

MASTER THESIS

TITLE: Big Data for Digital Forensics

MASTER DEGREE: Master in Science in Telecommunication Engineering
& Management

AUTHOR: Alfredo Daniel Cuzcano Cossi

ADVISOR: Juan Hernández Serrano

DATE: February, 15th 2018

Title: Big Data for Digital Forensics

Author: Alfredo Daniel Cuzcano Cossi

Advisor: Juan Hernández Serrano

Date: February 15th, 2018

Abstract

Digital Forensics and its sub-branch Network Forensics are important and
relevant topics which have gained further attention with the DDoS attacks
delivered by botnets.

This work focuses on a novel IDS solution called: SLIPS. This is a free software
that uses Machine Learning to detect malicious behaviors in a network with the
use of Markov Chain based detection and previously trained models. A major
limitation of SLIPS lies on its performance, and this work also touches on the
topic of Big Data, and more specifically MapReduce, in order to aid SLIPS with
a better resource utilization.

With the redistribution of SLIPS tasks across workers, adding a pre-processing
of data, the proposed solution using MapReduce presented performance
improvements of up to 433 times with the datasets tested.

ACKNOWLEDGEMENT

First of all, I would like to thank my advisor, Juan Hernández, for his patience and
guidance throughout this work. You pointed me in the right direction for this work.

Also, I would like to thank my colleagues and professors of the MASTEAM
program, I have learned so much from you, I cannot put it into words.

I would like to dedicate this work to my parents, for their love, support, guidance
and encouragement. And to my love, Mauranne, without your caring, support and
lessons, I wouldn’t be here writing this words, thanks, right now and forever.

And finally, I would like to thank Sydney Banks, without the understanding he
shared throughout his life, this work wouldn’t have been possible. In your own
words:

"The answer to all complexity lies in simplicity."

CONTENTS

INTRODUCTION .. 1

CHAPTER 1. BACKGROUND ... 2

1.1. Digital Forensics .. 2
1.1.1. Definition of Digital Forensics ... 2
1.1.2. Digital Forensics Branches ... 2

1.2. Network Forensics .. 3
1.2.1. Definition of Network Forensics .. 3
1.2.2. Types of Attacks in Network Forensics .. 3
1.2.3. Types of Attacks: Botnets ... 4

1.3. IDS for Network Forensics .. 6
1.3.1. Definition of IDS .. 6
1.3.2. IDS and Network Forensics .. 6
1.3.3. Detection Styles of IDS ... 6

1.4. Examples of IDS... 7
1.4.1. Snort ... 7
1.4.2. Stratosphere IPS .. 7

1.5. Challenges of IDS for Network Forensics ... 7

1.6. Evolution of Data Analytics for IDS ... 8

1.7. New solutions for New challenges .. 9
1.7.1. Big Data .. 9
1.7.2. Types of Analytics for Network Forensics .. 10
1.7.3. Big Data Tools and Techniques in Network Forensics for IDS 11
1.7.4. Usage examples ... 13

CHAPTER 2. STRATOSPHERE IPS ... 15

2.1. Motivation ... 15

2.2. Description of the Stratosphere Project ... 15

2.3. Description of SLIPS ... 15

2.4. Description of Datasets .. 16

2.5. Implementation details of SLIPS .. 16
2.5.1. Description of SLIPS processes ... 16
2.5.2. Representation of patterns in the network .. 19
2.5.3. Computing the patterns as letters... 19
2.5.4. Description of the Machine Learning: Markov Chain ... 21

2.6. Limitations of current version of SLIPS .. 22
2.6.1. Degradation of performance ... 22
2.6.2. Time windows usage in source code ... 23
2.6.3. Time windows size and convolutional networks ... 23

2.6.4. Redundancy of periodicity in letters and symbols .. 24
2.6.5. Documentation of thresholds for SDW ... 24

CHAPTER 3. PROPOSAL FOR STRATOSPHERE LINUX IPS 25

3.1. Motivation ... 25

3.2. Description of proposal .. 25

3.3. Description of package used in proposal ... 25
3.3.1. Proxy Objects ... 25
3.3.2. Pool ... 26
3.3.3. Cpu_count .. 26

3.4. Implementation of Proposal ... 26
3.4.1. Main Process .. 26
3.4.2. Function: MapDetection .. 29
3.4.3. Function: ReduceDetectionResults .. 31

3.5. Comparison of Tests between Proposal and SLIPS .. 32

CONCLUSIONS ... 35

ACRONYMS .. 37

REFERENCES ... 38

ANNEX A ... 42

Introduction 1

INTRODUCTION

Digital Forensics and its sub-branch Network Forensics are important and
relevant topics. These topics are diverse, with different types of attacks and
between all of them, one has gained further and further attention: the Distributed
Denial of Service (DDoS) attacks delivered by botnets.

Related to Network Forensics, we find the Intrusion Detection System (IDS)
solutions, based on signature-based and heuristic approaches. Threats are
evolving and IDS together with them, and new challenges have appeared, mostly
the vast amount of data presented in networks.

This work focuses on a novel IDS solution called SLIPS [1]. This is a free software
part of the Stratosphere project [2] that uses Machine Learning to detect
malicious behaviors of the traffic related to Command and Control channels of
botnets in a network with the use of Markov Chain based detection and previously
trained models. In addition to the usage of Machine Learning, this model also
utilizes real botnet captures, which adds relevance to its usage. A major limitation
of SLIPS lies on its performance and its continuous degradation over time, most
of the improvement on its code have been focused on accuracy improvement.

This work also touches on the topic of Big Data, introduces some previous work
done on the topic and discusses some relevant technologies, more specifically
MapReduce [3].

SLIPS works with two processes, a main one and a background one. But the
tasks across them are not balanced. With the redistribution of SLIPS tasks across
workers, adding a pre-processing of data, and taking from MapReduce the
mapping of detection across different independent workers, the proposed
solution using MapReduce aids SLIPS with a better resource utilization and
presented performance improvements of up to 433 times faster with the datasets
tested.

The remainder of this document is organized as follows. The first chapter
presents some background topics. The second chapter focuses on the SLIPS
solution, the description of its code and the workflow and a presentation of its
limitations. The third chapter presents the proposal solution of this work.

2 Big Data for Digital Forensics

CHAPTER 1. BACKGROUND

1.1. Digital Forensics

1.1.1. Definition of Digital Forensics

A regular and early definition of Digital Forensics is taken from the first Digital
Forensics Research Workshop (DFRWS) in 2001 [4], with the intention of
establishing it as a scientific discipline:
“Digital Forensic Science is the use of scientifically derived and proven methods
towards the preservation, collection, validation, identification, analysis,
interpretation, documentation and presentation of digital evidence derived from
digital sources for the purpose of facilitating or furthering the reconstruction of
events found to be criminal, or helping to anticipate unauthorized actions shown
to be disruptive to planned operations.”

A later definition in [5], indicates: “…is the practice of investigating computers,
digital media, and digital communications for potential artifacts.”
When referring to artifacts, [5] indicates them as being any object of interest,
since the word evidence refers to a court case; and highlights these artifacts as
potential evidence.

In [6], a description of the principles of digital forensics are presented, which are
the following and may help us have a better understanding of the subject:

 Previous validation of tools and procedures.

 Reliability of tools.

 Repeatability of processes.

 Documentation of procedures and processes (to allow repeatability).

 Preservation of evidence.

These principles are of importance, since as mentioned in [5], the product of this
work can possibly have legal relevance in a court case.
These principles provide the basis for the workflow performed in Digital Forensics
[6]:

 Identification of devices containing evidence

 Collection of devices

 Acquisition or producing an image of the potential evidence

 Preservation of evidence integrity

 Analysis of evidence acquired

 Reporting of results

1.1.2. Digital Forensics Branches

Digital Forensics divides itself into 5 branches or fields, as mentioned by [7]:

 Computer Forensics

Chapter 1. Background 3

 Network Forensics

 Mobile Device Forensic

 Memory Forensics

 Emails Forensics

We will present the definition for Network Forensics, which is in the scope of this
work and the following chapters.

1.2. Network Forensics

1.2.1. Definition of Network Forensics

Within the scope of Digital Forensics, we find the sub-branch of Network
Forensics [4] [7].
Also known as Digital Forensic Science in Networked Environments.

In [4], they provide us with an attempt of explaining it:
“The use of scientifically proven techniques to collect, fuse, identify, examine,
correlate, analyze, and document digital evidence from multiple, actively
processing and transmitting digital sources for the purpose of uncovering facts
related to the planned intent, or measured success of unauthorized activities
meant to disrupt, corrupt, and or compromise system components as well as
providing information to assist in response to or recovery from these activities.”

In other words, as mentioned in [8], this field relates to the capture, recording and
analysis of network events in order to discover incidents.

1.2.2. Types of Attacks in Network Forensics

In a network, we can find an attack in a variety of ways. We present here a
summary of the main types of attacks, considering the literature of [5]:

 Denial of Service Attacks: It’s a type of attack that makes a system or any
other type of network unavailable to its intended users, sometimes called
honest users. This attack is launched by a large number of distributed
hosts, flooding the available resources. The most common subtypes are
the following:

o SYN Floods: For a TCP communication, an attacker sends the
initial SYN and the victim responds with the SYN/ACK, leaving the
connection in half-open state. The system, with its limited
resources, awaits for the final ACK in order to establish the
connection. The objective of a SYN flood is to simply fill up the slots
that the target system has available for half-open connections. This
is one of the most popular attacks nowadays [9].

o Malformed Packets: Where the protocols have behaviors not in
accord with their definitions (i.e. RFCs), and this present problems
for the programs responsible for processing this input. An example
of this is the Teardrop attack.

4 Big Data for Digital Forensics

o UDP Floods: In this attack, because of the use of UDP the operating
system is not doing the admission control that it does with TCP, so
there is an increased amount of work for the processor. The
attacker is looking to flood the processor by sending a large volume
of UDP messages. This is an attack with the purpose of consuming
all available bandwidth.

o Amplification Attacks: Here the attacker is looking for others to help
him in his effort. An example of this, it’s the Smurf attack. The Smurf
attack relies on the spoofing of a source IP address and sending an
ICMP echo request or ping message, to the broadcast address of
a network block. If the network has not been correctly configured,
every host on that network will receive an echo request, for which
they will send an echo response back to the spoofed source.

o Distributed Attacks: It consists of multiple attackers distributed
around the Internet, since multiple attackers in one site are going to
be constrained by the amount of bandwidth available at the precise
site. A distributed attack needs to be coordinated. These multiple
attackers are known as a botnet. A botnet is a collection of bots,
which are computes systems owned by someone else but under
the control of the botnet owner or attacker.

 Vulnerability Exploits: in this case, network services allow attackers to
send specially crafted messages that allows them to gain access to a
system.

 Insider Threats: This is the case associated to attackers who where users
or associated to users of an organization and gathered permissions for
various resources on the network without ever dropping any of the
permissions after leaving the position or the organization.

Due to the scope of this work presented in the following chapters, a more in depth
explanation of the type of attacks involving botnets is detailed in the following
section.

1.2.3. Types of Attacks: Botnets

Botnets are considered one of the most major threats on the Internet [10], capable
of delivering Distributed Denial of Service (DDoS) attacks, or large-scale spam
campaigns [11].

