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1. INTRODUCTION

Nowadays, the generation of electric with wind turbines is a great success all over the world.

Every year new wind farm on- and off-shore are being deployed. All forecasts foresee that this

evolution will continue in the forthcoming years. However, wind turbines are complex systems that

need to be correctly maintained. Moreover, because some of these wind turbines work in difficult

meteorological conditions and the accessability to do maintenance is not easy and quite costly

(specially those located off-shore), there is a increasing needed of embedding in the wind turbine

control systems fault tolerant mechanisms that allow still operating the wind turbine even in case of

a fault. In this way, in case of a fault the wind turbine can continue be operated reducing the losses

due the stop of energy production and increasing their reliability.

For this reason, the research in Fault Detection and Isolation (FDI) and Fault Tolerant Control

(FTC) with application to wind turbines has become a subject of increasing interest in research in

both the industry and the academia. In this increased interested, the effort done from the academia,

specially from the FDI/FTC community proposing a international competition on FDI and FTC of

wind turbines using a realistic wind turbine bechmark, has been remarkable [1, 2]. In [2], a summary

of the results obtained in this competition a presented.

Until a few years ago, the application of advanced FDI algorithms in wind turbines were not

so widespread. Most to the existing FDI applications were based on some form of signal analysis

approach, as e.g. it is proposed in [3]. For a review, on the FDI techniques commonly used in

industry and based on signal analysis, the reader is referred to [4]. Morever, there were no FTC

applications to wind turbines reported in the literature, the common approach being to monitor the

turbine conditions and shut it down in the event a fault were detected [5].

Nowadays, there exist in the literature a large number of FDI approaches for wind turbines.

Some of them were compared in the wind turbine FDI competition [2]. Most of these solutions

rely on the evaluation of residuals to achieve fault detection and isolation (see, as e.g. [6, 7, 8],

among other). However, most of these approaches has been focused on the fault detection and
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isolation, but not in the fault estimation. Fault estimation is an important step to cover when thinking

about the implementation of FTC. The knowledge about the fault size allows to compensate the

fault without removing the faulty component (sensor or actuator) and without the need of having

hardware redundancy.

In the literature, most of the contributions regarding FTC assume that the fault estimation is

already available. To cite just some of these contributions: In[9], a solution to this problem based

on the design of passive and active FTC was proposed for a 4.8 MW variable-speed, variable-pitch

wind turbine model with a fault in the pitch system. In case of active FTC, a LPV gain-scheduling

controller is used that use the fault estimation as the scheduling variable. However, the paper does

not provide a mechanism for estimating the fault. The same happens in some other references as:

In [10], a fuzzy gain-scheduled active fault-tolerant control of a wind turbine is proposed. In [11], a

multiobserver switching control strategy for robust active fuzzy FTC has been proposed for variable-

speed wind energy conversion systems subject to sensor faults.

Recently, some authors have realised about the importance of estimating the fault for

implementing an active FTC scheme. For example, in [12], an active FTC scheme on adaptive

filters obtained via the nonlinear geometric approach is proposed. The controller accommodation

scheme exploits the on-line estimate of the actuator fault signal generated by the adaptive filters. In

[7], a FTC scheme based on virtual sensors and actuators is proposed where the fault estimation is

provided by a parameter estimation scheme. In [13],an active sensor fault tolerant tracking control

for offshore wind turbine described via Takagi-Sugeno multiple models is proposed. Due to the

dependency of the this strategy on the fault estimation, an observer with the capability to estimate a

wide range of time varying fault signals is used. In [14], an observer-based descriptor system AFTC

scheme is designed for an offshore wind turbine system using a robust LPV framework, where

both the faults and requiered states are estimated. In [15], a Takagi-Sugeno Sliding Mode Observer

for actuator fault diagnosis and fault-tolerant control scheme of wind turbines with hydrostatic

transmission are presented. A simple compensation approach is implemented by subtracting the

reconstructed faults obtained from the faulty inputs.
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This paper addresses the problem of fault estimation in wind turbines using a joint fault and

state estimation scheme. The scheme assumes a set of possible faults affecting the dynamics of the

wind turbine. Then, a joint process fault and state estimation scheme is developed assuming that

process disturbances and sensor noises are unknown but bounded in an ellipsoid. Two subcases are

considered depending of the satisfaction of a rank condition. The proposed scheme is applied to

a well-known wind turbine benchmark and tested satisfactorily against a set of pre-defined fault

scenarios.

