ionospheric irregularities at equatorial and low latitudes.

Figure 3a shows passes of DMSP satellites F12 and F15, while Figures 3b—3d show ion density measurements
from these passes coincidental to the time of observations of TEC plasma depletions during the 6 April 2000
storm. Note that the cyan horizontal lines/curves in Figure 3a estimates the location of the magnetic equator
and the northern crest of the EIA. These DMSP F12 and F15 results in Figures 3b and 3c show plasma bubbles
that were detected at equatorial and low latitudes, between roughly 3°S and 17°N geomagnetic latitudes
(5°-27°N geographic latitudes). Compared to the TEC plasma bubbles, the DMSP detected plasma bubbles
appear earlier (i.e,, around 18:54-19:02 UT) and at lower latitudes than those detected by the GNSS stations.
However, these DMSP satellites passes are to the east (by about 15°-30°) of the detecting GNSS stations,
which may indicate that the bubbles originated from the equator and drifted northwest to appear at mid-
latitudes. The ion densities of DMSP F15 in Figure 3¢ show bubbles that may have extended from low to the
middle latitudes (10° -30°N geomagnetic latitudes, 20° -39°N geographic latitudes) but still at lower latitudes
than the GNSS receivers that detected similar TEC depletions. These bubbles appear at around the same time
as the TEC depletions detected by MAD2 and VILL but a few minutes later than those detected by EBRE.

Figure 4 shows Ry, representing the diurnal TEC deviation from the average of five quietest days of the
month, for the period 4-8 April 2000 for the GNSS receivers presented in Table 1. Ry is calculated from
Rrec = TEC — TECqyiet/ TECquier Where TEC i, is the average of the five quietest day of the month. A TEC
enhancement is observed throughout this period around 00-06 UT. However, on the day of the storm (6 April
2000) TEC is also enhanced around 19:00-23:00 UT (after storm’s commencement and around the time of TEC

and ion density depletions) at most stations, except BUCU, TUBI, and NICO which all fall east of 26° longitude.
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Figure 4. Ratio of diurnal TEC to average TEC of the five quietest days of the month, i.e. Rygc, during the period 4-8 April 2000. The color bar represents IPP

geographic latitude range.

The greatest enhancements are seen at EBRE, VILL, and MATE; plasma bubbles were detected from the for-
mer two stations, while none were detected from the later station. Also, the Ry values are negative for
much of the recovery period (7 April 2000), indicating that the TEC was much depleted compared to the
quiet days of the month, which means that the storm had a negative storm effect on the European midlati-
tude ionosphere. A similar ionospheric depletion is also seen on the quiet day prior to the storm, i.e., 5 April,
for most stations.

3.2. The 11 April 2001 Storm

It can be seen from Figures 1f-1j that the storm on 11 April 2001 started with IMF B, turning southward at
around 14:37 UT, then rapidly alternating between northward and southward several times until 22:42 UT,
and later staying mostly southward until ~07:47 UT on 12 April. IMF B, reached its minimum value of approxi-
mately —36 nT around 16:04 UT. Although the IEF £, was enhanced (compared to the quiet days prior) reaching
a maximum of 27 mV/m at ~16:04 UT, it also rapidly alternated between eastward (positive) and westward
(negative). During this time the solar wind speed increased from 498 km/s to a maximum of 762 km/s
at ~19:27 UT. The IMF B, southward turning was followed by a sudden storm commencement at roughly
15:46 UT, and the storm peaked at ~23:57 UT when SYM-H reached a minimum of —280 nT. As a result of the
rapid fluctuations in IMF B,, AE also shows significant fluctuations as well as enhanced values, compared to
quiet days before the storm, to reach a maximum of ~3302 nT at around 16:07 UT.

