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ABSTRACT: Wind power forecasts are useful tools for power load balancing, energy trading and wind farm operations.
Long range monthly-to-seasonal forecasting allows the prediction of departures from average weather conditions beyond
traditional weather forecast timescales, months in advance. However, it has not yet been demonstrated how these forecasts can
be optimally transformed to wind power. The predictable part of a seasonal forecast is for longer monthly averages, not daily
averages, but to use monthly averages misses information on variability. To investigate, here a model relating average weather
conditions to average wind power output was built, based on the relationship between instantaneous wind speed and power
production and incorporating fluctuations in air density due to temperature and wind speed variability. Observed monthly
average power output from UK stations was used to validate the model and to investigate the optimal temporal resolution
for the data used to drive the model. Multiple simulations of wind power were performed based on reanalysis data, making
separate simulations based on monthly, daily and sub-daily averages, using a distribution defined by the mean across the period
to incorporate information on variability. Basing the simulation on monthly averages alone is sub-optimal: using daily average
winds gives the highest correlation against observations. No improvement over this is gained by using sub-daily averages or
including temperature variability. This signifies that to transform seasonal forecasts to wind power a compromise must be
made between using the daily averages with debatable skill and the more predictable monthly averages, losing information on
day-to-day variability.
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1. Introduction

Electricity generation from renewable sources is growing and
the total installed capacity of renewable energy globally will
reach 3200 GW in 2025 (Frost and Sullivan, 2014). In the United
Kingdom wind power is the largest contributor to the renewable
energy mix and this share is growing, with a total installed capac-
ity of over 8 GW onshore and 4 GW offshore (RenewableUK,
2014). Records are continuously being broken: during Decem-
ber 2016 wind power supplied 20% of the United Kingdom’s
weekly energy demand (RenewableUK, 2017). However, despite
increases in total stored capacity and headline-grabbing records,
intermittency is a problem that will always remain (Albadi and
El-Saadany, 2010). On windless days no energy is produced,
regardless of total installed capacity. Conversely periods of high
wind bring a glut of energy, to be balanced with other sources.

Wind power forecasts can help address this challenge and
increase the efficiency of the grid (Pinson, 2013). It is already
routine practice to use short term weather forecasts for wind
power management (Barthelmie et al., 2008; Foley et al., 2012);
however, the development of weather and climate prediction
science has enabled the production of skilful forecasts on longer
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monthly and seasonal timescales. Where these forecasts have
skill they may prove useful in decision-making processes in
the wider energy sector; this is an active area of research (e.g.
García-Morales and Dubus, 2007; Troccoli, 2010; Lynch et al.,
2014; De Felice et al., 2015). Although forecasts are currently
under-used by the wind energy industry, recent advances in
seasonal forecast skill for wind speed over Europe may provide
an impetus for change (Scaife et al., 2014).

Transmission service operators matching supply to demand
may be able to make use of wind power forecasts at longer
timescales for load balancing, particularly when alternative
sources (e.g. coal and nuclear power plants) power up and down
on timescales longer than traditional weather forecasts. Schedul-
ing of wind farm maintenance may also be improved by the use
of monthly and seasonal forecasts, particularly in the case of off-
shore turbines where maintenance vessels must be scheduled in
advance of work. Wind farm operators can also make use of fore-
cast information through short term financial forecasting, whilst
owners, banks and insurance companies can use predictions of
generated power to manage risk, increasing the resilience of the
industry to shocks.

Compared to traditional weather forecasts which focus on
weather conditions for the upcoming few days, monthly and sea-
sonal forecasts generally have the most skill for averages over
periods of weeks, months and longer (Troccoli, 2010). Beyond
a week, predictions for individual daily averages are perceived
to be uninformative due to the fact that predictability on larger
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timescales arises from low frequency oscillations in the climate
system (Troccoli, 2010). Given that long range forecasts are
most informative for average periods longer than a week (e.g.
monthly averages), the question arises: is it possible to forecast
the average wind power across a month by using the monthly
average alone? Or must one base a long range power forecast on
a higher temporal resolution base (e.g. daily or sub-daily aver-
ages) in order to make an optimal transformation, even though
the predictability of daily variations in long range forecasts
is lower? Studies have suggested that assuming a linear rela-
tionship between monthly wind speed and power is reasonable
(García-Bustamante et al., 2009); however, using monthly aver-
age wind loses information about fundamental high frequency
variability in weather conditions. Hence, a methodology to trans-
form the skilful time-averaged climate forecast data into useful
long range wind power estimates is needed.