The word botnet is formed from the word ‘robot’ and ‘network [11]. These botnets
are a network of infected hosts called bots, controlled by an attacker known as
the botmaster. Botmasters sends commands via a Command and Control
channel [10]. The Command and Control channels refer to the implementation of
communication protocols that allow the owners or attackers to control all the
infected computers, with the intention of synchronizing actions on them [12].
Among the actions performed by the bots, we can find port scanning, binary
download, exploit attempts and SPAM sending [12].

Botnets differ themselves not on how they infect, but on how they spread: each
infected host is part of an overlay network [12].

Chapter 1. Background 5

As of how they work, they originally relied on a central architecture, with a core
network and a few interconnected IRC (Internet Relay Chat) server [10]. When
the botmaster wanted to send any type of command, they were pushed to the
IRC channel and all the bots receive it.

Since 2003, botnets are based on P2P (Peer to Peer) protocols, where each bot
act as a client and a server [10] [12]. In this case, the bots ask the commands to
their servers, in order words, the commands are being pulled. This present the
following advantages in contrast to previous approaches [12]:

 They can be decentralized.

 They can hide the amount of bots infected.

 They can avoid being monitored or sniffed.

 They can be highly resilient to take down attempts.

Since 2005, these capabilities became enhanced, by starting to hide their traffic
inside normal HTTP traffic in order to avoid detection [12].

To give us an idea of the size of these botnets, by February 2018 countries as
India have approximately 2.5 million bots, and China 2 million bots, as reported
in [13]. In Figure 1.1 by Kaspersky Lab, it shows us a comprehensive diagram of
all the personal level and high-level consequences of botnets.

Fig 1.1 Botnets as presented by Kaspersky Lab [11]

6 Big Data for Digital Forensics

1.3. IDS for Network Forensics

1.3.1. Definition of IDS

The concept of Intrusion Detection Systems (IDS) was initially presented in 1987
[14]. An IDS is a device that acquires information from a target information system
to perform a diagnosis on its status. An overall goal is to discover breaches of
security, attempts of breach or vulnerabilities to potential ones [15].

It can be seen as a detector that processes information coming from the target
system, with the intention of protecting it. The target system monitored can be a
workstation, a network element, a server, a mainframe, a firewall, a web server,
or any other type of device [15].

Regarding the concept of Intrusion Prevention System (IPS), throughout the
literature it is common to find the terms of IDS and IPS used interchangeably.
They work similarly, but the difference lies in the action after the detection [16]:

 IDS detects intrusions and intrusion attempts; in addition to this, issues
alarms, alerts and logs.

 IPS detects intrusions and intrusion attempts; in addition to this, it may
block or prevent these activities in real-time.

IPS can be seen as an extended version of the IDS [16].

1.3.2. IDS and Network Forensics

In addition to identifying intrusions as they happen, IDS can also generate data
that could be used during the course of a Forensic Investigation [5]. For this
reason, it is important within the field of Network Forensics to understand the
output and how an IDS works.

1.3.3. Detection Styles of IDS

IDS have different ways of determining if a traffic is infected as stated in [5]:

 Signature-Based: Identify a pattern in the malicious network traffic, this
pattern is the signature. The limitation lies in the fact that the illicit action
has to happen before the identification (signature) has been created. A
network signature may be the source of the IP address, or a particular port
used. Or it can also be related to a pattern of the network traffic as
presented in [17]

 Heuristic: Also referred to as anomaly-based. It is based on the idea that
we can determine what normal lools like, and anything that is not normal
is considered as an anomaly [15].

Chapter 1. Background 7

1.4. Examples of IDS

Following there are two examples of IDS. Snort is a well-known IDS, whose work
has been mentioned in [14] and [18]. Stratosphere IPS is a novel IDS which
proposes a distinct way of detecting malicious behavior, and for such we consider
it relevant in the following examples.

Another well-known IDS are Suricata and Bro, but they will not be presented in
this work since their behaviors and functions are based on the one of Snort [5].

1.4.1. Snort

It is an open source network intrusion detection system, capable of performing
real-time traffic analysis and packet logging on IP networks [19] [5], and created
in 1999 by Martin Roesch, and bought by Cisco Systems in 2013 [20]. It can
perform protocol analysis, content searching/matching, and it can also be used
to detect a variety of attacks and network probing.

It has three primary use cases [19]:

 Packet sniffer.

 Packet logger.

 Network Intrusion Prevention System.

Snort is highly configurable, in addition to multiple options of output, it also has
the ability to add modular plug-ins called preprocessors [5].
After the preprocessor, Snort utilize rules. They are based on types of attacks. A
limitation is that Snort source does not come with a default set of rules, some
Linux distribution will include them, or they need to be pulled for Snort.

1.4.2. Stratosphere IPS

Stratosphere IPS is a free software, presented as an IPS that uses Machine
Learning to detect malicious behaviors in the network traffic [2]. It is presented as
an IPS, nevertheless its current version doesn’t allow for traffic blocking or any
type of action besides the output alarms and logs [1], which are proper from an
IDS (section 1.3.1).

Stratosphere IPS started in Python on Linux and Windows [21], and as
communicated by their developers there is a version available that can be run on
Snort as a plug-in based on the C programming language [2].

1.5. Challenges of IDS for Network Forensics

A few of the more remarkable challenges for IDS in Network Forensics are the
following [22] [6]:

 Increased number of Sources: Evidence is becoming more and more
heterogeneous. IDS faces now not only structured data, but unstructured

8 Big Data for Digital Forensics

data, coming from distinct sources as removable media, mobile devices
and cloud services.

 Increased in Network Traffic: The scale of Information nowadays has been
increasing each year. Hackers can hide their presence easily these days,
thanks to the increased amount of traffic daily between nodes.

 New technologies: New technologies are being developed, and with them,
new challenges are appearing that Network Forensics didn’t face 10 years
ago:

o Cloud Services: The emergence and development of Cloud Service
providers, have made networks more vulnerable to new attacks.

o IoT: Connectivity is becoming ubiquitous, and threats will increase
with them.

One popular citation across the literature comes from a study done by IBM [23]:
“90% of the data in the world today has been created in the last two years. This
data comes from everywhere: sensors used to gather shopper information, posts
to social media sites, digital pictures and videos, purchase transaction, and cell
phone GPS signals to name a few. This data is big data.”

1.6. Evolution of Data Analytics for IDS

The Cloud Security Alliance in [24], presented the evolution of Intrusion Detection
in three parts:

 First Generation: The generation of Intrusion detection systems, this is
where Security Architects realize the need for a layered security, since a
100% protective security is impossible. This can be seen as reactive
security.

 Second Generation: The generation of Security information and Event
management (SIEM), where these systems aggregate and filter the alarms
from many sources for actionable data for the security analysts. The
amount and frequency of logs used to be fixed to amounts like 60 days,
due to limits in the underlying data technology [25].

 Third Generation: The generation of Big Data analytics in security. In this
generation, we have the potential for a significant advance, since it will
reduce the time for correlating, consolidating and contextualizing diverse
security event information. Which will allow for correlating previously
unused data, as long-term historical data. Security analytics will be
transformed by:

o Collecting data at a massive scale.
o Perform deeper analytics.
o Consolidate view.
o Real-time analysis.

As an example, in [25] the case study of Zions Bancorporation was presented:

 A query among a month’s load of data, took between 20 minutes to an
hour.

 With Hadoop system, and the system running queries with Hive, they got
the same results in about a minute.

Chapter 1. Background 9

1.7. New solutions for New challenges

Across the literature, we can find many solutions for tackling the challenges
presented in the section 1.5, as part of the evolution suggested in the section 1.6.

First of all, some background definitions will be presented. Second, we will
present some relevant tools and techniques discussed in some of the literature,
and related examples of usage in a later section.

1.7.1. Big Data

When talking about Big Data, we are talking about data whose complexity hinders
it from being managed, queried and analyzed through traditional storage
architectures, algorithms and query mechanisms [22].

The complexity of Big Data is usually defined by the 3Vs (Volume, Variety,
Velocity) [22], originally developed by Gartner analyst Doug Laney in 2001 [26].
A comparison of these 3Vs against traditional methods can be seen in Figure 1.2.
We will present 3+2Vs, adding Veracity and Value to the mainstream definition
[26], since with the evolution of Big Data, additional criteria should be taken into
account:

 Volume: referring to the amount of data, from terabytes, petabytes or even
more.

 Variety: referring to co-existence of unstructured, semi-structured and
structured data.

 Velocity: referring to the rapid pace at which Big Data is being generated.

 Veracity: referring to the importance of maintaining quality data and on
handling problems such as noise or missing values.

 Value: referring to the sense that if a particular data does not provide
significant value, it is not relevant for Big Data analysis.

10 Big Data for Digital Forensics

Fig 1.2 Big Data differentiators or 3V’s as presented in [24]

One point that is important to emphasize is that Big Data challenges may exist
from an individual source, and when aggregated with other sources, the
challenge will only increase [26].

In addition to this, Big Data Analytics is concerned with the extraction of value
from Big Data, in the form of insights [22]: non-trivial, previously unknown, implicit
and potentially useful information.

Big Data adaptation is driven by 3 main factors [24]:

 Decrease of storage costs: storage costs has dramatically decreased in
the last few years.

 Big Data tools: Tools and techniques as Hadoop and NoSQL databases
provide the basis technology for an increase in processing speed and
complex queries not allowed due to resources limitations.

 Flexibility: In traditional data warehouses, users defined schemas ahead
of time. With Big Data, users do not have to use predefined formats.

1.7.2. Types of Analytics for Network Forensics

It is also mentioned by [24], and also shown in Figure 1.3, that we can find it in
two kinds:

Chapter 1. Background 11

 Batch Processing for data at rest: Also coined "Catch-it-as-you-can"
systems by [8]. This approach requires a large amount of storage.

 Stream Processing for data in motion: Also coined "Stop, look and listen"
systems by [8]. This approach may require less storage, but it requires a
faster processor to keep up with the incoming traffic.

Fig 1.3 Batch processing vs. Stream processing [24]

1.7.3. Big Data Tools and Techniques in Network Forensics for IDS

Considering [14], the following tools and techniques are presented:

 MapReduce: It is a programming model and implementation for
processing and generating large data sets, that can be seen as a high-
level abstraction of parallel computing [10]. It has the benefit that programs
or scripts written in this functional style are automatically parallelized and
executed on large cluster of machines, allowing programmers without any
experience with parallel and distributed systems to easily utilize the
resources of a large distribution system. To explain it briefly: User specify
a map function that processes a key/value pair to generate a set of
intermediate key/value pairs; and a reduce function that merges all
intermediate values associated with the same intermediate key [3], as
shown in Figure 1.4. In 2004, Google indicated MapReduce allowed them
to read the web in less than 3 hours, instead of four months [27].

12 Big Data for Digital Forensics

Fig 1.4 Execution overview of MapReduce as discussed in the ground-breaking

Google paper [3]

 Hadoop: Open source implementation of MapReduce. It is a framework
for storing and processing large files, having as its core component the
Hadoop Distributed File System (HDFS), where the data is store. It also
has a namenode daemon which maintain the file namespace. The blocks
of data are store on slaves also known as data nodes which guarantee
redundancy. In its application side, it has a jobtracker who takes as an
input a MapReduce job and which is responsible of task coordination and
monitoring the map and reduce tasks [10].

 Spark: Distributed data processing solution as Hadoop, but the data
processing is stored in memory. Proven sometimes to be 100 times faster
than Hadoop [14].

 Hive: Open source data warehouse infrastructure running on top of
Hadoop. User-friendly interface to Hadoop, and with command in SQL-like
form [14].

