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Abstract 
 

 
Digital Forensics and its sub-branch Network Forensics are important and 
relevant topics which have gained further attention with the DDoS attacks 
delivered by botnets. 
 
This work focuses on a novel IDS solution called: SLIPS. This is a free software 
that uses Machine Learning to detect malicious behaviors in a network with the 
use of Markov Chain based detection and previously trained models. A major 
limitation of SLIPS lies on its performance, and this work also touches on the 
topic of Big Data, and more specifically MapReduce, in order to aid SLIPS with 
a better resource utilization.  
 
With the redistribution of SLIPS tasks across workers, adding a pre-processing 
of data, the proposed solution using MapReduce presented performance 
improvements of up to 433 times with the datasets tested. 
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Introduction  1 

INTRODUCTION 
 
 
Digital Forensics and its sub-branch Network Forensics are important and 
relevant topics. These topics are diverse, with different types of attacks and 
between all of them, one has gained further and further attention: the Distributed 
Denial of Service (DDoS) attacks delivered by botnets. 
 
Related to Network Forensics, we find the Intrusion Detection System (IDS) 
solutions, based on signature-based and heuristic approaches. Threats are 
evolving and IDS together with them, and new challenges have appeared, mostly 
the vast amount of data presented in networks. 
 
This work focuses on a novel IDS solution called SLIPS [1]. This is a free software 
part of the Stratosphere project [2] that uses Machine Learning to detect 
malicious behaviors of the traffic related to Command and Control channels of 
botnets in a network with the use of Markov Chain based detection and previously 
trained models. In addition to the usage of Machine Learning, this model also 
utilizes real botnet captures, which adds relevance to its usage. A major limitation 
of SLIPS lies on its performance and its continuous degradation over time, most 
of the improvement on its code have been focused on accuracy improvement.  
 
This work also touches on the topic of Big Data, introduces some previous work 
done on the topic and discusses some relevant technologies, more specifically 
MapReduce [3].  
 
SLIPS works with two processes, a main one and a background one. But the 
tasks across them are not balanced. With the redistribution of SLIPS tasks across 
workers, adding a pre-processing of data, and taking from MapReduce the 
mapping of detection across different independent workers, the proposed 
solution using MapReduce aids SLIPS with a better resource utilization and 
presented performance improvements of up to 433 times faster with the datasets 
tested.  
 
The remainder of this document is organized as follows. The first chapter 
presents some background topics. The second chapter focuses on the SLIPS 
solution, the description of its code and the workflow and a presentation of its 
limitations. The third chapter presents the proposal solution of this work. 
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CHAPTER 1. BACKGROUND 

 

1.1. Digital Forensics 

1.1.1. Definition of Digital Forensics 

 
A regular and early definition of Digital Forensics is taken from the first Digital 
Forensics Research Workshop (DFRWS) in 2001 [4], with the intention of 
establishing it as a scientific discipline: 
“Digital Forensic Science is the use of scientifically derived and proven methods 
towards the preservation, collection, validation, identification, analysis, 
interpretation, documentation and presentation of digital evidence derived from 
digital sources for the purpose of facilitating or furthering the reconstruction of 
events found to be criminal, or helping to anticipate unauthorized actions shown 
to be disruptive to planned operations.” 
 
A later definition in [5], indicates: “…is the practice of investigating computers, 
digital media, and digital communications for potential artifacts.” 
When referring to artifacts, [5] indicates them as being any object of interest, 
since the word evidence refers to a court case; and highlights these artifacts as 
potential evidence. 
 
In [6], a description of the principles of digital forensics are presented, which are 
the following and may help us have a better understanding of the subject: 

 Previous validation of tools and procedures. 

 Reliability of tools. 

 Repeatability of processes. 

 Documentation of procedures and processes (to allow repeatability). 

 Preservation of evidence. 
 
These principles are of importance, since as mentioned in [5], the product of this 
work can possibly have legal relevance in a court case.  
These principles provide the basis for the workflow performed in Digital Forensics 
[6]: 

 Identification of devices containing evidence 

 Collection of devices 

 Acquisition or producing an image of the potential evidence 

 Preservation of evidence integrity 

 Analysis of evidence acquired 

 Reporting of results 
 

1.1.2. Digital Forensics Branches 

 
Digital Forensics divides itself into 5 branches or fields, as mentioned by [7]: 

 Computer Forensics 
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 Network Forensics 

 Mobile Device Forensic 

 Memory Forensics 

 Emails Forensics 
 
We will present the definition for Network Forensics, which is in the scope of this 
work and the following chapters. 
 

1.2. Network Forensics 

1.2.1. Definition of Network Forensics 

 
Within the scope of Digital Forensics, we find the sub-branch of Network 
Forensics [4] [7]. 
Also known as Digital Forensic Science in Networked Environments. 
 
In [4], they provide us with an attempt of explaining it: 
“The use of scientifically proven techniques to collect, fuse, identify, examine, 
correlate, analyze, and document digital evidence from multiple, actively 
processing and transmitting digital sources for the purpose of uncovering facts 
related to the planned intent, or measured success of unauthorized activities 
meant to disrupt, corrupt, and or compromise system components as well as 
providing information to assist in response to or recovery from these activities.” 
 
In other words, as mentioned in [8], this field relates to the capture, recording and 
analysis of network events in order to discover incidents.  
 

1.2.2. Types of Attacks in Network Forensics 

 
In a network, we can find an attack in a variety of ways. We present here a 
summary of the main types of attacks, considering the literature of [5]: 

 Denial of Service Attacks: It’s a type of attack that makes a system or any 
other type of network unavailable to its intended users, sometimes called 
honest users. This attack is launched by a large number of distributed 
hosts, flooding the available resources. The most common subtypes are 
the following: 

o SYN Floods: For a TCP communication, an attacker sends the 
initial SYN and the victim responds with the SYN/ACK, leaving the 
connection in half-open state. The system, with its limited 
resources, awaits for the final ACK in order to establish the 
connection. The objective of a SYN flood is to simply fill up the slots 
that the target system has available for half-open connections. This 
is one of the most popular attacks nowadays [9]. 

o Malformed Packets: Where the protocols have behaviors not in 
accord with their definitions (i.e. RFCs), and this present problems 
for the programs responsible for processing this input. An example 
of this is the Teardrop attack. 
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o UDP Floods: In this attack, because of the use of UDP the operating 
system is not doing the admission control that it does with TCP, so 
there is an increased amount of work for the processor. The 
attacker is looking to flood the processor by sending a large volume 
of UDP messages. This is an attack with the purpose of consuming 
all available bandwidth. 

o Amplification Attacks: Here the attacker is looking for others to help 
him in his effort. An example of this, it’s the Smurf attack. The Smurf 
attack relies on the spoofing of a source IP address and sending an 
ICMP echo request or ping message, to the broadcast address of 
a network block. If the network has not been correctly configured, 
every host on that network will receive an echo request, for which 
they will send an echo response back to the spoofed source. 

o Distributed Attacks: It consists of multiple attackers distributed 
around the Internet, since multiple attackers in one site are going to 
be constrained by the amount of bandwidth available at the precise 
site. A distributed attack needs to be coordinated. These multiple 
attackers are known as a botnet. A botnet is a collection of bots, 
which are computes systems owned by someone else but under 
the control of the botnet owner or attacker. 

 Vulnerability Exploits: in this case, network services allow attackers to 
send specially crafted messages that allows them to gain access to a 
system. 

 Insider Threats: This is the case associated to attackers who where users 
or associated to users of an organization and gathered permissions for 
various resources on the network without ever dropping any of the 
permissions after leaving the position or the organization. 

 
Due to the scope of this work presented in the following chapters, a more in depth 
explanation of the type of attacks involving botnets is detailed in the following 
section. 
 

1.2.3. Types of Attacks: Botnets 

 
Botnets are considered one of the most major threats on the Internet [10], capable 
of delivering Distributed Denial of Service (DDoS) attacks, or large-scale spam 
campaigns [11].  
 
The word botnet is formed from the word ‘robot’ and ‘network [11]. These botnets 
are a network of infected hosts called bots, controlled by an attacker known as 
the botmaster. Botmasters sends commands via a Command and Control 
channel [10]. The Command and Control channels refer to the implementation of 
communication protocols that allow the owners or attackers to control all the 
infected computers, with the intention of synchronizing actions on them [12]. 
Among the actions performed by the bots, we can find port scanning, binary 
download, exploit attempts and SPAM sending [12]. 
 
Botnets differ themselves not on how they infect, but on how they spread: each 
infected host is part of an overlay network [12]. 
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As of how they work, they originally relied on a central architecture, with a core 
network and a few interconnected IRC (Internet Relay Chat) server [10]. When 
the botmaster wanted to send any type of command, they were pushed to the 
IRC channel and all the bots receive it. 
 
Since 2003, botnets are based on P2P (Peer to Peer) protocols, where each bot 
act as a client and a server [10] [12]. In this case, the bots ask the commands to 
their servers, in order words, the commands are being pulled. This present the 
following advantages in contrast to previous approaches [12]: 

 They can be decentralized. 

 They can hide the amount of bots infected. 

 They can avoid being monitored or sniffed. 

 They can be highly resilient to take down attempts. 
 
Since 2005, these capabilities became enhanced, by starting to hide their traffic 
inside normal HTTP traffic in order to avoid detection [12]. 
 
To give us an idea of the size of these botnets, by February 2018 countries as 
India have approximately 2.5 million bots, and China 2 million bots, as reported 
in [13]. In Figure 1.1 by Kaspersky Lab, it shows us a comprehensive diagram of 
all the personal level and high-level consequences of botnets. 
 

 
 

Fig 1.1 Botnets as presented by Kaspersky Lab [11] 
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1.3. IDS for Network Forensics 

1.3.1. Definition of IDS 

 
The concept of Intrusion Detection Systems (IDS) was initially presented in 1987 
[14]. An IDS is a device that acquires information from a target information system 
to perform a diagnosis on its status. An overall goal is to discover breaches of 
security, attempts of breach or vulnerabilities to potential ones [15]. 
 
It can be seen as a detector that processes information coming from the target 
system, with the intention of protecting it. The target system monitored can be a 
workstation, a network element, a server, a mainframe, a firewall, a web server, 
or any other type of device [15]. 
 
