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Abstract

Modeling of reactive transport with particle tracking and kernel density estimators

Maryam Rahbaralam

Random walk particle tracking methods are a computationally efficient family of meth-

ods to solve reactive transport problems. While the number of particles in most realistic

applications is in the order of 106 − 109, the number of reactive molecules even in diluted

systems might be in the order of fractions of the Avogadro number. Thus, each particle

actually represents a group of potentially reactive molecules. The use of a low number of

particles may result not only in loss of accuracy, but also may lead to an improper repro-

duction of the mixing process, limited by diffusion. Recent works have used this effect as

a proxy to model incomplete mixing in porous media. The main contribution of this thesis

is to propose a reactive transport model using a Kernel Density Estimation (KDE) of the

concentrations that allows getting the expected results for a well-mixed solution with a lim-

ited number of particles. The idea consists of treating each particle as a sample drawn from

the pool of molecules that it represents; this way, the actual location of a tracked particle is

seen as a sample drawn from the density function of the location of molecules represented

by that given particle, rigorously represented by a kernel density function. The probability

of reaction can be obtained by combining the kernels associated with two potentially reac-

tive particles. We demonstrate that the observed deviation in the reaction vs time curves

in numerical experiments reported in the literature could be attributed to the statistical

method used to reconstruct concentrations (fixed particle support) from discrete particle

distributions, and not to the occurrence of true incomplete mixing. We further explore the

evolution of the kernel size with time, linking it to the diffusion process. Our results show

that KDEs are powerful tools to improve computational efficiency and robustness in reactive

transport simulations, and indicates that incomplete mixing in diluted systems should be

modeled based on alternative mechanistic models and not on a limited number of particles.

Motivated by this potential, we extend the KDE model to simulate nonlinear adsorption

which is a relevant process in many fields, such as product manufacturing or pollution

remediation in porous materials. We show that the proposed model is able to reproduce the
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results of the Langmuir and Freundlich isotherms and to combine the features of these two

classical adsorption models. In the Langmuir model, it is enough to add a finite number of

sorption sites of homogeneous sorption properties, and to set the process as the combination

of the forward and the backward reactions, each one of them with a pre-specified reaction

rate. To model the Freundlich isotherm instead, typical of low to intermediate range of

solute concentrations, there is a need to assign a different equilibrium constant to each

specific sorption site, provided they are all drawn from a truncated power-law distribution.

Both nonlinear models can be combined in a single framework to obtain a typical observed

behavior for a wide range of concentration values. This approach opens up a new way to

predict and control an adsorption-based process using a particle-based method with a finite

number of particles.

Finally, by classifying the particles to mobile and immobile states and employing transi-

tion probabilities between these two states, we take into account the porosity of the diluted

system in the KDE model. The state of a particle is an attribute that defines the domain

at which the particle is present at a given time within the porous medium. The transi-

tion probabilities are controlled by two parameters which implicitly determine the porosity.

Simulations results show a good agreement with the analytical solutions of complete and

incomplete mixing solutions, independent of the number of particles. A transition between

the complete and incomplete mixing solutions is also obtained, showing a good match with

a transition probability function. These results show the potential of our proposed model

to simulate reactive transport problems in porous media.

iii



Acknowledgments

First and foremost I offer my sincerest gratitude to my supervisors, Professor Daniel

Fernàndez-Garcia and Professor Xavier Sánchez, who have supported me throughout my

research and thesis with their patience and knowledge whilst allowing me the room to work

in my own way. It has been an honor and a privilege to work with them and I am deeply

grateful for the opportunity to have done so. I am also truly indebted and thankful to my

husband Professor Amir Abdollahi for his guidance and support.

I would like to appreciate the faculty of Civil and Environmental Engineering Depart-

ment, in particular Professor Alonso Pèrez de Agreda, who gives me this opportunity to

be a member of Hydrogeology Group (GHS). My gratitude also goes to Professors Jesús
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1 Introduction 1

1 Introduction

The complexity associated with the simulation of the interactions between flow, transport,

and chemical processes requires developing reliable, as well as predictive, reactive transport

models. A major challenge in this area is the incorporation of the interaction of the reactants

facilitated by pure diffusion into a dynamic system. This problem has traditionally been ad-

dressed in porous media using a diffusion-reaction equation. The main interest has typically

relied on finding or fitting the proper parameters that describe the experimental or field

observations. This generic problem, posed in terms of the spatial and temporal distribution

of reactants and products, has practical applications especially in the groundwater remedia-

tion context, where the choice of remediation strategy is based on accurate modeling of the

anticipated degradation rate of the contaminants. Other applications include drug delivery

in biological systems (Saurabh and Chakraborty, 2009), geological CO2 sequestration (Xu

et al., 2011), chemical weathering (Li et al., 2014), and enhanced oil recovery (Gogoi, 2011),

to name a few.

In most natural systems, the rate of reactions between the chemical species is limited by

mixing because the molecules can only react when they come into physical contact to allow

the corresponding bonds to occur. In well-mixed systems, like a stirred laboratory beaker,

the spatial fluctuations in concentrations of the chemical species are negligible, and the rate

of reaction is spatially uniform. However, if the mixing process is slow in comparison with

the reaction rate, a mixing-limited regime will appear. In this regime, and when the ini-

tial spatial distribution of reactants is heterogeneous, the magnitude of concentrations as a

function of time fluctuate significantly and segregated areas (islands) of one reacting species

start to form in the domain (Bolster et al., 2012; Tartakovsky and Meakin, 2005). This

segregation of the species is dictated by the reduced area of contact between reactants and

was described from theoretical and numerical viewpoints several decades ago (Ovchinnikov

and Zeldovich, 1978; Kang and Redner, 1985). Thus, it comes as no surprise that the predic-

tion of reactions based on the well-mixed assumption associated with the classical transport

and reaction equations within systems ranging from homogeneous systems (Gramling et al.,

2002; Raje and Kapoor, 2000) to heterogeneous systems (Willmann et al., 2010) are bound

to failure.

The study of solute transport driven by diffusion is one of the classical problems where
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the dichotomy between Eulerian and Lagrangian approaches has been traditionally well ex-

plained. An Eulerian approach implies setting the problem in terms of concentration of

reactant species, and then postulating some macroscopic laws (either empirical or deduced

from thermodynamic considerations) to describe the reaction rate based on such concen-

trations. The problem is then formulated from macroscopic mass balance equations such

as, for example, the advection-dispersion-reaction equation (ADRE). Concentration is a

macroscopic quantity (mass per unit volume) and thus it has no meaning when the volume

reduces to zero. An alternative is to study the process at the molecular level, theoretically

tracking the movement and fate of each individual molecule, within a Lagrangian frame-

work (Gillespie, 2000, 1977, 1976). This alternative is obviously unfeasible, as even minute

concentrations result in a extremely large number of molecules (1 mol equals 6.02 × 1023

molecules); furthermore, equations of the continuum are no more applicable, and reactions

should be assessed from collision theory.

Particle Tracking Methods (PTM) try to combine both approaches to provide an efficient

solution to reactive transport simulations. The idea is to split the total mass into a number

of particles (typical orders are 106 − 109), many orders of magnitude lower than the actual

number of molecules, and devise a way to reconstruct the spatial and temporal distribution of

concentrations of the different species from the location of particles at any given time. This

methodology has obvious drawbacks such as: (1) the estimation of macroscopic quantities

(concentrations) from discrete particle information being a non-unique process, and (2) the

need to set up reactive rules applied to a finite number of particles so that, when upscaled,

they properly represent reaction rules observed at the macroscale. An additional drawback

would be the modeler’s choice of the number of particles, and more, the meaning of the

concept particle itself.

Regarding the first problem, recently an optimal method for the reconstruction of con-

centrations and their functionals based on Kernel Density Estimators (KDE) was developed

(Fernàndez-Garcia and Sanchez-Vila, 2011). This method has been successfully applied to

estimate concentrations of conservative and reactive species (Henri and Fernàndez-Garcia,

2014), heavily-tailed breakthrough curves (Pedretti and Fernàndez-Garcia, 2013), reaction

rates in precipitation/dissolution problems (Fernàndez-Garcia and Sanchez-Vila, 2011), and

risk predictions from particle distributions (Siirila-Woodburn et al., 2015). Regarding the

second point, the translation of macroscopic rules to PTM, a technique was proposed by
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Benson and Meerschaert (Benson and Meerschaert, 2008) to study reactive transport for a

bimolecular reaction, introducing an algorithm that accounts for the probability that two

individual particles react as a function of their relative distance; this method was an ex-

tension of the original algorithm proposed by Gillespie (Gillespie, 2000) to simulate batch

reactions in a stochastic framework at the molecular level. The method avoids the need to

continuously reconstruct concentration maps during the course of the simulation for each

individual time step, considered the main disadvantage of PTM (Salamon et al., 2006b;

Boso et al., 2013).

Here we combine these two ideas to develop a KDE model that can be directly used to

study bimolecular reaction in diffusive problems. The main idea is to use Kernels to provide

a new weighting functions for particles to interact following Benson and Meerschaert (Benson

and Meerschaert, 2008) approach. In this case, when particles are transformed into another

species or mineral, the shape of the Kernel automatically adjust, expanding its region of

influence and the region of interaction between particles (Fernàndez-Garcia and Sanchez-

Vila, 2011). This method increases the number of particles that could react at a given time.

