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bCentre Internacional de Mètodes Numèrics en Enginyeria (CIMNE), Barcelona, Spain
cCentro de Investigación de Métodos Computacionales (CIMEC-UNL-CONICET), Santa

Fe, Argentina
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Abstract

In a previous paper the authors present an elemental enriched space to be
used in a finite element framework (EFEM) capable to reproduce kinks and
jumps in an unknown function using a fixed mesh in which the jumps and
kinks do not coincide with the inter-element boundaries. In this previous pub-
lication, only scalar transport problems where solved (thermal problems). In
the present work these ideas are generalized to vectorial unknowns, in partic-
ular the incompressible Navier-Stokes equations for multi-fluid flows present-
ing internal moving interfaces. The advantage of the EFEM compared with
the global enrichment is the important reduction of the computing time when
the internal interface is moving. In the EFEM the matrix to be solved at
each time-step has, not only the same amount of degrees of freedom (DOFs)
but also has always the same connectivity between the DOFs. This frozen
matrix-graph improves enormously the efficiency of the solver. Another char-
acteristic of the elemental enriched space presented here is that allows a linear
variation of the jump, improving the convergence rate compared with other
enriched spaces that have a constant variation of the jump. Furthermore,
the implementation in any existing finite element code is extremely easy
with the version presented here because the new shape functions are based
on the usual FEM shape functions for triangles or tetrahedrals and, once
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statically condensed the internal DOFs, the resulting elements have exactly
the same number of unknowns as the non-enriched finite elements.

Keywords: Enriched FE spaces, Internal interfaces, Discontinuous fields,
Multi-fluids, EFEM, Navier-Stokes equations, CFD, Incompressible fluid
flows.

1. Introduction1

In a previous paper [1] the authors presented an elemental enriched space2

capable to reproduce kinks and jumps of the unknown functions using a fixed3

mesh in which the jumps and kinks do not coincide with the inter-element4

boundaries. In that publication, only thermal problems where solved in5

which the unknown variable was a scalar function. In this work we generalize6

the previous ideas to a vectorial field like the incompressible Navier-Stokes7

equations.8

Kinks and jumps in the velocity and in the pressure fields are present in9

many engineering problems, in particular in multi-fluids and fluid-structure10

interaction problems. In the case of multi-fluids (several fluids with different11

physical properties), the dynamics of the interface between the fluids involved12

plays a dominant role. The computation of the interface between various13

immiscible fluids or the free surfaces is extremely difficult because neither the14

shape nor the positions of the interfaces are a priori known. The approaches15

to solve these problems are mainly two: one is based on using a moving16

mesh that follows the discontinuity, named interface-tracking methods, and17

the second based on using a fixed mesh (some times refined in that part of18

the domain where the interface cross during the evaluation) named interface-19

capturing methods.20

In this last method (see [2, 3, 4]), the interface is determined by an im-21

plicit function immersed in an Eulerian (fix) mesh and he flow problem is22

solved considering the fluids as a single effective fluid with variable proper-23

ties. Popular methods of this type are the Volume-of-Fluid (VOF) technique24

(see [5, 6, 7]) the Level-Set method (see, for instance [8, 9, 10, 11]) which25

advect the interface using Eulerian strategies, and the Particle Finite Ele-26

ment Method Second Generation (PFEM-2) [12, 13, 14, 15] which employs27

a Lagrangian method.28

Independently of the method used to move the internal interface, the29

problem in fixed mesh methods is that the change of physical material prop-30
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erties along the interface introduces kinks or possibly jumps which must be31

captured in the solution of the global problem in order to have accurate32

results. Some authors try to fulfill this issue refining the mesh near the in-33

terface without introducing any possibility to have a kink or a jump inside34

the elements.35

For such problems when the interface does not necessarily conform to the36

element edges (in 2D) or faces (in 3D), the finite element solution, either for37

continuous or discontinuous approximations across inter-element boundaries38

suffers of sub-optimal convergence rate. This poor approximation leads to39

spurious velocities near the interface that may significantly affect the preci-40

sion and the robustness of numerical simulations (see e.g., [16]). Furthermore,41

the need of a local refinement around the interface, implies the refinement42

of the mesh in almost the entire domain where the possible position of the43

interface may go through when the interface move.44

A number of methods have been developed to overcome these difficulties.45

One possibility is to add degrees of freedom or enrich the finite element space46

at the elements cut by the interface. Minev et al. [17], and later Chessa and47

Belytschko [18], adopted an enrichment technique nowadays called XFEM,48

a name coined in the context of fracture mechanics or named also GFEM by49

other authors [19]. Both approaches lead to optimal orders of convergence,50

but the main drawback is that the additional degrees of freedom cannot be51

eliminated before assembly. The XFEM approach has also been used recently52

in two-phase flows [20, 21]. These kinds of enrichment have been also called53

global enrichment or nodal enrichment, or as stated before XFEM or GFEM.54

A method that avoid the inclusion of additional degrees of freedom is one55

that allow to statically condense the additional degree of freedoms prior to56

the assembly. For this reason, these kinds of enrichment have been named57

elemental enrichment or EFEM[22, 23]. A generalization of the treatment58

of kinks and jumps in the pressure field was presented by Ausas et al. in59

[24]. However, the enriched space proposed in [24] works satisfactorily for60

the pressure field in the Navier-Stokes equations but does not work correctly61

for the enrichment of the temperature field in a typical thermal problem62

or for the enrichment of the displacement or the velocity field in solid or63

fluid mechanics problems. As previously stated, Idelsohn et al. presented64

in[1] a new elemental enriched space that allow a better approximation for65

second order equations in which an integration by parts is needed. The66

generalization of these ideas to the incompressible Navier-Stokes equations67

are presented next.68
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The advantage of the EFEM compared with the global enrichment is69