Regarding the concept of Intrusion Prevention System (IPS), throughout the 
literature it is common to find the terms of IDS and IPS used interchangeably. 
They work similarly, but the difference lies in the action after the detection [16]: 

 IDS detects intrusions and intrusion attempts; in addition to this, issues 
alarms, alerts and logs. 

 IPS detects intrusions and intrusion attempts; in addition to this, it may 
block or prevent these activities in real-time. 

IPS can be seen as an extended version of the IDS [16]. 
 

1.3.2. IDS and Network Forensics 

 
In addition to identifying intrusions as they happen, IDS can also generate data 
that could be used during the course of a Forensic Investigation [5]. For this 
reason, it is important within the field of Network Forensics to understand the 
output and how an IDS works. 
 

1.3.3. Detection Styles of IDS 

 
IDS have different ways of determining if a traffic is infected as stated in [5]: 

 Signature-Based: Identify a pattern in the malicious network traffic, this 
pattern is the signature. The limitation lies in the fact that the illicit action 
has to happen before the identification (signature) has been created. A 
network signature may be the source of the IP address, or a particular port 
used. Or it can also be related to a pattern of the network traffic as 
presented in [17]  

 Heuristic: Also referred to as anomaly-based. It is based on the idea that 
we can determine what normal lools like, and anything that is not normal 
is considered as an anomaly [15]. 
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1.4. Examples of IDS 

 
Following there are two examples of IDS. Snort is a well-known IDS, whose work 
has been mentioned in [14] and [18]. Stratosphere IPS is a novel IDS which 
proposes a distinct way of detecting malicious behavior, and for such we consider 
it relevant in the following examples. 
 
Another well-known IDS are Suricata and Bro, but they will not be presented in 
this work since their behaviors and functions are based on the one of Snort [5]. 

1.4.1. Snort 

 
It is an open source network intrusion detection system, capable of performing 
real-time traffic analysis and packet logging on IP networks [19] [5], and created 
in 1999 by Martin Roesch, and bought by Cisco Systems in 2013 [20]. It can 
perform protocol analysis, content searching/matching, and it can also be used 
to detect a variety of attacks and network probing. 
 
It has three primary use cases [19]: 

 Packet sniffer. 

 Packet logger. 

 Network Intrusion Prevention System. 
 
Snort is highly configurable, in addition to multiple options of output, it also has 
the ability to add modular plug-ins called preprocessors [5]. 
After the preprocessor, Snort utilize rules. They are based on types of attacks. A 
limitation is that Snort source does not come with a default set of rules, some 
Linux distribution will include them, or they need to be pulled for Snort. 

1.4.2. Stratosphere IPS 

 
Stratosphere IPS is a free software, presented as an IPS that uses Machine 
Learning to detect malicious behaviors in the network traffic [2]. It is presented as 
an IPS, nevertheless its current version doesn’t allow for traffic blocking or any 
type of action besides the output alarms and logs [1], which are proper from an 
IDS (section 1.3.1). 
 
Stratosphere IPS started in Python on Linux and Windows [21], and as 
communicated by their developers there is a version available that can be run on 
Snort as a plug-in based on the C programming language [2]. 
 

1.5. Challenges of IDS for Network Forensics 

 
A few of the more remarkable challenges for IDS in Network Forensics are the 
following [22] [6]: 

 Increased number of Sources: Evidence is becoming more and more 
heterogeneous. IDS faces now not only structured data, but unstructured 
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data, coming from distinct sources as removable media, mobile devices 
and cloud services. 

 Increased in Network Traffic: The scale of Information nowadays has been 
increasing each year. Hackers can hide their presence easily these days, 
thanks to the increased amount of traffic daily between nodes.  

 New technologies: New technologies are being developed, and with them, 
new challenges are appearing that Network Forensics didn’t face 10 years 
ago: 

o Cloud Services: The emergence and development of Cloud Service 
providers, have made networks more vulnerable to new attacks. 

o IoT: Connectivity is becoming ubiquitous, and threats will increase 
with them. 

 
One popular citation across the literature comes from a study done by IBM [23]: 
“90% of the data in the world today has been created in the last two years. This 
data comes from everywhere: sensors used to gather shopper information, posts 
to social media sites, digital pictures and videos, purchase transaction, and cell 
phone GPS signals to name a few. This data is big data.” 

1.6. Evolution of Data Analytics for IDS 

 
The Cloud Security Alliance in [24], presented the evolution of Intrusion Detection 
in three parts: 
 

 First Generation: The generation of Intrusion detection systems, this is 
where Security Architects realize the need for a layered security, since a 
100% protective security is impossible. This can be seen as reactive 
security. 

 Second Generation: The generation of Security information and Event 
management (SIEM), where these systems aggregate and filter the alarms 
from many sources for actionable data for the security analysts. The 
amount and frequency of logs used to be fixed to amounts like 60 days, 
due to limits in the underlying data technology [25]. 

 Third Generation: The generation of Big Data analytics in security. In this 
generation, we have the potential for a significant advance, since it will 
reduce the time for correlating, consolidating and contextualizing diverse 
security event information. Which will allow for correlating previously 
unused data, as long-term historical data. Security analytics will be 
transformed by: 

o Collecting data at a massive scale. 
o Perform deeper analytics. 
o Consolidate view. 
o Real-time analysis. 

 
As an example, in [25] the case study of Zions Bancorporation was presented: 

 A query among a month’s load of data, took between 20 minutes to an 
hour. 

 With Hadoop system, and the system running queries with Hive, they got 
the same results in about a minute. 
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1.7. New solutions for New challenges 

 
Across the literature, we can find many solutions for tackling the challenges 
presented in the section 1.5, as part of the evolution suggested in the section 1.6. 
 
First of all, some background definitions will be presented. Second, we will 
present some relevant tools and techniques discussed in some of the literature, 
and related examples of usage in a later section. 
 

1.7.1. Big Data 

 
When talking about Big Data, we are talking about data whose complexity hinders 
it from being managed, queried and analyzed through traditional storage 
architectures, algorithms and query mechanisms [22]. 
 
The complexity of Big Data is usually defined by the 3Vs (Volume, Variety, 
Velocity) [22], originally developed by Gartner analyst Doug Laney in 2001 [26]. 
A comparison of these 3Vs against traditional methods can be seen in Figure 1.2. 
We will present 3+2Vs, adding Veracity and Value to the mainstream definition 
[26], since with the evolution of Big Data, additional criteria should be taken into 
account: 

 Volume: referring to the amount of data, from terabytes, petabytes or even 
more. 

 Variety: referring to co-existence of unstructured, semi-structured and 
structured data. 

 Velocity: referring to the rapid pace at which Big Data is being generated. 

 Veracity: referring to the importance of maintaining quality data and on 
handling problems such as noise or missing values. 

 Value: referring to the sense that if a particular data does not provide 
significant value, it is not relevant for Big Data analysis. 
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Fig 1.2 Big Data differentiators or 3V’s as presented in [24] 

 
One point that is important to emphasize is that Big Data challenges may exist 
from an individual source, and when aggregated with other sources, the 
challenge will only increase [26]. 
 
In addition to this, Big Data Analytics is concerned with the extraction of value 
from Big Data, in the form of insights [22]: non-trivial, previously unknown, implicit 
and potentially useful information. 
 
Big Data adaptation is driven by 3 main factors [24]: 

 Decrease of storage costs: storage costs has dramatically decreased in 
the last few years. 

 Big Data tools: Tools and techniques as Hadoop and NoSQL databases 
provide the basis technology for an increase in processing speed and 
complex queries not allowed due to resources limitations. 

 Flexibility: In traditional data warehouses, users defined schemas ahead 
of time. With Big Data, users do not have to use predefined formats. 

 

1.7.2. Types of Analytics for Network Forensics 

 
It is also mentioned by [24], and also shown in Figure 1.3, that we can find it in 
two kinds: 
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 Batch Processing for data at rest: Also coined "Catch-it-as-you-can" 
systems by [8]. This approach requires a large amount of storage. 

 Stream Processing for data in motion: Also coined "Stop, look and listen" 
systems by [8]. This approach may require less storage, but it requires a 
faster processor to keep up with the incoming traffic. 

 

 
Fig 1.3 Batch processing vs. Stream processing [24] 

 

1.7.3. Big Data Tools and Techniques in Network Forensics for IDS 

 
Considering [14], the following tools and techniques are presented: 

 MapReduce: It is a programming model and implementation for 
processing and generating large data sets, that can be seen as a high-
level abstraction of parallel computing [10]. It has the benefit that programs 
or scripts written in this functional style are automatically parallelized and 
executed on large cluster of machines, allowing programmers without any 
experience with parallel and distributed systems to easily utilize the 
resources of a large distribution system. To explain it briefly: User specify 
a map function that processes a key/value pair to generate a set of 
intermediate key/value pairs; and a reduce function that merges all 
intermediate values associated with the same intermediate key [3], as 
shown in Figure 1.4. In 2004, Google indicated MapReduce allowed them 
to read the web in less than 3 hours, instead of four months [27]. 
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Fig 1.4 Execution overview of MapReduce as discussed in the ground-breaking 

Google paper [3] 
 

 Hadoop: Open source implementation of MapReduce. It is a framework 
for storing and processing large files, having as its core component the 
Hadoop Distributed File System (HDFS), where the data is store. It also 
has a namenode daemon which maintain the file namespace. The blocks 
of data are store on slaves also known as data nodes which guarantee 
redundancy. In its application side, it has a jobtracker who takes as an 
input a MapReduce job and which is responsible of task coordination and 
monitoring the map and reduce tasks [10]. 

 Spark: Distributed data processing solution as Hadoop, but the data 
processing is stored in memory. Proven sometimes to be 100 times faster 
than Hadoop [14].  

 Hive: Open source data warehouse infrastructure running on top of 
Hadoop. User-friendly interface to Hadoop, and with command in SQL-like 
form [14]. 

 Shark: Sub-project of Spark, implements Hadoop’s Hive on top of Spark. 
It is fully compatible with Hive [14]. 

 Pig: High level distributed programming on top of Hadoop. Similar to Hive 
without the SQL query part [14]. 

 Storm: free and open source distributed real time computation system. It 
processes unbounded streams of data, like a real time Hadoop alike 
processing [28]. 

 
Before entering into the usage examples of the tools and technologies mentioned, 
two additional related concepts are presented: 

 PageRank Algorithm: Link analysis algorithm used by Google to weight 
relative importance of web pages on the internet. Importance of a web 
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page is determined by: first, how many pages does it contain an hyperlink 
pointing to it; second, the importance of the pointing pages [10]. 