 Shark: Sub-project of Spark, implements Hadoop’s Hive on top of Spark.
It is fully compatible with Hive [14].

 Pig: High level distributed programming on top of Hadoop. Similar to Hive
without the SQL query part [14].

 Storm: free and open source distributed real time computation system. It
processes unbounded streams of data, like a real time Hadoop alike
processing [28].

Before entering into the usage examples of the tools and technologies mentioned,
two additional related concepts are presented:

 PageRank Algorithm: Link analysis algorithm used by Google to weight
relative importance of web pages on the internet. Importance of a web

Chapter 1. Background 13

page is determined by: first, how many pages does it contain an hyperlink
pointing to it; second, the importance of the pointing pages [10].

 Dependency Graph: Each node represents a host. An edge from point A
to B indicates that there exists at least one flow originated from host A
towards host B [10].

1.7.4. Usage examples

On [10], an architecture is implemented for Botnet detection based on
MapReduce. The algorithm PageRank has to iterate many times, so it is executed
over Hadoop. An adjacency matrix of the dependency graph is computed and
distributed among all the data nodes before executing the MapReduce. The
results are close to 100% true positives and 3% false positives. The limitation in
this work is the use of synthetic botnet records.

On [14], a comparison of many Big Data technologies is mentioned: Hadoop,
Hive, Pig, Spark and Shark. There are four scenarios discussed, which are data
processing tasks among network records to provide a simulation comparative
regarding the usage of these scenarios for future cases.

 Scenario 1: Find packets that match a given source IP address and a given
source port.

 Scenario 2: Find packets containing a given substring in their payload.

 Scenario 3: Count the number of destination IP per source IP and order
the result.

 Scenario 4: Join two sets according to a common key or field, like the
source IP address.

The top performers among the four scenarios are Spark and Shark. This study is
relevant to give us an awareness of the technologies and their related
performances, but the relevance is limited to the scope of the simulation
scenarios.

On [29], the author uses Big Data Behavioral analytics in conjunction with graph
theoretical concepts with the goal of identifying botnet niches. In their evaluation,
they used 100GB of real botnet traffic (Carna botnet as on [30]). Their approach
objective can be seen as three steps:

 Identify bots traffic

 Infer botnets from bots traffic

 Pinpoint botnet niches
Regarding their Big Data processing, the authors used two approaches:

 Hadoop
o Standard approach in the documentation
o Java implementation
o MapReduce embedded in this approach

 Multi-Threaded Approach
o Developed by the authors using C programming language.
o Packages used: libpcap and libtrace.

Among the comparisons and results, the following points are considered:

 The Multi-Threaded approach processed 1.5 times more throughput than
the Hadoop approach.

14 Big Data for Digital Forensics

 The Hadoop approach performed 3 times faster than the Multi-Threaded
approach

Regarding the results, the comparison was made between 82 real malicious IP
addresses against 10 benign synthetic IP addresses, which is a ratio of traffic not
favorable for the benign addresses; this statement is reflected in the results
presented:

 0% False Negative rate for malicious addresses

 5% False Positive rate for malicious addresses

 50% False Positive rate for benign addresses. This score wasn’t
presented in the paper.

Chapter 2. Stratosphere IPS 15

CHAPTER 2. STRATOSPHERE IPS

2.1. Motivation

Among the many solutions and literature discussed, Stratosphere IPS is a novel
solution based on machine learning algorithms to detect behaviors in a network
traffic.

In addition to this, they use real datasets from verified malware and normal traffic
connections, which adds relevance to the Network Forensics field and IDS
techniques.

2.2. Description of the Stratosphere Project

Stratosphere IPS is a project of research, development and verification methods
to detect malware traffic in networks [17]. It was born in from a collaboration of
Ph.D. thesis [12]. The Stratosphere Lab is based in the department of Computer
Science of the Faculty of Engineering, of the CTU University in Prague.

In the thesis [12], Stratosphere’s initial work, the author explains that one of the
motivations for the work presented was a better understanding of the behavior of
the C&C channel, parting from the hypothesis that flows of a C&C channel are
periodic, to support a synchronize effort in the case of an attack.

2.3. Description of SLIPS

Stratosphere Linux Intrusion Prevention System (SLIPS) is the Linux version of
the Stratosphere IPS, developed in Python [1]. The latest version of SLIPS
includes Markov Chain models for detection of malware behaviors in the network
[17].

SLIPS is mainly based on the use of Time Windows, for the following reasons
[18]:

 To limit the huge amount of data to be processed

 Botnets tend to have temporal locality behavior, since most actions remain
unchanged for several minutes, from 1 to 30 minutes in the tested datasets
of SLIPS.

 This allows providing a result in a timely manner to the Network
Administrator.

This time windows are of 5 minutes by default in the source code [1]. At the end
of which, every host or IP address is labeled.

In a later implementation, as a result of the work in [17], Sliding Detection
Windows (SDW) were added to the source code of SLIPS. By default it uses 10

16 Big Data for Digital Forensics

recent time windows to evaluate the traffic and compare it to a threshold score
[1].

2.4. Description of Datasets

Datasets of long-term captures can be obtained through a project related to the
same lab going by the name of Malware Capture Facility Project [12]. This project
consists of a medium scale setup of virtual machines that allowed to continuously
infect more than 30 computers for long periods. In some cases, they captured
and analyzed botnet behaviors for months. All of the datasets generated are
public.

 There are two types of dataset used for SLIPS [31], [12]:

 Malware traffic: This is traffic coming from known infected machines and
will be the target for the detection. These are for example, Command and
Control connections.

 Normal traffic: This is traffic coming from verified normal computes. Very
important to find the real performance. The normal behavior of a user
cannot be automatized or generated, if this is the case, it would stop being
normal anymore.

In addition to this, the collaborators of SLIPS mention the use of Background
traffic, which is unverified traffic and that they state it’s a traffic of unverified origin
[31]. In [31], it is also stated that is important to saturate the algorithms, to verify
its memory and performance and to check if algorithms get confused with the
data. But for the purpose of training and testing, we consider this type of traffic
irrelevant or counter-productive, since it is unverified and does not provide any
ground truth and may lead to an error margin in the final result or in the test
results.

2.5. Implementation details of SLIPS

SLIPS receives the flows of traffic from Argus. Argus generates bidirectional
netflows for SLIPS to process afterward [17]. It is possible for SLIPS to run in
real-time according to the collaborators [17].

Argus is used for the purpose of reading the packets from a pcap file or live
network, in order to generate the flows [32]. Also, this allows to reduce the volume
of unused data and to keep as much of the useful data as possible [12]. And after
having generated flows, Stratosphere can process them.

2.5.1. Description of SLIPS processes

SLIPS utilizes two processes in the program itself [17]:

 The first process, reads the flows from Argus and store them in the
Multiprocessing Queue. The Multiprocessing Queue is a python type part

Chapter 2. Stratosphere IPS 17

of the multiprocessing package, it allows for multi-producer, multi-
consumer FIFO (first-in, first-out) queues [33].

 The second process, reads flows from the Queue, computes them,
perform some analysis and builds connections from them. For each added
flow, the connections are computed and then compared to the Markov
Models. This comparison is based on models thresholds, where the
minimum distance is looked for. At the end of the Time Window, the alarms
found during this period are printed and saved in memory by this second
process; which are outputted again at the end of SLIPS.

Start

Load default Markov
Models

Create Queue object

Load Queue with input
data

End

Create and Run
Background Process

MAIN PROCESS

Fig 2.1 Workflow for first process based on the source code of [1]

18 Big Data for Digital Forensics

Repeat for all IP addresses in current Time Window

Repeat for all IP addresses in Last Time Window

Start

Get flow (line) from
Queue and process it:
 Extract relevant

fields
 Extract time field

Set time window times if
not previously set

Apply detection to 4
tuple with default

Markov Chain models
and output if malicious or

normal

EndProcess 4-tuple:
 Generate 4-tuple from

flow
 Check if 4-tuple object

exists in tuples variable,
if it doesn t exist
instantiate it and save
it in tuples, and load
previous object if it
does

 Based on flow values,
compute letter/key and
append it to 4-tuple
object chain state
attribute

BACKGROUND PROCESS

Is Queue empty?

Is Flow inside this time
window?

Process all IP addresses in
Time Window:

 Get Weighted Score*
 Saved it in

ws_per_tw variable

Is 4-tuple chain state
longer than 3?

Get source IP from initial
flow values and process it:

 Check if IP object exists
in IP_Handler, if it
doesn t exist
instantiate it and save
it in IP_Handler, or load
previous object if it
does

 Append output to IP
object

Omit detection and
indicate output as false

*Weighted Score = Ratio([Total Infected Tuples]/[Total Tuples])*Sumatory([Times
detected per Tuple]/[Times checked per tuple])

From saved weighted scores
in ws_per_tw, calculate
average for the last 10

(SDW) and compare it to
default

threshold

Is average of SDW less
than threshold?

IP Address is normal

IP Address is malicious ,
alert of malicious

appended to alert object.
Also, print alert

Set time window times
according to new flow

NO

YES

NO

YES

YES

NO

NO

YES

Process all IP addresses in
Time Window:

 Get Weighted Score
 Saved it in

ws_per_tw variable

From saved weighted scores
in ws_per_tw, calculate
average for the last 10

(SDW) and compare it to
default

threshold

Is average of SDW less
than threshold?

IP Address is normal

IP Address is malicious ,
alert of malicious

appended to alert object.
Also, print alert

YES

NO

Print all addresses in alert
object

Fig 2.2 Workflow for second process based on source code based on the

source code of [1]

Chapter 2. Stratosphere IPS 19

2.5.2. Representation of patterns in the network

SLIPS groups the flows according to these criteria:

 The same source IP address.

 The same destination IP address.

 The same destination port.

 The same protocol.

The flows that share these criteria are called 4-tuples or connections. The idea
for this type of grouping is to link all connections related to a service; this is why
the origin port is omitted [32].
The many flows forming these groups of 4-tuples have a behavior that can be
represented using four features are extracted from these flows [32]:

 The size of the flow.

 The duration of the flow.

 The periodicity of the flow.

 The time of the flow.

All the features are self-explanatory, except for the periodicity. The periodicity is
calculated in two parts [32] [17].
First, by taking the values of the time stamps from the following flows:

 Current flow, called a.

 Previous flow, called b.

 Two flows ago, called c.
Second, by computing them according to the following three formulas:

T1 a - b (2,1)

T2 b - c (2,2)

TD |T2 – T1| (2,3)

TD is the value used as the periodicity. This value is used since the periodicity
has a certain variance that should be accounted for [32].

2.5.3. Computing the patterns as letters

After the four features have been computed as shown in 2.5.2, the states of the
flow are generated.

The generation of them is done by the use of some thresholds defined in the
following tables; those were defined using the Empirical Cumulative Distribution
Function (ECDF) for each of the features for the 33% and 66% of its distribution
function [12]:

Table 2.1 Thresholds for labeling the flow based on its size [17]

Size S (Bytes) < 250 < 1100 >= 1100

Label Small Medium Large

20 Big Data for Digital Forensics

Table 2.2 Thresholds for labeling the flow based on its duration [17]

Duration (s) < 0.1 < 10 >= 10

Label Short Medium Long

Table 2.3 Threshold for labeling the flow based on its periodicity [17]

Time
difference (s)

< 1.05 < 1.3 < 5 >= 5

Periodicity Strong
Periodicity

Weak
Periodicity

Weak Non-
Periodicity

Strong Non-
periodicity

According to the threshold values mentioned previously, a key coding is applied
as in the following figure [32].
In addition to this, it is important to mention an additional feature, which is the
Symbol for time difference, representing the size of separation in time of the
flows, since a time difference of 1 second is not the same as a periodicity of 1
day [32].