the important reduction of the computing time when the internal interface is70

moving. In the EFEM the matrix to be solved at each time-step has, not only71

the same amount of degrees of freedom (DOFs) but also has always the same72

connectivity between the DOFs. This means that the matrix-graph remains73

constant while in the XFEM the matrix-graph is permanently changing. This74

frozen graph improves enormously the efficiency of the solver, mainly in 3D75

problems [22, 23]. The disadvantage of the EFEM is the impossibility to be76

exactly consistent with the internal continuities required for the variational77

form. The way to mitigate these inconsistencies for the case of multi-fluids78

(also called variational crimes) is one of the main targets of this work.79

Another characteristic of the elemental enriched space presented here is80

that allows a linear variation of the jump, improving the convergence rate to81

the exact solution compared with other enriched spaces that have a constant82

variation of the jump. The implementation in any existing finite element code83

is extremely easy in both: two and three spatial dimensions. This is because84

the new shape functions are based on the usual FEM shape functions for85

triangles or tetrahedrals and, once statically condensed the internal DOFs,86

the resulting elements have exactly the same number of unknowns as the87

non-enriched FE. To show the accuracy of the new space proposed, simple88

but very convincing examples of the solution of the Navier-Stokes equations89

for single phase and multi-fluid flows using a fixed background mesh are90

presented as numerical examples.91

2. The governing equations92

Conservation of linear momentum93

The momentum conservation in the entire domain reads94

ρ
Du

Dt
= ∇ · σ + b (1)

where ρ is density, u the velocity vector, σ the stress tensor, b a source95

vector and Du
Dt

the material derivative is the acceleration vector that can be96

also written in an Eulerian frame as Du
Dt

= ∂u
∂t

+ u · ∇u.97

For the incompressible Navier-Stokes equations the stress are related to98

the velocity gradients and the pressure through99

σ = 2µ∇su− pI (2)
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where µ is the dynamic viscosity, p the pressure, I the identity matrix and100

∇su is the symmetric gradient tensor of the velocity field.101

Possible boundary conditions on the boundary domains are102 {
σn = σn = (2µ∇su− pI) · n on Γσ

u = u on Γu
(3)

where σn and u represent known external values and n the outside normal103

vector.104

Possible internal conditions at the internal interface are105

σ+
n = σ−

n on Γint (4)

where σ+
n and σ−

n represent the normal stresses on both side of the in-106

terface considering positive in the sense of the outside unit normal to the107

interface respectively.108

Conservation of mass109

Mass conservation, or the continuity equation, must be satisfied in the110

entire fluid domain. Assuming incompressible fluid flow, continuity requires111

the divergence of the velocity to be zero112

∇ · u = 0 (5)

with boundary conditions113

un = u · n = un on Γu (6)

On the internal interfaces the incompressible condition forces to have114

u+
n = u−

n on Γint (7)

where again, u+
n and u−

n represent the normal velocity on both side of the115

interface.116

3. The Finite Element discretization and the enriched space117

3.1. Conservation of linear momentum118

In a Finite Element approximation, artificial kinks of the unknown func-119

tions between two neighboring elements are introduced. In this case the120

following constrain must be added121

σele
n = σneigh

n on Γl (8)
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where Γl represents all the finite element boundaries, see Figure 1, σele
n the122

normal stresses at the finite element boundaries and σneigh
n the normal stresses123

on the finite element boundaries of the neighboring elements.124

Figure 1: Different interface names

The weighted residual form of the previous equation is125

Ωl=Ne∑
Ωl=1

∫
Ωl

w ·
(
ρ
Du

Dt
−∇ · 2µ∇su +∇p− b

)
dΩ−

∫
Γσ

w · (σn − σn) dΓ−

−
∫

Γint

w ·
(
σ+
n − σ−

n

)
dΓ−

∫
Γl

w ·
(
σele
n − σneigh

n

)
dΓ = 0

(9)

where w is the vector of weighting functions (equal to the shape function to126

be used to approximate the velocity field in the case of Galerkin approxima-127

tions).128

Remark: For an Eulerian time integration, the weighting function should129

be modified in order to get spatial stabilized schemes[25].130

After the integration by parts, (9) remains:131

Ωl=Ne∑
Ωl=1

[∫
Ωl

w ·
(
ρ
Du

Dt
− b

)
+∇w :: (µ∇su + pI)

]
dΩ−

∫
Γσ

w · σn dΓ (10)
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Note that due to the continuity of the weighting functions w, after inte-132

gration by parts, all the integral on the internal interfaces at the real interface133