Figure 5 shows examples of plasma depletions detected through temporal evolution of TEC, detrended TEC,
and ROTI measurements determined on 11 April 2001 at NICO, ANKR, and TUBI for PRNs 1, 13, 19, and 27. The
top panel plots of this figure show TEC depletions between 18:17 and 21:00 UT where they appeared earlier
at lower latitudes and later further north; for example, plasma depletions in PRN 1 TEC measurements appear
at 18:17 UT (20:31 LT) at NICO, 18:38 UT (20:49 LT) at ANKR and 18:44 UT (20:41 LT) at TUBI, while depletions in
PRN 13 TEC measurements appeared at ~18:40 UT (20:54 LT) at NICO, 19:02 UT (21:13 LT) at ANKRand 19:20 UT
(21:18LT) at TUBI. These results indicate that the depletions were migrating north with estimated velocities of
roughly 400 m/s (PRN 1), reaching latitudes of ~42°, again corresponding to an apex height of ~4000 km.The
width and depth ranges of these depletions as obtained from the detrended TEC measurements (see middle
panel plots of Figure 5) are roughly 11-60 min and 0.4-25.6 TECU, respectively. The maximum ROTI values
of these depletions as seen from the bottom panel plots of Figure 5 vary between 0.3 and 2.8 TECU/min,
again corresponding to weak amplitude scintillation. Similar plasma bubbles are seen from in situ DMSP F13
and F15 ion density measurements, presented in Figures 6b and 6¢, respectively, but at equatorial and low
latitudes. Satellite F15, whose track passes close to the NICO, ANKR, and TUBI GNSS receivers (see magenta
track in Figure 6a), observed the plasma bubbles around the same time as those detected by PRNs 13 and 19
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Figure 5. Temporal variation of TEC, TEC perturbations, and ROTI during the main phase of 11 April 2001 storm. Color bar indicates IPP geographic latitude range.
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Figure 7. Ratio of diurnal TEC to average TEC of the five quietest days of the month, i.e. Rygc during the period 9-13 April 2001. The color bar represents IPP
geographic latitude range.

at midlatitudes, but earlier than those of PRN 27, implying that the TEC depletions may be associated with the
equatorial bubbles. Also, the bubble observed from ion density measurement of satellite F13, whose track is
further west than the GNSS receivers (see red track in Figure 6a), appeared much earlier than those detected
by TEC measurements.

Figure 7 presents Ry, i.e., diurnal TEC deviation from the average of five quietest days of the month, dur-
ing the period 9-13 April 2001. These results show a significant TEC decrease the day prior to the storm
(i.e., 10 April) compared to 9 April and the day of the storm (11 April) for most stations except MARS, EBRE,
and MAD?2. Following the storm commencement on 11 April and coincidental with the plasma depletion
occurrences observed in GNSS and DMSP measurements, an evening TEC enhancement is observed at around
17:00-23:00 UT. This postsunset enhancement is seen roughly at the same time by all the GNSS stations used
in this study and is of similar magnitude across the stations, unlike the postsunset enhancement of the pre-
vious storm which was observed by some of the stations used. Also, unlike the previously discussed storm
(i.e., 6 April 2000 case), this storm does not appear to have caused a significantimpact on the diurnal TEC trend
of the day following the storm (i.e., 12 April 2001) over this European region, since the diurnal TEC trend on
this day shows no significant changes compared to the quiet days prior to the storm. However, daytime and
evening TEC enhancements were observed on 13 April 2001.

4, Discussion

Although several studies have reported on the ionospheric effects of the 6 April 2000 and 11 April 2001 storms
[e.g., De Paula et al., 2004; Liu et al., 2004; Rothwell and Jasperse, 2006; Pimenta et al., 2007; de Abrue et al.,
2010; Amabayo et al., 2012; Rastogi and Chandra, 2012; Horvath and Lovell, 2013], this study reports on new
observations of postsunset midlatitude TEC depletions/bubbles during these storms. These depletions were
observed to be moving north (specifically for 11 April 2001 case), reaching as far as 42°N geographic latitude,
roughly corresponding to apex heights of roughly 4000 km. Similarly, Ma and Maruyama [2006] detected
midlatitude postsunset depletions, using a chain of GNSS receivers over Japan, which were migrating north
during the main of phase of the 12 February 2000 storm. Their depletions reached latitudes of ~36.5°N
(~31.5° geomagnetic latitude) corresponding to an apex height of 2500 km. In another study by Huang
etal. [2007] midlatitude plasma depletions were observed during the 29 October 2003 storm which possibly
reached magnetic latitudes of 46°S mapping to an apex height of 6830 km. These studies suggested that their
depletions were extensions of equatorial plasma bubbles and spread F flux tubes into midlatitudes [Ma and
Maruyama, 2006; Huang et al., 2007]. However, Sahai et al. [2001] and Li et al. [2009a] observed midlatitude
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bubbles that were migrating southward during storms on 12 February 2000 and 10 November 2004, respec-
tively, and they suggested atmospheric gravity waves (AGWs)/traveling ionospheric disturbances (TIDs) as the
seeding mechanism for these irregularities.

