
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

MASTER THESIS 
 
 
 
 
 
 
 
 
 

 
TITLE: Automatic flagging of offensive video content using Deep 
Learning 
 
MASTER DEGREE:  Master in Science in Telecommunication Engineering  
& Management 
 
AUTHOR: Manuel Alejandro Torres Castro 
 
DIRECTOR: Francesc Tarrés Ruiz 
 
DATE:  February, 18 2018 
 

 



  

  



 
Overview 
 

 
 
Thanks to our visual system, it doesn't take any effort for us humans to tell apart 
a cat from an eagle, recognize our family´s faces, or reading a sign. But these 
are actually hard problems to solve with a computer: the difference relies in 
how the human brain and computers process images. 
 
With the rise of the Internet and Mobile Smartphones, the amount of visual 
content available on the internet has increased to well beyond manual analysis. 
Offensive classification of images is one of the major tasks for semantic 
analysis of visual content.  
 
In the last few years, the field of machine learning has made tremendous 
progress on addressing these difficult problems. In particular, we've found that 
a kind of model called a deep convolutional neural network (CNN) can 
achieve reasonable performance on hard visual recognition tasks -- matching 
or exceeding human performance in some domains. 
 
CNNs are now being to tackle one of the core problems in computer vision, 
which is, image classification.  
 
In this master thesis, Automatic flagging of offensive video content using 
Deep Learning, Deep Learning is the key enabler to address offensive video 
classification challenges posed by the Internet Age. Deep Learning is a new 
paradigm aiming to overcome the limitations of current approaches, which are 
complex and require manual intervention. 
 
We will design a system that automatically analyses video files and detects 
violent and/or adult content using a Deep Learning framework. The 
classification is based on a previous segmentation of the video files where the 
most representative shot key frames are extracted. The extracted frames will 
be classified by a deep learning neural structure. This project includes the 
training and testing of the system. Training process will consist on finding or 
creating a database of images and adapting the parameters of the neural 
network. 
 
 
 
 
 
 
 
 
 

https://colah.github.io/posts/2014-07-Conv-Nets-Modular/


  

Resumen 
 

 
Nuestros cerebros hacen que la visión parezca fácil. A los humanos no les cuesta 
separar un león y un jaguar, leer un letrero o reconocer la cara de un humano. 
Pero estos son realmente problemas difíciles de resolver con una computadora: 
solo parecen fáciles porque nuestros cerebros son increíblemente buenos para 
entender las imágenes. 
 
Con el auge de Internet y los teléfonos inteligentes móviles, la cantidad de 
contenido visual disponible en Internet ha aumentado mucho más allá del análisis 
manual. La clasificación ofensiva de imágenes es una de las principales tareas 
para el análisis semántico del contenido visual. 
 
La visión artificial o visión por computador es una disciplina científica que incluye 
métodos para adquirir, procesar, analizar y comprender las imágenes del mundo 
real con el fin de producir información numérica o simbólica para que puedan ser 
tratados por un computado 
 
En los últimos años, el campo de machine learning ha progresado enormemente 
al abordar estos problemas difíciles. En particular, hemos descubierto que un 
tipo de modelo llamado red neuronal convolucional profunda (Convolutional 
Neural Networks, CNN) puede lograr un rendimiento razonable en tareas difíciles 
de reconocimiento visual, igualando o excediendo el rendimiento humano en 
algunos dominios. 
 
Las CNNs se están utilizando ahora para abordar uno de los problemas centrales 
de la visión por computadora, que es la clasificación de imágenes 
 
En esta tesis de maestría, la marcación automática de contenido de video 
ofensivo utilizando Deep Learning, Deep Learning es el facilitador clave para 
abordar los desafíos de clasificación de videos ofensivos planteados por la era 
de Internet. El aprendizaje profundo es un nuevo paradigma que apunta a 
superar las limitaciones de los enfoques actuales, que son complejos y requieren 
intervención manual. 
 
 
Diseñaremos un sistema que analiza automáticamente los archivos de video y 
detecta contenido violento y / o adulto usando un framework de Deep Learning. 
La clasificación se basa en una segmentación previa de los archivos de video 
donde se extraen los fotogramas clave más representativos. Los marcos 
extraídos se clasificarán por una estructura neuronal de deep learning. Este 
proyecto incluye la capacitación y prueba del sistema. El proceso de 
entrenamiento consistirá en encontrar o crear una base de datos de imágenes y 
adaptar los parámetros de la red neuronal. 
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Introduction  1 

INTRODUCTION 
 
 
Traditional architectures for solving computer vision problems and the degree of 
success they enjoyed have been heavily reliant on hand-crafted features. 
However, of late, deep learning techniques have offered a compelling alternative 
– that of automatically learning problem-specific features. With this new 
paradigm, every problem in computer vision is now being re-examined from a 
deep learning perspective. Therefore, it has become important to understand 
what kind of deep networks are suitable for a given problem. Although general 
surveys of this fast-moving paradigm (i.e., deep-networks) exist, a survey specific 
to computer vision is missing. We specifically consider one form of deep networks 
widely used in computer vision – convolutional neural networks (CNNs). 
 
In recent years, “Imagenet classification using deep neural networks” by 
Krizhevsky et al. (2012)[7] became one of the most influential papers in computer 
vision. Since then, Convolutional neural networks, a particular form of deep 
learning models, have since been widely adopted by the vision community. In 
particular, the network trained by Alex Krizhevsky, popularly called “AlexNet” has 
been used and modified for various vision problems, including image 
classification. 
 
Automatically identifying that an image as not suitable/safe for work (NSFW), 
including offensive and adult images, is an important computer vision problem 
which researchers have been trying to tackle for decades. Since images and 
user-generated content dominate the Internet today, filtering NSFW images and 
vídeos becomes an essential component of Web and mobile applications. With 
the evolution of computer vision, improved training data, and deep learning 
algorithms, computers are now able to automatically classify NSFW image 
content with greater precision 
 
In this project, we will use visual cues, being the most salient form of 
offensive/adult images. We will train, test and evaluate a deep learning system 
that automatically analyzes images (and video frames) before classifying the 
content as regular or offensive/adult.  
 
This master thesis is organized as follows: Chapter 1, introduces the concepts 
regarding Machine learning and mainly Deep Learning. We follow with Chapter 
2, where the concept of Convolutional Neural Networks, and its relevance in 
image classification in computer vision is presented. The proposed solution for 
nsfw video flagging, the methodology, and the results of the tests are discussed 
in detail in Chapter 3. Finally, Chapter 4 presents the conclusions and proposals 
for future developments. 
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Chapter 1 DEEP LEARNING 

1.1. AI, Machine Learning, and Deep Learning 

 
In order to understand what deep learning is, we first need to define what artificial 
intelligence is. Artificial intelligence is a field in computer science that gives 
computers the ability to reason. In order to achieve artificial intelligence, we can 
instruct computers manually, or automatically via Machine learning. 
Deep Learning is a method of Machine learning, which focuses on learning from 
raw data. It is a method focused on replacing feature engineering used in 
traditional machine learning. 
 
The following figure helps it visualize them as concentric circles: 
 

 
 

Fig. 1.1 The relationship between AI and deep learning [1] 

 
Deep learning is a more approachable name for an artificial neural network, which 
is inspired by the structure of the cerebral cortex. At the basic level is the 
perceptron, the mathematical representation of a biological neuron.  
Like in the cerebral cortex, there can be several layers of interconnected 
perceptrons. Since an artificial network can have many layers, the term “deep” in 
deep learning refers to the depth of the network,  
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The first layer is the input layer. Each node in this layer takes an input, and then 
passes its output as the input to each node in the next layer. There are generally 
no connections between nodes in the same layer and the last layer produces the 
outputs. 
 
We call the middle part the hidden layer. These neurons have no connection to 
the outside (e.g. input or output) and are only activated by nodes in the previous 
layer. 
 

 

 

Fig. 1.2 The layers of a neural network [2] 

  
 
Deep learning is the technique for learning in neural networks that utilizes multiple 
layers of abstraction to solve pattern recognition problems. In the 1980s, most 
neural networks were a single layer due to the cost of computation and availability 
of data. In present day, these issues are no longer an issue due to the rise of Big 
Data and lower costs of computational power. 
 
Machine learning is considered a branch or approach of Artificial intelligence, 
whereas deep learning is a specialized type of machine learning. It involves 
computer intelligence that doesn’t know the answers up front. Instead, the 
program will run against training data, verify the success of its attempts, and 
modify its approach accordingly. 
 
There are two broad classes of machine learning methods: 
 

 Supervised learning 

 Unsupervised learning 
 

In supervised learning, a machine learning algorithm uses a labeled dataset to 
infer the desired outcome. This takes a lot of data and time, since the data needs 
to be labeled by hand. Supervised learning is great for classification and 
regression problems. 
With unsupervised learning, there aren’t any predefined or corresponding 
answers. The goal is to figure out the hidden patterns in the data.  
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While supervised learning can be useful, we often have to resort to unsupervised 
learning. Deep learning has also proven to be an effective unsupervised learning 
technique. 
 

1.1.1. Why Deep Learning is Important? 

 
The most important difference between deep learning and traditional machine 
learning is its performance as the scale of data increases [3]. When the data is 
small, deep learning algorithms don’t perform that well. This is because deep 
learning algorithms need a large amount of data to understand it perfectly. On 
the other hand, traditional machine learning algorithms with their handcrafted 
rules prevail in this scenario. 
 
 

 

 

Fig. 1.3 Why is Deep Learning Important [3] 

 
With the advent of Big Data and increase in performance of computational power 
over the years, Deep Learning has seen an increase in applications in 
commercial and academic use. 

 

1.1.2. Comparison of Machine Learning and Deep Learning 

 
 
In the previous section, we mentioned that, unlike traditional machine learning 
algorithms, the performance of Deep Learning algorithms improve as the scale 
of data increases. 
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It is important to note, however, that there are also other important points between 
the two techniques that need to be addressed: 
 
Data dependencies and hardware requirements for Deep Learning 
implementations make them more costly. Additionally, the time it takes to train 
deep neural networks, and the difficulty in tuning these models add complexity in 
making real world applications using this approach. 
However, once these issues are solved, the performance of Deep Learning 
algorithms outshines that of traditional machine learning due to automatic feature 
engineering and end-to-end problem solving. 
 
A brief summary is mentioned in the table below: 
 

Table 1.1 Comparison of Classical Machine Learning versus Deep Learning[4] 

 
Classical Machine 

Learning Deep Learning 

Data 
Dependencies 

Performs better with small 
data. 

Its performance improves as 
the scale of data increases.  

Hardware 
Can work on low-end 
machines. 

Requires high-end 
machines with GPUs, due to 
a large amount of matrix 
multiplication operations  

Feature Eng. 

Applied features need to 
be identified by an expert 
and then hand-coded as 
per the domain and data 
type. 

Algorithms try to learn high-
level features from data. 