The introduction of this expanding Kernel provides some insights into a problem that has

been recently raised in the literature. Benson and coworkers have studied the evolution of

concentration with time in a bimolecular reactive problem susceptible to incomplete mixing

(Benson and Meerschaert, 2008; Bolster et al., 2012; Benson and Meerschaert, 2009). These

authors represented incomplete mixing by setting up a low number of particles into the

reactive system; the lower the number of particles the earlier reaction became limited. This

was shown later on to represent a continuum-scale model based on the ADRE with stochastic

noisy initial conditions (Ding et al., 2013; Paster et al., 2014). While this is an intelligent

approach, we would like to stress that caution should be taken when using the statistical

fluctuations of a histogram, produced by sub-sampling the concentrations, to represent a

true physical phenomenon. The analogy is only valid when the number of molecules is really

limited or in systems with noisy initial concentrations. Other physical processes leading to

incomplete mixing such as rate-limited mass transfer at the pore-scale (Sanchez-Vila et al.,

2010) or heterogeneity in the hydraulic properties at a larger scale (Castro-Alcala et al.,

2012) might not be properly represented.

We thus associate incomplete mixing in some applications to the combination of low

number of particles combined with an estimation of concentrations based on the particles
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having a zero support size .e.g., (Pollock, 1988; Salamon et al., 2006b). We contend that

the limited number of particles should not be considered as a tool for generating incomplete

mixing systems. To make this point we show how our approach based on the inclusion of

optimal KDEs allows reproducing complete mixing up to a very small number of particles.

We contend then that incomplete mixing in diluted systems should be modeled based on

alternative mechanistic models, see (Sanchez-Vila et al., 2010), and not on a limited number

of particles.

Motivated by this potential, we extend the KDE model to simulate adsorption which is

defined as the binding of atoms or molecules from a gas or liquid to a surface. It is a phe-

nomenon well-described in many physical, biological, and chemical systems and processes,

and that has been widely employed in industrial applications such as pharmaceutical indus-

try, chillers and air conditioning systems, water purification, coatings, and resins, to name

a few. To design and optimize an adsorption-based process, it is necessary to characterize

accurately the adsorption equilibria and their dependence on the experimental conditions.

Equilibrium relations are described by adsorption isotherms, relating the equilibrium con-

centration of a solute on the surface of an adsorbent to the concentration of the solute

in the liquid/gas being in contact. In 1916, Langmuir introduced the first scientifically

based nonlinear isotherm by assuming a homogeneous surface with a specific number of

sites where the solute molecules could be adsorbed (Langmuir, 1918). This author assumed

that the adsorption involves the attachment of only one layer of molecules to the surface,

i.e. mono-layer adsorption. However, the Langmuir model deviates from the experimental

observations in the presence of a rough inhomogeneous surface where multiple site-types or

layers are available for adsorption and some parameters vary from site to site. This problem

was tackled by Freundlich who proposed the first mathematical fit to a nonlinear isotherm,

leading to a purely empirical formula for adsorption on heterogeneous surfaces (Freundlich,

1906). The Freundlich isotherm was established by assuming that adsorption varies directly

with pressure without reaching saturation, while experimentally the rate of adsorption sat-

urates by applying very high pressures. Therefore, the use of the Freundlich isotherm is

appropriate when dealing with low/medium pressures/concentrations. We show that the

adsorption model proposed is able to reproduce the results of the Langmuir and Freundlich

isotherms and to combine the features of these two classical models. This approach opens

up a new way to predict and control an adsorption-based process using a particle-based
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method with a finite number of particles.

Finally, by classifying the particles to mobile and immobile states and employing tran-

sition probabilities between these two states, we take into account the existence of a double

porosity in a porous medium. To do this, the state of a particle is considered as an attribute

that defines the domain at which the particle is present at a given time within the porous

medium. The transition probabilities are controlled by two parameters: field capacity, which

is the ratio of the immobile porosity to the mobile porosity, and the mass transfer coeffi-

cient controlling the mass exchange rate between the mobile and the immobile porosity.

Simulations results show a good agreement with the analytical solutions of complete and

incomplete mixing solutions, independent of the number of particles. A transition between

the complete and incomplete mixing solutions is also obtained, showing a good match with

a modified transition probability. These results show the potential of our proposed mobile-

immobile model to simulate reactive transport problems in porous media. These results

also demonstrate that a double or multiple porosity system can simulate a mixing-limited

transport behavior as observed in laboratory and field experiments.

The structure of this thesis is as follows. The background information regarding PTM,

KDEs, reactive transport and adsorption is presented in Section 2. Section 3 expands the

proposed chemical reaction model using KDEs. This section also presents simulation results,

verifying the reactive model. Section 4 introduces the proposed adsorption model using PTM

and KDEs together with the model verification. Section 5 presents the extended mobile-

immobile KDE model, taking into account the medium porosity. In each of these sections

the most significant contributions are also highlighted. The last section is the conclusion of

the thesis.
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2 Background

2.1 Particle tracking methods

Particle tracking methods (PTM) simulate transport by injecting a large number of particles

into the system. Each particle carries a given fraction of the total mass moving in dissolved

state with groundwater and reacting according to some fundamental mechanisms. A large

variety of mechanisms can efficiently simulate different transport phenomena. These mech-

anisms range from pure advection and random walk motions to complex reaction and mass

transfer processes (Tompson and Dougherty, 1992; Salamon et al., 2006a; Moroni et al.,

2007; Benson and Meerschaert, 2009). In a bimolecular reactive problem, it is worth notic-

ing that the particle state is binary (e.g., it has either reacted or not), while in reality only a

fraction of the pool of molecules may have reacted. We find here again a duality in the con-

cept of representation: even though only a portion of molecules associated with one particle

react, PTM adopt the result obtained from a Bernoulli trial sampled from the probability

distribution of reacted molecules. In most approaches the total mass of each reactant is

evenly distributed among the particles, so that the mass carried by each particle is simply

given by the total mass in the system divided by the number of particles; e.g., for reactant

A

mp,A =
1

N0

∫
Ω

[A0(x)]dΩ, (1)

whereN0 is the number of particles selected by the modeler, [A0(x)] is the (spatially variable)

concentration within a given volume Ω. In the case of uniform initial concentration equation

(1) results in mp,A = [A0]Ω/N0. In this latter case, the initial position of each individual

particle can be drawn from a multidimensional uniform distribution. For this reason, if the

number of particles is small, the density of particles initially present in different locations

can be slightly different, creating artificial initial fluctuations. Such difference would be

reduced by increasing the number of particles.

Particle displacements

In a physical system, diffusion and reaction are simultaneous processes; reaction cannot

take place without diffusion. In the numerical model these two contributions are modeled
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by operator splitting, i.e., two subsequent processes within each simulation time step. First,

the particles move by Brownian motion, and then they can react with each other. Without

loss of generality, we consider the diffusion-reaction equation in 1-D. The initial locations

of the A and B particles are respectively denoted by XA
j and XB

j , j indicating the particle

number. We consider a domain interval defined as Ω. The initial particle location was

drawn from a statistical uniform distribution. The diffusion of a species is modeled by

a Brownian random walk motion with zero mean and variance 2D∆t, being ∆t the time

interval. For each simulation time step, PTM describe the change of the particle species

taking place between t and t+∆t. The random walk is an implementation of a Langevin

equation without the drift term. Thus, the location of the particle j at a given time is a

Markovian process characterized by a Brownian motion term, given by

Xi
j(t+ ∆t) = Xi

j(t) + ξt
√

2D∆t, i = A,B (2)

where ξt is a random number drawn at each time step from an independent (uncorrelated in

space and time), normally distributed random variable with zero mean and unit variance.

It has been shown that equation (2) satisfies the non-reactive diffusion equation in the limit

for an infinite number of particles with infinitesimal mass (Tompson and Dougherty, 1992;

Salamon et al., 2006a). The inclusion of the reaction term simply modifies the species state

associated with that particle.

Reactive transport in porous media is typically described by the reactive-advective-

dispersive equation. In this case, the displacement of a particle includes a drift term to

account for advection. Thus, Eq. (2) extends to:

Xi
j(t+ ∆t) = Xi

j(t) + ξt
√

2Dh∆t+ v∆t, i = A,B (3)

where v is the flow velocity, and Dh is the hydrodynamic dispersion, assumed constant in

this thesis.

2.2 Kernel Density Estimators

PTM are a convenient alternative to study molecular diffusion problems. In such cases

particles can be associated to molecules. This would mean that a mole of solute should

be discretized into NA (Avogrado’s number, NA= 6.02 × 1023) molecules. In all practical
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applications found in the literature the number of particles used to discretize a given mass

is in the order of 106 to 109, e.g. (Riva et al., 2008). The traditional approach is based

on considering that each particle actually represents a group of molecules. In all cases, the

outcome of PTMs is typically expressed as a distribution of particle travel times at control

locations and/or positions observed at different times. Since this information is discrete

in nature a reconstruction process is fixed to finally convert particles into concentrations.

This reconstruction process is normally seen as the main disadvantage of PTMs (Fernàndez-

Garcia and Sanchez-Vila, 2011; Boso et al., 2013). This is based on the relationship between

particle distributions and concentrations, which determines that concentrations are propor-

tional to particle probability densities (PDFs). In this case particles have a representative

size. This concept has been included into a family of methods named smoothed-particle

hydrodynamics (SPH) (Tartakovsky and Meakin, 2005; Herrera et al., 2010), where a spa-

tial distance (known as the ”smoothing length”) is defined, over which the properties of the

particles are smoothed by a kernel function. This means that any physical quantity of any

particle can be obtained by summing the relevant properties of all the particles which lie

within the range of the kernel. Similarly to SPH methods, the approach actually taken by

most of the existing particle tracking codes (Pollock, 1988; Salamon et al., 2006b) considers

that particles have a zero support. All these methods share in common that they provide

noisy estimates of the spatial or temporal distribution of concentrations. This is particu-

larly disturbing when the objective is estimating concentrations, which is the case in most

applications regarding stochastic hydrology or reactive transport.