 Dependency Graph: Each node represents a host. An edge from point A 
to B indicates that there exists at least one flow originated from host A 
towards host B [10]. 

 

1.7.4. Usage examples 

 
On [10], an architecture is implemented for Botnet detection based on 
MapReduce. The algorithm PageRank has to iterate many times, so it is executed 
over Hadoop. An adjacency matrix of the dependency graph is computed and 
distributed among all the data nodes before executing the MapReduce. The 
results are close to 100% true positives and 3% false positives. The limitation in 
this work is the use of synthetic botnet records. 
 
On [14], a comparison of many Big Data technologies is mentioned: Hadoop, 
Hive, Pig, Spark and Shark. There are four scenarios discussed, which are data 
processing tasks among network records to provide a simulation comparative 
regarding the usage of these scenarios for future cases.  

 Scenario 1: Find packets that match a given source IP address and a given 
source port. 

 Scenario 2: Find packets containing a given substring in their payload. 

 Scenario 3: Count the number of destination IP per source IP and order 
the result. 

 Scenario 4: Join two sets according to a common key or field, like the 
source IP address. 

The top performers among the four scenarios are Spark and Shark. This study is 
relevant to give us an awareness of the technologies and their related 
performances, but the relevance is limited to the scope of the simulation 
scenarios. 
 
On [29], the author uses Big Data Behavioral analytics in conjunction with graph 
theoretical concepts with the goal of identifying botnet niches. In their evaluation, 
they used 100GB of real botnet traffic (Carna botnet as on [30]). Their approach 
objective can be seen as three steps: 

 Identify bots traffic 

 Infer botnets from bots traffic 

 Pinpoint botnet niches 
Regarding their Big Data processing, the authors used two approaches: 

 Hadoop 
o Standard approach in the documentation 
o Java implementation 
o MapReduce embedded in this approach 

 Multi-Threaded Approach 
o Developed by the authors using C programming language. 
o Packages used: libpcap and libtrace. 

Among the comparisons and results, the following points are considered: 

 The Multi-Threaded approach processed 1.5 times more throughput than 
the Hadoop approach. 
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 The Hadoop approach performed 3 times faster than the Multi-Threaded 
approach 

Regarding the results, the comparison was made between 82 real malicious IP 
addresses against 10 benign synthetic IP addresses, which is a ratio of traffic not 
favorable for the benign addresses; this statement is reflected in the results 
presented: 

 0% False Negative rate for malicious addresses 

 5% False Positive rate for malicious addresses 

 50% False Positive rate for benign addresses. This score wasn’t 
presented in the paper. 
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CHAPTER 2. STRATOSPHERE IPS 

 

2.1. Motivation 

 
Among the many solutions and literature discussed, Stratosphere IPS is a novel 
solution based on machine learning algorithms to detect behaviors in a network 
traffic.  
 
In addition to this, they use real datasets from verified malware and normal traffic 
connections, which adds relevance to the Network Forensics field and IDS 
techniques.  
 

2.2. Description of the Stratosphere Project 

 
Stratosphere IPS is a project of research, development and verification methods 
to detect malware traffic in networks [17]. It was born in from a collaboration of 
Ph.D. thesis [12]. The Stratosphere Lab is based in the department of Computer 
Science of the Faculty of Engineering, of the CTU University in Prague. 
 
In the thesis [12], Stratosphere’s initial work, the author explains that one of the 
motivations for the work presented was a better understanding of the behavior of 
the C&C channel, parting from the hypothesis that flows of a C&C channel are 
periodic, to support a synchronize effort in the case of an attack. 
 

2.3. Description of SLIPS 

 
Stratosphere Linux Intrusion Prevention System (SLIPS) is the Linux version of 
the Stratosphere IPS, developed in Python [1]. The latest version of SLIPS 
includes Markov Chain models for detection of malware behaviors in the network 
[17]. 
 
SLIPS is mainly based on the use of Time Windows, for the following reasons 
[18]: 

 To limit the huge amount of data to be processed 

 Botnets tend to have temporal locality behavior, since most actions remain 
unchanged for several minutes, from 1 to 30 minutes in the tested datasets 
of SLIPS. 

 This allows providing a result in a timely manner to the Network 
Administrator. 

This time windows are of 5 minutes by default in the source code [1]. At the end 
of which, every host or IP address is labeled. 
 
In a later implementation, as a result of the work in [17], Sliding Detection 
Windows (SDW) were added to the source code of SLIPS. By default it uses 10 
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recent time windows to evaluate the traffic and compare it to a threshold score 
[1]. 

2.4. Description of Datasets 

 
Datasets of long-term captures can be obtained through a project related to the 
same lab going by the name of Malware Capture Facility Project [12]. This project 
consists of a medium scale setup of virtual machines that allowed to continuously 
infect more than 30 computers for long periods. In some cases, they captured 
and analyzed botnet behaviors for months. All of the datasets generated are 
public. 
 
 There are two types of dataset used for SLIPS [31], [12]: 

 Malware traffic: This is traffic coming from known infected machines and 
will be the target for the detection. These are for example, Command and 
Control connections. 

 Normal traffic: This is traffic coming from verified normal computes. Very 
important to find the real performance. The normal behavior of a user 
cannot be automatized or generated, if this is the case, it would stop being 
normal anymore. 

 
In addition to this, the collaborators of SLIPS mention the use of Background 
traffic, which is unverified traffic and that they state it’s a traffic of unverified origin 
[31]. In [31], it is also stated that is important to saturate the algorithms, to verify 
its memory and performance and to check if algorithms get confused with the 
data. But for the purpose of training and testing, we consider this type of traffic 
irrelevant or counter-productive, since it is unverified and does not provide any 
ground truth and may lead to an error margin in the final result or in the test 
results. 
 

2.5. Implementation details of SLIPS 

 
SLIPS receives the flows of traffic from Argus. Argus generates bidirectional 
netflows for SLIPS to process afterward [17]. It is possible for SLIPS to run in 
real-time according to the collaborators [17]. 
 
Argus is used for the purpose of reading the packets from a pcap file or live 
network, in order to generate the flows [32]. Also, this allows to reduce the volume 
of unused data and to keep as much of the useful data as possible [12]. And after 
having generated flows, Stratosphere can process them. 
 

2.5.1. Description of SLIPS processes 

 
SLIPS utilizes two processes in the program itself [17]: 

 The first process, reads the flows from Argus and store them in the 
Multiprocessing Queue. The Multiprocessing Queue is a python type part 
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of the multiprocessing package, it allows for multi-producer, multi-
consumer FIFO (first-in, first-out) queues [33]. 

 The second process, reads flows from the Queue, computes them, 
perform some analysis and builds connections from them. For each added 
flow, the connections are computed and then compared to the Markov 
Models. This comparison is based on models thresholds, where the 
minimum distance is looked for. At the end of the Time Window, the alarms 
found during this period are printed and saved in memory by this second 
process; which are outputted again at the end of SLIPS. 

 

Start

Load default Markov 
Models

Create Queue object

Load Queue with input 
data

End

Create and Run 
Background Process

MAIN PROCESS

 
Fig 2.1 Workflow for first process based on the source code of [1] 
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Repeat for all IP addresses in  current Time Window

Repeat for all IP addresses in Last Time Window

Start

Get flow (line) from 
Queue and process it:
 Extract relevant 

fields
 Extract time field

Set time window times if 
not previously set

Apply detection to 4 
tuple with default 

Markov Chain models 
and output if malicious or 

normal

EndProcess 4-tuple:
 Generate 4-tuple from 

flow
 Check if 4-tuple object 

exists in tuples variable, 
if it doesn t exist 
instantiate it and save 
it in tuples, and load 
previous object if it 
does

 Based on flow values, 
compute letter/key and 
append it to 4-tuple 
object chain state 
attribute

BACKGROUND PROCESS

Is Queue empty?

Is Flow inside this time 
window?

Process all IP addresses in 
Time Window:

 Get Weighted Score*
 Saved it in 

ws_per_tw variable

Is 4-tuple chain state 
longer than 3?

Get source IP from initial 
flow values and process it:

 Check if IP object exists 
in IP_Handler, if it 
doesn t exist 
instantiate it and save 
it in IP_Handler, or load 
previous object if it 
does

 Append output to IP 
object

Omit detection and 
indicate output as false

*Weighted Score = Ratio([Total Infected Tuples]/[Total Tuples])*Sumatory([Times 
detected per Tuple]/[Times checked per tuple])

From saved weighted scores 
in ws_per_tw, calculate 
average for the last 10 

(SDW) and compare it to 
default 

threshold

Is average of SDW less 
than threshold?

IP Address is  normal 

IP Address is  malicious , 
alert of malicious 

appended to alert object. 
Also, print alert

Set time window times 
according to new flow

NO

YES

NO

YES

YES

NO

NO

YES

Process all IP addresses in 
Time Window:

 Get Weighted Score
 Saved it in 

ws_per_tw variable

From saved weighted scores 
in ws_per_tw, calculate 
average for the last 10 

(SDW) and compare it to 
default 

threshold

Is average of SDW less 
than threshold?

IP Address is  normal 

IP Address is  malicious , 
alert of malicious 

appended to alert object. 
Also, print alert

YES

NO

Print all addresses in alert 
object

 
Fig 2.2 Workflow for second process based on source code based on the 

source code of [1] 
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2.5.2. Representation of patterns in the network 

 
SLIPS groups the flows according to these criteria: 

 The same source IP address. 

 The same destination IP address. 

 The same destination port. 

 The same protocol. 
 
The flows that share these criteria are called 4-tuples or connections. The idea 
for this type of grouping is to link all connections related to a service; this is why 
the origin port is omitted [32]. 
The many flows forming these groups of 4-tuples have a behavior that can be 
represented using four features are extracted from these flows [32]: 

 The size of the flow. 

 The duration of the flow. 

 The periodicity of the flow. 

 The time of the flow. 
 
All the features are self-explanatory, except for the periodicity. The periodicity is 
calculated in two parts [32] [17].  
First, by taking the values of the time stamps from the following flows: 

 Current flow, called a. 

 Previous flow, called b. 

 Two flows ago, called c. 
Second, by computing them according to the following three formulas: 

T1  a - b      (2,1) 
 

T2  b - c      (2,2) 
 

TD  |T2 – T1|     (2,3) 
 
TD is the value used as the periodicity. This value is used since the periodicity 
has a certain variance that should be accounted for [32]. 
 

