Bridging deep and kernel methods
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Abstract. There has been some exciting major progress in recent years
in data analysis methods, including a variety of deep learning architec-
tures, as well as further advances in kernel-based learning methods, which
have demonstrated predictive superiority. In this paper we provide a brief
motivated survey of recent proposals to explicitly or implicitly combine
kernel methods with the notion of deep learning networks.

1 Introduction

Multilayer artificial neural networks have experienced a rebirth in the data anal-
ysis field, displaying impressive empirical results, extending even to classical ar-
tificial intelligence domains, such as game playing, computer vision, multimodal
recognition, natural language processing and speech processing. The versatility
of such methods to perform non-linear feature extraction and deal with a di-
versity of complex data —such as video, audio and text— has lead many-layered
(“deep”) parametric models to get over well-established learning methods, like
kernel machines or classical statistical techniques. Deep neural networks, for ex-
ample, are very successful in machine learning applications although their num-
ber of parameters is typically orders of magnitude larger than the number of
training examples. However, their training is a delicate and costly optimization
problem that raises many practical challenges.

Learning several representational levels to optimize a final objective is the
main trademark of deep learning, from which multiple tasks and fields have
benefited lately. Key advances in deep neural networks in the last years include:

e Long-Short Term Memories (LSTM) [1] for their capacity to maintain con-
textual information in the data;

e Convolutional Neural Networks [2] for their capacity to identify regular
patterns in the data; and
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e The Auto-Encoder structure [3] for its capacity to learn a compact repre-
sention of data.

Current architectures that are raising the interest of the community include
phased LSTMs [4] —capable of training longer sequences than LSTMs in an
efficient way— and adversarial networks [5], able to produce new data by training
in competition generative and discriminative neural methods.

On the other hand, non-parametric kernel methods usually involve solving
a tractable convex problem and are able to handle non-vectorial data directly,
leading to a higher expressive power. Kernel methods involve the use of positive
semi-definite matrices to represent complex relations by mapping points into
high (possibly infinite) dimensional feature spaces, providing a solid framework
in which to represent many types of data, as vectors in R?, strings, trees, graphs,
and functional data, among others [6]. This expressive richness of kernel methods
has a price: by resorting to implicit computations, the methods operate on the
Gram matrix (the matrix of implicit inner products of the data), which may
raise serious computational issues for modern datasets.

Support Vector Machines (SVMs) are not the only possible method making
use of the kernel trick [6]. Over the years, these and other kernel-based methods
have gained prominence, both for supervised tasks (such as classification and
regression) and unsupervised tasks (such as novelty detection, clustering, and
feature extraction). These include the Relevance Vector Machine [7], Spectral
clustering [8], Kernel Linear Discriminant Analysis [9], Kernel Principal Com-
ponents Analysis [10], Kernel Canonical Correlation Analysis [11] and Kernel
Independent Component Analysis [12], among others. Their main drawback
is arguably the computational complexity dependence on the number of data
points, both in terms of time and space requirements.

A natural and emerging field of research is given by their hybridization, which
can be done in many fruitful ways. Ideas from the deep learning field could be
transferred to the kernel framework and wvice versa. In recent years, researchers
in these hitherto separate areas are developing “meeting points”, a promising
one being Gaussian Processes (roughly, the “Bayesian view” of kernel methods).
As an example, there is a natural duality between inner products of features
and kernels which can be used, for instance, to design new neural layers using
kernel functions. This is because one central lesson taught by deep machines is
that complex representations must be learned. In this sense, the Gram matrix of
the data (being unsupervised) may not capture the required similarity relations
needed to predict a yet unseen target variable. The incorporation of stacked
parameterized learning mechanisms then opens the way to more expressive ar-
chitectures.

This brief survey is organized as follows. A compilation of recent and highly
relevant work is provided in Section 2, followed by work specifically taylored to
Natural Language Processing tasks (Section 3). Next, we describe some useful
techniques that form the basis of many attempts at hybridization (Section 4).
The paper ends with some insightful conclusions.



2 Recent work

There has been a growing interest in exploring the possibility of integrating
deep learning networks and kernel machines. Here we only review a (hopefully
representative) sample of recent published work.

e The work by I. Steinwart et al. [13] investigates iterated compositions of
(weighted sums of) Gaussian kernels, while providing with an interpreta-
tion that shows some similarities with deep neural networks (DNNs). It
is proven that these kernels are universal [14]. The approach compares
favourably to standard SVMs, Random Forests, a Multiple Kernel Learn-
ing approach!, as well as to some DNNs.

e The work by G. Pandey et al. [16] approaches single-layer wide (meaning
infinitely large) learning based on arc-cosine kernels (see section 4). Exact
and approximate (but faster) learning strategies are developed and shown
to outperform both shallow and deep architectures of finite width, and
with less number of parameters.