Γint as well as on the artificial inter-element interfaces Γl disappear.134

Nevertheless, in order to allow the possibility to have discontinuities in135

the velocity field, special discontinuous shape functions will be added to the136

continuous standard FE shape functions. In the same way, a continuous137

part plus a discontinuous one will form the weighting functions. Calling we138

the discontinuous weighting function to be introduced for the enriched space139

and remaining the notation of w for the standard continuous finite element140

weighting functions, the integration by part will read:141

Ωl=Ne∑
Ωl=1

∫
Ωl

[
w ·
(
ρ
Du

Dt
− b

)
+∇w :: (µ∇su + pI)

]
dΩ−

∫
Γσ

w · σn dΓ = 0

Ωl=Ne∑
Ωl=1

∫
Ωl

[
we ·

(
ρ
Du

Dt
− b

)
+∇we :: (µ∇su + pI)

]
dΩ−

∫
Γσ

we · σn dΓ...

...−
∫

Γint

(
w+
e · σ−

n + w−
e · σ+

n

)
dΓ−

∫
Γl

we · σneigh
n dΓ = 0

(11)

The first line in (11) is the standard variational form for the continu-142

ous weighting functions w while the second line is the variational form for143

discontinuous weighting functions.144

The term in σneigh
n represents the normal stress to the finite element145

boundaries of the neighboring elements and σ+
n , w+

e , σ−
n and w−

e the nor-146

mal stress and the enriched weighting function on both side of the internal147

interface. The evaluation of these terms will be discussed later.148

3.2. Conservation of mass149

As stated before, the elemental enriched space may introduce disconti-150

nuities between the two neighboring elements as well in the velocity field as151

in the pressure field. Furthermore, for a Galerkin approximation the corre-152

sponding weighting functions have exactly the same possible discontinuities153

that must be taken into account in order to satisfy the incompressible con-154

dition.155

Possible velocity discontinuities between elements force to impose the156

following constrain157

uele
n = uneigh

n on Γl (12)
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where uele
n represents the normal velocity to a boundary element and uneigh

n158

the normal velocity on the boundary of the neighboring element.159

The weighted residual form of the mass conservation with possible dis-160

continuous velocity fields (supposing that the boundary constraint un = un161

is a priori satisfied) reads162

Ωl=Ne∑
Ωl=1

∫
Ωl

wp∇ · u dΩ−
∫

Ωl

∇wp · ue dΩ +

∫
Γu

wpunedΓ

+

∫
Γint

wp
(
u+
ne − u−

ne

)
dΓ +

∫
Γl

wp
(
uneigh
ne − uele

ne

)
dΓ = 0

(13)

where wp is the weighting function equal to the shape function to be used163

to approximate the pressure field in the case of Galerkin approximations and164

une is the enriched velocity at the boundary.165

Remark: Equal order interpolation for velocity-pressure are stabilized166

through SUPG-PSPG in this context.167

For the case of continuous velocity fields, all the boundary integrals in168

the previous equation disappear, but for discontinuous velocities, special care169

must be taken on the internal interfaces and on the boundaries between two170

neighboring elements crossed by the interface.171

Furthermore, the pressure (and then the weighting functions wp) will172

be also enriched with discontinuous functions. Calling wp the continuous173

weighting functions for the incompressible terms and ue, w
p
e the enriched174

velocity shape functions and the pressure weighting functions respectively,175

four cases must be taken in consideration.176

1. Continuous weighting functions and continuous velocity shape functions177

In this case, the weighted residual form for the incompressible equation178

reduces to179

Ωl=Ne∑
Ωl=1

[∫
Ωl

wp∇ · u dΩ

]
= 0 (14)

2. Continuous pressure weighting functions and discontinuous velocity shape180

functions In this case integrating by parts the divergence term, all the181

boundary integral terms disappear remaining182

−
Ωl=Ne∑
Ωl=1

[∫
Ωl

∇wp · ue dΩ

]
+

∫
Γ

wp · unedΓ = 0 (15)
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This means that the terms involved in continuous pressure weighting183

functions and discontinuous velocity shape functions are easily solved184

integrating by parts the divergence velocity term. In contrast, an inte-185

gral term must be added in the whole external contour of the domain.186

3. Discontinuous weighting functions and continuous velocity shape func-187

tions In this case again, (13) reduce to188

Ωl=Ne∑
Ωl=1

[∫
Ωl

wpe∇ · u dΩ

]
= 0 (16)

4. Discontinuous weighting functions and discontinuous velocity shape func-189

tions In this case the Equation (13) remains with all the terms. An190

integration by parts avoid some terms on the boundary integrals, but191

the terms concerning the neighboring elements remain in the equation192

which make impossible to be exactly solved with an elemental enrich-193

ment strategy. The approximation of both neighboring terms: σneigh
n in194

(11) and uneigh
n in (13) will be discussed next.195

4. Evaluation of the jump condition for the internal interfaces196

Equation (11) introduces integral terms with the normal stresses σ+
n and197

σ−
n which represent the normal stresses on both side of the internal interface198

in which a jump or a kink might be located. To evaluate these terms a199

regularization zone on a very thin band with thickness ε will be considered.200

On this band the stress tensor will be described in local coordinates on the201

interface in its normal and tangent directions n, τ1 and τ2 respectively, which202

will be named σR. In the same way the normal unit vector in this particular203

coordinates will be called nR with
(
nR
)T

= (1, 0, 0). For instance, for the204

two-dimensional case, the matrix σR remains:205

σR = 2µ∗


∂un
∂n

1

2

(
∂uτ
∂n

+
∂un
∂τ

)
1

2

(
∂uτ
∂n

+
∂un
∂τ

)
∂uτ
∂τ

− pI (17)