Kernel Density Estimators (KDE) are powerful methods to reconstruct smooth con-

centrations and their functionals from discrete particle information in space and/or time

(Fernàndez-Garcia and Sanchez-Vila, 2011; Pedretti and Fernàndez-Garcia, 2013). KDE

methods were introduced in the late 50’s (Rosenblatt, 1956) in order to improve the density

estimation of the probability density function. The need of KDE methods appears cru-

cial when estimating smoothed PDFs with frequency histograms, which are determined by

counting the number of particles within a given time interval Bj = [t0 + (j − 1)h, t + jh],

where h is the time interval (bin size) and t0 is the origin of the histogram. The frequency

at the jth bin is determined by

p̂j =

N∑
i=1

1

h
I(ti ∈ Bj), (4)



2 Background 9

where N is the number of particles (arriving at the well location), p̂j is the estimated density,

ti is the particle travel time data (t1, ... ,tN ), and I(.) is an indicator function defined as I

= 1 if ti is inside the bin and I = 0 otherwise. By definition, these estimators depend on

the domain discretization, i.e., the choice of the support size and the number of particles

falling into the support.

The use of a histogram provides a discontinuous box function that prevents the estima-

tion of smooth probability density functions. Moreover, the histogram depends on its origin

t0 and the selection of the bin size h, which are arbitrary. KDE methods overcome these

problems by replacing the fixed box model in the histogram by a moving weighting function

as

p̂(t) =

N∑
i=1

1

h
K

(
t− ti
h

)
, (5)

where K is a moving weighting function centered at the particle location chosen from func-

tions of unitary area, i.e.,

∫
K(τ)dτ = 1. (6)

Although the traditional box model introduces discontinuities at the box edges, kernel

estimators produces smooth functions of space and/or time. These kernel functions are

weighting functions of the particle mass that defines its region of influence. By extending

this approach, the concentration c(x, t) of a given species at a given time t and location x

can be reconstructed from the location of the particles present in the system as (Fernàndez-

Garcia and Sanchez-Vila, 2011)

c(x, t) =

N(t)∑
p=1

mp

h(t)
K

(
x−Xp(t)

h(t)

)
, (7)

where h is the bandwidth, N(t) is the number of particles at time t, mp is the particle mass,

and Xp is the particle location. By defining a region of influence for each particle, kernel

estimator (7) produces smooth functions of space. The kernel shape depends on the choice

of the bandwidth or support size h and the type of kernels. A variety of kernel functions can

be used, among them, Gaussian kernels are usually preferred for mathematical advantages

(Pedretti and Fernàndez-Garcia, 2013).
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The optimal area of influence

As stated before, Kernels can be seen as a way to introduce into the solution the effect of

using a subset of particles to represent a very large number of molecules. The larger the

degree of undersampling, the more information should be conveyed into the kernel estimator.

The degree of smoothing or the area of influence around a particle is controlled by the

parameter h. If the number of particles is very large, there is no real need for kernels, and h

should be very small. On the contrary, h should increase when the number of particles is not

sufficient to account for a proper estimation of the spatial distribution of the concentrations.

In general, a small support size combined with a finite number of particles leads to noisy

estimates and the fluctuation of concentrations. Contrarily, an increase in the support size

tends to oversmooth the estimated concentration distribution. Thus, an optimum choice of

the support size, hopt, exists. Choosing it should be based on an objective criterion about

the reconstruction effort, minimizing the variance error while controlling the biasedness in

the estimation. Park and Marron (1990) found the optimum bandwidth as

hopt = R N−1/5, (8)

where R is given as

R = (
‖K‖22

‖p′′(x)‖22 (µ2(K))2
)1/5, (9)

where µ2(K) is the second moment of K, p′′(x) is the second derivative of the concentration

normalized by the total mass in the system, and the symbol ‖.‖22 is the L2-norm operator,

i.e. ‖p(x)‖2 =
∫
p(x)2dt. It is clear that the optimal bandwidth hopt in (8) grows inversely

proportional to the number of particles; the smaller the number of particles, the larger the

bandwidth size. This feature is particularly beneficial for developing a chemical reaction

model, as mentioned later in the thesis. The second derivative of the density function p′′(x)

needs to be also estimated. Several methods can be used for this purpose: (1) rule-of-

thumb methods, (2) cross-validation methods, and (3) plug-in methods (see recent reviews

of these methods by Jones et al. (1996) and Park and Marron (1990). Following a recent

work by Fernàndez-Garcia and Sanchez-Vila (2011), we hereby employ the plug-in method

to estimate the optimal bandwidth hopt.
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2.3 Adsorption

The Langmuir isotherm

The Langmuir isotherm explains adsorption by assuming that the adsorbent is an ideal

solid surface composed of series of identical sites capable of binding the adsorbate. This

binding is treated as a chemical reaction between the adsorbate molecule A and an empty

site, B. This reaction yields an adsorbed complex C. This process can be reversed through

desorption whereby the adsorbed molecule is released from the surface and the complex C

is transformed to A and B. This dynamic equilibrium existing between the adsorbate and

the adsorbent can be expressed as

A+B � C. (10)

This model assumes adsorption and desorption as being elementary processes, where the

rate of forward adsorption rf and the rate of backward desorption rb are given by:

rf = kf [A][B], (11)

rb = kb[C], (12)

where kf is the forward adsorption reaction constant, kb is the backward desorption reaction

constant, and [X] denotes the concentration of species X (A, B, or C). At equilibrium, the

rate of adsorption equals the rate of desorption, i.e. rf = rb, then by rearranging the terms

we obtain

[C]

[A][B]
=
kf
kb

= Keq, (13)

where Keq is the equilibrium constant. By adding up the concentration of free sites [B]

and of occupied sites [C], the concentration of all sites [B0], assumed constant in time, is

obtained as [B0] = [B] + [C]. Combining this relation and Eq. (13) yields the Langmuir

adsorption isotherm:

[C] = [B0]
Keq[A]

1 +Keq[A]
. (14)
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In the presence of a high concentration of [A], Eq. (14) leads to the saturation of sur-

face sites, [C] −→ [B0]. In other words, the surface reaches a saturation point where the

maximum adsorption capacity of the surface will be achieved.

The Freundlich isotherm

The Freundlich isotherm is an empirical model, which is commonly used to describe the ad-

sorption performance of heterogeneous surfaces. This isotherm is mathematically expressed

as

[C] = K[A]m, (15)

where K and m are called the Freundlich constants. The constant K is an adsorption

coefficient, while m is a measure of the deviation from the linearity of the adsorption.

Unlike in the Langmuir model, in this one there is no adsorption maximum or saturation.

Equation (15) can be linearized as

log[C] = logK +m log[A], (16)

where m represents the slope of the line in a log[C]− log[A] plot.

While the Freundlich model has been found to fit most existing adsorption experimental

data (Frankenburg, 1944; Davis, 1946; Thomas, 1957; Urano et al., 1981), its theoretical basis

is under scrutiny. In principle, the Freundlich isotherm can be derived from the fundamental

integral equation for the overall adsorption isotherm stated as

ΘT =

∫
Ω
N(Q)Θ(Q)dQ, (17)

where ΘT is the relative monolayer coverage of the entire surface, N is the number of sites

having adsorption energy Q, and Θ is the local coverage of individual sites. The relative

coverage of the entire surface relates to the concentrations of the chemical compounds by

ΘT = [C]/[B0] = [C]/([B] + [C]). The integration region Ω is over all possible adsorption

energies. It has been shown that Eq. (17) leads to the Freundlich isotherm when an expo-

nential distribution of adsorption energies is assumed (Sips, 1948; Sheindorf et al., 1981):

N(Q) = m exp(−mQ/RT ), (18)



2 Background 13

where m and R are constants, and T is the temperature (assumed constant as implied by the

word isotherm). Furthermore, it is assumed that the local coverage follows the Langmuir

isotherm as

Θ =
K̂[A]

1 + K̂[A]
. (19)

with the equilibrium constant K̂ depending on the adsorption energy as

K̂ = Keq exp(Q/RT ). (20)

Plugging Eqs. (18) - (20) into Eq. (17) and assuming that Q ∈ (−∞,+∞) yields

ΘT =

∫ +∞

−∞
m exp(−mQ/RT )

Keq exp(Q/RT )[A]

1 +Keq exp(Q/RT )[A]
dQ, (21)

This integral has a solution in the form of the Freundlich isotherm given by

ΘT = K[A]m, (22)

with the Freundlich constant K = mπRTKeq
m/ sin((1 −m)π) . Therefore, Eqs. (17)-(22)

establish a theoretical basis for the Freundlich isotherm. In Section 4, we demonstrate

that this approach, which is based on an exponential distribution of adsorption energy, is

mathematically equivalent to consider K̂, in the Langmuir model, as a random variable that

follows a truncated power-law distribution.
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3 Chemical reaction model

This section presents our proposed chemical reaction model using KDEs. This model ad-

dresses a simple chemical reaction, i.e., a single forward bimolecular irreversible reaction

A+B → ∅. Here, two species present in the dissolved phase, A and B, react kinetically and

irreversibly with unitary stoichiometric coefficients. The product of the reaction is assumed

to play no role in the system (i.e., it does not produce any change in porosity or perme-

ability). The transport of the reactants is driven by a diffusion-reaction equation with the

following expression:

∂Ci
∂t

= D∇2Ci − kfCACB, (23)

where i stands for A,B, the concentration of species i is given by Ci = Ci(x, t) (in [ML−3]),

D[L2T−1] is the diffusion coefficient, and kf [L3M−1T−1] is the reaction rate constant.