Problem Solving 
Approach 

Break the problem down 
into different parts, solve 
them individually and 
combine them to get the 
result. 

Advocates to solve the 
problem end-to-end. 

Execution Time 
Takes less time to train, 
ranging from minutes to 
hours. 

Takes a long time to train, 
ranging from hours to 
weeks. 

Interpretability 

Algorithms behave like 
decision trees  that gives 
us rules as to why it chose 
what it chose, so it is 
particularly easy to 
interpret the reasoning 
behind it 

Hard to deduce why is a 
deep learning model making 
a specific decision.  

 
 
In summary, while Deep Learning can outperform traditional machine learning 
algorithms given enough data, it is important to note that Deep Learning incurs in 
additional costs and complexity. 
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1.2. Deep Feedforward Network 

 
A deep feedforward network is a type of an artificial neural network which 
connections do not form a cycle, and is the quintessential deep learning model 
[5]. The purpose of a feedforward network is to approximate a function f∗, based 
on a defined mapping of an input x to a category y. The best function 
approximation would be learning which parameters θ of the deep neural network 
are able to reduce the error between the hypothesis and real output. 
    
In these models, the input x flows through the middle computations in order to 
define f, and calculate output y. In deep feedforward networks, information flows 
in one direction, and there are no feedback connections from the output to the 
input. 
 
A feedforward neural network can consist of three types of layers: 
 

Input Layer: The input nodes provide information from the outside world 
to the network and are together referred to as the “Input Layer”. No computation 
is performed in any of the Input nodes – they just pass on the information to the 
hidden nodes. 

 
Hidden Layer: The hidden nodes have no direct connection with the 

outside world (hence the name “hidden”). They perform computations and 
transfer information from the input nodes to the output nodes. A collection of 
hidden nodes forms a “Hidden Layer”. While a feedforward network will only have 
a single input layer and a single output layer, it can have zero or multiple Hidden 
Layers.  

If a Neural network has zero hidden layers, it is called a shallow network.  On 
the other hand, if a Neural Network has 1 or multiple hidden layers, it is called a 
deep network.  

 
Output Layer: The Output nodes are collectively referred to as the “Output 

Layer” and are responsible for computations and transferring information from the 
network to the outside world. 

 
Feedforward neural networks are called networks because they are generally 

represented by linking together many different functions. The model is associated 
with a directed acyclic graph describing how the functions are composed 
together.  

 
Each function will represent one layer, and the linking of the input and output of 
each layer is what allows to create one network. The overall length of the chain 
gives the depth of the model. The name “deep learning” arose from this 
terminology. The final layer of a feedforward network is called the output layer. 

 
A Multi-Layer Perceptron (MLP) contains one or more hidden layers (apart 

from one input and one output layer).  While a single layer perceptron can only 
learn linear functions, a multi-layer perceptron can also learn non – linear 
functions, and this is the reason it has more use in real world applications. 
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Fig. 1.4 Artificial Networks with different # of Hidden Layers 

 
 

1.2.1. What is a Neuron? 

 
An Artificial Neuron, or perceptron, is the basic unit of a neural network. A 

schematic diagram of a neuron is given below. 
 

 

 

Fig. 1.5 A Schematic Diagram of an Artificial Neuron and a Neural Network [6] 

 
As seen above, the computation inside an artificial neuron works in two steps – 
First, It calculates the weighted sum of its inputs and then, applies an activation 
function to normalize the sum. The activation functions can be linear or 
nonlinear. Also, there are weights associated with each input of a neuron. 
These are the parameters which the network has to learn during the training 
phase, in order to calculate better approximations of its output [6]. 

 By having multiple layers, we can compute complex functions by cascading 
simpler  
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1.2.2. Activation Functions 

The activation function simulates the behavior of a biological neuron, and is 
used as a decision making body at the output of a neuron. The neuron learns 
Linear or Non-linear decision boundaries based on the activation function. It also 
has a normalizing effect on the neuron output which prevents the output of 
neurons after several layers to become very large, due to the cascading effect.  
 
The most widely used activation functions in artificial neural networks are 
Sigmoid, Tanh, and Rectified Linear Unit, as shown in the next figure. 
 
 

 

Fig. 1.6 Activation functions: Sigmoid, Tanh and ReLU 

 
Overall, the previously mentioned activation functions offer non-linearity which in 
neural networks allow us to generalize more, and thus calculate better 
approximations. 
 
The major advantage of Sigmoid and Tanh Activation functions is that they offer 
a result within a finite boundary, also known as “no blow up activation”. However, 
the major disadvantage in deep neural networks for these two activations is that 
the derivative of either one will be less than one.  
In Deep Learning, it has been shown that more layers increase performance, but 
if you have many layers with these functions, you will multiply these gradients, 
and the product of many smaller than 1 values goes to zero very quickly. This 
means that for Deep Learning Sigmoid and Tanh functions are not 
recommended. 
 
On the other hand, Rectifier Linear Units don’t have the vanishing gradient and 
also perform less expensive computations, but tend to over fit easily. 
In Deep Learning, Rectifier Linear Units are more commonly used, but additional 
steps need to be done in order to reduce overfitting. 
 

1.2.3. The Back-Propagation Algorithm 

 
The process by which a deep neural network learns is called the 

Backpropagation algorithm. 
 
In order to learn, backpropagation requires three things: 
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1) A Dataset: consisting of input-output pairs, where is the input and is the 
desired output of the network on input. The set of input-output pairs of size is 
denoted. 

2) A feedforward neural network, as formally defined 
concerning feedforward neural networks, whose parameters are collectively 
denoted. In backpropagation, the parameters of primary interest are, the weight 
between node in layer and node in layer, and the bias for node in layer. There 
are no connections between nodes in the same layer and layers are fully 
connected. 

 
3) An error function, which defines the error between the desired output and 

the calculated output of the neural network on input for a set of input-output 
pairs and a particular value of the parameters. 

 
For classification problems, the error function is usually defined using the 

mean squared error. 
 

𝐸(𝑋) =
1

2𝑁
∑ (𝑂𝑖 − 𝑦𝑖)

2𝑁
𝑖=1 =

1

2𝑁
∑ (𝑔(𝑤⃗⃗ ∙  𝑥𝑖 − 𝑦𝑖)

2𝑁
𝑖=1   (1.1) 

  
Where, 
 

𝐸(𝑋)  = Error Function 
𝑁  = Number of Layers 
𝑂𝑖 = Estimated Output 
𝑦𝑖 = Real Output 
 

Training a neural network with gradient descent requires the calculation of the 
gradient of the error function with respect to the weights and biases. Then, 
according to the learning rate, each iteration of gradient descent updates the 
weights and biases collectively denoted according to 

 

𝜃𝑡+1 = 𝜃𝑡 − 𝛼
𝜕𝐸(𝑋,𝜃𝑡)

𝜕𝜃
     (1.2) 

 
Where, 
 

𝜃 = Parameters of the neural Neural Network 
t  = iteration in gradient descent 

𝛼 = learning rate 
 
This process is repeated until the output error is below a predetermined threshold 
or minimum. 
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Fig. 1.7 A Graphical representation of back propagation of error and weight 
update. 

 
 

Initially all the edge weights are randomly assigned. For every input in the 
training dataset, the ANN is activated and its output is observed. This output is 
compared with the desired output that we already know, and the error is 
"propagated" back to the previous layer. This error is noted and the weights are 
"adjusted" accordingly. This process is repeated until the output error is below a 
predetermined threshold.  

 
Once the above algorithm terminates, we have a "learned" ANN which, we 

consider is ready to work with "new" inputs. This ANN is said to have learned 
from several examples (labeled data) and from its mistakes (error propagation). 

 
In summary, the Backpropagation algorithm goes as follow [8]: 
 
1. Input a set of training examples 

 

2. For each training example 𝑥: Set the corresponding input activation 𝑎𝑥,1, 
and perform the following steps: 

 

 Feedforward: For each 𝑙=2,3,…,𝐿 compute 

 𝑧𝑥,𝑙 = 𝑤𝑙𝑎𝑥,𝑙−1 + 𝑏𝑙 And 𝑎𝑥,𝑙−1 = 𝜎(𝑧𝑥,𝑙−1) 
 

 Output error 𝛿𝑥,𝐿: Compute the vector  

 
 Backpropagate the error: For each 𝐿=L,L-1,…,2 compute
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3. Gradient descent: For each 𝐿=L,L-1,…,2 update the weights according 

to the rule 𝑤𝑙 → 𝑤𝑙 − 
𝑛

𝑚
∑ 𝛿𝑥,𝑙(𝑎𝑥,𝑙−1)𝑇

𝑥 , and the biases according to the rule 

𝑏𝑙 → 𝑏𝑙 − 
𝑛

𝑚
∑ 𝛿𝑥,𝑙

𝑥 .  

To implement in practice you also need an outer loop generating mini-
batches of training examples, and an outer loop stepping through multiple 
epochs of training.  

1.3. Deep Learning Architectures 

 
The number of architectures and algorithms that are used in deep learning is wide 
and varied. This section explores five of the deep learning architectures spanning 
the past 20 years. Notably, LSTM and CNN are two of the oldest approaches in 
this list but also two of the most used in various applications[9]. 
 
 

 

Fig. 1.8 Deep Learning Applications 

  
 
These architectures are applied in a wide range of scenarios, but the following 
table lists some of their typical applications. 
 

Architecture Application 

RNN Speech recognition, handwriting recognition 

LSTM/GRU 
networks 

Natural language text compression, handwriting 
recognition, speech recognition, gesture recognition, 
image captioning 

CNN Image recognition, video analysis, natural language 
processing 

DBN Image recognition, information retrieval, natural language 
understanding, failure prediction 
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As we can see from the table above, the recommended architecture for video 
analysis and image recognition is Convolutional Neural Networks. 
We will explain ConvNets in more detail in the following chapter.  

DSN Information retrieval, continuous speech recognition 
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Chapter 2 CONVOLUTIONAL NEURAL NETWORKS 

In Deep Learning, a convolution neural network (CNN, or ConvNet) is a class of 
a deep feed-forward network that makes the explicit assumption that the inputs 
are images, which allows us to define certain properties into the architecture. 
These then make the computation functions more efficient to implement and 
reduce the amount of parameters in the network. Due to this, they have been 
successfully applied to visual imagery analysis, and have applications in image 
and video classification. 

2.1. Architecture Overview 

 

Convolutional Neural Networks are very similar to ordinary Neural Networks from 
the previous chapter: they are made up of neurons that have learnable weights 
and biases. Each neuron receives some inputs, performs a dot product and 
optionally follows it with a non-linearity. The whole network still expresses a single 
differentiable score function: from the raw image pixels on one end to class 
scores at the other. And they still have a loss function) on the last (fully-
connected) layer. 

However, unlike other neural networks, Convolutional Neural Networks take 
advantage of the fact that the input consists of images and they constrain the 
architecture in a more sensible way. In particular, the layers of a ConvNet have 
neurons arranged in 3 dimensions: width, height, depth. 
 