The typical spatial resolution of models used for monthly and
seasonal weather forecasts is also coarse compared to both that
used for shorter range forecasts and the local conditions around
most wind turbines. This means that the local conditions (e.g.
variability in topography) are often not well represented. Does
then the application of complex spatial downscaling lead to
improvements in wind power simulation? This is a very rele-
vant question because post-processing methods like downscaling
often reduce the skill of forecasts (Frías et al., 2010), suggesting
that their use should be kept to a minimum.

Furthermore, air temperature impacts wind power generation:
colder air is denser and has more kinetic energy than warmer air
at the same speed. Does the inclusion of variability in tempera-
ture improve the simulation of wind power?

A methodology is then necessary that takes all these issues
into account, striking a compromise between the provision of
high frequency, local wind power estimates with debatable skill
and value and the provision of averaged, coarse wind power
estimates with skilful information that might add value to the
decision process. Here, a model that transforms average 10 m
wind speed and air temperature to average load factor is created
to explore these issues (where load factor is a measure of power
independent of turbine model, defined as the power generated
by a wind turbine as a percentage of its maximum power). This
model is applied to reanalysis data, using monthly, daily and
sub-daily (e.g. 6 h) averages as a basis in separate simulations.
In each case two simulations are made, with and without the
inclusion of temperature variability. Two reanalysis datasets are
used: ERA-Interim reanalysis (Dee et al., 2011) and the SeaWind
II dataset (hereafter SW2), a spatially downscaled version of
ERA-Interim using the Weather Research and Forecasting ARW
model (Menendez et al., 2014). Finally, simulated load factor is
compared with reported monthly load factor for sites in the UK
across the period 2002–2012.

Whilst reanalysis data are not as accurate as wind speed obser-
vations from existing wind farm sites, they are used here as a
proxy for long range forecast output as they are generated from
the same atmosphere−ocean models. They also have the advan-
tage over station data of having global coverage. This allows esti-
mation of the wind energy and power potential in regions where
there are not yet wind farms or wind speed measurements.

Note that the current work does not address the question of
actual skill of load factor forecasts from monthly and seasonal
climate models; research considering power forecast skill on
seasonal timescales is in progress. Instead, the focus is on the
description and validation of the methodology to estimate the
load factor from average meteorological data and an exploration
of the compromise in both temporal and spatial resolution of the

data needed for optimal use of the forecasts. It should be noted
that a model such as this, essential for transforming seasonal
forecasts to load factor predictions, does not currently exist.

The validation of an impact model driven by a seasonal climate
forecast can be carried out on three levels (where an impact might
be load factor potential, malaria incidence or something else).
This follows the definition of a three-tier hierarchical validation
approach of end-to-end seasonal climate forecast systems (Morse
et al., 2005). The first, tier 1, is the validation of the driving
seasonal climate forecast against meteorological observations or
reanalysis. Tier 2 evaluates the impact model as a multivariate
nonlinear transfer function, by comparing the output of the
model driven by meteorological observations or reanalysis to the
observations of the impact. The final stage, tier 3, measures the
skill of the impact model driven by seasonal climate forecasts
against observations of the impact. In this case tier 1 and tier 3
validations are being considered in ongoing work; in the current
study tier 2 validation only is the focus.

The following section describes the observations of load factor,
the model relating average wind and temperature to load factor
and the reanalysis data and methods. Following this, results are
presented in Section 3 and a discussion is contained in Section 4.

2. Methodology

2.1. Load factor observations

Load factor is defined as the relationship between the actual and
potential power generated by a wind turbine. For instance, a
turbine with a maximum power rating of 2 MW operating with an
average load factor of 40% across a month will generate power at
an average rate of 0.8 MW. Using load factor rather than explicit
power is useful as it is independent of the maximum power
of a turbine; load factor arising from particular environmental
conditions is easily converted to power output of a wind farm by
multiplying by turbine rated power for each installed turbine.