3.1 Analytical model

From Eq. (23), we can write that the equation satisfied by CA−CB is conservative (i.e., not

affected by geochemical reactions). If we further impose a well-mixed system, we can write

d

dt
(CA − CB) = 0, (24)

so that CA − CB = [A0] − [B0], [A0] and [B0] being the corresponding initial concentra-

tions. We can then use this result to rewrite the governing equation for the well-mixed

concentration as

∂CA
∂t

= −kf CA (CA + [B0]− [A0]). (25)

By integrating this ODE, it is possible to write an explicit solution for the concentrations

of the two species

CA(t) =
[A0]− [B0]

1− [B0]
[A0]exp(−kf ([A0]− [B0])(t− t0))

, (26)

and in the particular case that [A0] = [B0], the solution is the same for both species, given

by
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Ci(t) =
[A0]

1 + [A0] kf t
; i = A,B, (27)

indicating that Ci(t) scales as k−1
f t−1 for large times.

3.2 Diffusion-based (DB) reaction

A Reactive Particle Tracking (RPT) method was recently proposed by Benson and Meer-

schaert (2008) (we refer to this method as the DB model). In this method, diffusion is

treated by Eq. (2), and the reaction of particles is simulated through probabilistic rules,

PDB = kf mp ∆t v(r,∆t), (28)

where PDB is the probability that two particles, A and B, separated by a distance r react

within a time interval ∆t. It has been shown that, in the limit for an infinitely small time

interval, i.e. ∆t → 0, a combination of equations (2) and (28) converges to the diffusion-

reaction equation (23) (Paster et al., 2013).

Here, v(r,∆t) is the co-location probability density function (PDF), defined as the prob-

ability that two particles initially separated by a distance r, one from species A and another

from species B occupy the same position after a time interval ∆t. This co-location PDF

is the convolution of two Gaussian densities fA and fB, see Fig. 1. Assuming D constant,

both PDFs have the same standard deviation σ =
√

2D∆t. Then, σ represents the area of

influence over which two particles can come into contact and react. As demonstrated later

on, the proper computation of the area of influence plays a key role in approaching realistic

reactive transport solutions.

The probability of reaction PDB, calculated by (28), is the probability that a pair of

particles (A,B) react within a time interval ∆t. Numerically, this is done by comparing

a random number generated from a uniform distribution ξ ∼ U(0, 1) with the calculated

probability. If PDB ≥ ξ, the reaction occurs and both A and B particles are removed from

the system; otherwise, reaction is disregarded at that particular time step and the particle

is kept. This procedure is repeated for every pair of particles (A,B) in the system. Then,

the simulation continues to the next time step. At each time step, the number of remaining

particles divided by N0 represents the normalized concentration, [A]/[A0].
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Figure 1: Convolution of two Gaussian densities with the same standard deviation σ, located
at a separation distance r. The shaded area can be seen as the probability density function
of the two particles A and B actually occupying the same space, so that reaction may take
place according to some thermodynamic rules.
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3.3 The KDE-based chemical reaction model

The DB model is characterized by a constant in time area of influence characterized by a

constant diffusion, see Fig. (1). Therefore, when the number of particles is very low (oc-

curring at late times), the probability of collocation is also very low and the segregation of

particles of a given type (either A or B) start occurring (Benson and Meerschaert, 2008).

Alternatively, the KDE based method provides an area of influence that increases when par-

ticles are sparsely distributed in space, see Eq. (8). This results in an enhanced probability

of reaction and in an overall reaction rate approaching to the well-mixed solution, even with

a small number of particles.

If the initial concentrations of the two reactants are equal, it is also logical to assign

the same standard deviation to all of them, actually given by σ = hopt. This dynamic

bandwidth in the KDE-based model implies a different probability of reaction at each time

step, preventing the formation of segregated areas of particles. The actual expression for the

probability of reaction should follow rigorously the principles of the law of mass action, and

also be proportional to the thermodynamic rate kf as well as to the co-location probability

density associated with the distance between particle pairs. Based on these principles, the

probability of reaction for the KDE-based model is obtained as

P = kf mp ∆t PKDE(r), (29)

where PKDE is the convolution of the two Gaussian densities of particles A and B based on

hopt. This convolution is a Gaussian function with zero mean and variance equal to 2(hopt)2,

PKDE(r) =
1

2hopt
√
π
exp(

−r2

(2hopt)2
). (30)

From Eq. (30), the probability of reaction decreases by increasing hopt, preserving the

unitary area under the co-location probability density. In other words, expanding the in-

fluential area of each particle by hopt comes at the expense of decreasing the probability

of reaction. On the other hand, as demonstrated later, this effect is compensated by the

increase in the number of potentially reactive pairs, as each individual particle samples a

larger area for the presence of particles. This is particularly beneficial to avoid the segre-

gation of particles resulting in artificial poor mixing. In addition, in contrast to the DB

model, PKDE in Eq. (30) is not a function of the time interval ∆t and the KDE model is
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less sensitive to this parameter.

3.4 Simulation results

DB model

We first intend to simulate reactions with the DB model so as to later compare the perfor-

mance of the KDE model with the DB model. A 1-D domain of size Ω = 64 (normalized

units) is considered. Simulations are performed for 10,000 time steps. The different scenar-

ios analyzed combine different number of initial particles N0 (always equal for species A and

B), with two diffusion coefficients D = 10−2 and D = 10−5. The remaining parameters are

set as: [A0] = [B0] = 5 × 10−3, kf = 50, and ∆t = 0.1. All values throughout this section

are reported in normalized units.

Figure 2 shows the normalized concentration [A]/[A0] as a function of time. For compar-

ison purposes, the analytical solution of the well-mixed system in Eq. (27) is also provided.

At early times, due to the presence of a large number of particles in the system, the nu-

merical and analytical solutions are identical. Therefore, the number of particles plays a

negligible role and the actual concentration is closely approximated by the well-mixed solu-

tion, controlled simply by the thermodynamic rate coefficient kf . However, at late times, a

deviation from the analytical solution occurs, as chemical reactions among particles become

limited by diffusion. In this diffusion-limited regime, islands of segregated particles (only

one of the two species present) start to form, leading to a poor-mixed solution. A lower

number of initial particles or a smaller diffusion constant enhances particle segregation and

thereby the deviation from the well-mixed solution. These results are in a good agreement

with those presented by Benson and Meerschaert (2008).

KDE model

To illustrate the potential of our proposed KDE model, a simulation of the irreversible

chemical reaction is performed with a diffusion constant of D = 10−2 and an initial number

of particles of N0 = 4000. The rest of the parameters are chosen equal to those used for

the DB model. To effectively search for potentially reactive pairs of particles A and B, the

1-D domain is divided by elements of size Ω/2hopt, then we find at each element and its two

neighbors, all pairs of particles A and B. Figure 3 shows the comparison between the KDE
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Figure 2: Normalized concentration as a function of time using the DB model. Analytical
solution of the well-mixed system is also plotted for comparison purposes. The time where
deviation is observed depends on the number of particles that were initially in the system.
Notice that when particles are used to represent a group of molecules, the actual number
used in the simulations is a modeler’s choice.
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and two DB models, as well as the analytical solution. Results demonstrate that the KDE

model approaches the well-mixed analytical solution in a wider range of times, resulting in

a considerably lower dependency of the solution on the number of particles with respect to

the DB model. In fact, the simulation results for N = 4000 using the KDE model follows

closely the results of the DB model with N = 40,000. This is an obvious enhancement of the

classical chemical reaction model, as reaction rates are predicted using a noticeable lower

number of particles.
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Figure 3: Normalized concentration as a function of time using the KDE model, two DB
models with different number of particles, and the corresponding analytical solution.

To further illustrate the behavior of the KDE model, we perform additional simulations

with a different number of particles being present at time zero. The results in Fig. 4 indicate

that the decay of concentration of reactants is significantly less sensitive to the number of

particles as compared to the behavior of the DB model, c.f. Fig. 2. As the solution is almost

independent of the number of particles, N can be adopted by the modeler a priori solely

based on the computational effort needed for the application, rather than on its potential
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influence on the solution. Indirectly it also implies that it is possible to actually use a lower

number of particles to achieve a given accuracy in the solution.
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Figure 4: Normalized concentration as a function of time using the KDE model for a varying
number of particles representing the initial mass. The solution is quite insensitive to the
choice of number of particles being initially present in the system.