The coefficient µ∗ is a fictitious viscosity of the regularization zone. It206

can be considered as an orthotropic material207

µ∗ =

[
µ∗
n 0

0 µ∗
τ

]
(18)
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The tensor stress normal to the interface in the regularized region becomes208

σRn = σR · nR = 2

[
µ∗
n 0

0 µ∗
τ

]
∂un
∂n

1

2

(
∂uτ
∂n

+
∂un
∂τ

)
− pnR (19)

Furthermore, in this region, the derivatives in the direction of the normal209

to the interface may be written as (20)210

∂uRn
∂n

=
||un||+

ε
and

∂uRτ
∂n

=
||uτ ||+

ε
(20)

where ||uα||+ = u+
α − u−

α and ||uα||− = u−
α − u+

α represent the jump at the211

interface of the α component of the velocity including the sign.212

For finite value of the jumps, this derivative tends to infinite when ε213

tends to zero. This means that the other derivatives may be neglected on214

this regularized region215

σR+
n = 2

[
µ∗
n 0

0 µ∗
τ

] ||un||
+

ε
||uτ ||+

2ε

− p+nR =

= 2

 µ∗
n

ε
0

0
µ∗
τ

2ε

 ||uR||+ − p+nR = Jr||uR||+ − p+nR

(21)

where the orthotropic coefficient matrix JR is216

JR =

[
Jn 0
0 Jτ

]
=

 2µ∗
n

ε
0

0
µ∗
τ

ε

 (22)

Taking into account all the previously considerations, the normal stress217

at the interface σ+
n must be evaluated as218

σ+
n = σn·n+ = RTσRRRT ·nR = RTσR·nR = RTσRn = R

(
JR||uR||+ − p+nR

)
(23)

or219

σ+
n = RTJRR||u||+ − p+RT · nR = J||u||+ − p+n+ (24)

with J = RTJRR.220

As a summary, the final equations to be solved read:221
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a) Momentum conservation:222

Ωl=Ne∑
Ωl=1

∫
Ωl

[
w ·
(
ρ
Du

Dt
− b

)
+∇w :: (µ∇su + pI)

]
dΩ−

∫
Γσ

w · σn dΓ = 0

Ωl=Ne∑
Ωl=1

∫
Ωl

[
we ·

(
ρ
Du

Dt
− b

)
+∇we :: (µ∇su + pI)

]
dΩ−

∫
Γσ

we · σn dΓ...

...−
∫

Γint

(
w+
e ·
(
J||u||+ − p+n+

)
+ w−

e ·
(
J||u||− − p−n−)) dΓ−

∫
Γl

we · σneigh
n dΓ = 0

(25)

b) Mass conservation:223

Ωl=Ne∑
Ωl=1

[∫
Ωl

wp∇ · u dΩ−
∫

Ωl

∇wp · ue dΩ

]
+

∫
Γ

wp · unedΓ = 0

Ωl=Ne∑
Ωl=1

[∫
Ωl

wpe∇ · (u + ue) dΩ +

∫
Γint

(
wp+e ||ue||+ · n+ + wp−e ||ue||− · n−) dΓ...

...

∫
Γl

wpe
(
uneigh
ne − uele

ne

)
dΓ

]
= 0

(26)

It must be noted that in case that the integration by parts of the term224

involved with the continuous weighting functions and the discontinuous en-225

riched functions (second integral in the first line of (26)) is not performed,226

then the first line of (26) remains:227

Ωl=Ne∑
Ωl=1

[∫
Ωl

wp∇ · (u + ue) dΩ−
∫

Γint

wp||ue|| · n dΓ +

∫
Γl

wp
(
uneigh
ne − uele

ne

)
dΓ

]
= 0

(27)

which means that without this integration by parts one integral must228

be added on the internal interfaces and along all the element boundaries229

enriched in order to preserve the mass conservation.230
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In the previous equations, there are terms named σneigh
n and uneigh