Reported monthly load factor for the United Kingdom over
2002–2012 is used here as a reference to validate the load
factor model described below. These data are reported from wind
farms enrolled in the UK Government’s incentive scheme and
were originally published by the Renewable Energy Foundation
(Renewable Energy Foundation, 2012). An updated version of
this dataset is used here; the reader is referred to the appropriate
references for a detailed analysis of this useful dataset (Staffell
and Green, 2014). Stations with at least 3 months of reporting
data are shown in Figure 1; each station covers a subset of the
total 11 year period.

2.2. Modelling load factor as a function of average
environmental conditions

Here the model used to transform average wind and temperature
to average load factor is described. Several factors are taken into
account to form the structure of the model:

• the relationship between instantaneous wind speed and power
generated by a wind turbine (known as a power curve);

• temporal variability in wind speed;
• the increase of wind speed from surface to turbine height, and
• power losses due to transmission and distribution of electricity.

The ways in which these factors have been incorporated are
described in detail in the following sections.
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Figure 1. Location of stations with monthly load factor observations as
dots. The ERA-Interim grid is overlaid, with the downscaled SeaWind
II dataset gridpoints indicated by small black crosses. [Colour figure can

be viewed at wileyonlinelibrary.com].

2.2.1. Defining a power curve

The relationship between instantaneous wind speed and gener-
ated power by a turbine is nonlinear and described by a power
curve (Lydia et al., 2014), the general shape of which is shown
by the black curve in Figure 2. At low and high wind speeds no
power is generated: below a low wind speed threshold (known as
the cut-in speed, around 4 m s−1) the wind is not strong enough
for a turbine’s blades to spin and above a high speed thresh-
old (known as the cut-out, around 25 m s−1) the blades are pre-
vented from spinning for safety. Above the rated speed (generally
12.5 m s−1), turbine braking occurs, which caps the power gener-
ation at the rated power. The rated power is the maximum power
of a wind turbine, meaning that between the rated speed and the
cut-out speed the turbine operates at its maximum capacity and
the load factor is by definition 100%.

The majority of wind turbines have the same power curve
shape, described in manufacturers’ product specification docu-
ments. Power curves are idealized: in practice the instantaneous
power will not necessarily follow this relationship as the curves
are averages of empirical data, and meso- and micro-scale inter-
ference can influence turbine operation (Rosen and Sheinman,
1994). The load factor model described here does not account
for such departures from ideal power curve behaviour.

Between cut-in and rated speed, the power generated by a
turbine is a function of cubed wind speed and temperature. This
arises from a consideration of the kinetic energy generated by a
turbine and the mass of air passing through the swept area of the
blades. The derivation can be found elsewhere (e.g. Burton et al.,
2011), giving the power density P as:

P = pAv3∕2RT (1)

where p is air pressure (assumed here to be constant at 1000 mb),
v is wind speed, A is the surface area of the turbine blades, R is the
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Figure 2. Simulated average load factor as a function of average wind
speed, shown for different average temperatures by the dashed curves.
The light solid curve indicates simulated load factor if no consideration
of hub height is made, and the dark solid curve indicates the load factor
corresponding to zero variability in wind (i.e. identical to the theoretical
power curve). [Colour figure can be viewed at wileyonlinelibrary.com].

ideal gas constant (287 J kg−1 K−1) and T is the air temperature
in kelvins. This equation gives the rate of kinetic energy passing
through a turbine; however, this is not all extractable, due to theo-
retical and practical limitations. The Betz law (Betz, 2013) limits
the amount of extraction to around 60%, whilst design inefficien-
cies and practical material limitations reduce this further. The
model does not explicitly represent these processes but accounts
for them with a scaling factor c:

P = cpAv3∕2RT (2)

which is set empirically to produce a power curve matching real
turbine specifications. Power generated between cut-in and the
rated speed in the model is then given by Equation (2). Above
the rated speed, power equals the rated power (i.e. load factor is
100%). This gives the curve of Figure 2 (produced with a scaling
factor c of 0.19).

The curve is tuned using the centre of the typical turbine
operating temperature range of −20 to 40 ∘C, i.e. the load factor
equals 100% at the rated wind speed for temperatures of 10 ∘C.
Different average temperatures then give different power curves,
examples of which are shown as the dashed curves in Figure 2.