As already noted, the performance is strongly linked to the choice of the optimal band-

width hopt. This value should be continuously updated. So, there is a risk of loosing

efficiency by updating hopt at each time step. Here, we propose to compute hopt efficiently

throughout all the simulations period by extrapolating hopt from the data gathered at the

initial steps (early times). Figure 5 shows the true evolution of the optimal bandwidth hopt

as a function of the number of particles for an initial particle number of N0 = 4000 (hopt is

updated at each time step). It is found that the optimal bandwidth increases as the number

of particles decreases, closely following the slope of -1/5 (recall Eq. (8)). Therefore, hopt as a

number of the remaining particles in the system can be estimated by a linear extrapolation

between the optimal values obtained at two different time steps (e.g., denoted by 1 and 2

in the figure). This extrapolation allows one to avoid the costly computation involved in
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solving (9) at each time step. An anomalous estimation of hopt at late times is also observed,

corresponding to normalized concentrations of 10−2, in this problem being equivalent to the

presence of only 40 particles of each species in the whole domain.
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Figure 5: Optimal bandwidth as a function of the number of particles remaining in the
system (not yet reacted). The points 1 and 2 represent initial steps of the simulation
for the linear extrapolation of the optimal bandwidth. An slope of 1/5 for the optimal
bandwidth can be considered a very good approximation up to times corresponding to very
low concentrations.

3.5 Performance analysis

To systematically compare the performances of the DB and the KDE models, we define a

performance factor

Pf =
tmax
tc

+
Emax
E

, (31)
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where tc is the computational time, tmax is the maximum of tc among all simulations, and

E is the error of the results with respect to the analytical solution, defined as

E =

∑s
n=1

[A]

[A0] simulation
−
∑s

n=1

[A]

[A0]analytical∑s
n=1

[A]

[A0]analytical

, (32)

where Emax is the maximum error among all simulations. In Eq. (32), n stands for time

step, and s is the maximum number of time steps considered in the numerical simulation.

The performance factor Pf is obtained as a function of a dimensionless characteristic time

τ , representing the ratio of the characteristic reaction time TR = (A0kf )−1 to the diffusion

time TD = L2/D,

τ =
TR
TD

. (33)

Figure 6 shows the performance factor associated with the DB and the KDE models for

two different values of τ in a physically and computationally reasonable range.
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Figure 6: Performance factor as a function of the number of particles for the DB and
KDE models considering two different values of the dimensionless characteristic time τ1 =
9.7× 10−6 and τ2 = 9.7× 10−9.
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It is found that the performance factor of the KDE model is almost insensitive to the

choice of τ . This implies that the kernels can adapt themselves to any parameter change,

preserving the behavior of the system. Contrarily, the behavior of the DB model exhibits a

strong dependence on the system parameters. It is also found that the performance factor of

the KDE model is noticeably larger than that of the DB model for low number of particles

and decreases by increasing this number. The main advantage of the KDE model is that

the computational time increases with the number of particles while the error E does not

change considerably, i.e., the first term in Eq. (31) decreases while the second term remains

almost constant.

Contributions

We summarize here the most significant contributions of this work, which has been published

as a research paper in (Rahbaralam et al., 2015), see Appendix A:

1. A chemical reaction model is proposed based on Kernel Density Estimators (KDEs)

for the simulation of well-mixed systems. KDEs provide an optimal influential area

which grows with decreasing number of particles, a feature which is beneficial to avoid

incomplete mixing due to the segregation of particles.

2. Simulation results have shown a noticeable enhancement of the reaction towards the

well-mixed solution when this model is applied instead of a standard PT model. Fur-

thermore, the results of the KDE model have indicated that, in contrast to the classical

DB model, the concentration decay is almost insensitive to the initial number of par-

ticles.

3. We have also conducted a performance analysis based on the computational time

and error of the models. The results have shown that the performance of the KDE

model does not depend on the system parameters, highlighting the rigorousness of our

proposed approach. All these behaviors prove that the KDE model is a powerful tool

for simulating chemical reactions of well-mixed systems.
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4 Modeling of non-linear adsorption

4.1 The KDE-based adsorption model

The probability of forward reaction Pf provided in Eq. (29) was originally proposed to

model a simple chemical model, i.e., the single forward bimolecular irreversible reaction.

To extend this approach for modeling adsorption, Pf is considered as the probability of

forward adsorption reaction in Eq. (10) with the particle C as the product of the reaction.

In contrast to the bimolecular irreversible reaction, an adsorption reaction is reversible, so

that a particle C can transform back to a particle A and another one B. The probability of

backward desorption is given by

Pb = kb∆t. (34)

To numerically implement the probability of forward and backward reactions in Eqs. (29)

and (34), we use the following approach. In the forward case, we first computed Pf from

Eq. (29), and then we compared this value with a random number generated from a uniform

distribution ξf ∼ U(0, 1). Then, if Pf ≥ ξf , the reaction was supposed to have occurred,

and both A and B particles were removed from the system and substituted by a C particle;

otherwise, the reaction was not supposed to have taken place at that particular time step

and both particles were kept. This procedure was repeated for every pair of particles (A,B)

in the system.

A reversed procedure was repeated for the backward reaction by comparing a random

number ξb with the probability of backward reaction Pb obtained from Eq. (34). If Pb ≥ ξb,
the reaction was supposed to have occurred, the C particle was removed and substituted by

an A and a B particles located at the same point C was originally considered; otherwise, no

action was taken, representing that the reaction had not occurred. After the loop for all C

particles were performed, the simulation continued to the next time step. We also assumed

that the locations of the adsorbent particles B and the reaction product particles C were

fixed (the location of the sorption sites did not change with time), so that Eq. (2) was only

applied to the displacement of the adsorbate particles A. At each time step, the number

of remaining particles multiplied by mp and divided by Ω resulted in the concentrations

[A], [B], and [C]. The simulation was carried out until equilibrium was clearly achieved, as
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indicated by the stabilization in the ratio of concentrations [C]/[A][B].

As explained later, we set up two simulation runs to assess the capacity of the model

to simulate adsorption based on both the Langmuir and the Freundlich isotherms. In order

to account for the former, it is just enough to set a finite number of sites [B0] and then fix

the kf and kb values to honor the relationship set in Eq. (13). In the case of the Freundlich

isotherm, it is necessary to incorporate an exponential distribution of adsorption energies, as

given in Eq. (18), and to set the corresponding individual value of the equilibrium constant K̂

at each site. The generation of the equilibrium constant K̂ requires several considerations.

As indicated in Section 2.3, the assumption of Qmin → −∞ in Eq. (21) is necessary for

the validation of the Freundlich model in Eq. (22). However, several authors (Hill, 1949;

DaRocha et al., 1997) have indicated that the integration limits over all possible adsorption

energies in Eq. (17) should have a minimum cut-off to have a physical significance. To

include this in our model, we consider the site-energy distribution N given by Eq. (18) as a

truncated exponential distribution with cumulative distribution function given as

F (Q) = 1− exp
(
− m

RT
(Q−Qmin)

)
, Q ∈ [Qmin,+∞), (35)

where Qmin is the minimum energy bound. Considering Eq. (20), the cumulative distribu-

tion is obtained as a function of the equilibrium constant K̂,

F (K̂) = 1− exp(−m ln
K̂

Keq
+m ln

Kmin

Keq
), K̂ ∈ [Kmin,+∞), (36)

where Kmin = Keq exp(Qmin/RT ). Notice that Eq. (36) is equivalent to a truncated power-

law function, given as

F (K̂) = 1−
( K̂

Kmin

)−m
, K̂ ∈ [Kmin,+∞), (37)

with the corresponding probability density function,

fK̂(K̂) =
m

Kmin

( K̂

Kmin

)−1−m
, K̂ ∈ [Kmin,+∞). (38)

Therefore, the generation of K̂ values can be determined directly from the cumulative

distribution function of F (K̂). Given ζ to be a random value of a uniform distribution

between 0 and 1, the corresponding K̂ value is obtained as
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K̂ = Kmin(1− ζ)−
1
m . (39)

Rewriting Eq. (17) in terms of the probability density function of equilibrium constant

K̂ and the concentration of the adsorbed chemical compound C, we have

[C]a = [B0]

∫ +∞

Kmin

fK̂(K̂)Θ(K̂)dK̂. (40)

Introducing Eq. (19) and Eq. (38) into Eq. (40) results in

[C]a = m[B0](Kmin)m
∫ +∞

Kmin

K̂−m[A]

1 + K̂[A]
dK̂. (41)

This integral has two limiting solutions depending on the concentration of [A]. When

[A] is small, the solution is obtained by applying a change of variable in the integration as

x = K̂[A], so that

[C]a = m[B0](Kmin)m[A]m
∫ +∞

[A]Kmin

x−m

1 + x
dx. (42)

Now, we can see that the lower limit of integration approaches to zero and the solution is

equivalent to

[C]a = m[B0](Kmin)m[A]m
∫ +∞

0

x−m

1 + x
dx = m[B0](Kmin)m[A]m

π

sin((1−m)π)
(43)

Thus, when [A] → 0, the concentration of the adsorbed chemical compound C follows the

Freundlich isotherm written as

[C]a = K[A]m, (44)

with

K =
mπ[B0](Kmin)m

sin((1−m)π)
. (45)
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On the contrary, when [A] is large, Eq. (42) simplifies to

[C]a = m[B0](Kmin)m[A]m
∫ +∞

[A]Kmin

x−m−1dx, (46)

which gives

[C]a = m[B0](Kmin)m[A]m
[A]−m(Kmin)−m

m
= [B0]. (47)

Thus, at large concentration of [A], the solution approaches the solution limit as given by

the Langmuir isotherm. In short, a truncated power law distribution of equilibrium constant

gives a sorption isotherm that follows the Freundlich model for small [A] concentrations and

changes to the Langmuir saturation limit for large [A] concentrations. To understand the

transition between the two limiting models, one can analyze the deviation of Eq. (41) from

the Freundlich model. The relative deviation from the Freundlich model can be written as

ε =
[C]f − [C]a

[C]f
=
[ π

sin((1−m)π)

]−1
[A]−m

∫ Kmin

0

K̂−m[A]

1 + K̂[A]
dK̂. (48)

To find an approximate solution of the relative deviation we expand the integral around

K̂=0 in an ascending series in Kmin

∫ Kmin

0

K̂−m[A]

1 + K̂[A]
dK̂ = [A]K−mmin(

−Kmin

m− 1
+

[A]K2
min

m− 2
− [A]2K3

min

m− 3
+ ...). (49)

This is a relatively good approximation given that Kmin is small and the integral limits

are very close to each other. Truncating the series expansion at the first term results in

[A]c =
[ επ(1−m)

sin((1−m)π)

]1/(1−m)
K−1
min, (50)

where [A]c is the concentration of [A] at which the isotherm starts deviating from the

Freundlich model.