In images, this translates to pixel height, width, and rgb channels. 
 

 

Fig. 2.1 A regular 3-Layer NN vs a ConvNet[11] 

 
As we described above, a simple ConvNet is a sequence of layers, and every 
layer of a ConvNet transforms one volume of activations to another through a 
differentiable function. We use three main types of layers to build ConvNet 
architectures: Convolutional Layer, Pooling Layer, and Fully-Connected Layer 
(exactly as seen in regular Neural Networks). 
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2.1.1. Convolutional Layer 

 
The Conv layer is the core building block of a Convolutional Network that does 
most of the computational heavy lifting. 
Convolution is a mathematical operation that basically takes two functions (f 
and g) to produce a third one (f*g). 
In the context of CNN, a Convolution is the treatment of a matrix by another 
called kernel. This has been applied in image processing before the creation of 
CNN. 
 
The convolutional process in a convolutional goes as follows: the kernel is 
moving in the input, from left to right and from top to bottom, and each one of 
the values on the kernel is multiplied by the value on the input on the same 
position. The results obtained by the multiplication are then summed and the 
local output is generated. 
 

 

Fig. 2.2 A Convolutional Operational between an Input and Kernel 

 
The main task of the convolutional layer is to extract features from the previous 
layer and mapping their appearance to a feature map. As a result of convolution 
in neural networks, the image is split into perceptrons, creating local receptive 
fields and finally compressing the perceptrons in feature maps. Convolution 
preserves the spatial relationship between pixels by learning image features 
using small squares of input data. Hence, each filter is trained spatial in regard 
to the position in the volume it is applied to. 
 
The output volume of a convolutional layer is defined by four hyperparameters: 

 Number of Filters or Depth (K): Defines how many features the layer will 
detect. 

 Filter Size or Depth (F): Defines the feature activation area of each filter. 

 Stride(S): which defines the movement or slide of a kernel through the 
input, 

 Zero Padding (P): control the spatial size of the output volumes  
 
The result of staging these convolutional layers in conjunction with the following 
layers is that the information of the image is classified like in vision. That means 
that the pixels are assembled into edges, edges into motifs, motifs into parts, 

https://en.wikipedia.org/wiki/Convolution
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parts into objects, and objects into scenes. This effect is observable in the 
appearance of the filters and shown in the next figure [12]. 

  

 

 

Fig. 2.3 Feature learning in a Convolutional Neural Network 

 

2.1.2. Pooling Layer 

 
The pooling or down sampling layer is responsible for reducing the spacial size 
of the activation maps. In general, they are used after multiple stages of other 
layers (i.e. convolutional and non-linearity layers) in order to reduce the 
computational requirements progressively through the network as well as 
minimizing the likelihood of overfitting. 
 
The output volume of a pooling layer is defined by two hyperparameters: 

 Filter Size or Depth (F) 

 Stride(S) 
 

The definition for Filter Size and Stride in the pooling layer is the same as in the 
convolutional layers 
 
The pooling layer operates by defining a window of size F(l)×F(l) and reducing 
the data within this window to a single value. The window is moved 
by S(l) positions after each operation similarly to the convolutional layer and the 
reduction is repeated at each position of the window until the entire activation 
volume is spatially reduced. 
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Fig. 2.4 Pooling Example of a 224x224 Image 

The most common methods for reduction are max pooling and average 
pooling. Max pooling operates by finding the highest value within the window 
region and discarding the rest of the values. Average pooling on the other hand 
uses the mean of the values within the region instead. 

Max pooling has demonstrated faster convergence and better performance in 
comparison to the average pooling and other variants such as l2l2-norm 
pooling (9). Thus, recent work generally trends towards max pooling or similar 
variants. 
 

 

Fig. 2.5 Max Pool Operation on a 4x4 Input 

2.1.3. Rectified Linear Units (ReLUs) 

 
The rectified linear units (ReLUs), already explained in chapter 1, are the 
default activation function in neural network. As a result of its advantages and 

performance, most of the recent architectures of convolutional neural networks 
utilize only rectified linear unit layers (or its derivatives such as noisy or leaky ReLUs) 
as their non-linearity layers instead of traditional non-linearity and rectification layers. 

In works such as AlexNet[7] rectified linear units are shown to operate six times faster 
then hyperbolic tangent non-linearities while reaching 25% error rate on CIFAR-10 
datase). More recently, utilization of an advanced derivative Parametric Rectified Linear 
Units (PReLU) allowed convolutional networks to surpass human-level performance in 
ImageNet database ). 

https://wiki.tum.de/display/lfdv/Layers+of+a+Convolutional+Neural+Network#LayersofaConvolutionalNeuralNetwork-Literature
https://wiki.tum.de/display/lfdv/Layers+of+a+Convolutional+Neural+Network#LayersofaConvolutionalNeuralNetwork-Literature
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2.1.4. Fully Connected Layer 

 

The fully connected layers in a convolutional network are practically a multilayer 
perceptron (generally a two or three layer MLP) that aims to map 
the m1(l−1)×m2(l−1)×m3(l−1) activation volume from the combination of 
previous different layers into a class probability distribution. Thus, the output 
layer of the multilayer perceptron will have m(l−i)1m1(l−i) outputs, i.e. output 
neurons where ii denotes the number of layers in the multilayer perceptron. 

The purpose of a fully connected layer in a convolutional network is the same as 
other deep feedforward networks, to be able to classify more complex functions. 
The key difference from a standard multilayer perceptron is the input layer where 
instead of a vector, an activation volume (from the previous convolutional layers) 
is taken as an input. 

 

 

Fig. 2.6 A Fully Connected Neural Network 

2.1.5. Softmax Layer 

 
The softmax function squashes the outputs of each unit to be between 0 and 1, 
just like a sigmoid function. But it also divides each output such that the total 
sum of the outputs is equal to 1 (check it on the figure above).  

 

Fig. 2.7 Softmax Operation Example 

The output of the softmax function is equivalent to a categorical probability 
distribution, it tells you the probability that any of the classes are true, which 
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makes it suitable for classification problems using convolutional neural 
networks. Please note that the softmax layer is reserved for the output layer of a 
convolutional network. 

Mathematically the softmax function is shown below, where z is a vector of the 
inputs to the output layer (if you have 10 output units, then there are 10 elements 
in z). And again, j indexes the output units, so j = 1, 2,....K. 

 

𝜎(𝑧)𝑗 =  
𝑒

𝑧𝑗

∑ 𝑒𝑧𝑘𝐾
𝑘=1

     (2.1) 

 

2.1.6. A Convolutional Network – Stacking the Layers 

 
In a simple Convolutional Network Architecture, these layers are stacked 
together: INPUT - CONV - RELU - POOL – FC 
The general description of the each layer is as follows: 
 
 INPUT [32x32x3] will hold the raw pixel values of the image, in this case an 

image of width 32, height 32, and with three color channels R,G,B. 
 CONV layer will compute the output of neurons that are connected to local 

regions in the input, each computing a dot product between their weights and 
a small region they are connected to in the input volume. This may result in 
volume such as [32x32x12] if we decided to use 12 filters. 

 RELU layer will apply an element wise activation function, such as 
the max(0,x)max(0,x) thresholding at zero. This leaves the size of the volume 
unchanged ([32x32x12]). 

 POOL layer will perform a down sampling operation along the spatial 
dimensions (width, height), resulting in volume such as [16x16x12]. 

 FC (i.e. fully-connected) layer will compute the class scores, resulting in 
volume of size [1x1x10], where each of the 10 numbers correspond to a class 
score, such as among the 10 categories of CIFAR-10. As with ordinary Neural 
Networks and as the name implies, each neuron in this layer will be connected 
to all the numbers in the previous volume. 

2.2. Convolutional Neural Network Architectures 

 
Deep neural networks and Deep Learning are powerful and popular algorithms. 
And a lot of their success lays in the careful design of the neural network 
architecture. 
 
We have seen that Convolutional Networks are commonly made up of only three 
layer types: CONV, POOL (we assume Max pool unless stated otherwise) and 
FC (short for fully-connected). We will also explicitly write the RELU activation 
function as a layer, which applies element wise non-linearity. In this section we 
discuss how these are commonly stacked together to form entire ConvNets. 
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2.2.1. Layer Patterns 

The most common form of a ConvNet architecture stacks a few CONV-RELU 
layers, follows them with POOL layers, and repeats this pattern until the image 
has been merged spatially to a small size. At some point, it is common to 
transition to fully-connected layers. The last fully-connected layer holds the 
output, such as the class scores. In other words, the most common ConvNet 
architecture follows the pattern: 

INPUT -> [[CONV -> RELU]*N -> POOL?]*M -> [FC -> RELU]*K -> FC  

where the *  indicates repetition, and the POOL?  indicates an optional pooling 

layer. Moreover, N >= 0  (and usually N <= 3 ), M >= 0 , K >= 0  (and usually K 

< 3 ).  

For example, here are some common ConvNet architectures you may see that 
follow this pattern: 

 INPUT -> FC , implements a linear classifier. Here N = M = K = 0 . 

 INPUT -> CONV -> RELU -> FC  

 INPUT -> [CONV -> RELU -> POOL]*2 -> FC -> RELU -> FC . Here 

we see that there is a single CONV layer between every POOL layer. 

 INPUT -> [CONV -> RELU -> CONV -> RELU -> POOL]*3 -> [FC -

> RELU]*2 -> FC  Here we see two CONV layers stacked before every 

POOL layer. This is generally a good idea for larger and deeper networks, 
because multiple stacked CONV layers can develop more complex features 
of the input volume before the destructive pooling operation. 

 
It should be noted that the conventional paradigm of a linear list of layers has 
recently been challenged, in Google’s Inception [13] architectures and also in 
current (state of the art) Residual Networks from Microsoft Research Asia. Both 
of these (see details below in case studies section) feature more intricate and 
different connectivity structures. 
 
It is recommended that instead of rolling your own architecture for a problem, you 
should look at whatever architecture currently works best on ImageNet, download 
a pretrained model and finetune it on your data. You should rarely ever have to 
train a ConvNet from scratch or design one from scratch. 
   

2.2.2. Case Studies 

There are several architectures in the field of Convolutional Networks that have 
a name. The most common are: 

 LeNet. The first successful applications of Convolutional Networks were 
developed by Yann LeCun in 1990’s. Of these, the best known is 
the LeNet architecture that was used to read zip codes, digits, etc. 
 

 AlexNet[7]. The first work that popularized Convolutional Networks in 
Computer Vision was the AlexNet, developed by Alex Krizhevsky, Ilya 
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Sutskever and Geoff Hinton. The AlexNet was submitted to the ImageNet 
ILSVRC challenge in 2012 and significantly outperformed the second runner-
up (top 5 error of 16% compared to runner-up with 26% error). The Network 
had a very similar architecture to LeNet, but was deeper, bigger, and 
featured Convolutional Layers stacked on top of each other (previously it 
was common to only have a single CONV layer always immediately followed 
by a POOL layer). 