2.2.2. Incorporating a wind speed distribution into the model

Wind speed is not constant and basing a power calculation purely
on the average wind speed over a period can lead to errors
(Rosen and Sheinman, 1994). To incorporate this variability, the
Rayleigh distribution is used (Carta et al., 2009). The Rayleigh
distribution naturally arises when the overall magnitude of a
vector is related to directional components. It assumes that the
magnitudes of zonal and meridional wind speed are uncorre-
lated, normally distributed, have equal variance and zero mean.
Note that this is not necessarily the case for the components of
wind speed at all times; however, the Rayleigh distribution has
been found in general to be suitable for modelling wind speeds
(Pishgar-Komleh et al., 2015). The distribution is given by:

F (x; 𝜎) = x
𝜎

exp

(
−x2

2𝜎2

)
(3)
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where 𝜎 is the scale parameter of the distribution of x, and the
mean 𝜇 of the distribution is given by:

𝜇 = 𝜎

√
𝜋∕2 (4)

To use this distribution to map average wind speed to aver-
age power, the average wind speed is first used to calculate a
value of 𝜎 from Equation (4). This value of 𝜎 corresponds to
a specific Rayleigh distribution, which is then multiplied by a
power curve (corresponding to a specific average temperature)
to produce a load factor distribution function. This function rep-
resents the distribution of load factor across a period with a spe-
cific average speed and temperature, with wind speed variability
described by a Rayleigh distribution. The average of this distri-
bution corresponds to the average load factor expected from a
period with specified conditions. By repeating this process across
a range of wind speeds, a distribution can be generated which
relates any average wind speed to an average load factor, giv-
ing the curves described in Figure 2. Note that if a constant wind
speed is assumed, the load factor simply follows the general tur-
bine power curve. Using this distribution means that, although
the underlying data may be averaged across a period, the model
incorporates information on the underlying variability across that
period.

Other distributions are available; some work has suggested that
a Weibull distribution may be preferable for modelling wind
speeds in certain situations (Carta et al., 2009). However, the
Weibull distribution cannot be applied generally as it trades
accuracy for generality and depends on the estimation of an
extra parameter. Further development of the model may consider
alternative distributions fitted to the specific wind regime under
study (e.g. lognormal, inverse Gaussian; a full catalogue is given
by Carta et al., 2009). However, it may prove difficult to estimate
an extra parameter in a seasonal climate forecasting context
due to the relatively small sample size of hindcast verification
years. For a baseline validation of the model here the Rayleigh
distribution is preferred.

2.2.3. Consideration of height and losses

Generally the wind speed from a weather or climate model
is available at a constant level of 10 m above the surface, or
at the height corresponding to fixed pressure levels. It is dif-
ficult to interpolate pressure levels directly to hub height, as
the physical height of the levels changes over time. Although
others have followed more complex methods involving model
output on several levels (Staffell and Green, 2014), the required
levels are often not available from climate forecast systems.
Therefore a simpler relationship between 10 m wind and wind
at hub height is used here; using the wind profile power law
(Burton et al., 2011) wind at 10 m is transformed to 60 m (the
average UK hub height, Staffell and Green, 2014). This is
described by:

u
ur

=
(

z
zr

)𝛼

(5)

where u and z are speed and height (the subscript r indicates
values at a reference level) and 𝛼 is an empirically derived
co-efficient related to atmospheric stability, which varies
depending on weather conditions. Here it is set to 0.143, cor-
responding to neutral stability over land (Burton et al., 2011).
Previous work has shown that the choice of 𝛼 has an impact on
hourly power simulation, although an average value of 𝛼 can
accurately represent long term generation (Kubik et al., 2013).

Table 1. List of simulations carried out. In each case, the listed vari-
able(s) are transformed to monthly load factor for each station using

Figure 2 and taking the nearest reanalysis gridpoint to each station.

80 km ERA-Interim 15 km SeaWind II dataset

Monthly 10 m wind Monthly 10 m wind
Daily 10 m wind Daily 10 m wind
Daily 10 m wind and 2 m air
temperature

Daily 10 m wind and 2 m air
temperature

Six-hourly 10 m wind Hourly 10 m wind
Six-hourly 10 m wind and 2 m
air temperature

Hourly 10 m wind air
temperature

Using a value of 𝛼 = 0.143 and mapping between 10 and 60 m
gives the relationship:

u60m = 1.29u10m (6)

This transformation of wind speed to account for height dif-
ferences is made before calculating the distributions for wind
speed and load factor described in Section 2.2.2. The difference
between curves calculated using 10 and 60 m winds is shown by
the dashed and light solid curves in Figure 2. Note that any vari-
ation of temperature with height is ignored: a dry adiabatic lapse
rate of 9.8 ∘C km−1 suggests a negligible temperature change of
<1 ∘C between ground and hub height; the difference in temper-
ature with height for saturated air would be lower still.