The random walk model of sorption proposed here has three parameters [B0], m, and

Kmin. The parameter m represents directly the exponent of the Freundlich isotherm. The

parameter Kmin determines the maximum concentration of the chemical compound [A] in

the liquid phase for which sorption follows the Freundlich isotherm. The parameter [B0] is

the concentration of sorption sites in the system which relates to the Freundlich coefficient
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K according to Eq. (45).

4.2 Numerical simulations

The Langmuir model

The first test was design to show the performance of the proposed model to reproduce

adsorption based on the Langmuir model in a batch system. The constants of forward

adsorption and background desorption were set to kf = 0.5 and kb = 0.1, respectively. A 1-

D domain of size Ω = 200, a particle mass of mp = 1, and initial concentration [B0] = 200 are

considered. Simulations are performed for 2000 time steps with a time interval of ∆t = 10−2

and a diffusion coefficient of D = 10−2. All values throughout this section are reported in

normalized units.

At each time step, all the adsorbate particles A are moved following Eq. (2) to account

for the effect of diffusion. To effectively search for potentially reactive pairs of particles A

and B, the 1-D domain is divided by elements of size Ω/2hopt, then we find at each element

and its two neighbors, all pairs of particles A and B. The distance between each pair is

first obtained, then the procedure mentioned below Eq. (34) is followed to implement the

forward reaction. After repeating this procedure for every pair of particles in all elements,

the backward reaction for each particle C is implemented following a similar procedure

mentioned in Section 4.1.

Figure 7 shows the concentration ratio [C]/[A][B] as a function of time for different initial

concentration values [A0]. It can be observed that all the simulations approach equilibrium

at late times. Fluctuations around the equilibrium value decrease as [A0] increases. For

a concentration of [A0] = 200, which corresponds to an initial 40,000 particles, the actual

equilibrium constant is closely approximated by the model at late times while the number of

remaining adsorbate particles A in the system is very low, in the order of 1000 particles. This

reasonable approximation shows the potential of our proposed model to simulate adsorption

with a low number of particles. We note that the classical diffusion-based model is unable

to reach this approximation due to the segregation of particles at late times (Rahbaralam

et al., 2015).

To further examine the performance of the proposed model, we performed twenty sim-

ulations considering different initial concentration values [A0] = 40, 50, ..., 250. For each

simulation, we obtained the concentrations [A] and [C] from the average of their values at
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the last 100 time steps (so that equilibrium was achieved). Figure 8 shows these concentra-

tions together with the results of the analytical model in Eq. (14) for comparison purposes.

It is clear that the simulation results have a good agreement with the analytical Langmuir

isotherm even for a concentration of [A] < 0.5, where the initial number of particles is 8000

and the number of remaining adsorbate particles is below 100. By increasing the concentra-

tion [A], the product concentration [C] tends to saturate towards [B0] which is the maximum

capacity of free sites for adsorption. This saturation level implies the mono-layer adsorption

in the Langmuir isotherm.

The Freundlich model

This is a challenging model due to the need to specify different equilibrium constants to each

individual sorption site. We first set up all the parameters, except kf , identical to that of

the previous section, to be consistent with the simulations for the Langmuir model. Then,

according to the theoretical developments for deriving Eq. (39), the constant of forward

adsorption kf can be obtained in terms of the Freundlich constant m for each pairs of A and

B particles by kf = kbKmin(1− ζ)−1/m, where Kmin in the minimum equilibrium constant

given by Eq. (50) and ζ is a random number generated from a standard uniform distribu-

tion. Thus, different m values were used in the simulations. Having these parameters, we

followed the same procedures explained in the previous section to implement the forward

and backward reactions.

To obtain a good agreement between the model and the theory, the sorption sites should

follow the exponential distribution of energy in Eq. (18). However, in a range of low [A]

concentrations, where the number of particles is small, there is a risk of undersampling. For

this reason, we performed a larger number of simulations in this range. Figure 9 shows the

adsorbate concentration [A] and the product concentration [C] at equilibrium. It is clear

that, in a range of low [A] concentrations, the points in the graph follow closely a linear

logarithmic slope whose value is controlled by the Freundlich constant m. By increasing the

value of m, this agreement holds for a smaller range of concentrations [A].
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Figure 7: Concentration ratio [C]/[A][B] as a function of time for different initial concen-
tration values [A0]. At equilibrium this ratio should be equal to Keq, which is plotted for
comparison purposes.
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Figure 8: Concentration of the adsorbed species [C] as a function of adsorbate concentration
[A] at equilibrium. Analytical solution of the Langmuir isotherm in Eq. (14) is also plotted
for comparison purposes.
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As mentioned before, a drawback of the Freundlich isotherm is that it cannot be em-

ployed for large adsorbate concentrations since this model does not taken into account the

saturation limit of free adsorption sites. However, Fig. 9 indicates that the proposed model

is also able to incorporate this physical limitation without the need to use a complex model

that transitions to a Langmuir-type behavior. Again in Fig. 9 it is observed that as the ad-

sorbate concentration [A] increases, the number of available adsorbent sites B decreases and

the product concentration [C] tends to saturate to the maximum adsorbent concentration

[B0]. This saturation occurs at lower adsorbate concentration by increasing the value of m.

Therefore, these results show that our model combines the features of both the Langmuir

and Freundlich isotherms in all range of adsorbate concentrations.

One-dimensional column tracer test

To validate our proposed model, we intend to reproduce the experimental results of a

one-dimensional column tracer test using lithium (Li) as reactive tracer chemical species

(Fernàndez-Garcia et al., 2004). Batch experiments suggested a Freundlich behavior for the

sorption of Li which agrees with experiments reported by Garabedian et al. (1988). Uni-

formed crushed silica sands were used to construct the column. Reactive Li tracers were

injected from the inlet for an initial period of T0 = 60 (min) with a concentration of A0 =

65.34 (mg/L). Concentrations were measured at the outlet during 330 hours. These param-

eters as well as the length L and the diameter d of the column, the sand porosity φ, the flow

rate Q, and the longitudinal dispersivity α are presented in Table 1. The flow velocity v is

then obtained as v = Q/Aφ, where the column cross section area is given by A = πd2/4.

The Freundlich model introduced in Section 4.1 is employed to simulate the transport

of reactive species Li. We follow Eq. (3) for particle tracking where the hydrodynamic

dispersion Dh is given by Dh = D + αv. We implement this equation considering a 1-D

domain of size L and a time interval of ∆t = 1 min. Having these parameters, we inject an

initial number of particles in each time step as N0 = A0Q∆t/mp, where mp is the particle

mass. In this simulation, we assume mp = 163 ng which leads to N0 = 1000. These

Table 1: Tracer test parameters
L d φ A0 Q α T0

44.52 cm 39.5 cm 0.4 65.34 mg
L 2.5 mL

min 0.1 cm 60 min
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particles are injected at the beginning of the 1-D domain for each time step until reaching

the injection time T0. An initial 55,000 adsorbent particles B and a backward desorption

reaction constant kb = 0.3 min−1 are considered. The Freundlich coefficient K was obtained

by Fernàndez-Garcia et al. (2004) as K = 1.15 (mg/L)(1−m), determining the parameter

[B0] according to Eq. (45). The simulation is performed for 20,000 time steps. At each

time step, we count the particles which reach the end of the domain, i.e. Xj > L, then the

normalized concentration A/A0 is obtained as the number of the counted particles divided

by N0. Finally, the results are fitted with a two-term Gaussian function. Figure 10 shows

the normalized concentration as a function of the pore volume v.t/L. Experimental data

reported by Fernàndez-Garcia et al. (2004) is also plotted for comparison. A good match

between these breakthrough curves is found for a value of m = 0.4, comparable to a value

of m = 0.36 obtained from a finite difference transport model (Fernàndez-Garcia et al.,

2004). Note that in this work the value of dispersion has been reported as α = 0.223 cm

while here we consider a value of α = 0.1 cm. This difference can be attributed to the

numerical dispersion induced by the finite difference method. We also note that the value of

m used in the simulation should be viewed as a column-scale effective parameter and may

not correspond to true Freundlich model parameter.
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Contributions

We summarize here the most significant contributions of this work:

1. We have proposed a numerical method that combines a simple Particle Tracking Meth-

ods (PTM) with some predefined rules for particle interaction that properly reproduces

nonlinear adsorption. The method uses Kernel Density Estimators (KDEs), enabling

it to avoid the effects of incomplete mixing due to the segregation of particles which is

common in classical diffusion-based models with finite (and small) number of particles.