The plasma bubbles observed during IMF B, southward turning of the 6 April 2000 and 11 April 2001 stormsin
ion density DMSP measurements occur prior to and in the same vicinity as the TEC plasma depletions during
a period of postsunset TEC enhancement. Huang [2011] explains that during the IMF B, southward turning
equatorial/low-latitude penetration electric field is eastward in the evening, thus moving the F region plasma
upward and enhancing the growth of the Rayleigh-Taylor instability which results in conducive conditions for
the generation of plasma bubbles. It is important to note that although the PPEF after IMF B, turns southward
is eastward during the day and westward at night, some studies have found eastward penetration electric
fields even at ~22:00/23:00 LT [see, e.g., Sastri, 2002; Li et al., 2009a; Fejer et al., 2008; Chakrabarty et al., 2015].
Furthermore, according to Abdu [2012], when an undershielding penetration electric field of eastward polar-
ity associated with the storm main phase occurs in the evening, the vertical plasma drift is superposed in
phase with normal vertical drift due to prereversal enhancement of electric field and as a result the conditions
for plasma bubble development are significantly enhanced. Huang [2008] found that the eastward penetra-
tion electric field at dusk lasts for the duration of the southward IMF, causing large equatorial plasma uplifts.
That study also showed that the penetration electric field in the dusk is approximately proportional to the
IEF over the duration of the main phase of the storm. Furthermore, Huang et al. [2010] showed that the iono-
spheric electric field responsible for vertical plasma drift correlates well with variations of IEF. Therefore, the
eastward IEF observed in Figure 1 indicates eastward penetration electric field and since the IMF B, in Figure 1
is southward for several hours, the penetration electric field will last just as long. It is therefore reasonable to
deduce that the increase in postsunset TEC and subsequent plasma bubbles during the main phase of these
storms may be driven by this eastward penetration electric field.

lonosonde measurements presented in Figure 8 show the electron density and height at the peak of the F,
layer (N,,F, and h,,F,, respectively) as well as the virtual height (h’F) at Roquetes (closely located to the EBRE
GNSS station) for the periods (a) 4-8 April 2000 and (b) 9-13 April 2001. At around 18:00 UT on the day of
the 6 April 2000 storm, h,,F, drastically increased from 300 km to 490 km at 20:00 UT; an increase of 190 km
in 2 h. A similar increase is also seen from the h'’F measurements. The height measurements at this time are
much higher than those at a similar time during the quiet days prior and post the storm and remain elevated
throughout the time of observations of the plasma bubbles in Figures 2 and 3. Following the height increase,
N,,F, increased from 0.94 x 10'? el/m3 at 19:00 UT to 1.34 x 102 el/m? at 20:00 UT. In addition, range and
frequency spread F activity was observed from Roquetes ionograms (not shown here) between 20:00 and
22:00 UT on this storm day, which further confirms the observations of plasma bubbles from midlatitude
TEC measurements. Similarly, during the 11 April 2001 storm, h,,F, increased from 320 km at 16:00 UT to
373 km at 19:00 UT, while h’F increased from 233 km at 16:00 UT to 280 km at 18:00 as can been seen from
Figure 8b. Although the height measurements are higher than those of quiet days, they decrease to prestorm
conditions during the course of plasma depletion observations as indicated by the magenta vertical lines.
Again, following the height increase N,,,F, increased from 1.18 X 10'2 el/m? at 19:00 UT to 1.56 x 10'2 el/m? at
20:00 UT. However, no spread F activity was observed from this ionosonde on this storm day. This is because
for this storm day the midlatitude TEC plasma bubbles were observed along longitudes 29-34°E, while the
ionosonde is located at 0.5°E. Similar to the TEC measurements, N,,F, is significantly reduced on the day after
the 6 April 2000 storm (i.e., 7 April), while there were no significant changes to the diurnal trend of N,F,
on the day after the 11 April 2001 storm (i.e., 12 April). However, N, F, is enhanced on 13 April 2001, supporting
the TEC observation on the same day.

Enhancements of postsunset TEC measurements are within about an hour of the h,,F, uplift for the 6 April
2000 storm, while for the 11 April 2001 storm they occur immediately after uplift in the h,,,F, measurements.
The height increases occur within 1.5-2.5 h after the SSC of these storms. Also, an enhancement of eastward
IEF is observed during the occurrences of the plasma bubbles, TEC enhancements, and height increases. PPEF
produces rapid electrodynamics effects that last a few hours (2-3 h) following the sudden southward IMF
turning [Huang et al., 2005; Horvath and Lovell, 2013]. Also, Huang et al. [2010] found that ionospheric electric
field corresponding to upward plasma motion correlate well with variations of IEF E, for up to 21 h during
the main and recovery phases of the magnetic storms. Therefore, it is not hard to imagine that these results,
showing upward F region movements, give further support of the eastward PPEF. Sahai et al. [2001] also
found large F region height changes (around 00:30 LT) with midlatitude small-scale depletions observed in Ol
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Figure 8. F, region peak density, virtual height, and peak height measurements obtained from the Ebre ionosonde
during the period (a) 4-8 April 2000 and (b) 9-13 April 2001.