One final factor included in the model is the power losses aris-
ing from the transmission and distribution of electricity. Follow-
ing previous work (Staffell and Green, 2014), a performance ratio
of 0.725 is used to scale the load factor and account for these
losses.

2.3. Simulating monthly load factor using reanalysis

By using the model described in Section 2.2, average 10 m wind
and air temperature can be transformed to average load factor.
This is carried out for reanalysis data at different temporal and
spatial scales in the simulations described in Table 1. In each case
data at a different temporal resolution are first transformed to load
factor at that same temporal resolution and then averaged across
each month for each station. This is then compared with the load
factor observations described in Section 2.1.

The reanalysis dataset used is ERA-Interim (Dee et al., 2011), a
global atmospheric reanalysis produced at the European Centre
for Medium-range Weather Forecasts (ECMWF). This product
uses a large and diverse set of observations combined with the
ECMWF atmospheric model to produce a gridded spatially and
temporally complete dataset. The load factor simulations here
based on ERA-Interim use monthly, daily and 6 h 10 m wind. In
each case the load factor model is used to calculate the average
load factor for each base period and from these the monthly load
factor is calculated. For each of the daily and 6 h simulations two
simulations are made, one in which the corresponding variations
in 2 m temperature are taken into account, and one in which a
constant temperature of 10 ∘C is assumed. Creating simulations
with and without the inclusion of temperature variability enables
an assessment of the added value of information on temperature
variability.

The spatial resolution of ERA-Interim is roughly 80 km in the
horizontal (indicated in Figure 1). For each station the simulated
value of load factor in the nearest grid box is taken to represent
the load factor for that station. More sophisticated statistical
methods are possible to move from coarse model resolution to

© 2017 Royal Meteorological Society Meteorol. Appl. 25: 1–10 (2018)
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station values (e.g. weighted interpolation between gridpoints or
methods based on neural networks informed by the underlying
observed data). However, these methods rely on station data
records, which for many locations are not available. No attempt
was made to optimize load factor simulation using the station
data available in this instance, in order to understand the optimal
method of transforming gridpoint data to wind power forecasts
in situations where station data are not available.

To investigate the impact of increased spatial resolution of the
underlying wind and temperature data, the SW2 dataset was used.
This dataset is produced by using ERA-Interim boundary con-
ditions to drive a high resolution weather model (WRF-ARW,
Menendez et al., 2014). The spatial resolution of SW2 is approx-
imately 15 km, and allows better representation of smaller scale
topographic features and atmospheric processes, potentially giv-
ing more realistic values for the wind than the lower resolu-
tion driving the dataset at each station. However, although it is
an improvement over 80 km, not all topographic features and
processes are represented at 15 km. The SW2 grid is shown in
Figure 1 by small crosses and, as with the ERA-Interim data, the
load factor for each station is taken as the nearest gridpoint. SW2
is available at hourly resolution, which is used in the sub-daily
simulation instead of the 6 h averages used for ERA-Interim data;
a Rayleigh distribution is assumed over each hour. Note also that
whilst ERA-Interim overlaps the entire load factor observation
period 2002–2012, SW2 is limited to 2002–2010.

2.4. Comparing simulated and observed load factor

Simulated monthly load factor is compared to observations by
calculating the bias and the Pearson’s correlation across all
months in the time series. Bias is calculated by subtracting aver-
age load factor from simulated load factor (to avoid confusion:
the units of the bias are per cent as it is a difference between two
percentages rather than a ratio relative to one of them). For the
correlation, the 12 month seasonal cycle of both the observation
and simulation data is calculated for each dataset separately and
subtracted, in order to calculate the skill of predicting load factor
variations around this relatively well defined cycle. Significance
values for correlations at the 95% level are based on the num-
ber of months of observations for each station and are calculated
using a t test (Wilks, 2011).