2.5.3. Computing the patterns as letters 

 
After the four features have been computed as shown in 2.5.2, the states of the 
flow are generated. 
 
The generation of them is done by the use of some thresholds defined in the 
following tables; those were defined using the Empirical Cumulative Distribution 
Function (ECDF) for each of the features for the 33% and 66% of its distribution 
function [12]: 
 
Table 2.1 Thresholds for labeling the flow based on its size [17] 
 

Size S (Bytes) < 250 < 1100 >= 1100 

Label Small Medium Large 
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Table 2.2 Thresholds for labeling the flow based on its duration [17] 
 

Duration (s) < 0.1 < 10 >= 10 

Label Short Medium Long 

 
 
Table 2.3 Threshold for labeling the flow based on its periodicity [17] 
 

Time 
difference (s) 

< 1.05 < 1.3 < 5 >= 5 

Periodicity Strong 
Periodicity 

Weak 
Periodicity 

Weak Non-
Periodicity 

Strong Non-
periodicity 

 
 
According to the threshold values mentioned previously, a key coding is applied 
as in the following figure [32].  
In addition to this, it is important to mention an additional feature, which is the 
Symbol for time difference, representing the size of separation in time of the 
flows, since a time difference of 1 second is not the same as a periodicity of 1 
day [32]. 
 

 
 

Fig 2.3 Key assignment logic in Stratosphere IPS [32] 
 
An example of the flow generated would be the following, related to the 4-tuple 
192.168.0.150-46.105.227.94-80-tcp in the capture CTU-Malware-Capture-
Botnet-116-4 from the Stratosphere Dataset [32]: 
 
88+H+y+H+H+h+H+H+H+y+y+y+y+y+H+H+y+y+H+y+h+y+y+H+y+y+y+H+h+y
+h+H+H+y+h+y+H+y+H+H+y+y+y+H+I+h+y+y+y+y+y+h+y+y+y+H+H+y+H+y+
y+y+y+y+H+H+H+y+y+y+y+y+y+y+y+y+h+h+y+h+y+y+y+h+H+H+H+H+H+H+y
+H+y+h+y+h+y+h+H+y+y+H+ 
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From the letters and symbols, we can interpret the following [32]: 

 Weak and strong periodicity types, and sometimes lost (letter key ‘y’). 

 Time difference of 1 to 5 minutes, related to the periodicity 

 Size large present across the chain 
 

2.5.4. Description of the Machine Learning: Markov Chain 

 
Stratosphere later interprets these letters in a model based on a first order Markov 
Chain. This is a model of the transition probabilities from one state letter to the 
next one. 
 
If for example we have the following chain of letters and symbols: a,a,c+d+d+ 
The Markov Chain and matrix would be the following: 
 

 
 

Fig 2.4 Example of Markov Chain for “a,a,c+d+d+” [32] 
 
 

 
 

Fig 2.5 Example of Markov Matrix for “a,a,c+d+d+” [32] 
 
The behavioral model for each connection or 4-tuples would be the following [32] 
[17]:  

 Markov Matrix 
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 Initialization Vector 

 The probability of detecting itself 

 Threshold of model 
 
The last item of the model, the threshold. It is used as an upper limit for the 
maximum distance between the model trained and the model evaluated [17] [1]. 
It is a value that let us know how similar the chains must be to be considered the 
same behavior, and if not used there will always be some model selected as the 
best one [12]. 
 

2.6. Limitations of current version of SLIPS 

 
Some limitations were addressed for SLIPS in [17]. In the following sections, we 
will address some additional ones that we consider would help advance the work 
of SLIPS for the Network Forensics community:  
 

2.6.1. Degradation of performance 

 
There is a substantial degradation of performance on SLIPS. 
 
From a test done with a capture from their dataset named CTU-Malware-Capture-
Botnet-168-1 [34], which corresponds to a capture of 3.8 days and 16 different IP 
addresses involved and a total of 81920 records. To process this capture it took 
a total of 19298 seconds or 5 hours and 21 minutes in an Ubuntu machine 
(Ubuntu16.04, 64-bit, Base memory of 3076MB, 2 processors and 40GB of 
storage). 
 
We present the number of records processed (an approximation to the multiple 
of 10 for presentation reasons) and the time passed since SLIPS started: 
 
Table 2.4 Amount of records processed vs. Time Passed for dataset CTU-
Malware-Capture-Botnet-168-1 in SLIPS 
  

Amount of Records Time Passed 

2290 1 minute 

6820 5 minutes 

9800 7 minutes 

13600 15 minutes 

16400 20 minutes 

26600 45 minutes 

28100 60 minutes 

31070 90 minutes 

39340 120 minutes 

52370 150 minutes 

58250 180 minutes 

66170 220 minutes 
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To reinforce the idea from this section: If maintaining the same speed of the first 
minute, it should have taken 36 minutes; or if maintaining the same speed of the 
first 15 minutes, it should have taken 2 hours. As more time passes, this 
degradation of performance becomes more relevant. 
 
If analyzing further, in [33] there is a benchmarking available for the queue class 
working as part of the multiprocessing package, which used in SLIPS. It’s 
capacity in the same machine used in the previous tests is the following: 83246 
average requests per second. This shows us there is an unused capacity 
available in the machine running SLIPS. 
 

2.6.2. Time windows usage in source code 

 
From analyzing the source code [1], the script part in the processing of 4-tuples 
before computing the Markov Chain uses the complete 4-tuple accumulated 
chain. This is the complete concatenation of letters and symbols since the start 
of the SLIPS program, even before that start of the SDW. This means 4-tuples 
outside of the time window were being processed. This affects the output in 2 
ways:  

 All alarms appeared during the first few seconds or minutes of running 
SLIPS, since there is penalty for computing the distance to the trained 
Markov Chain models, only the initial records processed have an 
opportunity of being correctly detected. For example, for the test done in 
the section 2.6.1, the only alarms appearing were during the first 5 
seconds of running SLIPS which correspond to the first 500 records being 
processed. These alarms were the only ones reported in the final output. 

 Since all connections are being processed, the more time it passes, the 
more records will be gathered for processing, and the longer it will take. 
This appears to be related to the limitation reported in 2.6.1. 

 
Another important point to mention also related to the source code [1], it is that 
the time windows are not fixed. They are related to the flow times of the flows 
present. This also means that all time windows processed will always have traffic. 
For example, if you have traffic collected of 1 hour, but all of it is allocated in the 
first 5 minutes and the last 5 minutes, SLIPS will consider only 2 time windows 
instead of 12. And also, traffic relations are used to compute the chains (section 
2.5.2), this means that traffic must be pre-processed before being partition for 
solutions as Spark (section 1.7.4). 

2.6.3. Time windows size and convolutional networks 

 
As mentioned in section 2.3, botnets tend to have temporal locality behavior, but 
this may be shown in 1 minute or 30 minutes [18]. By having only one type of 
time window, some behaviors are not accounted for or it limits the possibility for 
their detection. 
 
Taking concepts from Convolutional Neural Networks [35] from the field of Visual 
Recognition, different layers account for different features; for example, the first 
layer accounts for a “High Level Perspective”, where straight edges, simple colors 
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and curves are identified. This can be applied in SLIPS, taking into account this 
first for the trained models themselves, it would be a substantial addition to the 
design. 

2.6.4. Redundancy of periodicity in letters and symbols 

 
In section 2.5.3, it was shown how SLIPS computes patterns as letters. If we 
analyze this computation, we find that the periodicity is taking into account twice: 

 In the periodicity threshold. 

 In the symbol for time difference. 
 
This redundancy in the information creates a higher number of characters to be 
processed, and increase chance of noise to the final result, related to the 5V’s in 
Big Data (section 1.7.1). 
It is of value to remark that the periodicity and the time difference are not 
computed in the same way as shown in section 2.5.2, but their concepts and 
principles are closely related. 
 

2.6.5. Documentation of thresholds for SDW 

 
An important value used in SLIPS is the weighted score threshold (section 2.5.1), 
but this is not accounted in any of the main documentation reviewed in this work 
related to SLIPS: [2], [12], [17], [1]. 
 
As mentioned in the first chapter related to the principles of Digital Forensics 
(section 1.1.1), it is of high important in Digital Forensics to document the 
processes, in order to allow proper repeatability of the results. 



Chapter 3. Proposal for Stratosphere Linux IPS   25 

CHAPTER 3. PROPOSAL FOR STRATOSPHERE LINUX 
IPS 

3.1. Motivation 

 
In section 2.6, some limitations to the current version of SLIPS were mentioned. 
I consider the limitation discussed in section 2.6.1 related to performance the 
most relevant across all the limitations presented, since with a better performance 
of SLIPS, the more capability would be available for additional improvements in 
other aspects, for example those related to section 2.6.3. 
 
In the case of the limitation presented in section 2.6.2, the proposal will account 
for a response to it and a comparison with the current SLIPS version will be made. 
 

3.2. Description of proposal 

 
The objective of this proposal is to take advantage of the distributing processing 
available right now in the Python programming language. 
 
Currently in SLIPS, there are only 2 processes, working simultaneously. In this 
proposal, based on the MapReduce architecture [3], there will be one master 
process, and many workers or slave processes working simultaneously, these 
varying on the capacity of processors in the machine. 
 

3.3. Description of package used in proposal 

 
SLIPS is based on Python programming language. Python comes with the 
availability of the multiprocessing package, which allows any programmer to 
leverage the multiple processors available on a given machine, being it Windows 
or Unix [33]. The classes and objects part of this package and used for this 
proposal are the following: 
 

3.3.1. Proxy Objects 

 
They provide a way to create data which can be shared between different 
processes. A manager object controls a server process which manages shared 
objects and return proxies for access. It supports types as lists, dictionaries, 
between others [33]. 
 
This type of objects have lower performance than Queues (mentioned in section 
2.6.1), for example: 
 
Table 3.1 Comparison of performance between distinct objects in Ubuntu 
machine (Ubuntu16.04, 64-bit, Base memory of 3076MB, 2 processors and 40GB 
of storage) based on the benchmarking script from [33] 
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Type of Object Average Requests Per Second 

Multiprocessing.Queue Object 83246 

Queue managed by Server Process 
(Proxy Object) 

5682 

List Object (Python Default) 25896182 

List Managed by Server Process 
(Proxy Object) 

14002 

 
From table 3.1, it can be seen that the proxy objects have a lower performance 
than the other objects, but it allows us with the possibility of having a shared state 
across distinct processes [33], and without the limitation of the first-in first-out 
(FIFO) of the Queue. 
 