 
 ZF Net. The ILSVRC 2013 winner was a Convolutional Network from 

Matthew Zeiler and Rob Fergus. It became known as the ZFNet (short for 
Zeiler & Fergus Net). It was an improvement on AlexNet by tweaking the 
architecture hyperparameters, in particular by expanding the size of the 
middle convolutional layers and making the stride and filter size on the first 
layer smaller. 
 

 GoogLeNet.[13] The ILSVRC 2014 winner was a Convolutional Network 
from Szegedy et al. from Google. Its main contribution was the development 
of an Inception Module that dramatically reduced the number of parameters 
in the network (4M, compared to AlexNet with 60M). Additionally, this paper 
uses Average Pooling instead of Fully Connected layers at the top of the 
ConvNet, eliminating a large amount of parameters that do not seem to 
matter much. There are also several followup versions to the GoogLeNet, 
most recently Inception-v4. 
 

 VGGNet. The runner-up in ILSVRC 2014 was the network from Karen 
Simonyan and Andrew Zisserman that became known as the VGGNet. Its 
main contribution was in showing that the depth of the network is a critical 
component for good performance. Their final best network contains 16 
CONV/FC layers and, appealingly, features an extremely homogeneous 
architecture that only performs 3x3 convolutions and 2x2 pooling from the 
beginning to the end. Their pretrained model is available for plug and play 
use in Caffe. A downside of the VGGNet is that it is more expensive to 
evaluate and uses a lot more memory and parameters (140M). Most of these 
parameters are in the first fully connected layer, and it was since found that 
these FC layers can be removed with no performance downgrade, 
significantly reducing the number of necessary parameters. 

 
 ResNet[14]. Residual Network developed by Kaiming He et al. was the 

winner of ILSVRC 2015. It features special skip connections and a heavy 
use of batch normalization. The architecture is also missing fully connected 
layers at the end of the network. ResNets are currently by far state of the art 
Convolutional Neural Network models and are the default choice for using 
ConvNets in practice (as of May 10, 2016). In particular, also see more 
recent developments that tweak the original architecture from Kaiming He et 
al. Identity Mappings in Deep Residual Networks (published March 2016). 

 
The following figure summarizes the performance of different ConvNet 
architectures. 
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Fig. 2.8 ConvNet Architectures Performance Comparison 
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Chapter 3 TESTING AND RESULTS 
 

This chapter explains one possible implementation of automatic video 
classification. The goal is to have a proof of concept of implementing an 
automatic flagging of adult video content using Deep Learning. 

Throughout this chapter, you will find a general description of the architecture of 
the solution, the methodology followed, the dataset used, how the solution was 
implemented, and the results achieved. 

This chapter is a starting point for developing an adult content video classifier 
focused on nudity and/or pornographic content, but could be extended to 
include gory or graphic content not suitable for minors (narcotics use or 
violence, for example). 

The system described here is capable of classifying a video into two classes: 

1. Not Safe for Work  
2. Safe for Work 

The proposal to solve this problem is an architecture based on convolutional 

neural networks. 

3.1. Description of the Architecture of the Solution 

 

Video has the distinct property that it includes spatial information (in images) 
and temporal information (context of each frame relative with other frames in 
time). We hypothesize that since video is a combination of single frames (or 
images), the correct classification of single images should translate to a correct 
classification of a video stream with high accuracy. 

The neural network is a convolutional neural network with the purpose of 
extracting high-level features of the images and reducing the complexity of the 
input. Using the convolutional neural network, we will classify an image into safe 
for work (Safe for work) or suitable for all audiences, or Not Safe for Work (adult 
content). 

 For the convolutional neural network of the solution, we will be using a pre-
trained model called Open NSFW [15] developed by Yahoo. 

From the Yahoo Open NSFW Git Hub site[16], the usage of the OPEN NSFW is 

as follows: 

 The network takes in an image and gives output a probability (score 
between 0-1) which can be used to filter not suitable for work images. 
Scores < 0.2 indicate that the image is likely to be safe with high 
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probability. Scores > 0.8 indicate that the image is highly probable to be 

NSFW. Scores in middle range may be binned for different NSFW levels. 

 

Figure 3.1 SFW image classification examples using OPEN NSFW[16] 

 Open NSFW is a convolutional neural network based on the thin resnet 50 
1by2 architecture, which is a less computational demanding model based on 
the ResNet Model, and was pre trained on the ImageNet 1000 class dataset.  

 

Fig. 3.1 Graph of the Residual Network Model 

We used this model to apply the technique of transfer learning. Modern object 
recognition models have millions of parameters and can take weeks to fully 
train. Transfer learning is a technique that optimizes a lot of this work by taking 
a fully trained model for a set of categories like ImageNet and retrains from the 
existing weights for new classes. 

For video classification, several approaches can be used over single or multi 
frame analysis. According to a Google research paper , Large-scale Video 
Classification with Convolutional Neural Networks[17]” Our best spatio-temporal 
networks display significant performance improvements compared to strong 
feature-based baselines (55.3% to 63.9%), but only a surprisingly modest 
improvement compared to single-frame models (59.3% to 60.9%).” 
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Figure 3.2 Figure from Google's research paper explaining different approaches for video 

analysis using convolution neural networks. 

 
Having that said, in order to reduce complexity on the proposed solution, we will 
evaluate the video classifier based on a single frame classification and evaluate 
its performance. 
 

3.2. Methodology 

 
The first step is to extract the frames of the video. We extract a frame of the video 
and using this frame, we make a prediction using the open nsfw. We will continue 
this process until the end of video is reached. 
During each iteration, what we see on the screen is a classification of the video 
in real-time — either safe, or not safe for work. 
 

 

Fig. 3.2 NSFW Video Classification Methodology 

After getting the classification of each frame, the max score will be stored for the 
video.  After the end of the video, if the max score is greater than 0.8, the video 
will be flagged as Not safe for Work. 
 

3.3. Evaluating the Proposed Solution 
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3.3.1. The Dataset 

 
In order to assess the open nsfw network accuracy performance, we will use the 
dataset used in the research paper “Nude Detection in Video using Bag-of-Visual-
Features” [19]. This dataset was selected due to its similarity in adult video 
scenarios seen on TV and other video content platforms. 
 

 

Figure 3.3 Examples of Non-Nude (Top) and Nude (Bottom) Frames from the dataset. 

 
 
The description of the dataset goes as follows: 
 
The database of nude and non-nude videos contains a collection of 179 video 
segments collected from the following movies: Alpha Dog, Basic Instinct, Before 
The Devil Knows You're Dead, Cashback, Eros, Les Anges Exterminateurs, 
Loner, Original Sin, Primer, Striptease and The Bubble.  For nude samples, 
longer sequences were partitioned into shorter ones. The sequences for the non-
nude class were collected by randomly selecting the initial time and length. 
Random selections which felt inside a nude scene were discarded. Those random 
selections were performed on the same movies above listed for the nude class. 
 
 

A summary of the database. 
 Class  Segments Seconds 

 Non-Nude 90 506 

 Nude 89 589 

 All 179  1095 

 

Number of video segments per video. 

Video Name #Non-Nude #Nude 

Alpha Dog 10 07 

Basic Instinct 10 15 

Before The Devil Knows You're Dead 10 06 

Cashback 10 10 

Eros - 16 

Les Anges Exterminateurs 10 18 

Loner 10 - 
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Original Sin 10 04 

Primer 10 - 

Striptease - 11 

The Bubble 10 02 

 

3.3.2. Performance Metrics 

 
For the purpose of this thesis, a nude video segment should be flagged as Not-
Safe-for-Work (NSFW), and a non-nude video should be flagged as Safe-for-
Work (SFW). 
In order to assess the proposed solution’s performance, we will draw its confusion 
matrix based on this dataset, and calculate its related metrics based on confusion 
matrix analysis. 
 
The confusion matrix is simply a square matrix that reports the counts of the true 
positive (TP), true negative (TN), false positive (FP), and false negative (FN) 
predictions of a classifier, as shown in the following figure: 
 

 

Figure 3.4 Confusion Matrix 
 
Since our classification solution only has two classes: NSFW and SFW, we can, 
alternatively, view the confusion matrix as follows 
 

 

Figure 3.5 Confusion Matrix for the NSFW classifier 
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From the figure above, the acronym TP, FN, FP, and TN of the confusion matrix 
cells refers to the following: 
 
TP = true positive, the number of NSFW Videos that are correctly identified as NSFW.  
FN = false negative, the number of NSFW Videos that are misclassified as SFW. 
FP = false positive, the number of SFW Videos that are incorrectly identified as NSFW.  
TN = true negative, the number of SFW Videos that are correctly identified as SFW. 

 
The performance of the solution will be measured on the following metrics [19]: 
 

 Accuracy: Assesses the overall effectiveness of the algorithm by 
estimating the probability of the true value of the class label. 
Ideal Value: Probability of 100%. 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝐹𝑃+𝐹𝑁+𝑇𝑁+𝑇𝑃
      (3.1) 

 

 Error Rate: 1- Accuracy. Is an estimation of misclassification probability 
according to model prediction. 
Ideal Value: Probability of 0%. 
 

𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 = 1 − 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝐹𝑃+𝐹𝑁

𝐹𝑃+𝐹𝑁+𝑇𝑁+𝑇𝑃
   (3.2) 

 

 Sensitivity or Recall: True Positive Rate. Estimates the proportion of 
positives that are correctly identified as such. It gives a value for the 
probability of detection. 
Ideal Value: Coefficient of 1 
 

𝑅𝑒𝑐𝑎𝑙𝑙(𝑅𝐸𝐶) =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
     (3.3) 

 

 Specificity: True Negative Rate. Estimates the proportion of negatives 
that are correctly identified as such. 
Ideal Value: Coefficient of 1 
 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
     (3.4)  

 

 Precision: It is the ratio of true positives compared to the total number of 
positives predicted by the model. It gives an estimate of the confidence we 
can have in the predicted value. 
Ideal Value: Coefficient of 1 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃𝑅𝐸) =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
     (3.5)  

 

 F1 Score: Combines the values of Precision and Recall to give an 
assessment over a single metric. Since Precision and Recall give 
complementary information, it is used to give a general overview of a 
model’s performance over true classes. 
Ideal Value: Coefficient of 1 
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𝐹1 𝑆𝑐𝑜𝑟𝑒 =  2
𝑅𝐸𝐶+𝑃𝑅𝐸

𝑅𝐸𝐶∗𝑃𝑅𝐸
     (3.6) 

 

 MCC: MCC Matthew’s correlation coefficient is a single performance 
measure less influenced by imbalanced test sets since it considers 
mutually accuracies and error rates on both classes, and involve all values 
of confusion matrix. It is considered to be the best single assessment 
metric in a model’s prediction performance. 
Ideal Value: MCC ranges from 1 for a perfect prediction to-1 for the worst 
possible prediction. MCC close to 0 indicate a model that performs 
randomly. 
 