A baseline simulation is used as a benchmark for assessment of
the added value of the load factor model. The baseline is calcu-
lated by using untransformed monthly 10 m ERA-Interim winds
as a predictor of load factor, calculating the correlation of the
wind directly with load factor observations. This can be inter-
preted as the least sophisticated method of estimating monthly
load factor, using wind information only at the lowest tempo-
ral resolution and making no transformation. The significance of
correlation differences against the baseline simulation is calcu-
lated by using the Fisher r-to-z transformation (Wilks, 2011).

3. Results

Results for ERA-Interim are shown in Figure 3 for simula-
tions based on monthly mean wind and daily wind (it should
be re-emphasized here that although the underlying data
comprise averages across the respective period, variability is
included through the use of a Rayleigh distribution, described
in Section 2.3). Average observed load factor is shown in the
top left plot. Below this, the average simulated load factor is
shown as a difference from the observed, for simulations based
on monthly mean wind and daily mean wind. The general spatial

pattern of simulated load factor is consistent with observations,
with the largest simulated and observed values near the coast in
northern Scotland, Wales and Cornwall (not shown). However,
overall the simulations underestimate the load factor. The highest
discrepancy is for Northern Ireland and Wales, where simulated
load factor is too low by 10–15%. Areas in the southeast have
the lowest bias, with simulations only around 5% lower than the
observations.

Where monthly wind speed is transformed directly to monthly
load factor a large bias is present: this method produces values
of load factor lower than 10% on average. This is below the
observed values of around 15–35%, resulting in a negative load
factor bias of up to 30%. By using daily and sub-daily data this
bias is greatly reduced, bringing the simulated load factor to
around 15–20% on average. There is no difference in the bias
when 6 h averages are used, nor is there any improvement when
temperature variations are incorporated into the calculation (not
shown).

The correlation of a baseline simulation with observations
(with seasonal cycle removed from simulations and observations)
is shown in the top right panel of Figure 3. The baseline sim-
ulation used here is where 10 m ERA-Interim winds correlated
directly with load factor observations (without being transformed
to load factor themselves). Differences from this baseline are
shown below this, for load factor simulations based on monthly
and daily winds. Baseline correlations are significant at the 95%
level and range between 0.4 and 0.7, with the highest correla-
tions seen inland and the lowest in coastal areas, particularly in
northern Scotland, the east coast of England and in the southwest.

Using monthly mean wind transformed to load factor does not
improve from the baseline, and in many cases reduces the corre-
lation (although generally the difference is not significant at the
95% level). The simulation based on daily mean winds, however,
does give significant improvement to the baseline correlation:
most correlations are 0.1–0.2 higher than the baseline, ranging
mostly between 0.6 and 0.9. This indicates that the cumulative
power generated across a month is dependent on the day-to-day
variability in wind speed and fluctuations do not average out over
time due to the nonlinear power curve. For a small number of
inland stations, using daily data improves correlations signifi-
cantly from the baseline; these stations are mostly inland where
correlations are already high. The largest changes arise in coastal
areas, where correlations are improved by around 0.3–0.4. The
station with the largest overall improvement is in the Shetland
Islands, where the correlation co-efficient improves from around
0.3 using the baseline method to 0.7. Results for 6 h wind are no
different to those for daily wind, and incorporating temperature
into the calculation does not impact the results (not shown).

Figure 4 shows the results when the SW2 dataset is used.
Broadly the same conclusions can be drawn about these simula-
tions as those based on ERA-Interim: a poor performance when
the load factor is based on monthly wind and an improvement in
correlation from the baseline when daily mean winds are used,
which is not bettered by using sub-daily (in this case, hourly)
reanalysis or by incorporating temperature fluctuations. Note that
in Figure 4 the same baseline is used as in Figure 3, i.e. the cor-
relation between monthly ERA-Interim winds and load factor
observations.