3.3.2. Pool 

 
This class allows means of parallelizing the execution of a function across 
processes. In our case, this class represents a pool of worker processes [33]. 
 

3.3.3. Cpu_count 

 
An additional function, which is relevant for this work and has been useful for this 
proposal is to verify the amount of processors through the function cpu_count(), 
which is part of the Multiprocessing package [33].  
 
A common practice is to use two times the amount of processors for the amount 
of workers, which is used in this work and which has demonstrate to be the right 
amount during the troubleshooting tests [36]. 
 

3.4. Implementation of Proposal 

 
As mentioned in 2.5.1, the main SLIPS source works based on two processes, 
the main one and the background, and as seen in Fig 2.1 and Fig 2.2, the 
complexity of the code lies in the background process. 
 
In this proposal, as we are going to see in the following sub-sections, the 
complexity of the Main Process has been increased in favor of a distribution of 
data across workers, this is all done based on the current source code of SLIP 
[1]. The source code of the proposed solution based on MapReduce can be found 
in Annex A. 
 

3.4.1. Main Process 

 
The main process is in charge of the main following tasks: 
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 Pre-process all flow records: Flow records are allocated according to Time 
Windows. This is passed to a List Proxy object, so this data can be shared 
by many processes. 

 Map detection to workers: processed flows are passed to a pool of 
workers, where each worker or process takes the data of each Time 
Window separately. The main process waits for the Map detection of all 
workers to finish processing the complete data. 

 Reduce detection output: The output of the Map detection is reduced to an 
alarm object. 

 Print Final alarms: All alarms are printed from the alarms object. 
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Pre-Process Input Data

Start

Create slotlist from 
Manager.list() class

Create a pool of workers 
the double of the size of 
the processors available

Append slot_data to 
slotlist

End

MAIN PROCESS

Map slotlist to pool of 
workers with function 

mapDetection to ouputs

Is it first flow?

Is flow outside of Time 
Window?

Is it the last line of flows?

Extract time from line in 
input data

Set time window start and end 
according to first flow time

Start auxiliary variable slot_data

Append slot_data to slotlist

Append flow data to 
slot_data

Set time window start and end 
according to flow time

Restart slot_data

Wait for the pool of 
workers to process 

mapDetection

Reduce result from 
outputs with function 

reduceDetectionResults 
to alerts object

Print alerts object with 
function print_final

After this point, all flows are 
divided in Time Windows

This is necesssary to compute the 
complete data in the Reduce part

 
Fig 3.1 Workflow of main process in proposed solution 
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A further description of the Map and Reduce related functions will be given in the 
following sub-sections. The final alarm function will be omitted, since it is not 
relevant for the purpose of this work. 
 

3.4.2. Function: MapDetection 

 
The detection is done according to the default Markov Chain models passed to 
the function. The function receives as an input the flows of a complete Time 
Window. 
 
In the Fig 3.2, the workflow of this function is presented. All the detections are 
aggregated to a variable called ipHandler, which collects the detections per IP. 
When finished, the Map detection returns an ipHandler object per Time Window, 
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Repeat for all flows
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Apply detection to 4 
tuple with default 

Markov Chain models 
and output if malicious or 

normal

Process 4-tuple:
 Generate 4-tuple from 
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 Check if 4-tuple object 
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Is 4-tuple chain state 
longer than 3?
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flow values and process it:

 Check if IP object exists 
in ipHandler, if it 
doesn t exist 
instantiate it and save 
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Ips, and final output)
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Was it last flow to be 
processed?

 
Fig 3.2 Workflow of function MapDetection in proposed solution 



Chapter 3. Proposal for Stratosphere Linux IPS   31 

3.4.3. Function: ReduceDetectionResults 

 
Having as an input the ipHandler per Time Window, we reduce all this data to 
one alarm object. 
 
In the Fig 3.3, the workflow of this function is presented. All this data is processed 
and aggregated to the alarm object, also, the computation for the scores related 
to the SDW are used in the iterations through each Time Window, in order to 
determine if any IP address is malicious, to generate, print and aggregate the 
alarm to the alarms object. The complete list of alarms is saved and returned in 
the alarms object. 
 

Repeat for each ipHandler in ipHandlers list

Start

Start alert object

REDUCEDETECTIONRESULTS 
FUNCTION

Process all IP addresses in 
ipHandler object:

 Get Weighted Score*
 Saved it in 

ws_per_tw variable

*Weighted Score = Ratio([Total Infected Tuples]/[Total Tuples])*Sumatory([Times 
detected per Tuple]/[Times checked per tuple])

From saved weighted scores 
in ws_per_tw, calculate 
average for the last 10 
ipHandlers (SDW) and 
compare it to default 

threshold

Is average of SDW less 
than threshold?

IP Address is  normal 

IP Address is  malicious , 
alert of malicious 

appended to alert object. 
Also, print alert

YES

NO

Return alert object

Each ipHandler 
represent one 
Time Window

 
Fig 3.3 Workflow of function ReduceDetectionResults in proposed solution 
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3.5. Comparison of Tests between Proposal and SLIPS 

 
For the comparison of the performance of the proposal using MapReduce work 
and SLIPS, the following two public captures will be used [31]: 

 CTU-Malware-Capture-Botnet-168-1: network traffic of 3.8 days which 
includes a machine infected with malware Andromeda, mixed with 
normal traffic. This capture has a total of 81920 records [34]. 

 CTU-Malware-Capture-Botnet-169-3: network traffic of 8.13 days which 
includes a machine infected with malware Miuref, mixed with normal 
traffic. This capture has a total of 32109 records [37]. 

 
This two captures will be run twice, 50% of their records and 100% of them for 
each solution. This is done to better distinguish performance over time and over 
the size of the dataset. It is of importance to remark, that both solutions will be 
using the default models available together with the SLIPS source code [1]. 
 
Table 3.2 shows us the amount of Time Windows present across the datasets, 
taking into account the methodology used by SLIPS as mentioned in section 
2.6.2.  
 
The results of these tests are shown in Table 3.3 for SLIPS and in Table 3.4 for 
the proposed solution using MapReduce. From the data of these tables, two 
ratio tables are generated; Table 3.5 to compare their performances over time 
and Table 3.6 to compare the amount of alarms generated for each solution. 
 
Table 3.2 Amount of Time Windows processed for both SLIPS and proposal 
using MapReduce 
 

Capture Amount of Time Windows 

168-1 at 50% 637 

168-1 at 100% 966 

169-3 at 50% 581 

169-3 at 100% 1937 

 
 
Table 3.3 Performance of SLIPS with datasets CTU-Malware-Capture-Botnet-
168-1 and CTU-Malware-Capture-Botnet-169-3 on Ubuntu machine 
(Ubuntu16.04, 64-bit, Base memory of 3076MB, 2 processors and 40GB of 
storage)  
 

Capture Total IP 
addresses 
detected as 
malicious 

Total IP 
addresses 
detected 

Total alarms 
generated 

Time 
used in 
seconds 

Time 
used in 
minutes 

168-1 at 
50% 

1 14 10 5304.70 88.41 

168-1 at 
100% 

1 16 10 19298.13 321.64 
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169-3 at 
50% 

1 85 49 541.93 9.03 

169-3 at 
100% 

1 94 49 934.96 15.58 

 
 
Table 3.4 Performance of proposal using MapReduce with datasets CTU-
Malware-Capture-Botnet-168-1 and CTU-Malware-Capture-Botnet-169-3 on 
Ubuntu machine (Ubuntu16.04, 64-bit, Base memory of 3076MB, 2 processors 
and 40GB of storage) 
 

Capture Total IP 
addresses 
detected as 
malicious 

Total IP 
addresses 
detected 

Total alarms 
generated 

Time 
used in 
seconds 

Time 
used in 
minutes 

168-1 at 
50% 

1 14 445 22.16 0.37 

168-1 at 
100% 

1 16 501 44.60 0.74 

169-3 at 
50% 

1 85 529 22.91 0.38 

169-3 at 
100% 

1 94 577 35.08 0.58 

 
 
Table 3.5 Ratio between performance times of SLIPS and proposal using 
MapReduce with datasets CTU-Malware-Capture-Botnet-168-1 and CTU-
Malware-Capture-Botnet-169-3 on Ubuntu machine (Ubuntu16.04, 64-bit, Base 
memory of 3076MB, 2 processors and 40GB of storage) 
 

 Ratio of performance times between SLIPS and 
Proposal using Map Reduce 

168-1 at 50% 239:1 

168-1 at 100% 433:1 

169-3 at 50% 24:1 

169-3 at 100% 27:1 

 
Table 3.6 Ratio between amount of alarms generated by SLIPS and proposal 
using MapReduce with datasets CTU-Malware-Capture-Botnet-168-1 and CTU-
Malware-Capture-Botnet-169-3 on Ubuntu machine (Ubuntu16.04, 64-bit, Base 
memory of 3076MB, 2 processors and 40GB of storage) 
 

 Ratio of amount of alarms generated between 
SLIPS and Proposal using Map Reduce 

168-1 at 50% 1:45 

168-1 at 100% 1:50 

169-3 at 50% 1:11 

169-3 at 100% 1:12 
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An important remark regarding these tests is that the IP detected for each of 
them was the verified infected machine. 
 
From Table 3.5, regarding the performance over time, the proposal using 
MapReduce performs over time from 24 to 433 times faster than SLIPS, 
depending on the amount of records evaluated. 
 
From Table 3.6, regarding the alarms generated, SLIPS maintains a constant 
amount of alarms, for 50% or 100% of the datasets, in contrast to the proposal 
using MapReduce, which generates an increased amount of alarms when 
having more traffic as an input. The alarms generated by the proposal are from 
11 to 50 times greater than SLIPS, depending on the amount of records 
evaluated, which indicates there is undetected traffic as reported in the 
limitation mentioned in section 2.6.2 due to the usage of Time Windows. This 
additional information points us toward additional insights regarding SLIPS: 

 The proposed usage of Time Windows for the detection is a better 
practice for the SLIPS core detection (section 2.5.4), since it shows an 
increase amount of alarm for the infected traffic, which indicates an 
improve detection of the infected traffic.  