𝑀𝐶𝐶 = 
𝑇𝑃𝑥𝑇𝑁−𝐹𝑃𝑥𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
    (3.7) 

 

3.4. Implementation 

 
The solution for the adult content classifier was implemented with Python 3.5. 
 
We use OpenCV and Tensorflow for Python to segment the video in frames. 
Once we have a frame, we make a prediction using the open nsfw model using 
each of them.  
The result of each prediction is a “transfer value” representing the high-level 
feature map extracted from that specific frame. We continue this process until 
the end of video is reached. 
 

 

Figure 3.6  Open NSFW Video code Excerpt 
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The OPEN NSFW Video Classifier is composed of the following parts: 
 

1. Video application Code: Analyzes each frame through the open 
nsfw model continuously until video ends. 

2. ResNet Model: Based on the Thin ResNet 50-1by2 used by Open 
NSFW from Yahoo, classifies each frame into NSFW or SFW. 

3. Image Loader: Converts an image so it can be loaded to the open 
nsfw model. 

4. Model Weights: Data of the weight parameters in the open nsfw 
already pretained by Yahoo.    

 
You can see the complete implementation code in annex [B]. 

3.5. Results 

 
This sections shows the results for video classification based on the open nsfw 
+video solution for three common scenarios in video found on television 
programs and video content platforms over the Internet. After defining the 
classification method for each type of video, we will review the results with the 
proposed dataset, and calculate the performance metrics as proposed in the 
previous section 3.3.2 
 
It is important to mention that, as in any deep learning model, we will have 
scenarios were an object is misclassified since the model’s performance will 
never be 100% accurate all the time. Having that said, we will review the 
misclassification examples of each type of video as well. 
 
We will perform the test on the following type of videos: 
 

- Safe for Work: Suitable for all audiences, shown during 0600 – 1800 
timeslot. Safe for Work videos should be classified SFW during their entire 
run time. 
 

- Not Safe for Work: Suitable for adults audiences, shown during 1800-0400 
Not Safe for Work videos should be classified NSFW during portions of 
their entire run time. 
 

- Safe for work +, Suitable for teenagers and adult audiences, shown during 
1800-0600. Safe for Work+ videos should be classified SFW during their 
entire run time. There will be portions of SFW+ videos with edge scenarios, 
NSFW in the 0.5-0.8 range. These type of videos should be combine 
human moderation with the machine learned solution to improve 
performance. 

 
 

3.5.1. SFW: A cartoon video: “Big Buck Bunny” (2007) 

This video is a cartoon film released in 2007, and we will use as an example of 
video shown to children in television during the AM runtime. 
These type of videos should be classified as SFW during the entire run time. 
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SFW video:  Big Buck Bunny: Safe for Work. 
Classification: Correct, SFW 

 

Figure 3.7 SFW classification for a SFW Video, 3 consecutive frames shown 
with NSFW score: 0.0683, 0.1593, and 0195, respectively 

SFW video:  Big Buck Bunny: Safe for Work. 
Classification: Incorrect, NSFW 
 

 

Figure 3.8 NSFW classification for a SFW Video, 3 consecutive frames shown 
with NSFW score: 0.8231, 0.9220, and 0.8805, respectively 

3.5.2. NSFW: An adult TV show video: “Game of Thrones” 
(2011-Present). 

This video is from the HBO Game of Thrones TV show, which is famous for 
having sex and violent scenes on television, and we will use as an example of 
video shown targeted to adult audiences in television during the PM run time. 
These type of videos should be classified as NSFW during some portions of their 
run time. 
NSFW video: Game of thrones: Safe for Work portion. 
Classification: Correct, SFW 
 

 

Figure 3.9 SFW classification for a SFW portion from a NSFW Video,1 frame 
shown with NSFW score: 0.0358 

NSFW video: Game of thrones: Not Safe for Work portion. 
Classification: Correct, NSFW 
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Figure 3.10 NSFW classification for a NSFW Video, NSFW portion 3 
consecutive frames shown with NSFW score: 0.9632, 0.9510, and 0.9572, 

respectively. 

NSFW video: Game of thrones: Not Safe for Work portion. 
Classification: Incorrect, SFW 
 

 

Figure 3.11 SFW classification for a NSFW portion from a NSFW video, 1 
frame shown with 0.1171. 

3.5.3. SFW+: Teen and Adult TV show video: “Miss Universe 
Bikini” (2011).  

This video is from the Miss Universe Pageant TV show, which is famous for 
having beautiful women modelling and posing with bikinis on television, and we 
will use as an example of video shown targeted to teen and adult audiences in 
television during the PM run time. 
 

SFW video:  Miss Universe Bikini Competition. 
Classification: Correct, SFW 
 
 

 

Figure 3.12 SFW classification from a SFW+ video, 2 frames shown with 
NSFW scores: 0.2795 and 0.2129. 
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SFW+ video:  Miss Universe Bikini Competition. 
Classification: Correct, SFW 

 

Figure 3.13 SFW classification from a SFW+ video, 3 frames shown with 
NSFW scores: 0.3301, 0.3238, and 0.3868. 

 
The above figures shows a correct classification of SFW content, in a hard-to-
detect scenario for nudity. 
 
However, the following figure will show that, even though the solution classifies 
correctly most of the scenarios, some errors in classification will occur. In this 
particular scenario, three frames have been tagged NSFW with high confidence. 
 

SFW+ video:  Miss Universe Bikini Competition. 
Classification: Incorrect, NSFW 
 

 

Figure 3.14 NSFW classification from a SFW+ video, 3 frames shown with NSFW scores: 
0.9871, 0.9837, and 0.9895 

 

3.5.4. Performance Metrics Results for OPEN NSFW Video 

 
After defining how the classification of each video was performed, we plot the 
results in the following confusion matrix using the dataset proposed in section 
3.3.1:  
 
Note: Please find the results for each segment of the video in Annex [A]. 
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Figure 3.15 Confusion Matrix for Open NSFW Video 

 
Classification of the Dataset Number of 

Segments 
Summary 

True Positive = NSFW + NSFW Tag 68 TP 

False Negative = NSFW + SFW Tag 21 FN 

False Positive = SFW + NSFW Tag 12 FP 

True Negative = SFW + SFW Tag  78 TN 

Total  179  

 
We can calculate the performance metrics of the proposed open nsfw video 
solution, using the formulas proposed in section 3.3.2:  
 

Fundamental Evaluation Measures Value 

Accuracy 0.816 

Error Rate 0.184 

Sensitivity or Recall (True Positive 
Rate) 

0.764 

Specificity (True Negative Rate) 0.867 

Precision 0.850 

 
Combined Evaluation Measures Value 

F1-Score 0.8047 

MCC 0.6343 

 
As previously mentioned, a F1-Score close to 1 and a MCC greater 0 indicate 
that model performs better than a random guessing model.  
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Chapter 4 Conclusions 
 
This chapter presents the conclusions and possible future improvements of the 
Project presented in this master thesis. 

4.1. Conclusions and Results 

 
This master thesis final project has been motivated by the growing consumption 
of video content over the past years. Additionally, this increase in video 
consumption has led to an increase in adult video content which might be 
offensive or not suitable for minors. Given the amount of new video content that 
is reachable in the public domain, there is an urgent need to isolate adult videos 
from non-offensive ones without manual intervention. 
In previous approaches of machine learning, intelligent analysis of video would 
require a manual engineering of features to be able to detect offensive video. 
However, as explained, in chapter 1 a new paradigm in machine learning called 
deep learning has allowed us to overcome this deficiency and use end-to-end 
approaches using data only, to improve neural networks learning. 
 
We propose to build an offensive video classifier based on one of the recently 
flourishing deep learning techniques. The most remarkable thing about deep 
neural networks is that no human programming is needed to be able to learn 
correct classification. In image classification, convolutional neural networks 
contain many layers for both automatic features extraction and classification. The 
benefit is an easier system to build and improve through time, since we remove 
the previous approach of manual feature engineering. 
 
In order to assess the proposed solution’s performance, we used a standard 
approach by using a confusion matrix and calculating the performance model’s 
metrics. From the results, we can confirm the proposed model has an acceptable 
performance but could be improved using various techniques. Additionally, the 
performance metrics give valuable insights on what results can be expected using 
single-frame approaches in video analysis. Lastly, the proposed solution can also 
work as a benchmark for classifying offensive video using deep neural networks. 
 
 

4.2. Future Work Lines  

 
In terms of future improvements, it is desirable to run the model in an extended 
dataset, in order to verify the efficiency of the algorithm and to make further 
improvements. Although the algorithm is efficient, an evaluation of other data sets 
would confirm that the model does not over fit to our dataset, which would give a 
false sense of a good performance. 
 
Secondly, as in any deep learning project, we could further improve the open 
nsfw model by retraining the current open nsfw model through hyper parameter 
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tuning, data augmentation. Using this methods, we could confirm if the values 
used in the current model are the giving the best performance for this type of 
classification. 
 
Another further improvement of the algorithm would be to include the temporal 
information found in video to the current solution, since we only used a single-
frame analysis for the dataset. It is suggested in Google’s research paper that 
including a slow-fusion approach could increase the performance of the video 
analyzer by 1%. A next line of work would be to add the temporal analysis using 
a long-short term memory network and compare the results with the current 
network. 
 
Additionally, after improving the open nsfw classifier, we could also develop 
another nsfw classifier using another convolutional network architecture such as 
Google’s Inception Network or another type of ResNet. Google’s Inception 
Network is already included in the tensorflow framework and could be retrained 
to classify nsfw images. After building the new nsfw classifier, we could use the 
same dataset and compare the performance of both solutions. 
 