Fig 2.3 Key assignment logic in Stratosphere IPS [32]

An example of the flow generated would be the following, related to the 4-tuple
192.168.0.150-46.105.227.94-80-tcp in the capture CTU-Malware-Capture-
Botnet-116-4 from the Stratosphere Dataset [32]:

88+H+y+H+H+h+H+H+H+y+y+y+y+y+H+H+y+y+H+y+h+y+y+H+y+y+y+H+h+y
+h+H+H+y+h+y+H+y+H+H+y+y+y+H+I+h+y+y+y+y+y+h+y+y+y+H+H+y+H+y+
y+y+y+y+H+H+H+y+y+y+y+y+y+y+y+y+h+h+y+h+y+y+y+h+H+H+H+H+H+H+y
+H+y+h+y+h+y+h+H+y+y+H+

Chapter 2. Stratosphere IPS 21

From the letters and symbols, we can interpret the following [32]:

 Weak and strong periodicity types, and sometimes lost (letter key ‘y’).

 Time difference of 1 to 5 minutes, related to the periodicity

 Size large present across the chain

2.5.4. Description of the Machine Learning: Markov Chain

Stratosphere later interprets these letters in a model based on a first order Markov
Chain. This is a model of the transition probabilities from one state letter to the
next one.

If for example we have the following chain of letters and symbols: a,a,c+d+d+
The Markov Chain and matrix would be the following:

Fig 2.4 Example of Markov Chain for “a,a,c+d+d+” [32]

Fig 2.5 Example of Markov Matrix for “a,a,c+d+d+” [32]

The behavioral model for each connection or 4-tuples would be the following [32]
[17]:

 Markov Matrix

22 Big Data for Digital Forensics

 Initialization Vector

 The probability of detecting itself

 Threshold of model

The last item of the model, the threshold. It is used as an upper limit for the
maximum distance between the model trained and the model evaluated [17] [1].
It is a value that let us know how similar the chains must be to be considered the
same behavior, and if not used there will always be some model selected as the
best one [12].

2.6. Limitations of current version of SLIPS

Some limitations were addressed for SLIPS in [17]. In the following sections, we
will address some additional ones that we consider would help advance the work
of SLIPS for the Network Forensics community:

2.6.1. Degradation of performance

There is a substantial degradation of performance on SLIPS.

From a test done with a capture from their dataset named CTU-Malware-Capture-
Botnet-168-1 [34], which corresponds to a capture of 3.8 days and 16 different IP
addresses involved and a total of 81920 records. To process this capture it took
a total of 19298 seconds or 5 hours and 21 minutes in an Ubuntu machine
(Ubuntu16.04, 64-bit, Base memory of 3076MB, 2 processors and 40GB of
storage).

We present the number of records processed (an approximation to the multiple
of 10 for presentation reasons) and the time passed since SLIPS started:

Table 2.4 Amount of records processed vs. Time Passed for dataset CTU-
Malware-Capture-Botnet-168-1 in SLIPS

Amount of Records Time Passed

2290 1 minute

6820 5 minutes

9800 7 minutes

13600 15 minutes

16400 20 minutes

26600 45 minutes

28100 60 minutes

31070 90 minutes

39340 120 minutes

52370 150 minutes

58250 180 minutes

66170 220 minutes

Chapter 2. Stratosphere IPS 23

To reinforce the idea from this section: If maintaining the same speed of the first
minute, it should have taken 36 minutes; or if maintaining the same speed of the
first 15 minutes, it should have taken 2 hours. As more time passes, this
degradation of performance becomes more relevant.

If analyzing further, in [33] there is a benchmarking available for the queue class
working as part of the multiprocessing package, which used in SLIPS. It’s
capacity in the same machine used in the previous tests is the following: 83246
average requests per second. This shows us there is an unused capacity
available in the machine running SLIPS.

2.6.2. Time windows usage in source code

From analyzing the source code [1], the script part in the processing of 4-tuples
before computing the Markov Chain uses the complete 4-tuple accumulated
chain. This is the complete concatenation of letters and symbols since the start
of the SLIPS program, even before that start of the SDW. This means 4-tuples
outside of the time window were being processed. This affects the output in 2
ways:

 All alarms appeared during the first few seconds or minutes of running
SLIPS, since there is penalty for computing the distance to the trained
Markov Chain models, only the initial records processed have an
opportunity of being correctly detected. For example, for the test done in
the section 2.6.1, the only alarms appearing were during the first 5
seconds of running SLIPS which correspond to the first 500 records being
processed. These alarms were the only ones reported in the final output.

 Since all connections are being processed, the more time it passes, the
more records will be gathered for processing, and the longer it will take.
This appears to be related to the limitation reported in 2.6.1.

Another important point to mention also related to the source code [1], it is that
the time windows are not fixed. They are related to the flow times of the flows
present. This also means that all time windows processed will always have traffic.
For example, if you have traffic collected of 1 hour, but all of it is allocated in the
first 5 minutes and the last 5 minutes, SLIPS will consider only 2 time windows
instead of 12. And also, traffic relations are used to compute the chains (section
2.5.2), this means that traffic must be pre-processed before being partition for
solutions as Spark (section 1.7.4).

2.6.3. Time windows size and convolutional networks

As mentioned in section 2.3, botnets tend to have temporal locality behavior, but
this may be shown in 1 minute or 30 minutes [18]. By having only one type of
time window, some behaviors are not accounted for or it limits the possibility for
their detection.

Taking concepts from Convolutional Neural Networks [35] from the field of Visual
Recognition, different layers account for different features; for example, the first
layer accounts for a “High Level Perspective”, where straight edges, simple colors

24 Big Data for Digital Forensics

and curves are identified. This can be applied in SLIPS, taking into account this
first for the trained models themselves, it would be a substantial addition to the
design.

2.6.4. Redundancy of periodicity in letters and symbols

In section 2.5.3, it was shown how SLIPS computes patterns as letters. If we
analyze this computation, we find that the periodicity is taking into account twice:

 In the periodicity threshold.

 In the symbol for time difference.

This redundancy in the information creates a higher number of characters to be
processed, and increase chance of noise to the final result, related to the 5V’s in
Big Data (section 1.7.1).
It is of value to remark that the periodicity and the time difference are not
computed in the same way as shown in section 2.5.2, but their concepts and
principles are closely related.

2.6.5. Documentation of thresholds for SDW

An important value used in SLIPS is the weighted score threshold (section 2.5.1),
but this is not accounted in any of the main documentation reviewed in this work
related to SLIPS: [2], [12], [17], [1].

As mentioned in the first chapter related to the principles of Digital Forensics
(section 1.1.1), it is of high important in Digital Forensics to document the
processes, in order to allow proper repeatability of the results.

Chapter 3. Proposal for Stratosphere Linux IPS 25

CHAPTER 3. PROPOSAL FOR STRATOSPHERE LINUX
IPS

3.1. Motivation

In section 2.6, some limitations to the current version of SLIPS were mentioned.
I consider the limitation discussed in section 2.6.1 related to performance the
most relevant across all the limitations presented, since with a better performance
of SLIPS, the more capability would be available for additional improvements in
other aspects, for example those related to section 2.6.3.

In the case of the limitation presented in section 2.6.2, the proposal will account
for a response to it and a comparison with the current SLIPS version will be made.

3.2. Description of proposal

The objective of this proposal is to take advantage of the distributing processing
available right now in the Python programming language.

Currently in SLIPS, there are only 2 processes, working simultaneously. In this
proposal, based on the MapReduce architecture [3], there will be one master
process, and many workers or slave processes working simultaneously, these
varying on the capacity of processors in the machine.

3.3. Description of package used in proposal

SLIPS is based on Python programming language. Python comes with the
availability of the multiprocessing package, which allows any programmer to
leverage the multiple processors available on a given machine, being it Windows
or Unix [33]. The classes and objects part of this package and used for this
proposal are the following:

3.3.1. Proxy Objects

They provide a way to create data which can be shared between different
processes. A manager object controls a server process which manages shared
objects and return proxies for access. It supports types as lists, dictionaries,
between others [33].

This type of objects have lower performance than Queues (mentioned in section
2.6.1), for example:

Table 3.1 Comparison of performance between distinct objects in Ubuntu
machine (Ubuntu16.04, 64-bit, Base memory of 3076MB, 2 processors and 40GB
of storage) based on the benchmarking script from [33]

26 Big Data for Digital Forensics

Type of Object Average Requests Per Second

Multiprocessing.Queue Object 83246

Queue managed by Server Process
(Proxy Object)

5682

List Object (Python Default) 25896182

List Managed by Server Process
(Proxy Object)

14002

From table 3.1, it can be seen that the proxy objects have a lower performance
than the other objects, but it allows us with the possibility of having a shared state
across distinct processes [33], and without the limitation of the first-in first-out
(FIFO) of the Queue.

3.3.2. Pool

This class allows means of parallelizing the execution of a function across
processes. In our case, this class represents a pool of worker processes [33].

3.3.3. Cpu_count

An additional function, which is relevant for this work and has been useful for this
proposal is to verify the amount of processors through the function cpu_count(),
which is part of the Multiprocessing package [33].

A common practice is to use two times the amount of processors for the amount
of workers, which is used in this work and which has demonstrate to be the right
amount during the troubleshooting tests [36].

3.4. Implementation of Proposal

As mentioned in 2.5.1, the main SLIPS source works based on two processes,
the main one and the background, and as seen in Fig 2.1 and Fig 2.2, the
complexity of the code lies in the background process.

In this proposal, as we are going to see in the following sub-sections, the
complexity of the Main Process has been increased in favor of a distribution of
data across workers, this is all done based on the current source code of SLIP
[1]. The source code of the proposed solution based on MapReduce can be found
in Annex A.

3.4.1. Main Process

The main process is in charge of the main following tasks:

Chapter 3. Proposal for Stratosphere Linux IPS 27

 Pre-process all flow records: Flow records are allocated according to Time
Windows. This is passed to a List Proxy object, so this data can be shared
by many processes.

 Map detection to workers: processed flows are passed to a pool of
workers, where each worker or process takes the data of each Time
Window separately. The main process waits for the Map detection of all
workers to finish processing the complete data.

 Reduce detection output: The output of the Map detection is reduced to an
alarm object.

 Print Final alarms: All alarms are printed from the alarms object.

28 Big Data for Digital Forensics

Pre-Process Input Data

Start

Create slotlist from
Manager.list() class

Create a pool of workers
the double of the size of
the processors available

Append slot_data to
slotlist

End

MAIN PROCESS

Map slotlist to pool of
workers with function

mapDetection to ouputs

Is it first flow?

Is flow outside of Time
Window?

Is it the last line of flows?

Extract time from line in
input data

Set time window start and end
according to first flow time

Start auxiliary variable slot_data

Append slot_data to slotlist

Append flow data to
slot_data

Set time window start and end
according to flow time

Restart slot_data

Wait for the pool of
workers to process

mapDetection

Reduce result from
outputs with function

reduceDetectionResults
to alerts object

Print alerts object with
function print_final

After this point, all flows are
divided in Time Windows

This is necesssary to compute the
complete data in the Reduce part

Fig 3.1 Workflow of main process in proposed solution

Chapter 3. Proposal for Stratosphere Linux IPS 29

A further description of the Map and Reduce related functions will be given in the
following sub-sections. The final alarm function will be omitted, since it is not
relevant for the purpose of this work.