2. It was found that the PTM-KDE method provides a good reproduction of nonlinear

adsorption following the Langmuir isotherm by simply adding a finite number of sorp-

tion sites of homogeneous sorption properties. The advantage of using KDEs is that it

is possible to obtain very good results in terms of adsorbed versus adsorbate concen-

trations with quite a small number of particles, while other PTM methods would rely

on a very large number of tracked particles to obtain good approximations. The effect

of the nonlinearity resulted in a different equilibrium time depending on the initial

concentration of the dissolved species (adsorbate).

3. We have also extended the approach to address nonlinear sorption modeled with a

Freundlich isotherm. This involves some theoretical considerations regarding hetero-

geneity of the sorption properties at each specific sorption site. When such properties

follow a truncated exponential statistical distribution, adsorption follows a power law

in the ratio of sorbed and dissolved concentrations. This is valid for low to interme-

diate concentration values. The saturation of adsorbent sites has been also observed

for high concentrations, pointing out the ability of our model to combine the features

of the classical Langmuir and Freundlich isotherms. Our proposed approach opens up

a new way to predict and control an adsorption-based process using a particle-based

method with a finite (and actually quite low) number of particles.
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5 Mobile-immobile model

As mentioned in Section 3, incomplete mixing in diluted systems should be modeled based

on alternative mechanistic models and not on a limited number of particles. Simulation

results of our proposed KDE model have already shown that the number of particles plays

a negligible role on the solution and the actual concentration is closely approximated by

the well-mixed solution, controlled simply by the thermodynamic rate coefficient. This

potential allows us to develop a model for incomplete mixing solutions insensitive to the

choice of number of particles being present in the system. While in well-mixed systems the

concentrations are fully controlled by chemical processes, in many real situations spatial

heterogeneities lead to a complex temporal evolution of the system, which depend on the

transport and mixing mechanisms. Mixing is the ensemble of processes by which substances

originally segregated into different volumes of space. This leads us to consider incomplete

mixing driven by double porosity systems.

A porous medium can be regarded as consisting of two distinct domains, a mobile domain

where advection-dispersion-reaction takes place and an immobile domain where transport is

predominately by molecular diffusion. This physical reality of the existence of both domains

has been recognised by the so-called mobile-immobile (MIM) model. This model has been

used to represent physical and chemical non-equilibrium mass transfer processes controlled

by diffusion that occur during solute advection and dispersion (Barenblatt et al., 1960; Coats

and Smith, 1964; Deans, 1963; Gardner and Brooks, 1957). The simplest mass transfer be-

tween a mobile domain and an immobile domain is approximated as a first-order exchange

dictated by a single-rate coefficient. A concise review of the many different mathematical

forms of the MIM model has been presented by Haggerty and Gorelick (1995). The single-

rate MIM model has been applied successfully to field problems and it has become popular

among hydrologists for studying transport in saturated and unsaturated zones, and in gran-

ular as well as fractured media (Zhang and Brusseau, 1999; Feehley et al., 2000; Harvey and

Gorelick, 2000; Gorelick et al., 2005). A far more comprehensive and generalized descrip-

tion of mass transfer between mobile and immobile domains is the multirate model, e.g.

(Brusseau et al., 1989; Villermaux, 1987; Sardin et al., 1991; Valocchi, 1990) which accounts

for simultaneous mass transfer processes, governed by multiple first-order equations and a

set of mass transfer rate coefficients. The implementation of the MIM model into random
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walk particle tracking has been presented recently by Salamon et al. (2006a). They have

introduced a mechanism by which the particle is exchanged between the mobile/immobile

domain in the random walk method. Here, our objective is to incorporate this mechanism

in the reactive KDE model to account for the heterogeneity of porous media.

5.1 Mobile-immobile approach

By incorporating the bimolecular irreversible chemical reaction in the single-rate MIM model

as one of the most commonly used models of rate-limited mass transfer (Haggerty and

Gorelick, 1995), the physical model governing the chemical species A and B between mobile

and immobile zones is written as:

φm
∂[Am]

∂t
+ φim

∂[Aim]

∂t
= −kf [Am][Bm], (51)

∂[Aim]

∂t
= α([Am]− [Aim])− kf [Aim][Bim], (52)

φm
∂[Bm]

∂t
+ φim

∂[Bim]

∂t
= −kf [Am][Bm], (53)

∂[Bim]

∂t
= α([Bm]− [Bim])− kf [Aim][Bim], (54)

where φm and φim are the mobile and immobile porosities, respectively, [Am] is the con-

centration of species A in the mobile zone, [Aim] is the concentration of species A in the

immobile zone, kf is the reaction rate constant, and α is the first-order mass transfer rate

coefficient. Note that a similar procedure explained in Section 3.1 is followed to derive these

equations assuming a well-mixed concentration for both mobile and immobile domains. As-

suming that φm = 1 and φim = β, β being the capacity ratio defined as β = φim/φm,

Eqs. (51) and (53) convert to

∂[Am]

∂t
+ β

∂[Aim]

∂t
= −kf [Am][Bm], (55)

∂[Bm]

∂t
+ β

∂[Bim]

∂t
= −kf [Am][Bm]. (56)
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In the limiting case α → ∞, the total concentration is divided equally between the

mobile and immobile zones, i.e. [Am] = [Aim] and [Bm] = [Bim], and the above equations

are rewritten as

(1 + β)
∂[Am]

∂t
= −kf [Am][Bm]. (57)

(1 + β)
∂[Bm]

∂t
= −kf [Am][Bm]. (58)

Assuming that [Am] = [Bm], the analytical solution of Eqs. (57) and (58) is obtained as

[Am] =
[Am0 ]

1 + [Am0 ]kf t
′ , (59)

where [Am0 ] is the initial concentration in the mobile zone and t
′

= t/(1 + β), t being time.

The total concentration [A] over total volume when α→∞ is obtained as

[A] = (1 + β)[Am] =
(1 + β)[Am0 ]

1 + [Am0 ]kf t
′ =

[A0]

1 + [A0]kf t̂
, (60)

where [A0] = (1 + β)[Am0 ] and t̂ = t
′
/(1 + β) = t/(1 + β)2. Therefore, in the limiting case

α→∞, the total concentration [A] decays with a time delay factor (1 + β)2.

Following the recent work of Salamon et al. (2006a), the change in the state of a particle

from the mobile state to the immobile state is determined using transition probabilities.

The transition probability, Pij(∆t), that a particle presently in state i (mobile) will be in

state j (immobile) at a time t+ ∆t is given by

P (∆t) =

 1+βe−(1+β)α∆t

1+β
1−e−(1+β)α∆t

1+β
β−βe−(1+β)α∆t

1+β
β+e−(1+β)α∆t

1+β

 (61)

If a particle is in the mobile domain, then it is susceptible to dispersion and reaction,

otherwise the particle is not allowed to move and react with other particles (immobile).

Having calculated the phase transition probabilities, numerical implementation into particle

tracking is done following the same procedure explained in Section 3. For each time step a

uniform [0,1] random number is drawn for each particle and is compared to the corresponding

probability. The state of a particle being in the mobile phase is adjusted accordingly.
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5.2 Simulation results

We perform the first set of simulations considering a fixed value of β = 1 and different

values of α. A 1-D domain of size Ω = 64 (normalized units), diffusion coefficient D = 10−5,

reaction coefficient kf = 50, [A0] = [B0] = [Am0] = [Bm0] = 5 × 10−3, and ∆t = 0.1 is

considered. Simulations are performed for 10,000 time steps. All values are reported in

normalized units. Having considered the transition probability in Eq. (61), we follow the

same procedure introduced in Section 3 for the KDE model to compute the reaction proba-

bility and the movement of mobile particles. Figure 11 shows the normalized concentration

[A]/[A0] as a function of time. The analytical solution of the well-mixed system (complete

mixing) in Eq. (27) is also presented for comparison purposes. It is clear that by choosing

an infinitesimal value of α = 10−5, the result approaches the solution of the well-mixed

system. The reason is that the transition probability density Pm,im in Eq. (61) tends to

zero in the limit of α→ 0, preventing the transition of particles from the mobile to the im-

mobile state. In the absence of immobile particles, the system recovers the complete mixing

state, as presented in Section 3. On the other hand, for a large value of α = 103, the total

concentration is divided equally between the mobile and immobile zones, i.e. [Am] = [Aim],

and the result tends to the analytical solution in Eq. (60) with a time delay factor (1 + β)2.

For intermediate values of α, the results show a transition between the two limiting cases.

To further investigate the behavior of the model in the limiting case α→∞, we perform

simulations considering different values of β and a fixed value of α = 103. Figure 12 shows

the normalized concentration [A]/[A0] as a function of time. For each chosen value of β, the

analytical solution in Eq. (60) is also plotted for comparison purposes. Simulation results

show a good agreement with the analytical solutions, indicating that by increasing the

capacity ratio β, the system tends to the incomplete mixing solution. In fact, in the limit of

β →∞, all the particles are trapped in the immobile domain with a volume of Vim →∞ and

the incomplete mixing solution is recovered, i.e. total concentration [A] remains constant

as a function of time.

In the absence of an analytical solution for the transition curves between the limiting

cases α → 0 and α → ∞, we perform a curve fitting of the results for intermediate values

α = 10−1, α = 10−2, and α = 10−3 in Fig. 11 using the following equation,
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Figure 11: Normalized concentration [A]/[A0] as a function of time considering different
values of α and a value of β = 1. Analytical solution of the well-mixed system in the
absence of the immobile domain is plotted for comparison purposes.
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[A] =
[A0]

1 + [A0]k̂f (t)t
, (62)

where the modified reaction coefficient k̂f (t) is defined as a function of time following a

transition probability,

k̂f (t) = kf

(1 + β′e−(1+β′)α′t

1 + β′

)
, (63)

where α′ and β′ are the fitting parameters. Considering Eq. (63) and having known that

k̂f (t) = kf for t→ 0 and k̂f (t) = kf/(1 + β)2 for t→∞, then the parameter β′ is obtained

as a function of β as (1+β′) = (1+β)2. Therefore, α′ remains as the only fitting parameter.