The structure of the paper is as follows: The wind turbine benchmark and considered fault

scenarios are presented in Section 2. The proposed approach is presented in Section . Results of

the application of the proposed scheme to the considered benchmark are presented presented in

Section 4. In Section 5, the conclusions are given and future research directions are suggested.

2. WIND TURBINE BENCHMARK DESCRIPTION

2.1. Introduction

Wind turbines produce electrical energy using the kinetic energy of the wind. The wind turbine

considered hereafter is the one proposed in the benchmark described in [2]. This turbine is a

variable-speed, pitch-controlled, three-blade horizontal-axis turbine with a full converter coupling.

The pressure from the wind on the turbine blades forces the wind turbine rotor to spin around. Then,

a rotating shaft converts the kinetic wind energy into mechanical energy. By pitching the blades, or

by controlling the rotational speed of the rotor w.r.t. the wind speed, the energy generation can be

controlled. A generator, coupled to a converter, performs the conversion from mechanical energy to

electrical energy (see [16, 17, 18] for further details about the functioning of wind turbines).

The control system has the objective to follow the power reference or, alternatively, if the wind

speed is too low to achieve the desired power reference, to optimize the power production. The

controller operates in four operational zones, governed by the mean wind speed within some time

window. Zone 1 (turbine at standstill) and zone 4 (high wind speed, for which the energy production
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of the turbine must be stopped due to safety reasons) are not considered in the benchmark case study,

since its aim is to investigate fault detection under normal operations, which correspond to zone 2

(power optimization due to partial load) and zone 3 (constant power production).

2.2. Wind turbine nonlinear model

Hereafter, the model of the wind turbine [1] is presented. The overall wind turbine is divided into

appropriate sub-models that are modeled separately. The system is driven by the wind speed that

affects the aerodynamic properties of the wind turbine, together with the pitch angles of the blades

and the speed of the rotor. An aerodynamic torque is transferred from the rotor to the generator

through the drive train. Finally, the converter provides the electric power.

Drive Train Model: The drive train model consists of a low-speed shaft and a high-speed shaft

having inertias Jr and Jg, and friction coefficients Br and Bg. The shafts are interconnected by a

transmission having a gear ratio Ng and an efficiency ηdt , combined with a torsion stiffness Kdt , and

a torsion damping Bdt . It is described by the following three differential equations [9]:

ω̇r(t) =−
(Bdt +Br)

Jr
ωr(t)+

Bdt

NgJr
ωg(t)−

Kdt

Jr
θ∆(t)+

Tr(t)
Jr

(1)

ω̇g(t) =
ηdtBdt

NgJg
ωr(t)−

(
ηdtBdt

N2
g Jg

+
Bg

Jg

)
ωg(t)+

ηdtKdt

NgJg
θ∆(t)−

Tg(t)
Jg

(2)

θ̇∆(t) = ωr(t)−
ωg(t)

Ng
(3)

where ωr is the rotor speed, ωg is the generator speed, θ∆ is the torsion angle of the drive train, Tr

is the aerodynamic torque and Tg is the generator torque. Both the rotor speed ωr and the generator

speed ωg are measured.

Generator model: The generator torque Tg is controlled by the reference Tg,re f . The dynamics is

approximated by a first order model with time constant τg:

Ṫg(t) =−
Tg(t)

τg
+

Tg,re f (t)
τg

(4)
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Pitch system model: The hydraulic pitch system is modeled as a second-order system with input

βi,re f , natural frequency ωn,i and damping ratio ζi [19]:

β̈i(t) =−2ζiωn,iβ̇i(t)−ω
2
n,iβi(t)+ω

2
n,iβi,re f (t) (5)

with i = 1,2,3. The pitch angles βi(t), i = 1,2,3, are measured.

Aerodynamic model: The aerodynamics of the wind turbine is modeled as a torque acting on the

blades. This aerodynamics torque Tr(t) can be represented by [20]:

Tr(t) =
3

∑
i=1

ρπR3Cq (λ (t),βi(t))v2
w(t)

6
(6)

where ρ is the air density, R is the radius of the blades, vw is the wind speed and Cq is the torque

coefficient, which is a function of the pitch angle βi and the tip speed ratio, defined as:

λ (t) =
ωr(t)R
vw(t)

(7)

The values of the system parameters used in this paper have been taken from [2] and are resumed

in Table I.