3.4.2. Function: MapDetection

The detection is done according to the default Markov Chain models passed to
the function. The function receives as an input the flows of a complete Time
Window.

In the Fig 3.2, the workflow of this function is presented. All the detections are
aggregated to a variable called ipHandler, which collects the detections per IP.
When finished, the Map detection returns an ipHandler object per Time Window,

30 Big Data for Digital Forensics

Repeat for all flows

Start

Apply detection to 4
tuple with default

Markov Chain models
and output if malicious or

normal

Process 4-tuple:
 Generate 4-tuple from

flow
 Check if 4-tuple object

exists in
tuples_in_this_time_sl
ot variable, if it doesn t
exist instantiate it and
save it in variable, and
load previous object if
it does

 Based on flow values,
compute letter/key and
append it to 4-tuple
object chain state
attribute

MAPDETECTION FUNCTION

Is 4-tuple chain state
longer than 3?

Get source IP from initial
flow values and process it:

 Check if IP object exists
in ipHandler, if it
doesn t exist
instantiate it and save
it in ipHandler, or load
previous object if it
does

 Append output to IP
object

Omit detection and
indicate output as false

NO

YES

NO

YES

Start variables:
 tuples_in_this_time_

slot (for saving
tuples)

 ipHandler (for saving
Ips, and final output)

Return ipHandler

Was it last flow to be
processed?

Fig 3.2 Workflow of function MapDetection in proposed solution

Chapter 3. Proposal for Stratosphere Linux IPS 31

3.4.3. Function: ReduceDetectionResults

Having as an input the ipHandler per Time Window, we reduce all this data to
one alarm object.

In the Fig 3.3, the workflow of this function is presented. All this data is processed
and aggregated to the alarm object, also, the computation for the scores related
to the SDW are used in the iterations through each Time Window, in order to
determine if any IP address is malicious, to generate, print and aggregate the
alarm to the alarms object. The complete list of alarms is saved and returned in
the alarms object.

Repeat for each ipHandler in ipHandlers list

Start

Start alert object

REDUCEDETECTIONRESULTS
FUNCTION

Process all IP addresses in
ipHandler object:

 Get Weighted Score*
 Saved it in

ws_per_tw variable

*Weighted Score = Ratio([Total Infected Tuples]/[Total Tuples])*Sumatory([Times
detected per Tuple]/[Times checked per tuple])

From saved weighted scores
in ws_per_tw, calculate
average for the last 10
ipHandlers (SDW) and
compare it to default

threshold

Is average of SDW less
than threshold?

IP Address is normal

IP Address is malicious ,
alert of malicious

appended to alert object.
Also, print alert

YES

NO

Return alert object

Each ipHandler
represent one
Time Window

Fig 3.3 Workflow of function ReduceDetectionResults in proposed solution

32 Big Data for Digital Forensics

3.5. Comparison of Tests between Proposal and SLIPS

For the comparison of the performance of the proposal using MapReduce work
and SLIPS, the following two public captures will be used [31]:

 CTU-Malware-Capture-Botnet-168-1: network traffic of 3.8 days which
includes a machine infected with malware Andromeda, mixed with
normal traffic. This capture has a total of 81920 records [34].

 CTU-Malware-Capture-Botnet-169-3: network traffic of 8.13 days which
includes a machine infected with malware Miuref, mixed with normal
traffic. This capture has a total of 32109 records [37].

This two captures will be run twice, 50% of their records and 100% of them for
each solution. This is done to better distinguish performance over time and over
the size of the dataset. It is of importance to remark, that both solutions will be
using the default models available together with the SLIPS source code [1].

Table 3.2 shows us the amount of Time Windows present across the datasets,
taking into account the methodology used by SLIPS as mentioned in section
2.6.2.

The results of these tests are shown in Table 3.3 for SLIPS and in Table 3.4 for
the proposed solution using MapReduce. From the data of these tables, two
ratio tables are generated; Table 3.5 to compare their performances over time
and Table 3.6 to compare the amount of alarms generated for each solution.

Table 3.2 Amount of Time Windows processed for both SLIPS and proposal
using MapReduce

Capture Amount of Time Windows

168-1 at 50% 637

168-1 at 100% 966

169-3 at 50% 581

169-3 at 100% 1937

Table 3.3 Performance of SLIPS with datasets CTU-Malware-Capture-Botnet-
168-1 and CTU-Malware-Capture-Botnet-169-3 on Ubuntu machine
(Ubuntu16.04, 64-bit, Base memory of 3076MB, 2 processors and 40GB of
storage)

Capture Total IP
addresses
detected as
malicious

Total IP
addresses
detected

Total alarms
generated

Time
used in
seconds

Time
used in
minutes

168-1 at
50%

1 14 10 5304.70 88.41

168-1 at
100%

1 16 10 19298.13 321.64

Chapter 3. Proposal for Stratosphere Linux IPS 33

169-3 at
50%

1 85 49 541.93 9.03

169-3 at
100%

1 94 49 934.96 15.58

Table 3.4 Performance of proposal using MapReduce with datasets CTU-
Malware-Capture-Botnet-168-1 and CTU-Malware-Capture-Botnet-169-3 on
Ubuntu machine (Ubuntu16.04, 64-bit, Base memory of 3076MB, 2 processors
and 40GB of storage)

Capture Total IP
addresses
detected as
malicious

Total IP
addresses
detected

Total alarms
generated

Time
used in
seconds

Time
used in
minutes

168-1 at
50%

1 14 445 22.16 0.37

168-1 at
100%

1 16 501 44.60 0.74

169-3 at
50%

1 85 529 22.91 0.38

169-3 at
100%

1 94 577 35.08 0.58

Table 3.5 Ratio between performance times of SLIPS and proposal using
MapReduce with datasets CTU-Malware-Capture-Botnet-168-1 and CTU-
Malware-Capture-Botnet-169-3 on Ubuntu machine (Ubuntu16.04, 64-bit, Base
memory of 3076MB, 2 processors and 40GB of storage)

 Ratio of performance times between SLIPS and
Proposal using Map Reduce

168-1 at 50% 239:1

168-1 at 100% 433:1

169-3 at 50% 24:1

169-3 at 100% 27:1

Table 3.6 Ratio between amount of alarms generated by SLIPS and proposal
using MapReduce with datasets CTU-Malware-Capture-Botnet-168-1 and CTU-
Malware-Capture-Botnet-169-3 on Ubuntu machine (Ubuntu16.04, 64-bit, Base
memory of 3076MB, 2 processors and 40GB of storage)

 Ratio of amount of alarms generated between
SLIPS and Proposal using Map Reduce

168-1 at 50% 1:45

168-1 at 100% 1:50

169-3 at 50% 1:11

169-3 at 100% 1:12

34 Big Data for Digital Forensics

An important remark regarding these tests is that the IP detected for each of
them was the verified infected machine.

From Table 3.5, regarding the performance over time, the proposal using
MapReduce performs over time from 24 to 433 times faster than SLIPS,
depending on the amount of records evaluated.

From Table 3.6, regarding the alarms generated, SLIPS maintains a constant
amount of alarms, for 50% or 100% of the datasets, in contrast to the proposal
using MapReduce, which generates an increased amount of alarms when
having more traffic as an input. The alarms generated by the proposal are from
11 to 50 times greater than SLIPS, depending on the amount of records
evaluated, which indicates there is undetected traffic as reported in the
limitation mentioned in section 2.6.2 due to the usage of Time Windows. This
additional information points us toward additional insights regarding SLIPS:

 The proposed usage of Time Windows for the detection is a better
practice for the SLIPS core detection (section 2.5.4), since it shows an
increase amount of alarm for the infected traffic, which indicates an
improve detection of the infected traffic.

 For the proposed solution using MapReduce, the alarms are computed
regarding the output information from each time window (section 3.4). If
comparing the Table 3.2 and the Table 3.4, there are Time Windows with
infected traffic that have not been detected, which can be used for
improving the default Markov Chain models and adjusting the thresholds
of the SLIPS core detection (section 2.5.4).

Annex A 35

CONCLUSIONS

The field of Digital Forensics and its branch of Network Forensics have gain
relevance for the consequences of their work [9]. Across the different types of
attacks inside the Network Forensic field, one that is recurring and becoming
wider is the DDoS attack delivered by botnets. The Internet is getting less and
less safer, in countries such as China, United States, South Korea or Russia, we
find that by the end of 2017 there were more than 450 daily attacks delivered by
botnets, with a power of 15.8 million packets per second, and with the demand of
ransoms for stopping the attacks in some cases [9].

Related to Network Forensics, we find the IDS solutions, based on signature-
based and heuristic approaches. Threats are evolving and IDS together with
them. Nowadays, IDS solutions are facing new challenges that weren’t there 10
years ago, and which can be tackled with usage of Big Data techniques and tools.

The goal of this work was to demonstrate the usability of Big Data techniques to
improve the management of big amounts of data in a real case using real data in
the Network Forensics scenario. SLIPS was used in this demonstration, for its
use of traffic behaviors, machine learning encompassed with usage of real
datasets, since most of the related work is based on synthetic botnet or normal
traffic (section 1.7.4 and chapter 2 of [12]).

SLIPS focuses on using two processes, but the work or tasks is not balance or
distributed across them, with a degradation of performance over time as seen in
2.6.1. The main process from SLIPS didn’t perform any pre-processing for the
data, passing only raw traffic data to the internal processing queue.

By using a MapReduce-based approach in this work proposal, to redistribute the
SLIPS internal tasks, we can find performance improvements for over 27, up to
433 times in comparison to the original source code and the 100% of records for
the datasets presented. The more traffic flows to process, the greater the
difference. This was thanks to the redistribution of detections across multiple
workers as part of the MapReduce architecture.

An additional benefit of the proposal using MapReduce is the increased amount
of alarms, which shows us the continuous infected traffic undetected by SLIPS
and an unseen higher efficiency of the SLIPS core detection. As suggested in
section 3.5, this additional information can be used to improve the default Markov
Chain models and the threshold parameters of SLIPS [1].

The amount of traffic found in the datasets does not justify the use of a Hadoop
cluster to distribute the tasks across different machines, the usage of a single
server has been enough to demonstrate the leverage of unutilized capacity in

36 Big Data for Digital Forensics

front of us in a single server. Still, for a real life enterprise solution, this would be
encouraged, with the benefits of increased capacity and a fault tolerant solution.

An important limitation found for implementing the solution was the usage of Time
Windows and chain states, they limit the implementation of the detection to be
sequential, this is why for the Reduction part, a wait was implemented. A future
option of research would be to perform an additional pre-process of data for the
Time Windows, and separate the data on 4-tuples or source IPs, in order to
reduce the complexity of data handled by each worker.

As it has been mentioned in section 1.7.4, some Apache Spark implementations
are faster than Hadoop MapReduce; an additional example of this, it’s a publicly
held contest where Spark broke records previously held by Hadoop MapReduce
by being 3 times faster with 10 times less resources [38]. A future field of research
for SLIPS would be to include the usage of Apache Spark [39] in order to compare
the results with the present proposal.