There are three main differences between the two figures. First,
the mean biases are very slightly reduced for SW2 and the hourly
data reduce this further (although this is a small change). Second,
a simulated load factor based on SW2 monthly means reduces the
correlation from the baseline by a more significant amount than
a load factor based on monthly ERA-Interim winds. Finally, the

© 2017 Royal Meteorological Society Meteorol. Appl. 25: 1–10 (2018)



6 D. MacLeod et al.

Mean LF (%)

(%)

(%)

Figure 3. Results for ERA-Interim across all months with observations in the period 2002–2012. The top row shows the mean load factor (LF) for
each station from observations and the baseline correlation (monthly 10 m ERA-Interim wind vs load factor observations). Below this is shown the
bias in load factor and difference of correlation from baseline for the monthly 10 m wind and daily 10 m wind simulations (all other simulations show
little difference from the daily wind simulations and so are omitted for clarity). The number of observations for each station is indicated by the size of
the circles, and in correlation plots the points below 95% significance are shown as crosses. [Colour figure can be viewed at wileyonlinelibrary.com].

SW2 daily wind correlations have more spatial variability than
those of ERA-Interim. In some regions there is more improve-
ment over the baseline, which is the case near the coast, par-
ticularly in Cornwall, Wales and north Scotland. However, there
are also reductions from the baseline correlation; some stations
show a higher correlation of observed load factor against monthly
ERA-Interim wind than they do against simulated load factor
transformed from downscaled daily winds (although generally
these correlation differences are not significant).

The results for all experiments are summarized as a distribution
across all stations in Figures 5 and 6. These show how both the
bias and the correlation of load factor are improved using daily

wind data instead of monthly average data alone, indicating that
for reasonable estimates of load factor higher temporal resolution
than monthly average wind speed is necessary. At the same
time, all methods result in an average bias, indicating that some
bias correction in an operational forecast setting is necessary.
Although the median of the bias for the sub-daily averages is
slightly higher than daily averages for ERA-Interim in general
the distribution is unchanged and there is no improvement in
the correlations when using sub-daily data. It is also clear that
the impact of incorporating temperature variations is very small.
Differences between ERA-Interim and SW2 results are small
in terms of bias although Figure 6 reveals that the SW2-based

© 2017 Royal Meteorological Society Meteorol. Appl. 25: 1–10 (2018)
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Figure 4. As Figure 3 for the downscaled SeaWind II dataset reanalysis. [Colour figure can be viewed at wileyonlinelibrary.com].

load factor correlations are slightly shifted toward more positive
values compared to ERA-Interim; for load factor simulation
based on daily wind some stations show negative correlation for
ERA-Interim whilst all correlations for SW2 are positive.

4. Discussion and conclusions

The results show that the optimal simulation of load factor
is gained by using the model to transform daily wind speed
to load factor. This gives a significant improvement over the
baseline of using monthly wind as a proxy for load factor (the

median correlation across stations is 0.77 when using daily data
compared to the median of the baseline of 0.60). There is clearly
significant day-to-day variability in wind speed, and this result
demonstrates that these fluctuations do not average out in the long
term: it is not the case that a month of low wind speed variability
will output the same power as a month of high variability when it
is transformed by the nonlinear power curve, even if the monthly
average speed is identical.

Using the methodology described in this study to transform
mean monthly wind to load factor does not improve over simply
using the mean monthly wind as a predictor of load factor.
Therefore, in a situation where only monthly climate model
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Load factor bias (%)

Figure 5. Distribution of the average bias for all stations, for each method of load factor described in Table 1. Sub-daily refers to 6 h data for
ERA-Interim and hourly data from SeaWind II dataset. The extent of the whiskers indicates the range of the bias across all stations, whilst the box
indicates the interquartile range (25th –75th percentile) and the central horizontal line indicates the median bias of all stations. [Colour figure can be

viewed at wileyonlinelibrary.com].

Figure 6. As Figure 5 for correlation against the observational data. Also shown is the distribution of baseline correlations for all stations, which for
each station is the correlation of monthly ERA-Interim 10 m wind at the nearest gridpoint against the observed load factor for that station. [Colour

figure can be viewed at wileyonlinelibrary.com].

output is available (or the forecast sub-monthly variability has
no skill), the optimal forecast would be a simple transformation
of monthly average 10 m winds into load factor.

There is no significant improvement in correlations observed
by basing the simulation on sub-daily averages, nor is there
any improvement by incorporating temperature-based air density
variations into the simulation. The fact that sub-daily averages
do not give improved predictions does not mean that using
actual observed minute-to-minute variations would not lead to a
better simulation of load factor. However, monthly and seasonal
forecast models generally provide 6 h values at best and it is
unlikely that these would be more skilful than a monthly mean
estimate.