Table I. System parameters values

Param. Value Param. Value Param. Value
Jr 55 ·106 kg ·m2 ηdt 0.97 ωn0 11.11rad/s
Jg 390kg ·m2 Kdt 2.7 ·109 Nm/rad ζ0 0.6
Br 7.11Nms/rad Bdt 775.49Nms/rad ρ 1.225kg/m3

Bg0 45.6Nms/rad τg 20 ·10−3 s R 57.5m
Ng 95 ωn f 5.73rad/s ζ f 0.45

Bg f 68.4Nms/rad

2.3. Fault scenarios

In this paper, we consider actuator and process faults affecting different parts of the wind turbine,

as defined by [2]. In particular, faults in the pitch system and in the drive train are considered.
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The hydraulic pitch system can be affected by faults that change the dynamics, due to either a

drop in the hydraulic supply system, which can represent a leakage in hose or a blocked pump, or

high air content in the oil [2].

In order to model this fault, let us introduce the fault effectiveness parameter fi(t), such that

fi(t) = 0 corresponds to the fault-free i-th pitch system with ω2
n,i = ω2

n0, ζiωn,i = ζ0ωn0, while

fi(t) = 1 corresponds to a full fault on the i-th pitch system, such that ω2
n,i = ω2

n f , ζiωn,i = ζ f ωn f

[14]. Hence, both ω2
n,i and ζiωn,i can be described as a function of fi(t), as follows:

ω
2
n,i = (1− fi(t))ω

2
n0 + fi(t)ω2

n f (8)

ζiωn,i = (1− fi(t))ζ0ωn0 + fi(t)ζ f ωn f (9)

It is simple to check that (5), together with (8)-(9), and taking into account the available

measurements, can be rewritten in state space form as [14]:

 β̇i(t)

β̈i(t)

=

 0 1

−ω2
n0 −2ζ0ωn0


 βi(t)

β̇i(t)

+
 0

ω2
n0

βi,re f (t)+

 0

1

zβ i(t) (10)

yβi(t) =
[

1 0

] βi(t)

β̇i(t)

 (11)

with:

zβ i(t) = fi(t)
[(

ω
2
n0−ω

2
n f
)

βi(t)+2
(
ζ0ωn0−ζ f ωn f

)
β̇i(t)+

(
ω

2
n f −ω

2
n0
)

βi,re f (t)
]

(12)

On the other hand, the fault in the drive train consists in a change of the high-speed shaft friction

coefficient Bg, which is modeled by replacing Bg0 by a lower value Bg f . Similarly to the pitch system

case, let us introduce the parameter fg(t) such that:

Bg = (1− fg(t))Bg0 + fg(t)Bg f (13)
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Hence, taking into account the available measurements, (1)-(3) can be rewritten in state space

form as:


ω̇r(t)

ω̇g(t)

θ̇∆(t)

=


−Bdt+Br

Jr

Bdt
NgJr

−Kdt
Jr

ηdt Bdt
NgJg

−
(

ηdt Bdt
N2

g Jg
+

Bg0
Jg

)
ηdt Kdt
NgJg

1 − 1
Ng

0




ωr(t)

ωg(t)

θ∆(t)

+


1
Jr

0

0 − 1
Jg

0 0


 Tr(t)

Tg(t)

+


0

1

0

zg(t)

(14)

ydt(t) =

 1 0 0

0 1 0


 ωr(t)

ωg(t)

 (15)

with:

zg(t) =
fg(t)

(
Bg0−Bg f

)
Jg

ωg(t) (16)

3. JOINT STATE AND FAULT ESTIMATION

Let us consider a discrete-time system described by the following:

x(k+1) = Ax(k)+Bu(k)+Dz(k)+W1w1(k), (17)

y(k) =Cx(k)+W2w2(k), (18)

where x ∈ Rn, y ∈ Rm, u ∈ Rr, z ∈ Rq are the state, output, input and process fault vectors,

respectively. The matrix D ∈ Rn×q, with rank(D) = q < n, is denoted as fault distribution matrix,

and describes the way in which the faults z(k) affects the system. Moreover, W 1 and W 2 denote the

distribution matrices for the exogenous disturbances/noises w1 and w2, which affect the state and

the output, respectively. Notice that both (10)-(11) and (14)-(15) can be rewritten in the form (17)-

(18) through discretization, e.g. using the Euler method, by considering the presence of exogenous

disturbances.
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The problem is to design an estimator that is able to estimate simultaneously the state and the

process fault. In the following, the proposed estimator will be called Process Fault Estimator (PFE).