n corre-231

sponding to the normal stress and normal velocity of the neighboring element232

where the integration is performed. In order to enable the condensation of233

the enriched degree of freedom at elemental level (EFEM) these two terms234

will be approximated with the corresponding stress and velocity in the inte-235

gration element itself. In other words: σneigh
n = σele

n and uneigh
ne = uele

ne .236

With this approximation, the last integral on the element boundaries of237

the mass conservation equations becomes null remaining only the last inte-238

gral on the element boundaries in the momentum equation. These integrals239

were named inter-element forces in [1] because they are similar to the intro-240

duction of a load on both boundaries of two neighboring elements. However,241

as explained in [1], the addition of these integrals must not be understood242

as the addition of a boundary load. It must be better interpreted as a do243

nothing boundary condition between the two neighboring elements. The do244

nothing boundary condition was first proposed in [26] to improve the out-245

flow boundary condition in unbounded flows. It was later generalized to246

slip boundary condition in [27] and discussed also in [28]. In this new en-247

riched space, the do nothing boundary condition will be used to improve the248

discontinuity existing between two elements in the case of elemental enrich-249

ment. As can be seen in the numerical examples, these inter-element forces250

improve considerably the accuracy of the elemental enrichment, decreasing251

(and in many cases eliminating) the artificial jump that appears between two252

neighbor elements due to the static condensation of the enriched DOF.253

Unfortunately, in spite of using a Galerkin approximation, the inter-254

element forces and the integration by parts of one of the terms in the mass255

conservation equation generate a non-symmetry stiffness matrix. Neverthe-256

less, the improvements in the results that are obtained using this approxi-257

mation counteract the disadvantage of having asymmetric matrices.258

5. The Finite Element with the Enriched Shape function259

The enriched space for reproducing a kink or a jump inside a 2D triangle260

may be obtained subdividing the element in three sub-elements and using261

the standard FE shape functions of each sub-element, as shown by Figure 2.262

For the case of kinks + jumps the triangle is subdivided in the same263

way but duplicating the nodes at the internal interface. The procedure to264

obtain the final stiffness matrix of each element to be assembled in the global265

stiffness matrix may be followed in Ref [1].266
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The stiffness matrix of each sub-element is assembled in one super-element267

of 5 nodes (for kinks) or 7 nodes (for kinks+ jumps). The inter-element268

forces are added on all the element boundaries in which an internal interface269

is present. Finally the enriched DOF are eliminated by static condensation270

following a standard procedure.271

In the case of three-dimensional finite elements, the internal interfaces272

are composed by planar facets, which do not conform to the element faces.273

Again, the element can then be split into two sub-regions. Two possible274

situations have to be considered, since the reconstructed interface can be275

either a triangular or a quadrangular facet. In the first case, the tetrahedron276

is subdivided in 4 sub-elements, and in the second case, is divided in 6 sub-277

elements. Then, the enriched DOF’s are eliminated by static condensation278

as usual.279
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Figure 2: Standart and enriched shape functions for kink and jump. Two-dimensional
case.

Two different cases of pathological problem have been referred in the280

previous paper and the same solution will be used now. One case is related281

to geometrical problems involved when the internal interface is near a node,282

very close to an interface or both. The other case is related to which decision283

must be taken when there are more than one result in the same position as284

currently occur in the elemental enriched space. The readers are referred285

to the previous paper in order to learn about the solution adopted for both286

cases.287

Concerning the inertial terms
∫

Ωl
w · ρDu

Dt
dΩ the enrichment space was288

not considered, using for this terms the standard FE shape functions corre-289
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sponding to the linear triangle or lineal tetrahedral respectively. For the case290

of an Eulerian formulation the term Du
Dt

was replaced by ∂u
∂t

+ u · ∇u with a291

standard SUPG stabilized scheme [25] without any enriched space was used292

to avoid spurious oscillation due to the convective terms.293

It must be also noted that in the case of equal-order velocity-pressure294

elements as those used in the examples presented next, the conservation of295

mass equation must also be stabilized. A standard PSPG [25] stabilization296

was used here without enrichment in its functional space.297

6. Numerical examples298

The numerical examples chosen in this section are fluid mechanics prob-299

lems where the unknown functions are the velocity and the pressure fields.300

The main objective is to highlight the possibilities of the EFEM for these301

kinds of vectorial solutions and put in evidence the accuracy of the elemen-302

tal enrichment in this context. To see the errors compared with analytical303

solutions and the convergence of the method for more academic cases, the304

readers are invited to see the Reference [1].305

6.1. Couette flow with two fluids306

The first case analyzed is the incompressible flow counterpart of the cases307

named one-dimensional kink and one-dimensional jump presented in the308

previous work of the authors [1]. Instead of solving thermal problems, in the309

current case the unknowns are the velocity and the pressure fields. According310

to the geometry and boundary conditions presented in Figure 3, the test311

represents the problem of two plane plates with different tangential velocities312

between them, also known as Couette Flow. If the same fluid at each side of313

the interface is considered and Jτ = Jn = ∞ is imposed, the solution is the314

classical linear velocity profile. In the case of fluids with different viscosities,315

a kink of the velocity is produced on the interface due to a discontinuity in316

their gradients. The analytical solution presented in (28), while the pressure317

is constant over all the domain, taking the same value imposed at the inlet.318

ux(x, y) =


2µ2

µ1 + µ2

y y ≤ 0.5

1− 2µ1

µ1 + µ2

(1− y) y > 0.5
. (28)
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Figure 3: Couette flow case configuration and unstructured mesh employed. Units are
m/s for velocity, Pa for pressure, Pa s for viscosity and kg/m3 for density.
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Figure 4: Couette flow with kink generated by viscosity jump. Horizontal velocity over
horizontal and vertical slices.