e Deep Gaussian Processes (DGPs) are probabilistic deep models obtained
by stacking multiple layers, each one realized as a Gaussian Process (GP)
[17]. The work by Cutujar et al. [18] adopts random Fourier features (see
section 4) to DGPs, using stochastic variational inference for preserving
the probabilistic representation of a regular GP. This work bridges the gap
between DNNs and DGPs, exploiting the advantages of both. The random
feature approximations to DGPs with arc-cosine kernels are approximated
by DNNs with ReLLU activation functions. The procedure is reported to
lead to competitive performance (and faster inferences) compared to state-
of-the-art approaches to DGP [19].

e The work by J. Mairal et al. [20] introduces a new type of kernel-based
Convolutional Neural Network (CNN), which builds a multilayer image
representation by stacking and composing kernels. The network invariance
is encoded by a reproducing kernel, thereby obtaining simple networks,
being easier to train and more robust against overfitting. The authors
report comparable performance on several benchmarking image datasets,
with simple architectures and no data augmentation.

e A.G. Wilson et al. [21] are able to construct kernels which encapsulate the
expressive power of deep architectures, represented again as scalable prob-
abilistic GPs, producing a probabilistic mapping with an infinite number
of adaptive basis functions.

e T. Hazan et al. [22] show how deep infinite layers are naturally aligned
with GPs and kernel methods in general, and design stochastic kernels that

IMultiple Kernel Learning (MKL) [15] aims at finding the best combination of kernels to
solve a task.



rely on GPs to encode the information progressively built in layered deep
infinite neural networks.

3 Deep learning applied to NLP

Deep learning has revolutionized several fields in the last years: in areas like
speech recognition or image classification, DNNs now surpass the predictive
performance previously achieved by non-parametric models or even human be-
ings. Natural language processing (NLP) —understood as the field of computer
science that aims to interpret and produce human language— perhaps exemplifies
better than any other the qualitative gap that has been created. As presented
in [23], basic NLP tasks such as part-of-speech tagging, chunking, named entity
recognition and semantic role labeling can be approached effectively disregarding
hand-made features by learning internal representations based on large amounts
of (labeled or unlabeled) training data.

Advances in NLP aim nowadays to deploying crucial technologies —such as
machine translation, speech recognition and speech synthesis— to reach real-world
applications. These include spoken dialogue systems, speech-to-speech transla-
tion engines, chatbots, and the mining of social media for health and develop-
ment [24]. As a paradigmatic example, modern machine translation —always a
central topic in NLP— uses an autoencoder scheme with bidirectional recurrent
neural networks as attention-based mechanism. This architecture permits to
imagine a common representation of languages (i.e. an interlingua) that could
be helpful in many other applications.? Google’s Neural Machine Translation
System constitutes a real working example of deep learning in action [26].

4 Some key techniques

A kernel function k implicitly defines a map ¢ : X — H from an input space of
objects X into some Reproducing Kernel Hilbert Space (RKHS) #H (called the
feature space). The “kernel trick” consists in performing the mapping and the
inner product simultaneously by defining its associated kernel function:

k(x,x') = (p(x), (X)), x, X' € X, (1)

where (-, -),, denotes inner product in H.

Neural network kernels. Kernels for building wide large-margin classifiers
have been introduced in [27]. These kernels typically rely on an integral represen-
tation, and provide interesting connections with neural networks, which makes
them good candidates to benefit from deep neural architectures. As an example,
the arc-cosine kernel [27], as many kernels do, computes the similarity of two
data vectors, x,x’ € R?. It requires a “degree” parameter n, the definition of
the n-th order kernel being:

2The interlingua allows to translate among low-resourced language pairs [25].
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which shows a rather trivial dependence on the lenghts of x,x’, but a more
complex relation via the angle (6) between them:
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The function J,, is expressed as follows:
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Now, a single-layer neural network with M hidden units maps input vectors

x with functions of the kind g(Wx), being W the corresponding weight matrix.
We consider the family of one-sided polynomial activation functions:

T(z) :=0(z)"

These functions vanish up to z and become a monomial afterwards (for ex-
ample, one gets the step Heaviside function for n = 0). For a fixed n, the output

M M
of the network is then y(x) = > I'n(w; 'x) = > O(w; "x)(w; 'x)" where w;
i=1 i=1

is the i-th row of the weight matrix. Then one can define an inner product f
between a pair of input vectors as:

M
f(x,x") = Z O(w; ' x)0(w; ' x')(w;  x)"(w; 'x)"

The relation with the arc-cosine kernel follows from assuming that the weights
follow a standardized d-normal distribution w; ~ N(0, ;) and taking limits on
M, thereby simulating an infinite single-layer network; multiplying by a factor
of 2/M and extending the discrete expected value to the continuous one:
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Generalizing the idea, many interesting kernels on R? may be defined point-
wise as an expected value:

E(x,x') = Ew[T(w'x)T(w'x')],

where I' : R — R is a non-linear (activation) function. This encoding can be
seen as a one-layer neural network with an infinite number of random weights.