Notice that the joint estimation of state and fault variables x and z allows also estimating the fault

effectiveness parameters. In fact, by using the estimates β̂i(k),
ˆ̇
βi(k) and ẑβi(k), the estimation f̂i(k)

can be extracted from (12) using parameter estimation techniques, such as least squares methods

[21]. In the same way, by using the estimates ω̂g(k) and ẑg(k), a value f̂g(k) can be extracted from

(16).

For the purpose of further developments, the following assumptions are considered regarding the

effect of faults, disturbances and noises:

Assumption 1:

ε(k) , z(k+1)− z(k) ∈ Eε = {ε : ε
T Qε ε ≤ 1}, Qε � 0. (19)

Assumption 2:

w1(k) ∈ Ew1 = {w1 : wT
1 Qw1w1 ≤ 1}, Qw1 � 0,

w2(k) ∈ Ew2 = {w2 : wT
2 Qw2w2 ≤ 1}, Qw2 � 0.

(20)

Assumption 1 is required for the subsequent fault estimation algorithm. It has well defined roots as all

real faults and states are bounded, which means that z(k) is bounded as well. Similarly, Assumption

2 states that the external disturbances are unknown but bounded.

In the remaining of this section, two different estimators are proposed to solve the above-defined

estimation problem, depending on whether or not the following condition holds true:

rank(CD) = rank(D) = q (21)

Notice that the rank condition (21) does not hold for the pitch subsystem obtained from (10)-(11).

On the other hand, it holds true for the drive train subsystem obtained from (14)-(15).
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3.1. Case 1: rank(CD) , rank(D)

For this case, the following estimator is proposed:

x̂(k+1) = Ax̂(k)+Bu(k)+Dẑ(k)+K (y(k)−Cx̂(k)) (22)

ẑ(k+1) = ẑ(k)+L(y(k)−Cx̂(k)) (23)

where K ∈ Rn×m and L ∈ Rq×m are gains to be designed.

From (17)-(18), the evolution of the state estimation error e(k) , x(k)− x̂(k) is described by:

e(k+1) = (A−KC)e(k)+Dez(k)+W1w1(k)−KW2w2(k) (24)

where ez(k) , z(k)− ẑ(k).

Subsequently, the dynamics of the fault estimation error ez(k) is given by:

ez(k+1) = z(k+1)+ z(k)− z(k)− ẑ(k+1) = ε(k)+ z(k)− ẑ(k+1)

= ε(k)+ z(k)− ẑ(k)−LCx(k)−LW2w2(k)+LCx̂(k)

= ε(k)+ ez(k)−LCe(k)−LW2w2(k),

(25)

where ε(k) is defined as in (19).

By introducing the following vectors:

ē(k) =
[

e(k)T ,ez(k)T

]T

, (26)

v(k) =
[

w1(k)T ,w2(k)T ,ε(k)T

]T

, (27)

the state and fault estimation error dynamics are given by:

ē(k+1) =

A−KC D

−LC I

 ē(k)+

W 1 −KW2 0

0 −LW 2 I

v(k). (28)
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which can be described in an equivalent form:

ē(k+1) = Xē(k)+Zv(k), (29)

where:

X = Ā− K̄C̄ =

A D

0 I

−
K

L

[C 0

]
, (30)

Z = W̄ − K̄V̄ =

W 1 0 0

0 0 I

−
K

L

[0 W 2 0

]
. (31)

The ellipsoidal set including v(k) can be described by:

Ev = {v : vT Qvv≤ 1}, (32)

with

Qv =
1
3

diag
(
Qw1

,Qw2
,Qε

)
. (33)

Notice that, if v(k) = 0, then the usual Lyapunov approach can be used to prove the asymptotic

convergence of ē(k). However, if v(k) , 0 then such approach cannot be applied directly. Thus, for

the purpose of further deliberations, the so-called quadratic boundedness (QB) [22, 23, 24] approach

is used. To do so, let us define the Lyapunov function:

V (k) = ē(k)T Pē(k), (34)

with P� 0, and let us remind the following definitions [22, 23, 24]:

Definition 1

The system (29) is strictly quadratically bounded for all allowable v ∈ Ev, implying ē(k)T Pē(k)> 1

if ē(k+1)T Pē(k+1)< ē(k)T Pē(k) for any v(k) ∈ Ev.
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It should be highlighted that the strict quadratic boundedness of (29) ensures that V (k+1)<V (k)

for any v ∈ Ev when V (k)> 1.