Lastly, after building and comparing different models, we could create an 
ensemble network by combining the performance of all networks into a single 
network. If the performance is better than human classification, it could be used 
as a commercial application for adult video detection in a television network or a 
video content provider. 
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Abbreviations and Acronyms  

 
Acronym Name 

AI Artificial Intelligence 

ANN Artificial Neural Network 

CDBN Convolutional Deep Belief Networks 

CNN Convolutional Neural Network 

ConvNet Convolutional Neural Network 

DBN Deep Belief Network 

DeconvNet DeConvolutional Neural Network 

DL Deep Learning 

DNN Deep Neural Network 

FC Fully Connected 

FCN Fully Convolutional Network 

FC-CNN Fully Convolutional Convolutional Neural Network 

ML Machine Learning 

MLP Multi-Layer Perceptron 

NN Neural Network 

NSFW Not Safe for Work 

ReLU Rectified Linear Unit 

SFW Safe for Work 

SGD Stochastic Gradient Descent 
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Annex 

 
Annex [A]: Evaluation Results for each video segment using OPEN NSFW video 
 

 
  

N. Type Movie Segment Evaluation Max Score NSFWPrediction

1 Nude AlphaDog 1 NSFW 0.9684 Correct

2 Nude AlphaDog 2 SFW 0.4859 Incorrect

3 Nude AlphaDog 3 NSFW 0.9992 Correct

4 Nude AlphaDog 4 NSFW 0.9617 Correct

5 Nude AlphaDog 5 NSFW 0.9990 Correct

6 Nude AlphaDog 6 NSFW 0.9201 Correct

7 Nude AlphaDog 7 SFW 0.6827 Incorrect

8 Nude BasicInstinct 1 NSFW 0.9462 Correct

9 Nude BasicInstinct 2 SFW 0.7826 Incorrect

10 Nude BasicInstinct 3 SFW 0.5387 Incorrect

11 Nude BasicInstinct 4 SFW 0.7229 Incorrect

12 Nude BasicInstinct 5 NSFW 0.9851 Correct

13 Nude BasicInstinct 6 NSFW 0.9417 Correct

14 Nude BasicInstinct 7 NSFW 0.9010 Correct

15 Nude BasicInstinct 8 SFW 0.7732 Incorrect

16 Nude BasicInstinct 9 NSFW 0.8615 Correct

17 Nude BasicInstinct 10 SFW 0.2322 Incorrect

18 Nude BasicInstinct 11 SFW 0.2646 Incorrect

19 Nude BasicInstinct 12 NSFW 0.8151 Correct

20 Nude BasicInstinct 13 NSFW 0.8451 Correct

21 Nude BasicInstinct 14 SFW 0.3594 Incorrect

22 Nude BasicInstinct 15 NSFW 0.9363 Correct

23 Nude BeforeTheDevilKnows 1 SFW 0.0117 Incorrect

24 Nude BeforeTheDevilKnows 2 NSFW 0.8148 Correct

25 Nude BeforeTheDevilKnows 3 NSFW 0.9491 Correct

26 Nude BeforeTheDevilKnows 4 NSFW 0.9061 Correct

27 Nude BeforeTheDevilKnows 5 NSFW 0.9953 Correct

28 Nude BeforeTheDevilKnows 6 NSFW 0.9998 Correct

29 Nude Cashback 1 SFW 0.0491 Incorrect

30 Nude Cashback 2 SFW 0.7959 Incorrect

31 Nude Cashback 3 NSFW 0.8713 Correct

32 Nude Cashback 4 NSFW 0.9994 Correct

33 Nude Cashback 5 NSFW 0.9737 Correct

34 Nude Cashback 6 NSFW 0.9577 Correct

35 Nude Cashback 7 NSFW 0.9962 Correct

36 Nude Cashback 8 SFW 0.0131 Incorrect

37 Nude Cashback 9 NSFW 0.8482 Correct

38 Nude Cashback 10 NSFW 0.9868 Correct

39 Nude Eros 1 NSFW 0.9911 Correct

40 Nude Eros 2 NSFW 0.8979 Correct

41 Nude Eros 3 NSFW 0.8679 Correct

42 Nude Eros 4 SFW 0.6227 Incorrect

43 Nude Eros 5 NSFW 0.9935 Correct

44 Nude Eros 6 NSFW 0.9926 Correct

45 Nude Eros 7 NSFW 0.9931 Correct

46 Nude Eros 8 NSFW 0.9286 Correct

47 Nude Eros 9 NSFW 0.9606 Correct

48 Nude Eros 10 NSFW 0.9721 Correct

49 Nude Eros 11 NSFW 0.9745 Correct

50 Nude Eros 12 NSFW 0.8584 Correct
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51 Nude Eros 13 NSFW 0.9510 Correct

52 Nude Eros 14 NSFW 0.9329 Correct

53 Nude Eros 15 SFW 0.6950 Incorrect

54 Nude Eros 16 NSFW 0.9196 Correct

55 Nude LesAnges 1 NSFW 0.8620 Correct

56 Nude LesAnges 2 NSFW 0.9935 Correct

57 Nude LesAnges 3 NSFW 0.8899 Correct

58 Nude LesAnges 4 NSFW 0.8191 Correct

59 Nude LesAnges 5 SFW 0.7739 Incorrect

60 Nude LesAnges 6 NSFW 0.8125 Correct

61 Nude LesAnges 7 NSFW 0.9503 Correct

62 Nude LesAnges 8 NSFW 0.9952 Correct

63 Nude LesAnges 9 NSFW 0.9107 Correct

64 Nude LesAnges 10 NSFW 0.9994 Correct

65 Nude LesAnges 11 NSFW 0.9848 Correct

66 Nude LesAnges 12 NSFW 0.9972 Correct

67 Nude LesAnges 14 NSFW 0.8634 Correct

68 Nude LesAnges 15 NSFW 0.9929 Correct

69 Nude LesAnges 16 NSFW 0.9734 Correct

70 Nude LesAnges 17 NSFW 0.9564 Correct

71 Nude LesAnges 18 NSFW 0.9981 Correct

72 Nude LesAnges 19 NSFW 0.9937 Correct

73 Nude OriginalSin 1 NSFW 0.9686 Correct

74 Nude OriginalSin 2 NSFW 0.9749 Correct

75 Nude OriginalSin 3 NSFW 0.9513 Correct

76 Nude OriginalSin 4 NSFW 0.8398 Correct

77 Nude Striptease 1 SFW 0.1359 Incorrect

78 Nude Striptease 2 SFW 0.0441 Incorrect

79 Nude Striptease 3 SFW 0.4508 Incorrect

80 Nude Striptease 4 SFW 0.3781 Incorrect

81 Nude Striptease 5 NSFW 0.9462 Correct

82 Nude Striptease 6 NSFW 0.9917 Correct

83 Nude Striptease 7 NSFW 0.9779 Correct

84 Nude Striptease 8 SFW 0.2508 Incorrect

85 Nude Striptease 9 NSFW 0.9038 Correct

86 Nude Striptease 10 NSFW 0.9985 Correct

87 Nude Striptease 11 NSFW 0.8670 Correct

88 Nude The Bubble 1 NSFW 0.9834 Correct

89 Nude The Bubble 2 NSFW 0.9980 Correct

90 Non-Nude AlphaDog 1 SFW 0.2397 Correct

91 Non-Nude AlphaDog 2 SFW 0.1269 Correct

92 Non-Nude AlphaDog 3 SFW 0.7172 Correct

93 Non-Nude AlphaDog 4 SFW 0.0363 Correct

94 Non-Nude AlphaDog 5 NSFW 0.9301 Incorrect

95 Non-Nude AlphaDog 6 SFW 0.0652 Correct

96 Non-Nude AlphaDog 7 NSFW 0.9482 Incorrect

97 Non-Nude AlphaDog 8 NSFW 0.9667 Incorrect

98 Non-Nude AlphaDog 9 NSFW 0.9361 Incorrect

99 Non-Nude AlphaDog 10 NSFW 0.8864 Incorrect

100 Non-Nude BasicInstinct 1 SFW 0.2343 Correct
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101 Non-Nude BasicInstinct 2 SFW 0.0235 Correct

102 Non-Nude BasicInstinct 3 NSFW 0.9543 Incorrect

103 Non-Nude BasicInstinct 4 SFW 0.0899 Correct

104 Non-Nude BasicInstinct 5 SFW 0.6216 Correct

105 Non-Nude BasicInstinct 6 SFW 0.0209 Correct

106 Non-Nude BasicInstinct 7 SFW 0.5167 Correct

107 Non-Nude BasicInstinct 8 SFW 0.7882 Correct

108 Non-Nude BasicInstinct 9 SFW 0.1541 Correct

109 Non-Nude BasicInstinct 10 SFW 0.7968 Correct

110 Non-Nude BeforeTheDevilKnows 1 SFW 0.0115 Correct

111 Non-Nude BeforeTheDevilKnows 2 SFW 0.0140 Correct

112 Non-Nude BeforeTheDevilKnows 3 SFW 0.1031 Correct

113 Non-Nude BeforeTheDevilKnows 4 SFW 0.0408 Correct

114 Non-Nude BeforeTheDevilKnows 5 SFW 0.0305 Correct

115 Non-Nude BeforeTheDevilKnows 6 SFW 0.1125 Correct

116 Non-Nude BeforeTheDevilKnows 7 SFW 0.1359 Correct

117 Non-Nude BeforeTheDevilKnows 8 SFW 0.1283 Correct

118 Non-Nude BeforeTheDevilKnows 9 SFW 0.3367 Correct

119 Non-Nude BeforeTheDevilKnows 10 SFW 0.0218 Correct

120 Non-Nude Cashback 1 SFW 0.6128 Correct

121 Non-Nude Cashback 2 SFW 0.0432 Correct

122 Non-Nude Cashback 3 SFW 0.4410 Correct

123 Non-Nude Cashback 4 SFW 0.0270 Correct

124 Non-Nude Cashback 5 SFW 0.2277 Correct

125 Non-Nude Cashback 6 SFW 0.0128 Correct

126 Non-Nude Cashback 7 SFW 0.3962 Correct

127 Non-Nude Cashback 8 NSFW 0.8086 Incorrect

128 Non-Nude Cashback 9 SFW 0.0123 Correct

129 Non-Nude Cashback 10 SFW 0.5250 Correct

130 Non-Nude LesAnges 1 SFW 0.4431 Correct

131 Non-Nude LesAnges 2 SFW 0.0184 Correct

132 Non-Nude LesAnges 3 SFW 0.1259 Correct

133 Non-Nude LesAnges 4 SFW 0.0585 Correct

134 Non-Nude LesAnges 5 SFW 0.3543 Correct

135 Non-Nude LesAnges 6 SFW 0.2657 Correct

136 Non-Nude LesAnges 7 SFW 0.0048 Correct

137 Non-Nude LesAnges 8 SFW 0.0181 Correct

138 Non-Nude LesAnges 9 SFW 0.1015 Correct

139 Non-Nude LesAnges 10 SFW 0.0112 Correct

140 Non-Nude Loner 1 SFW 0.1296 Correct

141 Non-Nude Loner 2 SFW 0.1249 Correct

142 Non-Nude Loner 3 SFW 0.3101 Correct

143 Non-Nude Loner 4 SFW 0.0023 Correct

144 Non-Nude Loner 5 SFW 0.1208 Correct

145 Non-Nude Loner 6 SFW 0.0103 Correct

146 Non-Nude Loner 7 SFW 0.0600 Correct

147 Non-Nude Loner 8 SFW 0.0370 Correct

148 Non-Nude Loner 9 SFW 0.4524 Correct

149 Non-Nude Loner 10 SFW 0.0175 Correct
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Annex [B] OPEN NSFW Video Application 
 
The OPEN NSFW Video Classifier is composed of the following parts: 
 

1. Video application Code: Analyzes each frame through the open 
nsfw model continuously until video ends. 

2. ResNet Model: Based on the Thin ResNet 50-1by2 used by Open 
NSFW from Yahoo, classifies each frame into NSFW or SFW. 

3. Image Loader: Converts an image so it can be loaded to the open 
nsfw model. 

4. Model Weights: Data of the weight parameters in the open nsfw 
already pretained by Yahoo.    

 
 

1. Video Application = video_nsfw.py 
 

2. import sys   
3. import argparse   
4. import numpy as np   
5. import cv2   
6. import os   
7. os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'    
8. import tensorflow as tf   
9.    
10. from model import OpenNsfwModel, InputType   
11.    
12. from image_utils import create_tensorflow_image_loader   
13. from image_utils import create_yahoo_image_loader   
14.    