 For the proposed solution using MapReduce, the alarms are computed 
regarding the output information from each time window (section 3.4). If 
comparing the Table 3.2 and the Table 3.4, there are Time Windows with 
infected traffic that have not been detected, which can be used for 
improving the default Markov Chain models and adjusting the thresholds 
of the SLIPS core detection (section 2.5.4). 
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CONCLUSIONS 

 

The field of Digital Forensics and its branch of Network Forensics have gain 
relevance for the consequences of their work [9]. Across the different types of 
attacks inside the Network Forensic field, one that is recurring and becoming 
wider is the DDoS attack delivered by botnets. The Internet is getting less and 
less safer, in countries such as China, United States, South Korea or Russia, we 
find that by the end of 2017 there were more than 450 daily attacks delivered by 
botnets, with a power of 15.8 million packets per second, and with the demand of 
ransoms for stopping the attacks in some cases [9].  

Related to Network Forensics, we find the IDS solutions, based on signature-
based and heuristic approaches. Threats are evolving and IDS together with 
them. Nowadays, IDS solutions are facing new challenges that weren’t there 10 
years ago, and which can be tackled with usage of Big Data techniques and tools. 

The goal of this work was to demonstrate the usability of Big Data techniques to 
improve the management of big amounts of data in a real case using real data in 
the Network Forensics scenario. SLIPS was used in this demonstration, for its 
use of traffic behaviors, machine learning encompassed with usage of real 
datasets, since most of the related work is based on synthetic botnet or normal 
traffic (section 1.7.4 and chapter 2 of [12]). 

SLIPS focuses on using two processes, but the work or tasks is not balance or 
distributed across them, with a degradation of performance over time as seen in 
2.6.1. The main process from SLIPS didn’t perform any pre-processing for the 
data, passing only raw traffic data to the internal processing queue. 

By using a MapReduce-based approach in this work proposal, to redistribute the 
SLIPS internal tasks, we can find performance improvements for over 27, up to 
433 times in comparison to the original source code and the 100% of records for 
the datasets presented. The more traffic flows to process, the greater the 
difference. This was thanks to the redistribution of detections across multiple 
workers as part of the MapReduce architecture.  

An additional benefit of the proposal using MapReduce is the increased amount 
of alarms, which shows us the continuous infected traffic undetected by SLIPS 
and an unseen higher efficiency of the SLIPS core detection. As suggested in 
section 3.5, this additional information can be used to improve the default Markov 
Chain models and the threshold parameters of SLIPS [1]. 

The amount of traffic found in the datasets does not justify the use of a Hadoop 
cluster to distribute the tasks across different machines, the usage of a single 
server has been enough to demonstrate the leverage of unutilized capacity in 
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front of us in a single server. Still, for a real life enterprise solution, this would be 
encouraged, with the benefits of increased capacity and a fault tolerant solution. 

An important limitation found for implementing the solution was the usage of Time 
Windows and chain states, they limit the implementation of the detection to be 
sequential, this is why for the Reduction part, a wait was implemented. A future 
option of research would be to perform an additional pre-process of data for the 
Time Windows, and separate the data on 4-tuples or source IPs, in order to 
reduce the complexity of data handled by each worker. 

As it has been mentioned in section 1.7.4, some Apache Spark implementations 
are faster than Hadoop MapReduce; an additional example of this, it’s a publicly 
held contest where Spark broke records previously held by Hadoop MapReduce 
by being 3 times faster with 10 times less resources [38]. A future field of research 
for SLIPS would be to include the usage of Apache Spark [39] in order to compare 
the results with the present proposal. 

In terms of sustainability considerations, this work will permit the recognition of a 
better utilization and distribution of resources with the hope of encouraging 
people to do more with less: a single-server can have dormant capacities which 
can be enabled with new Big Data approaches. 

In terms of ethical considerations: the usage of flow records information did not 
consider any of the payload, so there is complete respect for the privacy of the 
information transmitted. 
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ACRONYMS 

 

 C&C  Command and Control 
 CTU  Czech Technical University 
 DFRWS Digital Forensics Research Workshop 
 DDoS  Distributed Denial of Service 
 ECDF  Empirical Cumulative Distribution Function 
 FIFO  First-In, First-Out 
 HDFS  Hadoop Distributed File System 
 HTTP  Hypertext Transfer Protocol 
 ICMP  Internet Control Message Protocol 
 IDS  Intrusion Detection System 
 IoT  Internet of Things 
 IPS  Intrusion Protection System 
 NoSQL Non SQL / Not Only SQL 
 P2P  Peer-to-peer 
 RFC  Request for Comments 
 SDW  Sliding Detection Windows 
 SIEM  Security Information and Event Management 
 SLIPS  Stratosphere Linux Intrusion Protection System 
 SQL  Structured Query Language 
 TCP  Transmission Control Protocol 
 UDP  User Datagram Protocol 
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 ANNEX A 

 

The source code of the proposed solution using MapReduce is the following, with 
the remark that this is meant to replace only the slips.py, part of the SLIPS source 
code: 
 
#!/usr/bin/python -u 

# This file is part of the Stratosphere Linux IPS 

# See the file 'LICENSE' for copying permission. 

# Author: Sebastian Garcia. eldraco@gmail.com , 

sebastian.garcia@agents.fel.cvut.cz 

 

 

#Reference 

# 0:starttime, 1:dur, 2:proto, 3:saddr, 4:sport, 5:dir, 6:daddr: 7:dport, 

8:state, 9:stos,  10:dtos, 11:pkts, 12:bytes 

 

import sys 

import os #added by Alfredo 

import operator 

import signal 

from colors import * 

from datetime import datetime 

from datetime import timedelta 

import argparse 

import multiprocessing 

from multiprocessing import Pool, Manager 

import time 

from modules.markov_models_1 import __markov_models__ 

from os import listdir 

from os.path import isfile, join 

from ip_handler import IpHandler 

from utils import SignalHandler 

import random 

from alerts import * 

 

initial_time = time.time()  # starting time 

line_number = 0 

 

 

#check if the log directory exists, if not, create it 

logdir_path = "./logs" 

if not os.path.exists(logdir_path): 

    os.makedirs(logdir_path) 

#file for logging 

#lognamefile = logdir_path+"/" + 'log_' + datetime.now().strftime('%Y-%m-%d 

%H:%M:%S')+'.txt'; 

logfile = logdir_path+"/" + 'logfile' + '.txt'; 

 

version = '0.3.5_beta101_alfredo' 

 

def timing(f): 

    """ Function to measure the time another function takes.""" 

    def wrap(*args, **kwargs): 

        time1 = time.time() 

        ret = f(*args, **kwargs) 

        time2 = time.time() 

        print '%s function took %0.3f ms' % (f.func_name, (time2-

time1)*1000.0) 

        return ret 

    return wrap 

 

#Tuple 

class Tuple(object): 
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    """ The class to simply handle tuples """ 

    def __init__(self, tuple4): 

        self.id = tuple4 

        self.amount_of_flows = 0 

        self.src_ip = tuple4.split('-')[0] 

        self.dst_ip = tuple4.split('-')[1] 

        self.protocol = tuple4.split('-')[3] 

        self.state_so_far = "" 

        self.winner_model_id = False 

        self.winner_model_distance = float('inf') 

        self.proto = "" 

        self.datetime = "" 

        self.T1 = False 

        self.T2 = False 

        self.TD = False 

        self.current_size = -1 

        self.current_duration = -1 

        self.previous_size = -1 

        self.previous_duration = -1 

        self.previous_time = -1 

        # Thresholds 

        self.tto = timedelta(seconds=3600) 

        self.tt1 = float(1.05) 

        self.tt2 = float(1.3) 

        self.tt3 = float(5) 

        self.td1 = float(0.1) 

        self.td2 = float(10) 

        self.ts1 = float(250) 

        self.ts2 = float(1100) 

        # The state 

        self.state = "" 

        # Final values for getting the state 

        self.duration = -1 

        self.size = -1 

        self.periodic = -1 

        self.color = str 

        # By default print all tuples. Depends on the arg 

        self.should_be_printed = True 

        self.desc = '' 

        # After a tuple is detected, min_state_len holds the lower letter 

position in the state 

        # where the detection happened. 

        self.min_state_len = 0 

        # After a tuple is detected, max_state_len holds the max letter 

position in the state 

        # where the detection happened. The new arriving letters to be 

detected are between max_state_len and the real end of the state 

        self.max_state_len = 0 

        self.detected_label = False 

 

    def set_detected_label(self, label): 

        self.detected_label = label 

 

    def unset_detected_label(self): 

        self.detected_label = False 

 

    def get_detected_label(self): 

        return self.detected_label 

 

    def get_state_detected_last(self): 

        if self.max_state_len == 0: 

            # First time before any detection 

            return self.state[self.min_state_len:] 

        # After the first detection 

        return self.state[self.min_state_len:self.max_state_len] 

 

    def set_min_state_len(self, state_len): 

        self.min_state_len = state_len 
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    def get_min_state_len(self): 

        return self.min_state_len 

 

    def set_max_state_len(self, state_len): 

        self.max_state_len = state_len 

 

    def get_max_state_len(self): 

        return self.max_state_len 

 

    def get_protocol(self): 

        return self.protocol 

 

    def get_state(self): 

        return self.state 

 

    def set_verbose(self, verbose): 

        self.verbose = verbose 

 

    def set_debug(self, debug): 

        self.debug = debug 

 

    def add_new_flow(self, column_values): 

        """ Add new stuff about the flow in this tuple """ 

        # 0:starttime, 1:dur, 2:proto, 3:saddr, 4:sport, 5:dir, 6:daddr: 

7:dport, 8:state, 9:stos,  10:dtos, 11:pkts, 12:bytes 

        # Store previous 

        self.previous_size = self.current_size 

        self.previous_duration = self.current_duration 

        self.previous_time = self.datetime 

        if self.debug > 2: 

            print 'Adding flow {}'.format(column_values) 

        # Get the starttime 

        self.datetime = datetime.strptime(column_values[0], '%Y/%m/%d 

%H:%M:%S.%f') 

        # Get the size 

        try: 

            self.current_size = float(column_values[12]) 

        except ValueError: 

            # It can happen that we dont have this value in the binetflow 

            self.current_size = 0.0 

        # Get the duration 

        try: 

            self.current_duration = float(column_values[1]) 

        except ValueError: 