In terms of sustainability considerations, this work will permit the recognition of a
better utilization and distribution of resources with the hope of encouraging
people to do more with less: a single-server can have dormant capacities which
can be enabled with new Big Data approaches.

In terms of ethical considerations: the usage of flow records information did not
consider any of the payload, so there is complete respect for the privacy of the
information transmitted.

Annex A 37

ACRONYMS

 C&C Command and Control
 CTU Czech Technical University
 DFRWS Digital Forensics Research Workshop
 DDoS Distributed Denial of Service
 ECDF Empirical Cumulative Distribution Function
 FIFO First-In, First-Out
 HDFS Hadoop Distributed File System
 HTTP Hypertext Transfer Protocol
 ICMP Internet Control Message Protocol
 IDS Intrusion Detection System
 IoT Internet of Things
 IPS Intrusion Protection System
 NoSQL Non SQL / Not Only SQL
 P2P Peer-to-peer
 RFC Request for Comments
 SDW Sliding Detection Windows
 SIEM Security Information and Event Management
 SLIPS Stratosphere Linux Intrusion Protection System
 SQL Structured Query Language
 TCP Transmission Control Protocol
 UDP User Datagram Protocol

38 Big Data for Digital Forensics

REFERENCES

[1] S. Garcia, "Stratosphere Linux IPS (slips) Version 0.3.4," GitHub, Inc.,
[Online]. Available:
https://github.com/stratosphereips/StratosphereLinuxIPS. [Accessed 17
November 2017].

[2] "Stratosphere IPS," [Online]. Available: https://stratosphereips.org/.
[Accessed 19 November 2017].

[3] J. Dean and S. Ghemawat, MapReduce: Simplified Data Processing on
Large Clusters, Google, Inc., 2008.

[4] Collective work of all DFRWS attendees, "A Road Map for Digital Forensic
Research," in The Digital Forensic Research Conference, Utica, New York,
2001.

[5] R. Messier, Network Forensics, John Wiley & Sons, Inc., 2017.

[6] G. Alessandro, "Digital Forensics as a Big Data Challenge," ISSE 2013
Securing Electronic Business Processes. Springer Vieweg, Wiesbaden, pp.
197-203, 2013.

[7] N. Kumari and A. K. Mohapatra, "An Insight into Digital Forensics Branches
and," in 2016 International Conference on Computational Techniques in
Information and Communication Technologies (ICCTICT), New Delhi, India,
2016.

[8] "What is network forensics? - Definition from WhatIs.com," [Online].
Available: http://searchsecurity.techtarget.com/definition/network-forensics.
[Accessed 1 July 2017].

[9] "DDoS attacks in Q3 2017," [Online]. Available: https://securelist.com/ddos-
attacks-in-q3-2017/83041/. [Accessed 11 February 2018].

[10] J. François, S. Wang, W. Bronzi, R. State and T. Engel, "BotCloud:
Detecting Botnets Using MapReduce," IEEE, Luxembourg, 2011.

[11] "What is a Botnet?," Kaspersky Lab, [Online]. Available:
https://www.kaspersky.com/resource-center/threats/botnet-attacks.
[Accessed 10 December 2017].

[12] S. García, "Identifying, Modeling and Detecting Botnet Behaviors in the
Network," Universidad Nacional del Centro de la Provincia de Buenos Aires,
2014.

[13] "The Spamhaus Project - The Top 10 Worst Botnet Countries," [Online].
Available: https://www.spamhaus.org/statistics/botnet-cc/. [Accessed 7
February 2018].

[14] S. Marchal, X. Jiang, R. State and T. Engel, "A Big Data Architecture for
Large Scale Security Monitoring," in 2014 IEEE International Congress on
Big Data, 2014.

[15] H. Debar, "An Introduction to Intrusion-Detection Systems," IBM Research,
Zurich Research Laboratory, Rüschlikon, Switzerland, 2000.

[16] K. Nalavade and B. Meshram, "Comparative Study of IDS and IPS,"
BIOINFO Computer Engineering, vol. 1, no. 1, pp. 01-04, 2011.

Annex A 39

[17] O. Lukáš, "Identifying Malicious Hosts by Aggregation of Partial Detections,"
Czech Technical University in Prague, Faculty of Electrical Engineering,
Department of Cybernetics, Prague, 2017.

[18] S. García, M. Grill, J. Stiborek and A. Zunino, "An Empirical Comparison of
Botnet Detection Methods," Computers & Security, vol. 45, pp. 100-123,
2014.

[19] "What is Snort?," Cisco, [Online]. Available: https://www.snort.org/faq/what-
is-snort. [Accessed 19 November 2017].

[20] «What is the relationship between Snort and Cisco?,» Cisco Systems, [En
línia]. Available: https://www.snort.org/faq/what-is-the-relationship-
between-snort-and-cisco. [Últim accés: 12 February 2018].

[21] S. Garcia, «Development of the Stratosphere IPS,» 21 January 2015. [En
línia]. Available: https://stratosphereips.org/development-of-the-
stratosphere-ips.html. [Últim accés: 1 November 2017].

[22] T. Mahmood and U. Afzal, "Security Analytics: Big Data Analytics for
Cybersecurity," in 2013 2nd National Conference on Information Assurance
(NCIA), 2013.

[23] R. Jacobson, "2.5 quintillion bytes of data created every day. How does
CPG & Retail manage it?," IBM, 24 April 2013. [Online]. Available:
https://www.ibm.com/blogs/insights-on-business/consumer-products/2-5-
quintillion-bytes-of-data-created-every-day-how-does-cpg-retail-manage-
it/. [Accessed 12 February 2018].

[24] Big Data Analytics Working Group, "Big Data Analytics for Security
Intelligence," Cloud Security Alliance, 2013.

[25] "A Case Study In Security Big Data Analysis (2012)," [Online]. Available:
http://www.darkreading.com/monitoring/a-case-study-in-security-big-data-
analys/232602339. [Accessed 12 July 2017].

[26] R. Zuech, T. Khoshgoftaar and R. Wald, "Intrusion detection and Big
Heterogeneous Data: a Survey," Journal of Big Data, 2015.

[27] J. Dean, Experiences with MapReduce, an Abstraction for Large-Scale
Computation, Google, Inc., 2006.

[28] "Apache Storm," The Apache Software Foundation, [Online]. Available:
http://storm.apache.org/index.html. [Accessed 5 February 2018].

[29] E. Bou-Harb, M. Debbabi and C. Assi, "Big Data Behavioral Analytics Meet
Graph Theory: On Effective Botnet Takedowns," IEEE, 2017.

[30] "Carna Botnet Scans," Center for Applied Internet Data Analysis, [Online].
Available: https://www.caida.org/research/security/carna/. [Accessed 15
September 2017].

[31] "Dataset," [Online]. Available:
https://stratosphereips.org/category/dataset.html. [Accessed 14 January
2018].

[32] "Stratosphere IPS. Generation of the Behavioral Models," [Online].
Available: https://stratosphereips.org/stratosphere-ips-generation-of-the-
behavioral-models.html. [Accessed 17 November 2017].

[33] "16.6. multiprocessing — Process-based “threading” interface — Python
2.7.14 documentation," [Online]. Available:

40 Big Data for Digital Forensics

https://docs.python.org/2/library/multiprocessing.html. [Accessed 27
January 2018].

[34] "CTU-Malware-Capture-Botnet-168-1," [Online]. Available:
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-168-
1/. [Accessed 10 January 2018].

[35] "A Beginner's Guide To Understanding Convolutional Neural Networks,"
[Online]. Available:
https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner's-Guide-
To-Understanding-Convolutional-Neural-Networks/. [Accessed 20 March
2017].

[36] D. Hellmann, The Python Standard Library by Example, Boston, United
States: Addison-Wesley, Pearson Education, Inc., 2011.

[37] "CTU-Malware-Capture-Botnet-169-3," [Online]. Available:
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-169-
3/. [Accessed 10 January 2018].

[38] R. Xin, "Apache Spark the fastest open source engine for sorting a
petabyte," 5 November 2014. [Online]. Available:
https://databricks.com/blog/2014/10/10/spark-petabyte-sort.html.
[Accessed 11 February 2018].

[39] The Apache Software Foundation, «Apache Spark™ - Lightning-Fast
Cluster Computing,» The Apache Software Foundation, [En línia]. Available:
https://spark.apache.org/. [Últim accés: 13 February 2018].

[40] G. Alessandro, «Digital Forensics as a Big Data Challenge,» ISSE 2013
Securing Electronic Business Processes. Springer Vieweg, Wiesbaden, pp.
197-203, 2013.

[41] Big Data Analytics Working Group, «Big Data Analytics for Security
Intelligence,» Cloud Security Alliance, 2013.

[42] J. François, S. Wang, W. Bronzi, R. State i T. Engel, «BotCloud: Detecting
Botnets Using MapReduce,» IEEE, Luxembourg, 2011.

[43] S. Marchal, X. Jiang, R. State i T. Engel, «A Big Data Architecture for Large
Scale Security Monitoring,» de 2014 IEEE International Congress on Big
Data, 2014.

[44] O. Lukáš, «Identifying Malicious Hosts by Aggregation of Partial
Detections,» Czech Technical University in Prague, Faculty of Electrical
Engineering, Department of Cybernetics, Prague, 2017.

[45] S. García, M. Grill, J. Stiborek i A. Zunino, «An Empirical Comparison of
Botnet Detection Methods,» Computers & Security, vol. 45, pp. 100-123,
2014.

[46] S. García, «Identifying, Modeling and Detecting Botnet Behaviors in the
Network,» Universidad Nacional del Centro de la Provincia de Buenos
Aires, 2014.

[47] T. Mahmood i U. Afzal, «Security Analytics: Big Data Analytics for
Cybersecurity,» de 2013 2nd National Conference on Information
Assurance (NCIA), 2013.

[48] R. Zuech, T. Khoshgoftaar i R. Wald, «Intrusion detection and Big
Heterogeneous Data: a Survey,» Journal of Big Data, 2015.

Annex A 41

[49] E. Bou-Harb, M. Debbabi i C. Assi, «Big Data Behavioral Analytics Meet
Graph Theory: On Effective Botnet Takedowns,» IEEE, 2017.

42 Big Data for Digital Forensics

 ANNEX A

The source code of the proposed solution using MapReduce is the following, with
the remark that this is meant to replace only the slips.py, part of the SLIPS source
code:

#!/usr/bin/python -u

This file is part of the Stratosphere Linux IPS

See the file 'LICENSE' for copying permission.