150 Non-Nude OriginalSin 1 SFW 0.0275 Correct

151 Non-Nude OriginalSin 2 NSFW 0.8685 Incorrect

152 Non-Nude OriginalSin 3 SFW 0.3185 Correct

153 Non-Nude OriginalSin 4 SFW 0.2408 Correct

154 Non-Nude OriginalSin 5 NSFW 0.8640 Incorrect

155 Non-Nude OriginalSin 6 NSFW 0.9413 Incorrect

156 Non-Nude OriginalSin 7 NSFW 0.8734 Incorrect

157 Non-Nude OriginalSin 8 SFW 0.3547 Correct

158 Non-Nude OriginalSin 9 SFW 0.1306 Correct

159 Non-Nude OriginalSin 10 NSFW 0.8412 Incorrect

160 Non-Nude Primer 1 SFW 0.1742 Correct

161 Non-Nude Primer 2 SFW 0.0243 Correct

162 Non-Nude Primer 3 SFW 0.0283 Correct

163 Non-Nude Primer 4 SFW 0.2250 Correct

164 Non-Nude Primer 5 SFW 0.4333 Correct

165 Non-Nude Primer 6 SFW 0.7995 Correct

166 Non-Nude Primer 7 SFW 0.0671 Correct

167 Non-Nude Primer 8 SFW 0.2711 Correct

168 Non-Nude Primer 9 SFW 0.1023 Correct

169 Non-Nude Primer 10 SFW 0.0052 Correct

170 Non-Nude The Bubble 1 SFW 0.5491 Correct

171 Non-Nude The Bubble 2 SFW 0.4465 Correct

172 Non-Nude The Bubble 3 SFW 0.1928 Correct

173 Non-Nude The Bubble 4 SFW 0.0147 Correct

174 Non-Nude The Bubble 5 SFW 0.2801 Correct

175 Non-Nude The Bubble 6 SFW 0.0383 Correct

176 Non-Nude The Bubble 7 SFW 0.0946 Correct

177 Non-Nude The Bubble 8 SFW 0.0129 Correct

178 Non-Nude The Bubble 9 SFW 0.1124 Correct

179 Non-Nude The Bubble 10 SFW 0.1508 Correct



Automatic Flagging of Offensive Video using Deep Learning   43 

15. IMAGE_LOADER_TENSORFLOW = "tensorflow"   
16. IMAGE_LOADER_YAHOO = "yahoo"   
17.    
18.    
19. def main(argv):   
20.     parser = argparse.ArgumentParser()   
21.    
22.     #parser.add_argument("input_file", help="Path to the input image.\   
23.     #                    Only jpeg images are supported.")   
24.     parser.add_argument("-m", "--model_weights", required=True,   
25.                         help="Path to trained model weights file")   
26.    
27.     parser.add_argument("-l", "--image_loader",   
28.                         default=IMAGE_LOADER_YAHOO,   
29.                         help="image loading mechanism",   
30.                         choices=[IMAGE_LOADER_YAHOO, IMAGE_LOADER_TENSORFLOW])  

 
31.    
32.     parser.add_argument("-t", "--input_type",   
33.                         default=InputType.TENSOR.name.lower(),   
34.                         help="input type",   
35.                         choices=[InputType.TENSOR.name.lower(),   
36.                                  InputType.BASE64_JPEG.name.lower()])   
37.    
38.     args = parser.parse_args()   
39.    
40.     model = OpenNsfwModel()   
41.    
42.     with tf.Session() as sess:   
43.    
44.         input_type = InputType[args.input_type.upper()]   
45.            
46.         model.build(weights_path=args.model_weights, input_type=input_type)   
47.    
48.         fn_load_image = create_yahoo_image_loader()   
49.         video_capture = cv2.VideoCapture('segment02.mp4')    
50.    
51.         font = cv2.FONT_HERSHEY_SIMPLEX#Creates a font   
52.         x = 1 #position of text   
53.         y = 1 #position of text   
54.         #frameRate = video_capture.get(5) #frame rate   
55.         sess.run(tf.global_variables_initializer())   
56.         i = 0   
57.         success = True   
58.         while success:  # fps._numFrames < 120   
59.             success, frame = video_capture.read()# get current frame   
60.             frameId = video_capture.get(1) #current frame number   
61.             height , width , layers =  frame.shape   
62.             new_h=height   
63.             new_w=width   
64.             frame = cv2.resize(frame,(new_w, new_h))   
65.         #if (frameId % math.floor(frameRate) == 0):   
66.             if (0 == 0):  # not necessary   
67.                 i = i + 1   
68.                 cv2.imwrite(filename="Nude/pre02/"+str(i)+"alpha.jpg", img=fram

e); # write frame image to file   
69.                 #cv2.imshow("image", frame)  # show frame in window   
70.                 #image_data = tf.gfile.FastGFile(str(i)+"alpha.jpg", 'rb').read

() # get this image file   
71.                 image = fn_load_image("Nude/pre02/"+str(i)+"alpha.jpg")   
72.                 predictions = \   
73.                 sess.run(model.predictions,   
74.                     feed_dict={model.input: image}) # analyse the image   
75.                 #print("Results for '{}'".format(args.input_file))   
76.                 #print("\tSFW score:\t{}\n\tNSFW score:\t{}".format(*prediction

s[0]))   
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77.                 #print (str(i)+"alpha.jpg")   
78.                 #print ("\n\n")   
79.                 cv2.putText(frame,"SFW score:{:.4f} NSFW score:{:.4f}".format(*

np.round(predictions[0],4)), (25,25), font, 0.8, (0, 255, 0), 2, cv2.LINE_AA)   
80.                 cv2.imwrite(filename="Nude/post02/%04ialpha.jpg" % i, img=frame

); # write frame image to file   
81.                 cv2.imshow("image", frame)  # show frame in window   
82.                 cv2.waitKey(1)  # wait 1ms -> 0 until key input   
83.         video_capture.release() # handle it nicely   
84.         cv2.destroyAllWindows() # muahahaha   
85.    
86. if __name__ == "__main__":   
87.     main(sys.argv)  

 
2. Residual Neural Network Model = model.py 
 

1. import numpy as np   
2. import tensorflow as tf   
3. from enum import Enum, unique   
4.   
5.   
6. @unique   
7. class InputType(Enum):   
8.     TENSOR = 1   
9.     BASE64_JPEG = 2   
10.    
11.    
12. class OpenNsfwModel:   
13.     """Tensorflow implementation of Yahoo's Open NSFW Model  
14.   
15.     Original implementation:  
16.     https://github.com/yahoo/open_nsfw  
17.   
18.     Weights have been converted using caffe-tensorflow:  
19.     https://github.com/ethereon/caffe-tensorflow  
20.     """   
21.    
22.     def __init__(self):   
23.         self.weights = {}   
24.         self.bn_epsilon = 1e-5  # Default used by Caffe   
25.    
26.     def build(self, weights_path="open_nsfw-weights.npy",   
27.               input_type=InputType.TENSOR):   
28.    
29.         self.weights = np.load(weights_path, encoding="latin1").item()   
30.         self.input_tensor = None   
31.    
32.         if input_type == InputType.TENSOR:   
33.             self.input = tf.placeholder(tf.float32,   
34.                                         shape=[None, 224, 224, 3],   
35.                                         name="input")   
36.             self.input_tensor = self.input   
37.         elif input_type == InputType.BASE64_JPEG:   
38.             from image_utils import load_base64_tensor   
39.    
40.             self.input = tf.placeholder(tf.string, shape=(None,), name="input")  

 
41.             self.input_tensor = load_base64_tensor(self.input)   
42.         else:   
43.             raise ValueError("invalid input type '{}'".format(input_type))   
44.    
45.         x = self.__conv2d("conv_1", self.input_tensor, filter_depth=64,   
46.                           kernel_size=7, stride=2)   
47.    
48.         x = self.__batch_norm("bn_1", x)   
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49.         x = tf.nn.relu(x)   
50.         x = tf.layers.max_pooling2d(x, pool_size=3, strides=2)   
51.    
52.         x = self.__conv_block(stage=0, block=0, inputs=x,   
53.                               filter_depths=[32, 32, 128],   
54.                               kernel_size=3, stride=1)   
55.         x = self.__identity_block(stage=0, block=1, inputs=x,   
56.                                   filter_depths=[32, 32, 128], kernel_size=3)   
57.         x = self.__identity_block(stage=0, block=2, inputs=x,   
58.                                   filter_depths=[32, 32, 128], kernel_size=3)   
59.    
60.         x = self.__conv_block(stage=1, block=0, inputs=x,   
61.                               filter_depths=[64, 64, 256],   
62.                               kernel_size=3, stride=2)   
63.         x = self.__identity_block(stage=1, block=1, inputs=x,   
64.                                   filter_depths=[64, 64, 256], kernel_size=3)   
65.         x = self.__identity_block(stage=1, block=2, inputs=x,   
66.                                   filter_depths=[64, 64, 256], kernel_size=3)   
67.         x = self.__identity_block(stage=1, block=3, inputs=x,   
68.                                   filter_depths=[64, 64, 256], kernel_size=3)   
69.    
70.         x = self.__conv_block(stage=2, block=0, inputs=x,   
71.                               filter_depths=[128, 128, 512],   
72.                               kernel_size=3, stride=2)   
73.         x = self.__identity_block(stage=2, block=1, inputs=x,   
74.                                   filter_depths=[128, 128, 512], kernel_size=3)  

 
75.         x = self.__identity_block(stage=2, block=2, inputs=x,   
76.                                   filter_depths=[128, 128, 512], kernel_size=3)  

 
77.         x = self.__identity_block(stage=2, block=3, inputs=x,   
78.                                   filter_depths=[128, 128, 512], kernel_size=3)  

 
79.         x = self.__identity_block(stage=2, block=4, inputs=x,   
80.                                   filter_depths=[128, 128, 512], kernel_size=3)  

 
81.         x = self.__identity_block(stage=2, block=5, inputs=x,   
82.                                   filter_depths=[128, 128, 512], kernel_size=3)  