            # It can happen that we dont have this value in the binetflow 

            self.current_duration = 0.0 

        # Get the protocol 

        self.proto = str(column_values[2]) 

        # increase by 1 amount of flows 

        self.amount_of_flows += 1 

        # Update value of T1 

        self.T1 = self.T2 

        try: 

            # Update value of T2 

            self.T2 = self.datetime - self.previous_time 

            # Are flows sorted? 

            if self.T2.total_seconds() < 0: 

                # Flows are not sorted 

                if self.debug > 2: 

                    print '@', 

                # What is going on here when the flows are not ordered?? Are 

we losing flows? 

        except TypeError: 

            self.T2 = False 

        # Compute the rest 

        self.compute_periodicity() 

        self.compute_duration() 
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        self.compute_size() 

        self.compute_state() 

        self.compute_symbols() 

        if self.debug > 4: 

            print '\tTuple {}. Amount of flows so far: 

{}'.format(self.get_id(), self.amount_of_flows) 

 

    def compute_periodicity(self): 

        # If either T1 or T2 are False 

        if (isinstance(self.T1, bool) and self.T1 == False) or 

(isinstance(self.T2, bool) and self.T2 == False): 

            #self.periodicity = -1 

            # Alfredo: error in SLIPS maintained for comparison reasons 

            self.periodic = -1 

        elif self.T2 >= self.tto: 

            t2_in_hours = self.T2.total_seconds() / self.tto.total_seconds() 

            for i in range(int(t2_in_hours)): 

                self.state += '0' 

        elif self.T1 >= self.tto: 

            t1_in_hours = self.T1.total_seconds() / self.tto.total_seconds() 

            for i in range(int(t1_in_hours)): 

                self.state += '0' 

        if not isinstance(self.T1, bool) and not isinstance(self.T2, bool): 

            try: 

                if self.T2 >= self.T1: 

                    self.TD = timedelta(seconds=(self.T2.total_seconds() / 

self.T1.total_seconds())).total_seconds() 

                else: 

                    self.TD = timedelta(seconds=(self.T1.total_seconds() / 

self.T2.total_seconds())).total_seconds() 

            except ZeroDivisionError: 

                # Alfredo: Strongly periodic 

                self.TD = 1 

            # Decide the periodic based on TD and the thresholds 

            if self.TD <= self.tt1: 

                # Strongly periodic 

                self.periodic = 1 

            elif self.TD < self.tt2: 

                # Weakly periodic 

                self.periodic = 2 

            elif self.TD < self.tt3: 

                # Weakly not periodic 

                self.periodic = 3 

            else: 

                self.periodic = 4 

        if self.debug > 3: 

            print '\tPeriodic: {}'.format(self.periodic) 

 

    def compute_duration(self): 

        if self.current_duration <= self.td1: 

            self.duration = 1 

        elif self.current_duration > self.td1 and self.current_duration <= 

self.td2: 

            self.duration = 2 

        elif self.current_duration > self.td2: 

            self.duration = 3 

        if self.debug > 3: 

            print '\tDuration: {}'.format(self.duration) 

 

    def compute_size(self): 

        if self.current_size <= self.ts1: 

            self.size = 1 

        elif self.current_size > self.ts1 and self.current_size <= self.ts2: 

            self.size = 2 

        elif self.current_size > self.ts2: 

            self.size = 3 

        if self.debug > 3: 

            print '\tSize: {}'.format(self.size) 
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    def compute_state(self): 

        if self.periodic == -1: 

            if self.size == 1: 

                if self.duration == 1: 

                    self.state += '1' 

                elif self.duration == 2: 

                    self.state += '2' 

                elif self.duration == 3: 

                    self.state += '3' 

            elif self.size == 2: 

                if self.duration == 1: 

                    self.state += '4' 

                elif self.duration == 2: 

                    self.state += '5' 

                elif self.duration == 3: 

                    self.state += '6' 

            elif self.size == 3: 

                if self.duration == 1: 

                    self.state += '7' 

                elif self.duration == 2: 

                    self.state += '8' 

                elif self.duration == 3: 

                    self.state += '9' 

        elif self.periodic == 1: 

            if self.size == 1: 

                if self.duration == 1: 

                    self.state += 'a' 

                elif self.duration == 2: 

                    self.state += 'b' 

                elif self.duration == 3: 

                    self.state += 'c' 

            elif self.size == 2: 

                if self.duration == 1: 

                    self.state += 'd' 

                elif self.duration == 2: 

                    self.state += 'e' 

                elif self.duration == 3: 

                    self.state += 'f' 

            elif self.size == 3: 

                if self.duration == 1: 

                    self.state += 'g' 

                elif self.duration == 2: 

                    self.state += 'h' 

                elif self.duration == 3: 

                    self.state += 'i' 

        elif self.periodic == 2: 

            if self.size == 1: 

                if self.duration == 1: 

                    self.state += 'A' 

                elif self.duration == 2: 

                    self.state += 'B' 

                elif self.duration == 3: 

                    self.state += 'C' 

            elif self.size == 2: 

                if self.duration == 1: 

                    self.state += 'D' 

                elif self.duration == 2: 

                    self.state += 'E' 

                elif self.duration == 3: 

                    self.state += 'F' 

            elif self.size == 3: 

                if self.duration == 1: 

                    self.state += 'G' 

                elif self.duration == 2: 

                    self.state += 'H' 

                elif self.duration == 3: 

                    self.state += 'I' 
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        elif self.periodic == 3: 

            if self.size == 1: 

                if self.duration == 1: 

                    self.state += 'r' 

                elif self.duration == 2: 

                    self.state += 's' 

                elif self.duration == 3: 

                    self.state += 't' 

            elif self.size == 2: 

                if self.duration == 1: 

                    self.state += 'u' 

                elif self.duration == 2: 

                    self.state += 'v' 

                elif self.duration == 3: 

                    self.state += 'w' 

            elif self.size == 3: 

                if self.duration == 1: 

                    self.state += 'x' 

                elif self.duration == 2: 

                    self.state += 'y' 

                elif self.duration == 3: 

                    self.state += 'z' 

        elif self.periodic == 4: 

            if self.size == 1: 

                if self.duration == 1: 

                    self.state += 'R' 

                elif self.duration == 2: 

                    self.state += 'S' 

                elif self.duration == 3: 

                    self.state += 'T' 

            elif self.size == 2: 

                if self.duration == 1: 

                    self.state += 'U' 

                elif self.duration == 2: 

                    self.state += 'V' 

                elif self.duration == 3: 

                    self.state += 'W' 

            elif self.size == 3: 

                if self.duration == 1: 

                    self.state += 'X' 

                elif self.duration == 2: 

                    self.state += 'Y' 

                elif self.duration == 3: 

                    self.state += 'Z' 

 

    def compute_symbols(self): 

        if not isinstance(self.T2, bool): 

            if self.T2 <= timedelta(seconds=5): 

                self.state += '.' 

            elif self.T2 <= timedelta(seconds=60): 

                self.state += ',' 

            elif self.T2 <= timedelta(seconds=300): 

                self.state += '+' 

            elif self.T2 <= timedelta(seconds=3600): 

                self.state += '*' 

        if self.debug > 3: 

            print '\tTD:{}, T2:{}, T1:{}, State: {}'.format(self.TD, self.T2, 

self.T1, self.state) 

 

    def get_id(self): 

        return self.id 

 

    def __repr__(self): 

        return('{} [{}] ({}): {}'.format(self.color(self.get_id()), self.desc, 

self.amount_of_flows, self.state)) 

 

    def print_tuple_detected(self): 

        """ 
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        Print the tuple. The state is the state since the last detection of 

the tuple. Not everything 

        """ 

        return('{} [{}] ({}): {}  Detected as: 

{}'.format(self.color(self.get_id()), self.desc, self.amount_of_flows, 

self.get_state_detected_last(), self.get_detected_label())) 

 

    def set_color(self, color): 

        self.color = color 

 

def mapDetection(slotline, verbose = 1, debug = 0, whois = False): 

    ipHandler = IpHandler(verbose, debug, whois) 

    current_index = slotline['index'] 

    #print 'the current index is {}'.format(current_index) 

    tuples_in_this_time_slot = {} 

    values = slotline['values'] 

    for flow_values in values: 

        #print flow 

        tuple4 = flow_values[3] + '-' + flow_values[6] + '-' + flow_values[7] 

+ '-' + flow_values[2] 

        flowtime = datetime.strptime(flow_values[0], '%Y/%m/%d %H:%M:%S.%f') 

        #Review if tuple already exists 

        if tuple4 in tuples_in_this_time_slot: 

            tuple = tuples_in_this_time_slot[tuple4] 

        else: 

            tuple = Tuple(tuple4) 

            tuple.set_verbose(verbose) 

            tuple.set_debug(debug) 

            tuples_in_this_time_slot[tuple4] = tuple 

        #Add flow and compute chain states 

        tuple.add_new_flow(flow_values) 

 

        ###Let's detect 

        (detected, label, statelen) = __markov_models__.detect(tuple, verbose, 

debug) 

        #print 'detected is {}'.format(detected) 

        if detected: 

            # Change color 

            tuple.set_color(magenta) 

            # Set the detection label 

            tuple.set_detected_label(label) 

        elif not detected: 

            tuple.unset_detected_label() 

        ###End of detected 

 

        ###Add detection 

        tuples_in_this_time_slot[tuple4] = tuple 

        ip_address = ipHandler.get_ip(flow_values[3]) 

        ip_address.add_detection(tuple.detected_label, tuple.id, 

tuple.current_size, flowtime,flow_values[6], tuple.get_state_detected_last(), 

current_index) 

    #return current_index 

    ###Return IpHandler, to have it processed later 

    return ipHandler 

 

 

def reduceDetectionResults(ipHandlers, slotlist, verbose = 1, debug = 0, whois 

= False, sdw_width = 10, threshold = 0.002): 

    alerts= {} 

    for index,ipHandler in enumerate(ipHandlers): 

        for address in ipHandler.addresses.values(): 

            # Change to keys to print addresses 

            # print address 

            start_time = slotlist[index]['start'] 

            end_time = slotlist[index]['end'] 

 

            #print 'address is {}'.format(address.address) 
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            ###Function Get Verdict 

            address.get_weighted_score(start_time, end_time, index) 