The first test considers a viscosity jump µ1 = 1, µ2 = 10 with con-319

stant density ρ1 = ρ2 = 1 and continuity of the solution at interface, i.e.320

Jτ = Jn =∞. Figure 4a presents the analytic solution over a slice at x = 1321

compared with three different numerical solutions obtained employing the322

unstructured mesh showed in 3. The solution with standard FEM, i.e. with-323

out enrichment, fails capturing the kink and estimates wrongly the velocity324

gradient which results in an unacceptable solution even in this simple case.325

As expected, using enrichment improves the kink capturing. However, as326

discussed before in this work, the lack of the inter elemental load term leads327

to a solution which has some deficiencies specially in the region of small vis-328
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cosity. That variational crime is clearly solved incorporating the mentioned329

term in the elemental assemble (solution with inter elemental load). This330

difference is highlighted by Figure 4b where the value of x-velocity over the331

enriched degrees of freedom over the interface is presented. It is noticeable332

how including the inter elemental load the solution obtained matches the333

analytic one while not employing it the solution is poor. Moreover, some en-334

riched nodes at same physical point have different velocity values depending335

on the interface side where they are. As seen in this first case, the only nu-336

merical strategy which guarantees an accurate solution when the mesh does337

not match the interface is employing enrichment with interelemental load.338

The second example considers a jump in the unknowns. A jump of the339

velocity in an incompressible flow problem may be considered when there are340

two fluids in contact but supposing that there is a material in between the341

two domains which imposes some restriction for momentum transference. It342

is, for instance, how acts the surface tension at the interface of two fluids,343

or the presence of a plate between two fluids with same or different phys-344

ical properties. The amount of momentum transfer for each direction, i.e.345

tangential and normal to the interface, is regulated by the coefficient of the346

matrix J described in (22). Although Jn can take any value depending on347

the problem, in this case and the following ones in this work, we will always348

consider impenetrability at the interface, i.e. imposing the same normal ve-349

locity at both sides of the interface with Jn = ∞. Cases with Jn 6= ∞ are350

not treated in this work, but could be useful in the case of curved interfaces351

where a slipping condition should be insured, but as the interface is repre-352

sented by straight lines a locking of the flow is found at interface. Therefore,353

in order to simplify the notation, we will use J when we refer to Jτ .354

Figure 5 compares the solutions in a problem with same fluid at both sides355

of the interface (µ1 = µ2 = ρ1 = ρ2 = 1) when J varies. In all the cases, the356

enrichment proposed with the inter-elemental forces gives the exact result in357

any horizontal line.358

Remark 1. Is important to mention that the interelemental load eval-359

uation on the edges where Γl ∩ Γσ 6= ∅ must consider σneighn = σn, i.e. the360

traction is dictated by the boundary condition. On the other hand, for361

boundaries where Γl ∩ Γu 6= ∅, an approximation employing σneighn = σelen is362

adopted as in the internal edges.363

Remark 2. The condensation of new degrees of freedom introduces364

nonlinearities which must be solved iteratively. Therefore, previous iteration365

values for enriched nodes must be stored. During the first non-linear iteration366
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Figure 5: Couette flow with a jump. Solutions for different values of J .

a linear interpolation among parent nodes could be considered to impose an367

initial value on enriched nodes.368

6.2. Moving flap valve369

Couette case shows the capability of the enriched space proposed to im-370

prove the accuracy of the solution when a coarse mesh does not match the371

interface and also there is a kink or/and a jump of the unknowns. However,372

if the interface position is fixed, a matching mesh (with duplicated nodes at373

the interface) can be used or strategies as XFEM can be applied and the374

accuracy of the results will be at least equal.375

In this context, this case proposes a moving interface where a matching376

mesh strategy would require remeshing every time-step, or the matrix of377

the equation system of XFEM techniques should be resized according to the378

variation of positioning and number of extra degrees of freedom. This task379

requires extensive computational time which can be avoided if the EFEM380

proposal of this work is employed, where exactly the same matrix graph381

is used, this means that the solution matrix has exactly the same DOFs382

although the interface position may be continnuously moving.383

Figure 6 shows a two-dimensional homogeneous and incompressible flow384

problem which represents a pipe with a flap valve characterized by a mov-385

ing interface. The valve position is fixed at the inlet and a rigid oscillating386

movement is imposed following the equation y(x, t) = 0.5+x 0.15 sin(2πt/T ).387

Imposing impenetrability, un|Γint = 0 and discontinuity of tangential veloci-388

ties over it, i.e. J = 0, the interface models a solid and slip valve. The flow389

rate imposed at inlet is 1 m3/s and it must be kept constant at outlet, this390

condition will accelerate the flow in the region where the valve constrains its391
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area.392

Background fixed mesh employed consists in 36 by 18 structured nodes393

conforming 1296 triangles. The oscillation period is T = 105 while the time-394

step employed is ∆t = 5 × 103. These huge temporal steps are selected in395

order to avoid the influence of the mass matrix over the system. In this396

context, each time-step is treated as a pseudo-stationary state.397

x

y

1

1

Figure 6: Geometry and boundary condition for flap valve case. Red line represents the
valve position at t = 0

Figure 7 shows the magnitude of the velocity at different valve positions.398

As a validation of the results, the difference between the inlet flow rate and399

the outlet flow rate is considered. Maximum differences are about of 1% and400

could be attributed to the coarse background mesh employed. This fact can401

be observed in the comparison among the velocity profile at outlet shown in402

Figure 8. When the valve is centered (for example, at starting position) the403

solution is the classical parabolic profile with maximum |u|max = 3
2
|u|inlet.404