 
83.    
84.         x = self.__conv_block(stage=3, block=0, inputs=x,   
85.                               filter_depths=[256, 256, 1024], kernel_size=3,   
86.                               stride=2)   
87.         x = self.__identity_block(stage=3, block=1, inputs=x,   
88.                                   filter_depths=[256, 256, 1024],   
89.                                   kernel_size=3)   
90.         x = self.__identity_block(stage=3, block=2, inputs=x,   
91.                                   filter_depths=[256, 256, 1024],   
92.                                   kernel_size=3)   
93.    
94.         x = tf.layers.average_pooling2d(x, pool_size=7,   
95.                                         strides=1, padding="valid")   
96.    
97.         x = tf.reshape(x, shape=(-1, 1024))   
98.    
99.         self.logits = self.__fully_connected(name="fc_nsfw",   
100.                                              inputs=x, num_outputs=2)   
101.    
102.         self.predictions = tf.nn.softmax(self.logits, name="predictions")   
103.    
104.     """Get weights for layer with given name  
105.     """   
106.     def __get_weights(self, layer_name):   
107.         if not layer_name in self.weights:   
108.             raise ValueError("No weights for layer named '{}' found"   
109.                              .format(layer_name))   
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110.    
111.         return self.weights[layer_name]   
112.    
113.     """Layer creation and weight initialization  
114.     """   
115.     def __fully_connected(self, name, inputs, num_outputs):   
116.         return tf.layers.dense(   
117.             inputs=inputs, units=num_outputs, name=name,   
118.             kernel_initializer=tf.constant_initializer(   
119.                 self.__get_weights(name)["weights"], dtype=tf.float32),   
120.             bias_initializer=tf.constant_initializer(   
121.                 self.__get_weights(name)["biases"], dtype=tf.float32))   
122.    
123.     def __conv2d(self, name, inputs, filter_depth, kernel_size, stride=1,   
124.                  padding="same", trainable=False):   
125.         return tf.layers.conv2d(   
126.             inputs, filter_depth,   
127.             kernel_size=(kernel_size, kernel_size),   
128.             strides=(stride, stride), padding=padding,   
129.             activation=None, trainable=trainable, name=name,   
130.             kernel_initializer=tf.constant_initializer(   
131.                 self.__get_weights(name)["weights"], dtype=tf.float32),   
132.             bias_initializer=tf.constant_initializer(   
133.                 self.__get_weights(name)["biases"], dtype=tf.float32))   
134.    
135.     def __batch_norm(self, name, inputs, training=False):   
136.         return tf.layers.batch_normalization(   
137.             inputs, training=training, epsilon=self.bn_epsilon,   
138.             gamma_initializer=tf.constant_initializer(   
139.                 self.__get_weights(name)["scale"], dtype=tf.float32),   
140.             beta_initializer=tf.constant_initializer(   
141.                 self.__get_weights(name)["offset"], dtype=tf.float32),   
142.             moving_mean_initializer=tf.constant_initializer(   
143.                 self.__get_weights(name)["mean"], dtype=tf.float32),   
144.             moving_variance_initializer=tf.constant_initializer(   
145.                 self.__get_weights(name)["variance"], dtype=tf.float32))   
146.    
147.     """ResNet blocks  
148.     """   
149.     def __conv_block(self, stage, block, inputs, filter_depths,   
150.                      kernel_size=3, stride=2):   
151.         filter_depth1, filter_depth2, filter_depth3 = filter_depths   
152.    
153.         conv_name_base = "conv_stage{}_block{}_branch".format(stage, block)   
154.         bn_name_base = "bn_stage{}_block{}_branch".format(stage, block)   
155.         shortcut_name_post = "_stage{}_block{}_proj_shortcut" \   
156.                              .format(stage, block)   
157.    
158.         x = self.__conv2d(   
159.             name="{}2a".format(conv_name_base),   
160.             inputs=inputs, filter_depth=filter_depth1, kernel_size=1,   
161.             stride=stride, padding="same",   
162.         )   
163.         x = self.__batch_norm("{}2a".format(bn_name_base), x)   
164.         x = tf.nn.relu(x)   
165.    
166.         x = self.__conv2d(   
167.             name="{}2b".format(conv_name_base),   
168.             inputs=x, filter_depth=filter_depth2, kernel_size=kernel_size,   
169.             padding="same", stride=1   
170.         )   
171.         x = self.__batch_norm("{}2b".format(bn_name_base), x)   
172.         x = tf.nn.relu(x)   
173.    
174.         x = self.__conv2d(   
175.             name="{}2c".format(conv_name_base),   
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176.             inputs=x, filter_depth=filter_depth3, kernel_size=1,   
177.             padding="same", stride=1   
178.         )   
179.         x = self.__batch_norm("{}2c".format(bn_name_base), x)   
180.    
181.         shortcut = self.__conv2d(   
182.             name="conv{}".format(shortcut_name_post), stride=stride,   
183.             inputs=inputs, filter_depth=filter_depth3, kernel_size=1,   
184.             padding="same"   
185.         )   
186.    
187.         shortcut = self.__batch_norm("bn{}".format(shortcut_name_post),   
188.                                      shortcut)   
189.    
190.         x = tf.add(x, shortcut)   
191.    
192.         return tf.nn.relu(x)   
193.    
194.     def __identity_block(self, stage, block, inputs,   
195.                          filter_depths, kernel_size):   
196.         filter_depth1, filter_depth2, filter_depth3 = filter_depths   
197.         conv_name_base = "conv_stage{}_block{}_branch".format(stage, block)   
198.         bn_name_base = "bn_stage{}_block{}_branch".format(stage, block)   
199.    
200.         x = self.__conv2d(   
201.             name="{}2a".format(conv_name_base),   
202.             inputs=inputs, filter_depth=filter_depth1, kernel_size=1,   
203.             stride=1, padding="same",   
204.         )   
205.    
206.         x = self.__batch_norm("{}2a".format(bn_name_base), x)   
207.         x = tf.nn.relu(x)   
208.    
209.         x = self.__conv2d(   
210.             name="{}2b".format(conv_name_base),   
211.             inputs=x, filter_depth=filter_depth2, kernel_size=kernel_size,   
212.             padding="same", stride=1   
213.         )   
214.         x = self.__batch_norm("{}2b".format(bn_name_base), x)   
215.         x = tf.nn.relu(x)   
216.    
217.         x = self.__conv2d(   
218.             name="{}2c".format(conv_name_base),   
219.             inputs=x, filter_depth=filter_depth3, kernel_size=1,   
220.             padding="same", stride=1   
221.         )   
222.         x = self.__batch_norm("{}2c".format(bn_name_base), x)   
223.    
224.         x = tf.add(x, inputs)   
225.    
226.         return tf.nn.relu(x)   

 
3. Image Loader for Input = image_utils.py 

1. VGG_MEAN = [104, 117, 123]   
2.    
3.    
4. def create_yahoo_image_loader():   
5.     """Yahoo open_nsfw image loading mechanism  
6.   
7.     Approximation of the image loading mechanism defined in  
8.     https://github.com/yahoo/open_nsfw/blob/master/classify_nsfw.py#L40  
9.     """   
10.     import numpy as np   
11.     import skimage   
12.     import skimage.io   
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13.     from PIL import Image   
14.     from io import BytesIO   
15.    
16.     def load_image(image_path):   
17.         im = Image.open(image_path)   
18.    
19.         if im.mode != "RGB":   
20.             im = im.convert('RGB')   
21.    
22.         imr = im.resize((256, 256), resample=Image.BILINEAR)   
23.    
24.         fh_im = BytesIO()   
25.         imr.save(fh_im, format='JPEG')   
26.         fh_im.seek(0)   
27.    
28.         image = skimage.img_as_float(skimage.io.imread(fh_im, as_grey=False)).a

stype(np.float32)   
29.    
30.         H, W, _ = image.shape   
31.         h, w = (224, 224)   
32.    
33.         h_off = max((H - h) // 2, 0)   
34.         w_off = max((W - w) // 2, 0)   
35.         image = image[h_off:h_off + h, w_off:w_off + w, :]   
36.    
37.         # RGB to BGR   
38.         image = image[:, :, :: -1]   
39.    
40.         image = image * 255   
41.    
42.         image -= VGG_MEAN   
43.    
44.         image = np.expand_dims(image, axis=0)   
45.         return image   
46.    
47.     return load_image   
48.    
49.    
50. def create_tensorflow_image_loader(session):   
51.     """Tensorflow image loader  
52.   
53.     Results seem to deviate quite a bit from yahoo image loader.  
54.     (TODO: Find out why)  
55.     Only support jpeg images.  
56.     """   
57.     import tensorflow as tf   
58.    
59.     def load_image(image_path):   
60.         image = tf.read_file(image_path)   
61.         image = tf.image.decode_jpeg(image, channels=3)   
62.    
63.         # encode to float32 before attemtpting bilinear scaling   
64.         # to prevent garbage image.   
65.         # see https://github.com/tensorflow/tensorflow/issues/2228#issuecomment

-292790995   
66.         image = tf.image.convert_image_dtype(image, tf.float32)   
67.         image = tf.image.resize_images(image, [256, 256],   
68.                                        method=tf.image.ResizeMethod.BILINEAR)   
69.    
70.         image = tf.image.crop_to_bounding_box(image, 16, 16, 224, 224)   
71.         image = tf.image.convert_image_dtype(image, tf.uint8)   
72.    
73.         image = tf.reverse(image, axis=[-1])   
74.         image = tf.cast(image, dtype=tf.float32)   
75.         image = tf.subtract(image, VGG_MEAN)   
76.    
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77.         image_batch = tf.expand_dims(image, axis=0)   
78.         return session.run(image_batch)   
79.    
80.     return load_image   
81.    
82.    
83. def load_base64_tensor(_input):   
84.     import tensorflow as tf   
85.    
86.     def decode_and_crop(base64):   
87.         _bytes = tf.decode_base64(base64)   
88.         _image = tf.image.decode_jpeg(_bytes, channels=3,   
89.                                       fancy_upscaling=False)   
90.         _image = tf.image.convert_image_dtype(_image, tf.float32)   
91.         _image = tf.image.resize_images(_image, [256, 256],   
92.                                         method=tf.image.ResizeMethod.BILINEAR)  

 
93.         _image = tf.image.crop_to_bounding_box(_image, 16, 16, 224, 224)   
94.    
95.         return _image   
96.    
97.     # we have to do some preprocessing with map_fn, since functions like   
98.     # decode_*, resize_images and crop_to_bounding_box do not support   
99.     # processing of batches   
100.     image = tf.map_fn(decode_and_crop, _input,   
101.                       back_prop=False, dtype=tf.float32)   
102.    
103.     image = tf.image.convert_image_dtype(image, tf.uint8)   
104.    
105.     image = tf.reverse(image, axis=[-1])   
106.     image = tf.cast(image, dtype=tf.float32)   
107.     image = tf.subtract(image, VGG_MEAN)   
108.    
109.     return image   

 
4.-  Weights Data = open_nsfw_weights.py 
 
https://github.com/mdietrichstein/tensorflow-open_nsfw/tree/master/data 