            #Check if any traffic in TW, kind of irrelevant since TWs are not 

fixed 

            if len(slotlist[index]['values']) > 0: 

                startindex = index - sdw_width  # compute SDW indices 

                if startindex < 0: 

                    startindex = 0 

                sdw = [] 

                #Looking for the WS in all the previous windows 

                for i in range(startindex, index):  # fill the sdw 

                    if address.address in ipHandlers[i].addresses: 

                        if 

ipHandlers[i].addresses[address.address].ws_per_tw.has_key(i): 

                            

sdw.append(ipHandlers[i].addresses[address.address].ws_per_tw[i]) 

                    # If it doesn't have the key? Add a try 

                ### Alfredo: ERROR, if swd_width is larger than total windows, 

lower mean, but maintain for comparison reasons 

                mean = sum(sdw) / float(sdw_width) 

                # Did we detect it? 

                if mean < threshold: 

                    # No 

                    address.last_verdict = "Normal" 

                    address.last_SDW_score = mean; 

                    if address.address not in alerts: 

                        alerts[address.address] = [] 

                else: 

                    # Yes 

                    address.alerts.append(IpDetectionAlert(datetime.now(), 

address.address, mean)) 

                    address.last_verdict = "Malicious" 

                    address.last_SDW_score = mean 

                    if address.address in alerts: 

                        

alerts[address.address].append(IpDetectionAlert(datetime.now(), 

address.address, mean)) 

                    else: 

                        alerts[address.address] = [] 

                        

alerts[address.address].append(IpDetectionAlert(datetime.now(), 

address.address, mean)) 

            else: 

                # self.last_verdict = None 

                address.last_verdict = 'Unknown' 

                print 'we got an unknown!' 

 

            ####End of Verdict 

 

            if address.last_verdict.lower() == 'malicious' and verbose > 0: 

                print red("\t+{} verdict: {} (SDW score: {:.5f}) | TW weighted 

score: {} = {} x {}".format(address.address, address.last_verdict, 

address.last_SDW_score,address.last_tw_result[0],address.last_tw_result[1],add

ress.last_tw_result[2])) 

 

    return alerts 

 

 

def print_final(alerts): 

    detected_counter = 0 

    print '\nFinal Alerts generated:' 

    f = open(logfile,"w") 

    f.write("DATE:\t{}\nSummary of addresses in this 

capture:\n\n".format(datetime.now().strftime('%Y/%m/%d %H:%M:%S'))) 

    f.write('Alerts:\n') 

    for ip,alertsforIp in alerts.items(): 

        if len(alertsforIp) > 0: 

            detected_counter+=1 
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            print "\t - "+ ip 

            f.write( '\t - ' + ip + '\n') 

            for alert in alertsforIp: 

                print "\t\t" + str(alert) 

                f.write( '\t\t' + str(alert) + '\n') 

 

    s = "{} IP(s) out of {} detected as 

malicious.".format(detected_counter,len(alerts)) 

    f.write(s) 

    print s 

    f.close() 

 

 

#################### 

# Main 

#################### 

if __name__ == '__main__': 

    print 'Stratosphere Linux IPS. Version {}'.format(version) 

    print('https://stratosphereips.org') 

    print 

 

    # Parse the parameters 

    parser = argparse.ArgumentParser() 

    parser.add_argument('-a', '--amount', help='Minimum amount of flows that 

should be in a tuple to be printed.', action='store', required=False, 

type=int, default=-1) 

    parser.add_argument('-v', '--verbose', help='Amount of verbosity. This 

shows more info about the results.', action='store', default=1, 

required=False, type=int) 

    parser.add_argument('-e', '--debug', help='Amount of debugging. This shows 

inner information about the flows.', action='store', default=0, 

required=False, type=int) 

    parser.add_argument('-w', '--width', help='Width of the time slot used for 

the analysis. In minutes.', action='store', default=5, required=False, 

type=int) 

    parser.add_argument('-d', '--datawhois', help='Get and show the WHOIS info 

for the destination IP in each tuple', action='store_true', default=False, 

required=False) 

    parser.add_argument('-D', '--dontdetect', help='Dont detect the malicious 

behavior in the flows using the models. Just print the connections.', 

default=False, action='store_true', required=False) 

    parser.add_argument('-f', '--folder', help='Folder with models to apply 

for detection.', action='store', required=False) 

    parser.add_argument('-s', '--sound', help='Play a small sound when a 

periodic connections is found.', action='store_true', default=False, 

required=False) 

    parser.add_argument('-t', '--threshold', help='Threshold for detection 

with IPHandler', action='store', default=0.002, required=False, type=float) 

    parser.add_argument('-S', '--sdw_width', help='Width of sliding window. 

The unit is in \time windows\'. So a -S 10 and a -w 5, means a sliding window 

of 50 minutes.', action='store', default=10, required=False, type=int) 

    parser.add_argument('-W','--whitelist',help="File with the IP addresses to 

whitelist. One per line.",action='store',required=False) 

 

    args = parser.parse_args() 

 

    # Check the verbose level 

    if args.verbose < 1: 

        args.verbose = 1 

 

    # Check the debug level 

    if args.debug < 0: 

        args.debug = 0 

 

    if args.dontdetect: 

        print 'Warning: No detections will be done. Only the behaviors are 

printed.' 

        print 
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        # If the folder with models was specified, just ignore it 

        args.folder = False 

 

    # Do we need sound? 

    if args.sound: 

        import pygame.mixer 

        pygame.mixer.init(44100) 

        pygame.mixer.music.load('periodic.ogg') 

 

 

    # Read the folder with models if specified 

 

    # added by Alfredo 070218 

    #args.folder = "C:/Users/Alfredo/Google 

Drive/MASTEAM/Thesis/workspace/spark_v1/models" 

    #args.folder = "/media/sf_shared_vm/workspace/spark_v2/" 

    ### 

    if args.folder: 

        #print 'got here' 

        onlyfiles = [f for f in listdir(args.folder) if 

isfile(join(args.folder, f))] 

        if args.verbose > 2: 

            print 'Detecting malicious behaviors with the following models:' 

        for file in onlyfiles: 

            __markov_models__.set_verbose(args.verbose) 

            __markov_models__.set_debug(args.debug) 

            __markov_models__.set_model_to_detect(join(args.folder, file)) 

            #added by Alfredo 070218 

            #print 'alfredo comment: markov model added' 

 

 

 

    # Read whitelist 

    whitelist = set() 

    if args.whitelist: 

        try: 

            #whitelist = set() 

            content = set(line.rstrip('\n') for line in open(args.whitelist)) 

            if len(content) > 0: 

                if args.verbose > 1: 

                    #if True: 

                    print blue("Whitelisted IPs:") 

                for item in content: 

                    if args.verbose > 1: 

                        #if True: 

                        print blue("\t" + item) 

                whitelist = content 

        except Exception as e: 

            print blue("Whitelist file '{}' not 

found!".format(args.whitelist)) 

 

    ###Ubuntu VirtualBox Datasets 

    filename = "/media/sf_shared_vm/workfiles/169_3_2016-08-03_win4.binetflow" 

    #filename = "/media/sf_shared_vm/workfiles/169_3_2016-08-

03_win4_half.binetflow" 

 

    #filename = "/media/sf_shared_vm/workfiles/168_1_2016-07-30_capture-

win1.binetflow" 

    #filename = "/media/sf_shared_vm/workfiles/168_2_2016-08-03_win-

1.binetflow" 

    #filename = "/media/sf_shared_vm/workfiles/168_1_2016-07-30_capture-

win1_half.binetflow" 

 

    ###Alpha2: Manager setup 

    manager = Manager() 

    slotlist = manager.list() 

    pool_size = multiprocessing.cpu_count() * 2 
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    ############################### 

 

 

    ###Alpha2: Data preprocess 

    ### We are adding each column an stripping it from unnecessary content 

    with open(filename) as file: 

        slot_data = {} 

        timewindow_index = 0 

        count_lines = 0 

        slot_start = -1 

        slot_end = -1 

        slot_width_minutes = timedelta(minutes=5) 

        for line in file: 

            #try:++ 

            #print line 

            #print count_lines 

            column_values = line.strip('[').split(',')[:13] 

            #print column_values 

            try: 

                flow_start = datetime.strptime(column_values[0], '%Y/%m/%d 

%H:%M:%S.%f') 

                if slot_start == -1: 

                    slot_start = flow_start 

                    slot_end = slot_start + slot_width_minutes 

                    slot_data['start'] = slot_start 

                    #print slot_data['start'] 

                    slot_data['end'] = slot_end 

                    slot_data['values'] = [] 

                    slot_data['index'] = timewindow_index 

                    #print 'slot_data is {}'.format(slot_data) 

                elif flow_start >= slot_end: 

                    slotlist.append(slot_data) 

                    slot_start = flow_start 

                    slot_end = slot_start + slot_width_minutes 

                    timewindow_index += 1 

                    #print 'slotlist is {}'.format(str(slotlist)) 

                    slot_data['start'] = slot_start 

                    slot_data['end'] = slot_end 

                    slot_data['values'] = [] 

                    slot_data['index'] = timewindow_index 

                slot_data['values'].append(column_values) 

                #print len(slotlist) 

                #print slotlist 

                count_lines += 1 

            except ValueError: 

                #print 'Error in line' 

                #queue.put('stop') 

                continue 

        #last slot to be appended 

        slotlist.append(slot_data) 

        ###Alpha 2 comment: file uploaded completely 

 

        ###Alpha 2: time to process data 

 

    pool_size = multiprocessing.cpu_count() * 2 

    pool = multiprocessing.Pool(processes=pool_size, 

                                maxtasksperchild=1, 

                                ) 

    pool_outputs_ipHandlers = pool.map(mapDetection, slotlist) 

    pool.close()  # no more tasks 

    pool.join()  # wrap up current tasks 

    #print len(pool_outputs_ipHandlers) 

    #print pool_outputs_ipHandlers 

 

    #Execution time before Reduce 

    clockTime = time.time() - initial_time  # execution time 

    timepassed = "Elapsed time for detection only is {}".format(clockTime) 
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    print timepassed 

 

    alerts = reduceDetectionResults(pool_outputs_ipHandlers, slotlist) 

    print_final(alerts) 

 

    #Execution time 

    clockTime = time.time() - initial_time  # execution time 

    timepassed = "Total elapsed time is {}".format(clockTime) 

    print timepassed 

 