Author: Sebastian Garcia. eldraco@gmail.com ,

sebastian.garcia@agents.fel.cvut.cz

#Reference

0:starttime, 1:dur, 2:proto, 3:saddr, 4:sport, 5:dir, 6:daddr: 7:dport,

8:state, 9:stos, 10:dtos, 11:pkts, 12:bytes

import sys

import os #added by Alfredo

import operator

import signal

from colors import *

from datetime import datetime

from datetime import timedelta

import argparse

import multiprocessing

from multiprocessing import Pool, Manager

import time

from modules.markov_models_1 import __markov_models__

from os import listdir

from os.path import isfile, join

from ip_handler import IpHandler

from utils import SignalHandler

import random

from alerts import *

initial_time = time.time() # starting time

line_number = 0

#check if the log directory exists, if not, create it

logdir_path = "./logs"

if not os.path.exists(logdir_path):

 os.makedirs(logdir_path)

#file for logging

#lognamefile = logdir_path+"/" + 'log_' + datetime.now().strftime('%Y-%m-%d

%H:%M:%S')+'.txt';

logfile = logdir_path+"/" + 'logfile' + '.txt';

version = '0.3.5_beta101_alfredo'

def timing(f):

 """ Function to measure the time another function takes."""

 def wrap(*args, **kwargs):

 time1 = time.time()

 ret = f(*args, **kwargs)

 time2 = time.time()

 print '%s function took %0.3f ms' % (f.func_name, (time2-

time1)*1000.0)

 return ret

 return wrap

#Tuple

class Tuple(object):

Annex A 43

 """ The class to simply handle tuples """

 def __init__(self, tuple4):

 self.id = tuple4

 self.amount_of_flows = 0

 self.src_ip = tuple4.split('-')[0]

 self.dst_ip = tuple4.split('-')[1]

 self.protocol = tuple4.split('-')[3]

 self.state_so_far = ""

 self.winner_model_id = False

 self.winner_model_distance = float('inf')

 self.proto = ""

 self.datetime = ""

 self.T1 = False

 self.T2 = False

 self.TD = False

 self.current_size = -1

 self.current_duration = -1

 self.previous_size = -1

 self.previous_duration = -1

 self.previous_time = -1

 # Thresholds

 self.tto = timedelta(seconds=3600)

 self.tt1 = float(1.05)

 self.tt2 = float(1.3)

 self.tt3 = float(5)

 self.td1 = float(0.1)

 self.td2 = float(10)

 self.ts1 = float(250)

 self.ts2 = float(1100)

 # The state

 self.state = ""

 # Final values for getting the state

 self.duration = -1

 self.size = -1

 self.periodic = -1

 self.color = str

 # By default print all tuples. Depends on the arg

 self.should_be_printed = True

 self.desc = ''

 # After a tuple is detected, min_state_len holds the lower letter

position in the state

 # where the detection happened.

 self.min_state_len = 0

 # After a tuple is detected, max_state_len holds the max letter

position in the state

 # where the detection happened. The new arriving letters to be

detected are between max_state_len and the real end of the state

 self.max_state_len = 0

 self.detected_label = False

 def set_detected_label(self, label):

 self.detected_label = label

 def unset_detected_label(self):

 self.detected_label = False

 def get_detected_label(self):

 return self.detected_label

 def get_state_detected_last(self):

 if self.max_state_len == 0:

 # First time before any detection

 return self.state[self.min_state_len:]

 # After the first detection

 return self.state[self.min_state_len:self.max_state_len]

 def set_min_state_len(self, state_len):

 self.min_state_len = state_len

44 Big Data for Digital Forensics

 def get_min_state_len(self):

 return self.min_state_len

 def set_max_state_len(self, state_len):

 self.max_state_len = state_len

 def get_max_state_len(self):

 return self.max_state_len

 def get_protocol(self):

 return self.protocol

 def get_state(self):

 return self.state

 def set_verbose(self, verbose):

 self.verbose = verbose

 def set_debug(self, debug):

 self.debug = debug

 def add_new_flow(self, column_values):

 """ Add new stuff about the flow in this tuple """

 # 0:starttime, 1:dur, 2:proto, 3:saddr, 4:sport, 5:dir, 6:daddr:

7:dport, 8:state, 9:stos, 10:dtos, 11:pkts, 12:bytes

 # Store previous

 self.previous_size = self.current_size

 self.previous_duration = self.current_duration

 self.previous_time = self.datetime

 if self.debug > 2:

 print 'Adding flow {}'.format(column_values)

 # Get the starttime

 self.datetime = datetime.strptime(column_values[0], '%Y/%m/%d

%H:%M:%S.%f')

 # Get the size

 try:

 self.current_size = float(column_values[12])

 except ValueError:

 # It can happen that we dont have this value in the binetflow

 self.current_size = 0.0

 # Get the duration

 try:

 self.current_duration = float(column_values[1])

 except ValueError:

 # It can happen that we dont have this value in the binetflow

 self.current_duration = 0.0

 # Get the protocol

 self.proto = str(column_values[2])

 # increase by 1 amount of flows

 self.amount_of_flows += 1

 # Update value of T1

 self.T1 = self.T2

 try:

 # Update value of T2

 self.T2 = self.datetime - self.previous_time

 # Are flows sorted?

 if self.T2.total_seconds() < 0:

 # Flows are not sorted

 if self.debug > 2:

 print '@',

 # What is going on here when the flows are not ordered?? Are

we losing flows?

 except TypeError:

 self.T2 = False

 # Compute the rest

 self.compute_periodicity()

 self.compute_duration()

Annex A 45

 self.compute_size()

 self.compute_state()

 self.compute_symbols()

 if self.debug > 4:

 print '\tTuple {}. Amount of flows so far:

{}'.format(self.get_id(), self.amount_of_flows)

 def compute_periodicity(self):

 # If either T1 or T2 are False

 if (isinstance(self.T1, bool) and self.T1 == False) or

(isinstance(self.T2, bool) and self.T2 == False):

 #self.periodicity = -1

 # Alfredo: error in SLIPS maintained for comparison reasons

 self.periodic = -1

 elif self.T2 >= self.tto:

 t2_in_hours = self.T2.total_seconds() / self.tto.total_seconds()

 for i in range(int(t2_in_hours)):

 self.state += '0'

 elif self.T1 >= self.tto:

 t1_in_hours = self.T1.total_seconds() / self.tto.total_seconds()

 for i in range(int(t1_in_hours)):

 self.state += '0'

 if not isinstance(self.T1, bool) and not isinstance(self.T2, bool):

 try:

 if self.T2 >= self.T1:

 self.TD = timedelta(seconds=(self.T2.total_seconds() /

self.T1.total_seconds())).total_seconds()

 else:

 self.TD = timedelta(seconds=(self.T1.total_seconds() /

self.T2.total_seconds())).total_seconds()

 except ZeroDivisionError:

 # Alfredo: Strongly periodic

 self.TD = 1

 # Decide the periodic based on TD and the thresholds

 if self.TD <= self.tt1:

 # Strongly periodic

 self.periodic = 1

 elif self.TD < self.tt2:

 # Weakly periodic

 self.periodic = 2

 elif self.TD < self.tt3:

 # Weakly not periodic

 self.periodic = 3

 else:

 self.periodic = 4

 if self.debug > 3:

 print '\tPeriodic: {}'.format(self.periodic)

 def compute_duration(self):

 if self.current_duration <= self.td1:

 self.duration = 1

 elif self.current_duration > self.td1 and self.current_duration <=

self.td2:

 self.duration = 2

 elif self.current_duration > self.td2:

 self.duration = 3

 if self.debug > 3:

 print '\tDuration: {}'.format(self.duration)

 def compute_size(self):

 if self.current_size <= self.ts1:

 self.size = 1

 elif self.current_size > self.ts1 and self.current_size <= self.ts2:

 self.size = 2

 elif self.current_size > self.ts2:

 self.size = 3

 if self.debug > 3:

 print '\tSize: {}'.format(self.size)

46 Big Data for Digital Forensics

 def compute_state(self):

 if self.periodic == -1:

 if self.size == 1:

 if self.duration == 1:

 self.state += '1'

 elif self.duration == 2:

 self.state += '2'

 elif self.duration == 3:

 self.state += '3'

 elif self.size == 2:

 if self.duration == 1:

 self.state += '4'

 elif self.duration == 2:

 self.state += '5'

 elif self.duration == 3:

 self.state += '6'

 elif self.size == 3:

 if self.duration == 1:

 self.state += '7'

 elif self.duration == 2:

 self.state += '8'

 elif self.duration == 3:

 self.state += '9'

 elif self.periodic == 1:

 if self.size == 1:

 if self.duration == 1:

 self.state += 'a'

 elif self.duration == 2:

 self.state += 'b'

 elif self.duration == 3:

 self.state += 'c'

 elif self.size == 2:

 if self.duration == 1:

 self.state += 'd'

 elif self.duration == 2:

 self.state += 'e'

 elif self.duration == 3:

 self.state += 'f'

 elif self.size == 3:

 if self.duration == 1:

 self.state += 'g'

 elif self.duration == 2:

 self.state += 'h'

 elif self.duration == 3:

 self.state += 'i'

 elif self.periodic == 2:

 if self.size == 1:

 if self.duration == 1:

 self.state += 'A'

 elif self.duration == 2:

 self.state += 'B'

 elif self.duration == 3:

 self.state += 'C'

 elif self.size == 2:

 if self.duration == 1:

 self.state += 'D'

 elif self.duration == 2:

 self.state += 'E'

 elif self.duration == 3:

 self.state += 'F'

 elif self.size == 3:

 if self.duration == 1:

 self.state += 'G'

 elif self.duration == 2:

 self.state += 'H'

 elif self.duration == 3:

 self.state += 'I'

Annex A 47

 elif self.periodic == 3:

 if self.size == 1:

 if self.duration == 1:

 self.state += 'r'

 elif self.duration == 2:

 self.state += 's'

 elif self.duration == 3:

 self.state += 't'

 elif self.size == 2:

 if self.duration == 1:

 self.state += 'u'

 elif self.duration == 2:

 self.state += 'v'

 elif self.duration == 3:

 self.state += 'w'

 elif self.size == 3:

 if self.duration == 1:

 self.state += 'x'

 elif self.duration == 2:

 self.state += 'y'

 elif self.duration == 3:

 self.state += 'z'

 elif self.periodic == 4:

 if self.size == 1:

 if self.duration == 1:

 self.state += 'R'

 elif self.duration == 2:

 self.state += 'S'

 elif self.duration == 3:

 self.state += 'T'

 elif self.size == 2:

 if self.duration == 1:

 self.state += 'U'

 elif self.duration == 2:

 self.state += 'V'

 elif self.duration == 3:

 self.state += 'W'

 elif self.size == 3:

 if self.duration == 1:

 self.state += 'X'

 elif self.duration == 2:

 self.state += 'Y'

 elif self.duration == 3:

 self.state += 'Z'

 def compute_symbols(self):

 if not isinstance(self.T2, bool):

 if self.T2 <= timedelta(seconds=5):

 self.state += '.'

 elif self.T2 <= timedelta(seconds=60):

 self.state += ','

 elif self.T2 <= timedelta(seconds=300):

 self.state += '+'

 elif self.T2 <= timedelta(seconds=3600):

 self.state += '*'

 if self.debug > 3:

 print '\tTD:{}, T2:{}, T1:{}, State: {}'.format(self.TD, self.T2,

self.T1, self.state)

 def get_id(self):

 return self.id

 def __repr__(self):

 return('{} [{}] ({}): {}'.format(self.color(self.get_id()), self.desc,

self.amount_of_flows, self.state))

 def print_tuple_detected(self):

 """

48 Big Data for Digital Forensics

 Print the tuple. The state is the state since the last detection of

the tuple. Not everything

 """

 return('{} [{}] ({}): {} Detected as:

{}'.format(self.color(self.get_id()), self.desc, self.amount_of_flows,

self.get_state_detected_last(), self.get_detected_label()))

 def set_color(self, color):

 self.color = color

def mapDetection(slotline, verbose = 1, debug = 0, whois = False):

 ipHandler = IpHandler(verbose, debug, whois)

 current_index = slotline['index']

 #print 'the current index is {}'.format(current_index)

 tuples_in_this_time_slot = {}

 values = slotline['values']

 for flow_values in values:

 #print flow

 tuple4 = flow_values[3] + '-' + flow_values[6] + '-' + flow_values[7]

+ '-' + flow_values[2]

 flowtime = datetime.strptime(flow_values[0], '%Y/%m/%d %H:%M:%S.%f')

 #Review if tuple already exists

 if tuple4 in tuples_in_this_time_slot:

 tuple = tuples_in_this_time_slot[tuple4]

 else:

 tuple = Tuple(tuple4)

 tuple.set_verbose(verbose)

 tuple.set_debug(debug)

 tuples_in_this_time_slot[tuple4] = tuple

 #Add flow and compute chain states

 tuple.add_new_flow(flow_values)

 ###Let's detect

 (detected, label, statelen) = __markov_models__.detect(tuple, verbose,

debug)

 #print 'detected is {}'.format(detected)

 if detected:

 # Change color

 tuple.set_color(magenta)

 # Set the detection label

 tuple.set_detected_label(label)

 elif not detected:

 tuple.unset_detected_label()

 ###End of detected

 ###Add detection

 tuples_in_this_time_slot[tuple4] = tuple

 ip_address = ipHandler.get_ip(flow_values[3])

 ip_address.add_detection(tuple.detected_label, tuple.id,

tuple.current_size, flowtime,flow_values[6], tuple.get_state_detected_last(),

current_index)

 #return current_index

 ###Return IpHandler, to have it processed later

 return ipHandler

def reduceDetectionResults(ipHandlers, slotlist, verbose = 1, debug = 0, whois

= False, sdw_width = 10, threshold = 0.002):

 alerts= {}

 for index,ipHandler in enumerate(ipHandlers):

 for address in ipHandler.addresses.values():

 # Change to keys to print addresses

 # print address

 start_time = slotlist[index]['start']

 end_time = slotlist[index]['end']

 #print 'address is {}'.format(address.address)

Annex A 49

 ###Function Get Verdict

 address.get_weighted_score(start_time, end_time, index)

 #Check if any traffic in TW, kind of irrelevant since TWs are not

fixed

 if len(slotlist[index]['values']) > 0:

 startindex = index - sdw_width # compute SDW indices

 if startindex < 0:

 startindex = 0

 sdw = []

 #Looking for the WS in all the previous windows

 for i in range(startindex, index): # fill the sdw

 if address.address in ipHandlers[i].addresses:

 if

ipHandlers[i].addresses[address.address].ws_per_tw.has_key(i):

sdw.append(ipHandlers[i].addresses[address.address].ws_per_tw[i])

 # If it doesn't have the key? Add a try

 ### Alfredo: ERROR, if swd_width is larger than total windows,

lower mean, but maintain for comparison reasons

 mean = sum(sdw) / float(sdw_width)

 # Did we detect it?

 if mean < threshold:

 # No

 address.last_verdict = "Normal"

 address.last_SDW_score = mean;

 if address.address not in alerts:

 alerts[address.address] = []

 else:

 # Yes

 address.alerts.append(IpDetectionAlert(datetime.now(),

address.address, mean))

 address.last_verdict = "Malicious"

 address.last_SDW_score = mean

 if address.address in alerts:

alerts[address.address].append(IpDetectionAlert(datetime.now(),

address.address, mean))

 else:

 alerts[address.address] = []

alerts[address.address].append(IpDetectionAlert(datetime.now(),

address.address, mean))

 else:

 # self.last_verdict = None

 address.last_verdict = 'Unknown'

 print 'we got an unknown!'

 ####End of Verdict

 if address.last_verdict.lower() == 'malicious' and verbose > 0:

 print red("\t+{} verdict: {} (SDW score: {:.5f}) | TW weighted

score: {} = {} x {}".format(address.address, address.last_verdict,

address.last_SDW_score,address.last_tw_result[0],address.last_tw_result[1],add

ress.last_tw_result[2]))

 return alerts

def print_final(alerts):

 detected_counter = 0

 print '\nFinal Alerts generated:'

 f = open(logfile,"w")

 f.write("DATE:\t{}\nSummary of addresses in this

capture:\n\n".format(datetime.now().strftime('%Y/%m/%d %H:%M:%S')))

 f.write('Alerts:\n')

 for ip,alertsforIp in alerts.items():

 if len(alertsforIp) > 0:

 detected_counter+=1

50 Big Data for Digital Forensics

 print "\t - "+ ip

 f.write('\t - ' + ip + '\n')

 for alert in alertsforIp:

 print "\t\t" + str(alert)

 f.write('\t\t' + str(alert) + '\n')

 s = "{} IP(s) out of {} detected as

malicious.".format(detected_counter,len(alerts))

 f.write(s)

 print s

 f.close()

####################

Main

####################

if __name__ == '__main__':

 print 'Stratosphere Linux IPS. Version {}'.format(version)

 print('https://stratosphereips.org')

 print

 # Parse the parameters

 parser = argparse.ArgumentParser()

 parser.add_argument('-a', '--amount', help='Minimum amount of flows that

should be in a tuple to be printed.', action='store', required=False,

type=int, default=-1)

 parser.add_argument('-v', '--verbose', help='Amount of verbosity. This

shows more info about the results.', action='store', default=1,

required=False, type=int)

 parser.add_argument('-e', '--debug', help='Amount of debugging. This shows

inner information about the flows.', action='store', default=0,

required=False, type=int)

 parser.add_argument('-w', '--width', help='Width of the time slot used for

the analysis. In minutes.', action='store', default=5, required=False,

type=int)

 parser.add_argument('-d', '--datawhois', help='Get and show the WHOIS info

for the destination IP in each tuple', action='store_true', default=False,

required=False)

 parser.add_argument('-D', '--dontdetect', help='Dont detect the malicious

behavior in the flows using the models. Just print the connections.',

default=False, action='store_true', required=False)

 parser.add_argument('-f', '--folder', help='Folder with models to apply

for detection.', action='store', required=False)

 parser.add_argument('-s', '--sound', help='Play a small sound when a

periodic connections is found.', action='store_true', default=False,

required=False)

 parser.add_argument('-t', '--threshold', help='Threshold for detection

with IPHandler', action='store', default=0.002, required=False, type=float)

 parser.add_argument('-S', '--sdw_width', help='Width of sliding window.

The unit is in \time windows\'. So a -S 10 and a -w 5, means a sliding window

of 50 minutes.', action='store', default=10, required=False, type=int)

 parser.add_argument('-W','--whitelist',help="File with the IP addresses to

whitelist. One per line.",action='store',required=False)

 args = parser.parse_args()

 # Check the verbose level

 if args.verbose < 1:

 args.verbose = 1

 # Check the debug level

 if args.debug < 0:

 args.debug = 0

 if args.dontdetect:

 print 'Warning: No detections will be done. Only the behaviors are

printed.'

 print

Annex A 51

 # If the folder with models was specified, just ignore it

 args.folder = False

 # Do we need sound?

 if args.sound:

 import pygame.mixer

 pygame.mixer.init(44100)

 pygame.mixer.music.load('periodic.ogg')

 # Read the folder with models if specified

 # added by Alfredo 070218

 #args.folder = "C:/Users/Alfredo/Google

Drive/MASTEAM/Thesis/workspace/spark_v1/models"

 #args.folder = "/media/sf_shared_vm/workspace/spark_v2/"

 ###

 if args.folder:

 #print 'got here'

 onlyfiles = [f for f in listdir(args.folder) if

isfile(join(args.folder, f))]

 if args.verbose > 2:

 print 'Detecting malicious behaviors with the following models:'

 for file in onlyfiles:

 __markov_models__.set_verbose(args.verbose)

 __markov_models__.set_debug(args.debug)

 __markov_models__.set_model_to_detect(join(args.folder, file))

 #added by Alfredo 070218

 #print 'alfredo comment: markov model added'

 # Read whitelist

 whitelist = set()

 if args.whitelist:

 try:

 #whitelist = set()

 content = set(line.rstrip('\n') for line in open(args.whitelist))

 if len(content) > 0:

 if args.verbose > 1:

 #if True:

 print blue("Whitelisted IPs:")

 for item in content:

 if args.verbose > 1:

 #if True:

 print blue("\t" + item)

 whitelist = content

 except Exception as e:

 print blue("Whitelist file '{}' not

found!".format(args.whitelist))

 ###Ubuntu VirtualBox Datasets

 filename = "/media/sf_shared_vm/workfiles/169_3_2016-08-03_win4.binetflow"

 #filename = "/media/sf_shared_vm/workfiles/169_3_2016-08-

03_win4_half.binetflow"

 #filename = "/media/sf_shared_vm/workfiles/168_1_2016-07-30_capture-

win1.binetflow"

 #filename = "/media/sf_shared_vm/workfiles/168_2_2016-08-03_win-

1.binetflow"

 #filename = "/media/sf_shared_vm/workfiles/168_1_2016-07-30_capture-

win1_half.binetflow"

 ###Alpha2: Manager setup

 manager = Manager()

 slotlist = manager.list()

 pool_size = multiprocessing.cpu_count() * 2

52 Big Data for Digital Forensics

 ###############################

 ###Alpha2: Data preprocess

 ### We are adding each column an stripping it from unnecessary content

 with open(filename) as file:

 slot_data = {}

 timewindow_index = 0

 count_lines = 0

 slot_start = -1

 slot_end = -1

 slot_width_minutes = timedelta(minutes=5)

 for line in file:

 #try:++

 #print line

 #print count_lines

 column_values = line.strip('[').split(',')[:13]

 #print column_values

 try:

 flow_start = datetime.strptime(column_values[0], '%Y/%m/%d

%H:%M:%S.%f')

 if slot_start == -1:

 slot_start = flow_start

 slot_end = slot_start + slot_width_minutes

 slot_data['start'] = slot_start

 #print slot_data['start']

 slot_data['end'] = slot_end

 slot_data['values'] = []

 slot_data['index'] = timewindow_index

 #print 'slot_data is {}'.format(slot_data)

 elif flow_start >= slot_end:

 slotlist.append(slot_data)

 slot_start = flow_start

 slot_end = slot_start + slot_width_minutes

 timewindow_index += 1

 #print 'slotlist is {}'.format(str(slotlist))

 slot_data['start'] = slot_start

 slot_data['end'] = slot_end

 slot_data['values'] = []

 slot_data['index'] = timewindow_index

 slot_data['values'].append(column_values)

 #print len(slotlist)

 #print slotlist

 count_lines += 1

 except ValueError:

 #print 'Error in line'

 #queue.put('stop')

 continue

 #last slot to be appended

 slotlist.append(slot_data)

 ###Alpha 2 comment: file uploaded completely

 ###Alpha 2: time to process data

 pool_size = multiprocessing.cpu_count() * 2

 pool = multiprocessing.Pool(processes=pool_size,

 maxtasksperchild=1,

)

 pool_outputs_ipHandlers = pool.map(mapDetection, slotlist)

 pool.close() # no more tasks

 pool.join() # wrap up current tasks

 #print len(pool_outputs_ipHandlers)

 #print pool_outputs_ipHandlers

 #Execution time before Reduce

 clockTime = time.time() - initial_time # execution time

 timepassed = "Elapsed time for detection only is {}".format(clockTime)

Annex A 53

 print timepassed

 alerts = reduceDetectionResults(pool_outputs_ipHandlers, slotlist)

 print_final(alerts)

 #Execution time

 clockTime = time.time() - initial_time # execution time

 timepassed = "Total elapsed time is {}".format(clockTime)

 print timepassed