630 nm airglow emission measurements from an all-sky imaging system, and they suggested that the deple-
tions may be linked to electric field perturbations as well as large-scale atmospheric gravity waves. Similarly,
Ma and Maruyama [2006] observed h,,F, uplifts (around 19:00-20:00 LT) accompanied by electron density
enhancements over Japan following a 11 February 2000 storm commencement which they linked to prompt
penetration of eastward electric field.

For long duration PPEF, as is the case for the storms in this study, conditions for plasma bubble development
can occur over a wide longitudinal sector [Abdu, 2012]. For example, Tulasi Ram et al. [2008] observed plasma
bubble activity over a wide longitudinal sector of 92° during the 15-16 May 2005 storm, while a study by
Li et al. [2010] reported longitudinal extension of over ~200° during a geomagnetic storm on 27 July 2004.
However, recent studies by Carter et al. [2014a, 2014b, 2014¢] showed that postsunset plasma bubbles were
suppressed during small increases in the geomagnetic activity, but not necessarily high Kp (Kp mostly less
than 6). They concluded that prompt penetration of electric field were not the primary driver of daily vari-
ability of plasma bubble activity and proposed that perturbations in global-scale thermospheric winds were
more influential in this regard. Another recent study by Anderson and Redmon [2017] observed that following
periods of increased solar activity (using F,, solar flux), PRE was inhibited from rising, which would have an
effect of inhibiting plasma bubble activity. However, during the 17 March 2015 storm Carter et al. [2016] found
that the postsunset plasma bubble activity in the Indian longitudinal sector was not suppressed during the
storm’s main phase, while they were suppressed at other longitudinal sectors. They concluded that the PPEF
was effective in creating conditions conducive to plasma bubble generation on a narrow longitudinal range
over which the postsunset local time coincides with the storm’s main phase (i.e., before it reached its peak). In
this study, DMSP detected plasma bubbles in a longitudinal range/extension of ~38°, while GNSS TEC plasma
bubbles had a longitudinal extension less than ~10°. Since the main phases of both storms studied here coin-
cided with the local postsunset time over the narrow European longitudinal sector where our measurements
were taken, our results support the idea that the plasma bubbles were linked to the PPEF.

Li et al. [2009a] observed midlatitude plasma bubbles and simultaneous occurrence of spread F irregulari-
ties associated with Perkins instability and sporadic E (E;) layer, which they found to indicate that the Perkins
and E; layer instabilities coupling could enhance the growth rate for midlatitude ionospheric irregularities.
Also, since a study by Pirog et al. [2007] observed TIDs at the same region for the same storm, Li et al.
[2009a] concluded that the midlatitude plasma bubbles they observed were probably manifestations of grav-
ity wave-Perkins instability resonance and coupling of E, layer and Perkins instabilities. To investigate whether
the plasma depletions observed in this study were related to the E-Perkins instabilities coupling, we checked
the ionosonde results for signatures of sporadic E layer. Although the results are not shown here, hardly any E,
activity was detected from the Roquetes ionosonde data during the main phase of the storm on 6 April 2000
(only at 18:00 UT), while there was significant E; activity during the recovery phase (7 April 18:00-22:00 UT) as
well as the day after, i.e., 8 April 2000 17:00-20:00 UT. Similarly, there was no E, layer observed during the main
phase of the 11 April 2001 storm while the E layer occurred occasionally during the evenings of the quiet days
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Figure 9. CODE’s global TEC measurements over European-African longitudes at 19:00 UT for storm days ((b) 6 April 2000 and (e) 11 April 2001), quiet days prior
to storms ((a) 5 April 2000 and (d) 10 April 2001), and the quietest day of the month ((c) 26 April 2000 and (f) 30 April 2001). Color bar indicates TEC in TECU.

around this storm, for example, on 9 April 2001 between 18:00 and 00:00 UT and 12 April 2001 between 18:00
and 21:00 UT. Therefore, we can deduce that the plasma depletions observed in this study were not linked to
E,-Perkins instabilities coupling.