Figure 13 shows the simulation results together with the fitted curves. The obtained values

of the fitting parameter α′ are comparable with the chosen values of the mass transfer rate

coefficient α, indicating that Eq. (63) provides a simple estimate of the transition between

the limiting cases α→ 0 and α→∞.

Figure 13: Normalized concentration [A]/[A0] as a function of time considering different
values of α and a value of β = 1. A curve is fitted for each set of results according to Eq.
(63) with a fitting parameter α′ and β′ = 3.

These results show the potential of the extended KDE-based approach to control mixing
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(complete to incomplete) by the parameters α and β originated from a mechanistic model

rather than by numerical parameters such as the number of particles, c.f. Figs. 2 and 13.

Contributions

We summarize here the most significant contributions of this work:

1. The KDE-based approach introduced in Section 3 is extended to the mobile-immobile

(MIM) model for the simulation of reactive transport in heterogenous porous media.

The extended MIM model separates the particles to mobile and immobile states and

the change between these two states is determined using transition probabilities.

2. Simulation results have indicated that the extended MIM model is able to control

mixing using mechanistic parameters such as the mass transfer rate coefficient and

the mobile and immobile porosities rather than numerical parameters such as the

number of particles.
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6 Conclusions

This section summarizes the main contributions and research ideas of the thesis outlined as

follows:

• We propose a chemical reaction model based on Kernel Density Estimators (KDEs)

for the simulation of well-mixed systems. KDEs provide an optimal influential area

which grows with decreasing number of particles, a feature which is beneficial to avoid

incomplete mixing due to the segregation of particles.

• Simulation results have shown a noticeable enhancement of the reaction towards the

well-mixed solution when this model is applied instead of a standard PT model. Fur-

thermore, the results of the KDE model have indicated that, in contrast to the classical

DB model, the concentration decay is almost insensitive to the initial number of par-

ticles.

• We have conducted a performance analysis based on the computational time and error

of the models. The results have shown that the performance of the KDE model does

not depend on the system parameters, highlighting the rigorousness of our proposed

approach. All these behaviours prove that the KDE model is a powerful tool for

simulating chemical reactions of well-mixed systems.

• We have extended the KDE model to account for nonlinear adsorption following the

Langmuir isotherm by simply adding a finite number of sorption sites of homogeneous

sorption properties. The advantage of using KDEs is that it is possible to obtain very

good results in terms of adsorbed versus adsorbate concentrations with quite a small

number of particles, while other PTM methods would rely on a very large number

of tracked particles to obtain good approximations. The effect of the nonlinearity

resulted in a different equilibrium time depending on the initial concentration of the

dissolved species (adsorbate).

• We have also addressed nonlinear sorption modeled with a Freundlich isotherm. This

involves some theoretical considerations regarding heterogeneity of the sorption prop-

erties at each specific sorption site. When such properties follow a truncated expo-

nential statistical distribution, adsorption follows a power law in the ratio of sorbed
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and dissolved concentrations. This is valid for low to intermediate concentration val-

ues. The saturation of adsorbent sites has been also observed for high concentrations,

pointing out the ability of our model to combine the features of the classical Langmuir

and Freundlich isotherms. Our proposed approach opens up a new way to predict and

control an adsorption-based process using a particle-based method with a finite (and

actually quite low) number of particles.

• The KDE-based approach is also extended for the simulation of reactive transport in

heterogenous porous media. The extended model separates the particles to mobile

and immobile states and the change between these two states is determined using

transition probabilities. Simulation results have indicated that the extended model is

able to control mixing using mechanistic parameters such as the mass transfer rate

coefficient and the mobile and immobile porosities rather than numerical parameters

such as the number of particles.

The work carried out in this thesis also leaves some open research lines for the future.

We suggest the following lines:

• Particle injection: The results of this thesis indicate a good match with the analytical

results. However, we can still observe a small deviation from the analytical results.

This is mainly attributed to a poor estimation of KDEs due to a low number of

particles at late times. We can tackle this problem by injecting a number of particles

at late times for a better estimation of KDEs. The main challenge is to find a proper

particle injection method which avoids artificial numerical effects on the results.

• Multirate modeling of complicated reactions: The proposed models can simulate sim-

ple reactions with two or three different species dictated by a single-rate coefficient.

However, for real problems involving different species and various immobile domains,

more sophisticated reactions dictated by multi-rate coefficients are required. For this

purpose, our proposed KDE model can be extended following different chemical reac-

tion algorithms proposed by Gillespie et al. (2013) and the multi-rate mass transfer

model proposed by Haggerty and Gorelick (1995). We expect that implementing these

extensions will boost up the potential of our model for future applications.
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• Extending the model to two and three dimensions: To produce more realistic simu-

lations results and to capture complex chemical reactions, it is necessary to extend

the 1-D model to two and three-dimensions. The main challenge towards this goal is

to implement computationally efficient routines for the particle tracking method and

estimation of KDEs. One of the future tasks is to implement a parallel computing

technique for performing the simulations on a computer cluster. There are several

challenges in this way: 1- applying scheduling tasks at the right granularity onto the

processors of a parallel machine, 2- scalability support in hardware with respect to the

bandwidth and interconnect between processing elements, and (3) scalability support

in software such as libraries and algorithms. In addition, a domain decomposition

method would be required to speed up the calculations .
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Salamon, P., D. Fernàndez-Garcia, and J. J. Gomez-Hernandez (2006a). Modeling mass
transfer processes using random walk particle tracking. Water Resour. Res. 42, 1234–
1239.
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Siirila-Woodburn, E. R., D. Fernàndez-Garcia, and X. Sanchez-Vila (2015). Improving the
accuracy of risk prediction from particle-based breakthrough curves reconstructed with
kernel density estimators. Water Resour. Res. 51, 4574–4591.

Sips, R. (1948). On the structure of a catalyst surface. J. Chem. Phys. 16, 490–495.

Tartakovsky, A. M. and P. Meakin (2005). A smoothed particle hydrodynamics model
for miscible flow in three-dimensional fractures and the two-dimensional rayleigh-taylor
instability. J. Comput. Phys. 207, 610–624.



Bibliography 53

Thomas, W. J. (1957). Chemisorption of ethane at iron and nickel oxide. Trans. Faraday
Soc. 53 (1124-1131).

Tompson, A. F. B. and D. E. Dougherty (1992). Particle-grid methods for reacting flows in
porous media with application to fisher’s equation. Appl. Math. Model. 16, 374–383.

Urano, K., Y. Koichi, and Y. Nakazawa (1981). Equilibria for adsorption of organic com-
pounds on activated carbons in aqueous solutions i. modified freundlich isotherm equation
and adsorption potentials of organic compounds. J. Colloid Interface Sci. 81, 477–485.

Valocchi, A. J. (1990). Use of temporal moment analysis to study reactive solute transport
in aggregated porous media. Geoderma 46 (1), 233 – 247.

Villermaux, J. (1987). Chemical engineering approach to dynamic modelling of linear chro-
matography. J. Chromatography A 406, 11 – 26.

Willmann, M., J. Carrera, X. Sanchez-Vila, O. Silva, and M. Dentz (2010). Coupling
of mass transfer and reactive transport for nonlinear reactions in heterogeneous media.
Water Resour. Res. 46, W07512.

Xu, T., L. Zheng, and H. Tian (2011). Reactive transport modeling for CO2 geological
sequestration. J. Petrol. Sci. Eng. 78, 765–777.

Zhang, Z. and M. L. Brusseau (1999). Nonideal transport of reactive solutes in heterogeneous
porous media: 5. simulating regional-scale behavior of a trichloroethene plume during
pump-and-treat remediation. Water Resour. Res. 35 (10), 2921–2935.





 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

M. Rahbaralam, D. Fernández and X. Sánchez 
 

Journal of Computational Physics 

303, 94-105, 2015 

 

 

 

 

 

 

 
ATTENTION ¡ 

Pages 56 to 66 of the thesis, containing the article mentioned above, 
should be consulted at the editor’s web 

https://www.sciencedirect.com/science/article/pii/S0021999115006233 
 

 

Do we really need a large number 
of particles to simulate bimolecular 
reactive transport with random walk 
methods? 
A kernel density estimation approach 

https://www.sciencedirect.com/science/article/pii/S0021999115006233

	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Thesis body
	1 Introduction
	2 Background
	2.1 Particle tracking methods
	2.2 Kernel Density Estimators
	2.3 Adsorption

	3 Chemical reaction model
	3.1 Analytical model
	3.2 Diffusion-based (DB) reaction
	3.3 The KDE-based chemical reaction model
	3.4 Simulation results
	3.5 Performance analysis

	4 Modeling of non-linear adsorption
	4.1 The KDE-based adsorption model
	4.2 Numerical simulations

	5 Mobile-immobile model
	5.1 Mobile-immobile approach
	5.2 Simulation results

	6 Conclusions

	Bibliography
	A  "Do we really need a large number of particles to simulate bimolecular reactive transport with random walk methods? A kernel density estimation approach''