Solutions for other stages present a jump at the interface, and the velocity405

varies its maximum according to the contraction or expansion of the region406

transversal area, in order to guarantee conservativeness.407

Remark 3. In this case, a slip condition is employed over the interface.408

A possible improvement could be including the modeling of a boundary layer409

through a wall law, adjusting the value of J .410

6.3. Elbow with internal wall411

The basis of this case are similar to the previous one. The flow inside a412

two-dimensional pipe with a valve is also calculated. However in this case413

the pipe geometry presents a 90 degrees curve conforming an elbow. This414
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(a) t∗ = 0 (b) t∗ = 1/4 (c) t∗ = 3/4

Figure 7: Moving valve case. |u| at several snapshots. Scale from |u| = 0m/s (blue) to
|u| = 2.2m/s (red).
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Figure 8: Moving valve case. Velocity profile at outlet (x = 1) for different valve positions.

more complex case is employed to validate the quality of the elemental ap-415

proximations used when the interface is not a straight line.416

With the aim of reproducing the procedure on general simulations, instead417

of using the analytical expression, a distance function field ψ(x) which has418

values over the mesh nodes is employed to determinate the interface position.419

Using the standard linear shape functions, an interface element estimates the420

interface position as the straight line which accomplishes ψ(x) = 0. More421

details about this standard algorithm can be found in [29]. This procedure422

makes that, over a curve, the interface normals n varies element by element.423

This fact could introduce discrepancies of the unknowns values computed by424

the pair of enriched degrees of freedom at the same position but on different425

elements.426

Figure 9 presents the geometry and boundary conditions employed. Note427

that the radius of the duct is not constant, then the interface position reduces428

the transversal area of the lower region after the curve. A Cartesian grid with429
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2158 elements is employed. A one-phase flow is considered with viscosity430

and density of unity. Taking as reference length the radius of the duct, the431

Reynolds number simulated is Re = 1.432

x

y

6.5

7

(0,0)

1.5

2
1

1

1

Figure 9: Elbow case. Geometry and boundary conditions. Red line represents the inter-
face position.

Pressure and velocity solutions are shown in Figure 10. The contraction in433

the right region of the pipe after the curve generates acceleration of the fluid434

in order to keep the total flow constant. In this case, differences between inlet435

and outlet flows are about of 4%. The error is due to a small penetrability of436

the interface because of the procedure for computing the normals, and others437

as the use of a too coarse mesh, which accelerates also the flow of the left438

region after the curve, even the duct radius is kept constant. The pressure439

field also presents a jump along the interface, which is expected due to the440

different driving forces required by each region in order to satisfy the inlet441

flow imposed.442

6.4. The flow through a moving sail of a sailboat443

An interesting application case of the enrichment space proposed is pre-444

sented here where the flow around a sailboat is simulated. The sail, an445

impenetrable, thick, and deformable material is modeled as an interfase with446

discontinuity in both normal and tangential velocities, which implies that the447

flow at one side does not interact directly with the flow at the other side of448

the sail.449
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Figure 10: Elbow case. Solutions and slices.
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Sail position is represented by the analytic function ψ(x, t) = ax2 + bx+c450

with ψ(0.3) = 0.347, ψ(0.7) = 0.707 and c = 3
2

sin(2πt/T ). An uniform451

Cartesian grid of 75 by 25 elements subdivided into triangles is employed. A452

one-phase flow is considered being its properties µ = 1 and ρ = 1. Therefore453

Re = 1 taking as reference length the channel width. In order to model that454

the interface begins and ends inside the domain, the jump coefficient follows:455

J =

{
0 0.3 ≤ x ≤ 0.7
∞ otherwise

. (29)

x

y

3

1

slip

slip

(0.3,0.347)

(0.7,0.707)

(0,0)

Figure 11: Geometry and boundary condition for sail case. Red line represents the sail
position at t = 0

Solution is presented in Figure 12. SubFigures 12a and 12b show the456

magnitude of the velocity and the pressure fields, with arrows representing457

the direction of the flow, respectively. Although the Reynolds number of the458

problem is low then the flow does not produce shedding, the velocity and459

pressure fields have the expected features. Pressure has maximum over the460

side of impact of the sail, while the minimum occurs behind the sail where461

flow detachment is observed. Flow surrounds properly the shape without462

permeabilities. The snapshots shown in Figures 12c to 12h, which present463

the behavior of the flow for the different position of the sail, also accomplishes464

the mentioned features.465

6.5. External and internal fluid flow around a droplet466

In this case an internal circulation pattern developed in a heavier fluid (as467

water) droplet due to the movement of the surrounding moving lighter fluid468

(as air) is solved. Analyzing the drop’s behavior and its interaction with469

the environment is important, for example, for spray technology physics,470
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(a) |u| at t = 5000 s