The midlatitude TEC depletions seen in Figures 2 and 5 are observed during the postsunset plasma enhance-
ments seen in Figures 4 and 7, which further suggest that the depletions are linked to equatorial-type
electrodynamics as a result of the expansion of the EIA as will be shown later using Figure 9. Note that in
the later figures, the horizontal black curves approximates the magnetic equator as well as the southern and
northern crests of the EIA. Figures 9b and 9e show global GNSS TEC map over the Europe-Africa longitudes at
19:00 UT during the 6 April 2000 and 11 April 2001 storms, respectively, i.e., during the main phase of these
storms. For comparisons, TEC on quiet days before these storms are shown in Figures 9a and 9d, as well as TEC
on the quietest day of the month, i.e., 26 April 2000 and 30 April 2001, shown in Figures 9c and 9f, respectively.
From these plots it is observed that the EIA expanded to midlatitudes during the main phase of both storms,
compared to the quiet and quietest days, reaching the GNSS stations that observed TEC depletions. However,
itis noted that the EIA expansion is more pronounced for the 11 April 2001 storm than the 6 April 2000 storm.
The expansion of the EIA to midlatitudes during the main phase storms carries with it the conditions con-
ducive to plasma upward drift and therefore suggests that the midlatitude ionosphere was susceptible to the
eastward penetration electric field.

Ledvina et al. [2002] and Galav et al. [2014] presented similar midlatitude nighttime TEC depletions during
geomagnetic storms on 25-26 September 2001 and 15 May 2005, respectively. They concluded the deple-
tions were linked to the midlatitude ionospheric trough. This trough is a dominant evening and nighttime
large-scale electron density depletion structure that is narrow in latitude and extended in longitude. The
midlatitude trough is located a few degrees lower of the auroral oval and migrates to lower latitudes in the
premidnight sector, and reverses its propagation around midnight to return to higher latitudes before dawn
[Heetal., 2011; Lee et al., 2011, and references therein]. In contrast to the midlatitude trough, the TEC deple-
tions observed in this study were moving poleward during local evening time (at least for the 11 April 2001
storm), i.e., propagating in the opposite direction of the expected trough movement during this time. In
addition, the extension of EIA region reached latitudes over which TEC bubbles were observed, as seen in
Figures 9b and 9e. In fact, these figures show narrow regions (in latitude) of depleted TEC, suspected to be the
midlatitude trough, at latitudes above which the TEC plasma bubbles were detected. Also, the TEC plasma
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bubbles observed in this study occur several hours after both storm commencements (i.e, ~2.5-3 h after
SSQ), allowing for some time for them to be transported from the equatorial/low latitudes to midlatitudes.
Therefore, it is reasonable to deduce that the TEC plasma bubbles observed in this study are not related to the
midlatitude trough.

Other observations that were noticed during this study were the negative disturbances observed prior to
both storms and negative ionospheric storm following the 6 April 2000 storm. Similar negative storm effects
at similar and lower latitudinal regions were observed by Adebiyi et al. [2014]; Liu et al. [2004]; Afraimovich et al.
[2002] for the same storm. These effects are probably produced by changes in neutral composition caused by
Joule heating as a result of magnetospheric energy input at auroral regions [e.g., de Abrue et al., 2010; Prélss,
1995]. Negative quiet time disturbances are not well studied, and as a result, their source is not understood,
but Mikhailov et al. [2007] and Mikhailov et al. [2009] have suggested that they may be linked to strong daytime
poleward wind and low atomic oxygen concentration.

5. Conclusion

This paper has presented the first observations of midlatitude plasma depletions during two severe storms
on 6 April 2000 and 11 April 2001 using GNSS TEC measurements, which were supported by equatorial
plasma bubbles observed with DMSP ion density measurements. At the time of plasma bubble activity during
both these storms, the evening sector midlatitude TEC and electron density (from nearby ionosonde) were
enhanced following the IMF B, southward turning. The evening midlatitude plasma enhancement observa-
tions were supported by drastic upward lifting of the ionosphere observed in h,,F, and h'’F measurements
(within ~2.5 h after IMF B, southward turning) which correlated with enhanced eastward IEF. Simultaneous to
the observations of plasma bubbles/depletions and plasma enhancements was the expansion of the equato-
rial ionization anomaly to midlatitude regions. These observations are consistent with eastward penetration
electric field as a driving mechanism for plasma upliftment and bubble generation in the equatorial regions
which then extended to midlatitudes. Therefore, the results presented here confirm the link of midlatitude
plasma bubbles to equatorial plasma bubbles. As plasma bubbles are normally thought of as equatorial/low
latitude phenomena, it is important to highlight space weather conditions under which they can extend to
higher latitudes and bring along associated adverse effects on transionospheric radio propagation, such as
loss of lock due to scintillation associated with plasma bubbles.
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