Dynamically downscaling data to higher spatial resolution can
add value to driving reanalysis data by more clearly representing
complex variations in topography and processes (e.g. Gula and
Peltier, 2012). Improvements are seen here for simulated load

factor based on the downscaled SW2 data, particularly for sta-
tions near the coast, suggesting that the winds taken from this
dataset are more accurate than those from the lower resolution
ERA-Interim. However, the downscaled data do not give a uni-
form improvement; for some stations the correlations with obser-
vations are lower for the downscaled data. There are also known
biases in the driving reanalysis winds: in general these are too
low, at least for the SW2 data (Menendez et al., 2014). It is likely
that using winds from the reanalysis that are too weak is a primary
reason for the negative load factor bias. Several simple bias cor-
rections were attempted before calculating load factor, but these
did not improve results.

The method of interpolation of gridded data to individual
stations used here is relatively crude: the nearest gridpoint to each
station is taken. More sophisticated methods of interpolation
are possible. In an operational context the ideal situation would
be to use observed daily wind time series from a station to
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downscale large scale data statistically to individual stations.
Since there is high spatial variability in wind speeds, this is likely
to give optimal wind and load factor simulation. Relatively large
biases in load factor are seen in the current study; inclusion of
local effects and model tuning may reduce these. However, the
results indicate that in a forecasting setting some bias correction
post-processing may be necessary to calibrate forecast output.
Statistical downscaling was not attempted in the current study
due to the absence of individual daily station data. Besides, as
mentioned in Section 1, downscaling, like most post-processing
methods, introduces the risk of reducing the already low skill of
climate forecasts.

The model described here is a starting point. Development
may proceed in several directions: improving the hub height
transformation with a more complex atmospheric stability-based
relationship, and incorporating stochastic departures from the
power curve from turbulent effects, shown to be important for
power production (Hedevang, 2014). Alternative distributions
may be explored; the Rayleigh distribution was chosen for its
suitability and the need for only one parameter. It may be found
that other distributions are more suitable for specific regions
and wind regimes, although this requires work to estimate the
optimal parameters, which may take a different value for different
locations even within the United Kingdom, let alone for other
regions of the world. Tuning to perform well for the United
Kingdom has not been attempted and would be desirable in
an operational forecasting sense. However, the model without
tuning is a baseline against which improvements or alternatives
might be measured.

It has been shown that daily data are as good a base for simulat-
ing monthly averages as sub-daily average data are. However, the
question of the lowest temporal resolution necessary to give sig-
nificant improvement over a basic transform of monthly average
wind speed is open. To pose the question another way: is the cor-
relation improvement over the baseline seen here for calculations
based on daily average data maintained when the calculation is
based upon 2 day average winds, 5 day averages or 10 day aver-
ages? At what temporal resolution does the correlation approach
the baseline?

This is an important idea to understand if monthly-to-seasonal
forecasts are to be used to make load factor predictions. Because
of the nature of seasonal forecasts, with predictability coming
from low frequency variations in climatic processes, it is the
case that monthly (and possibly weekly) means have more skill
than daily averages. If it turns out to be the case that simulated
monthly load factor is just as good when based on weekly as
it is when based on daily data, it may be optimal to transform
monthly-to-seasonal forecasts to a load factor forecast based on
the more skilful weekly means rather than daily averages. Alter-
natively if no forecast skill is found for weekly or daily variability
then it may be more sensible to base a forecast on monthly winds
alone, despite the fact that using monthly averages loses infor-
mation about daily variability: the improvement shown here from
using model output of daily average data instead of monthly aver-
ages will only translate to a forecasting scenario if there is some
predictable information in the daily variability. Considerations
such as these may have the side effect of helping to reduce data
traffic and storage, a major issue with the new high resolution
seasonal forecast systems that are being developed.

The interaction of monthly-to-seasonal forecasting research
with the wind energy industry is an emerging research area. It
is not clear yet to what extent these long range forecasts will
ultimately find use in this field; however, they have already
proved useful in other industries. A key development in the

future is to use seasonal hindcast data to examine the long term
forecast accuracy of seasonal wind power forecasts and work is
currently under way to examine this as part of the SPECS and
EUPORIAS projects. As the forecasts themselves continue to
improve, this research, dialogue and collaboration will aid users
hoping to exploit these products for the benefit of the industry and
society.
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