(b) pressure at t = 5000 s

(c) |u| at t = 10000 s (d) |u| at t = 20000 s (e) |u| at t = 40000 s

(f) |u| at t = 60000 s (g) |u| at t = 75000 s (h) |u| at t = 90000 s

Figure 12: Moving sail case. Solution fields at several times.
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injection in combustion chambers, etc. and its understanding is required to471

properly model those applications.472

Case configuration (geometry, boundary and initial conditions) are pre-473

sented in Figure 13. The condition of un|Γint = 0 is imposed at the interface,474

but two different cases are solved selecting different values for J . Physical475

parameters employed are ρ = 1, µ1 = 1, µ2 is variable and surface tension is476

not modeled. Defining Re =
ρ|u|a
µ

, being a = 0.15 the droplet radius, the477

Reynolds number simulated is Re = 0.15 The mesh employed consists in a478

Cartesian grid of 60 by 30 cells split into triangles.479

x

y

(0,0)

0.31

2

slip

slip

(0.5,0.5)

Figure 13: Fluid drop case. Geometry and boundary condition. Red line represents the
interface position at t = 0 where impenetrability is imposed

The first case imposes J = 0, i.e. discontinuity in the tangential velocity480

at the interface, and µ2 = 0.01. Its solution should not induce almost any481

flow inside the drop even though the large viscosity difference. This case is482

inspired on a fluid flow surrounding a solid sphere or a fluid droplet isolated483

by a rigid membrane. Figures 14a and 14b show the horizontal and vertical484

components of the velocity respectively for the solution at time t = 0. Note485

that inside the drop both component vanishes and the exterior flow contours486

the shape. In Figure 17a the magnitude of velocity and base mesh employed487

are shown. It is noticeable how the velocity jump is captured even if the488

interface cuts an element.489

On the other hand, the case with J = ∞ and µ2 = 1 allows momen-490

tum transfer along the interface inducing a flow inside the drop. Solution491

presented in Figures 15 and 17b show that the external fluid motion, in the492

horizontal direction, results in a doughnut shaped, toroid, flow within the493

drop known as a Hill’s vortex. The cause of the internal circulation is the494

shear force at the drop surface created by the fluid moving along the surface495

and allowed by the J selected.496
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(a) ux and isocontours (b) uy and isocontours

Figure 14: Fluid drop case with J = 0.

(a) ux and isocontours (b) uy and isocontours

Figure 15: Fluid drop case with J =∞.

A comparison between the solutions at different J is presented by Figure497

16. Velocity profiles along horizontal (x = 0.5) and vertical (y = 0.5) axis498

show clearly as the velocity vanishes inside the drop in the case of J = 0. In499

the solution for J =∞ some check-points can be analyzed which guarantee500

a physical solution: considering creeping flow the velocity magnitude at the501

interface must be |u| = |u|inlet/2.0 which is well accomplished by solution,502

particularly this can be proven from Figure 16 at the impact point where503

ux(0.35, 0) = 0 and at the higher and lower points of the drop ux(0.5, 0.65) =504

ux(0.5, 0.35) = 0.5. Both velocity profiles inside the drop describe a parabola505

with similar minimum value, showing the presence of the typical pair of506

vortices induced by an external moving fluid.507

The enriched space employed allows also to capture the discontinuity of508

the pressure field at the interface. In the case of J = ∞ the maximum509

pressure due to the flow impact to the shape occurs in the same numerical510

point than the minimum inside the drop, while the jump at the other side511

of the drop is smaller. The captured pressure jumps is also noticeable when512

J = 0 is employed. In the latter, the pressure keeps constant to the reference513

value imposed in one of the droplet nodes (p = 0).514

25



-0.5

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1

v x

y

J=0
J=∞

(a) x-velocity along the line x = 0.5

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

v x

x

J=0
J=∞

(b) x-velocity along the line y = 0.5

-40

-30

-20

-10

0

10

20

30

0 0.2 0.4 0.6 0.8 1

pr
es

su
re

x

J=0
J=∞

(c) pressure along the line y = 0.5.

Figure 16: Fluid drop case. Profiles of velocity and pressure with different values of J .

(a) Mesh and |u|. Scale goes from
blue to red (0.0 to 1.6). Case J = 0
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(b) Vectorial representation of velocity field.
Case J =∞.

Figure 17: Fluid drop case. Velocity fields with different values of J .

26



7. Conclusions515

This paper describes how to extend the ideas of using an enriched func-516

tional space to capture the discontinuities normally present at interfaces of517

multifluid flows, either kinks or jumps. After being successfully applied to518

thermal problems, in this paper the theory was adapted for a vectorial non519

linear momentum equation constrained by the incompressibility condition520

like in fluid mechanics. Instead of using very refined mesh to capture this521

flow features, this methodology save a lot of DOFs using a special defined522

functional space that allows for representing in a synthetic way discontinuities523

in either the function itself or its gradients. Moreover, for problems where524

the interfaces are constantly moving all around the domain, this strategy525

based on elemental enrichment (EFEM) may be more adequate than XFEM526

in terms of efficiency. But, similar to the thermal case, the inter elemental527

loads should be included in order to diminish the variational crime produced528

by EFEM when using a linear representation along the interface for both,529

the kinks or the jumps. Finally, this new method to capture the discontinu-530

ities at the interface opens a new horizon in terms of modeling the surface531

tension and the wall law for turbulence modeling avoiding a very detailed532

mesh around the interface.533
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