Kernel compositions. Consider a positive-definite (p.d.) kernel k; : XxX —
R and its RKHS #H; with mapping ¢; : X — H;. Consider also a p.d. kernel
2 ¢ H1 X Hy — R and its RKHS H, with mapping ¢ : H1 — Hs. Then
k3 : X x X = R given by k3(x,x’) := ko(¢1(x), $1(x’)) is p.d. and its RKHS
mapping is ¢3 = ¢2 0 ¢1.
As an example, consider the composition (say, kRcgpr) of the arc-cosine
(AC) and the standard RBF kernel:

2
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After all these transformations, the resulting expression for kRcppp(x,x’) is
feasible to calculate as:

n 1 k'RBF(X,X/)
(krpr (%, %)) % (kgpr (X', %)) 2 Jn [cos (\/kRBF(X,X)\/kRBF(X/aX/>>] (7)



Since the RBF function is a normalized kernel, it fulfills kgpr(x,x) = 1 and
thus the formula becomes:

Feroe (%) = 7o ((cos™ (exp(—lx — x'|1%)) (®)

where v > 0 and n € N are free parameters.

Kernel iterations. FExploiting further the natural duality between inner prod-
ucts of features and kernels, multilayer derived kernels can be obtained by iter-
ated compositions of a kernel with itself. The process can be carried out a fixed
number of times (which would correspond to the “depth”) or trying to compute
the limiting kernel function. In any case, the obtained kernel can be used in
place of standard kernels (e.g. using it in a SVM).

Random Fourier features. Initially introduced for large-scale kernel ma-
chines, they provide randomly drawn features that constitute unbiased estimates
for infinite kernel expansions. Random Fourier features are among the most
popular and widely applied constructions because they provide an easily com-
putable, low-dimensional feature representation for continuous scale-invariant
kernels [28].

In essence, for scale-invariant kernels k(x,x’) = k(x — x’) on R?, Bochner’s
theorem [29] states that k is a p.d. function if and only if it is the Fourier
transform of a non-negative measure® p(w). Letting I'y (x) := exp(iw ' x), then

b x) = B D G ()] = [ plwyexp (w7 (x=x)) dw— (0)

where * stands for complex conjugation. Monte Carlo methods can be applied
to estimate this expectation and get an approximation of the original kernel
k(x,x') as a (sampled) inner product of paired cosine and sine features:
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Thanks to Euler’s formula, eq. (9) can be written

k(x,x) = Ewn~p [COS(WTX) cos(w'x') +i sin(w ' x) Sin(WTX/)} (11)

If the kernel k is real-valued (as is most often the case), then the imaginary
parts above can be split to write eqs. (9) and (10) as:
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k(x —x) = ($(x), 9(x)) = d(x) S(x') (12)

31f k(0) = 1, then p(w) is a normalized probability density function.




with ¢(x) = ﬁ[COS(WIX), cooycos(wi,x), sin(wy x), ..., sin(w,x)]T. In

kernel methods, the representer theorem allows to express the solution function
as an expansion over the input data:

N
f(x) = Z ank(Xp,X)

which can in turn be expressed as a linear expansion in the random features:

N
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where f = 3 ay,¢(x,). This explicit kernel approximation via random fea-
n=1
tures delves into profound relations between inner products of features (the stan-
dard neural network function) and kernels. The quality of this approximation

has been recently studied [30].

5 Conclusions and outlook

The mere existence and need for deep kernel methods could be arguable. Is
cascading (large numbers of) non-linearities necessary to discover higher-order
features? Is this the answer to beating the curse of dimensionality? There are
in fact comparisons between deep learning models and shallow kernel machines
where the latter are able to match the performance of state-of-the-art DNNs on
TIMIT data for speech recognition and classification tasks [31].

The fact that kernel methods conform non-parametric models makes them
different from the classical parametric flavor of neural networks. On the other
hand, kernel methods can be linked to Gaussian Process models, and therefore
they constitute a natural bridge to the vast field of Bayesian data analysis. The
ideal method should be able to combine the structural properties of deep learning
architectures with the non-parametric flexibility of kernel methods.

Computationally speaking, both kinds of methods are demanding and pose
serious problems when applied to large datasets. Their hybridization could there-
fore bring benefits in both expressive power and scalability. In particular, we
expect great benefits in fusing Convolutional Neural Networks with kernel meth-
ods, thereby combining the locality at several scales and compositional expres-
siveness of the former with the non-linearity and built-in regularization ability of
the latter. An added advantage would be found in the opportunity to develop a
better theoretical understanding or, at the very least, to gain analytical clarity.

We should not ignore that there are also some negative counterparts to using
deep learning pervasively. A recent example would be found in the NLP area
[32], the main argument being that natural language may not be continuous at
the word level. For example, in the sentence Peter likes apples the proximity of
Peter and apples is arbitrary rather than ontological, because Peter could like
anything, a point quickly replied from the deep learning community [33].



Additional clear avenues for research are given by the use of supervision to
better approximate the kernel for a specific task and to understand the properties
of the feature spaces induced by these hybrid networks; the practical implemen-
tation of the known theoretical possibility of “emulation” of multilayer machines
by shallow ones and vice versa; and the derivation of efficient layer-wise algo-
rithms for training such networks.
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