Definition 2

A set E is a positively invariant set for (29) for all v ∈ Ev if ē(k) ∈ E implying ē(k+1) ∈ E for any

v(k) ∈ Ev

Based on these definitions and the results presented in [22], the following lemma can be

formulated for (29):

Lemma 1

The following statements are equivalent [22, 23, 24]:

1. The system (29) is strictly quadratically bounded for all v ∈ Ev.

2. The ellipsoid

E = {ē : ēT Pē≤ 1}, (35)

is an invariant set for (29) for any v ∈ Ev.

3. There exists a scalar α ∈ (0,1) such that:

XT PX−P+αP XT PZ

ZT PX ZT PZ−αQv

� 0. (36)

To provide the final design procedure, the following theorem is proposed:

Theorem 1

The system (29) is strictly quadratically bounded for all v ∈ Ev if there exist matrices P� 0, U and

a scalar α ∈ (0,1), such that the following inequality is satisfied:


−P+αP 0 ĀT P−C̄TUT

0 −αQv W̄ T P−V̄ TUT

PĀ−UC̄ PW̄ −UV̄ −P

� 0. (37)

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2016)
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Proof

Inequality (36) can be rewritten into the following form:

XT

ZT

P
[

X Z

]
+

−P+αP 0

0 −αQv

� 0. (38)

Then, using the Schur complement and multiplying left and right side by diag(I, I,P) gives


−P+αP 0 XT P

0 −αQv ZT P

PX PZ −P

� 0. (39)

Substituting

PX = PĀ−PK̄C̄ = PĀ−UC̄, (40)

PZ = PW̄ −PK̄V̄ = PW̄ −UV , (41)

and introducing (40) and (41) into (39) completes the proof. �

Finally, the design procedure boils down to solve (37) and then calculating

K̄ =

K

L

= P−1U . (42)

A complete design procedure of the PFE is depicted in Fig. 1.

3.2. Case 2: rank(CD) = rank(D)

In this case, by combining (17) and (18), the following is obtained:

CDz(k) = y(k+)−CAx(k)−CBu(k)−CW1w1(k)−W2w2(k+1) (43)
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which is an identity, since for given vectors z(k), x(k), u(k), w1(k), w2(k), the value of the vector

y(k+1) cannot be arbitrary, but is determined by (17) and (18). It follows that if z(k) is considered

unknown, the linear system of equations resulting from (43) would admit a solution (i.e. the actual

value of z(k)), which could be obtained as follows:

z(k) = H [y(k+1)−CAx(k)−CBu(k)−CW1w1(k)−W2w2(k+1)] (44)

where H denotes the Moore-Penrose pseudoinverse of CD.

Select
Qv =

1
3 diag

(
Qw1

,Qw2 ,Qε

)

Obtain U ,P by solving−P+αP 0 ĀT P−C̄TUT

0 −αQv W̄ T P−V̄ TUT

PĀ−UC̄ PW̄ −UV̄ −P

� 0,

P� 0, 0 < α < 1

Calculate
K̄ = P−1U[

K
L

]
= K̄

Figure 1. PFE design procedure

Due to the rank condition (21), (44) is the unique solution of the linear system obtained from

(43). Moreover, H can be calculated easily as follows:

H = (CD)† =
[
(CD)T CD

]−1
(CD)T (45)

where † denotes the Moore-Penrose pseudoinverse.
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By substituting (44) into (17), it can be shown that:

x(k+1) = Āx(k)+ B̄u(k)+ H̄y(k+1)+W̄1w1(k)+W̄2w2(k+1) (46)

where:

Ā = (I−DHC)A (47)

B̄ = (I−DHC)B (48)

H̄ = DH (49)

W̄1 = (I−DHC)W1 (50)

W̄2 =−DHW2 (51)

Based on (44) and (46), the following estimator is proposed:

x̂(k+1) = Āx̂(k)+ B̄u(k)+ H̄y(k+1)+K (y(k)−Cx̂(k)) (52)

ẑ(k) = H (y(k+1)−CAx̂(k)−CBu(k)) (53)

where K ∈ Rn×m is the gain to be designed.

Then, the associated state estimation error is given by:

e(k+1) =
(
Ā−KC

)
e(k)+W̄1w1(k)−KW2w2(k)+W̄2w2(k+1) (54)

while the fault estimation error is described by:

ez(k) =−HCAe(k)−HCW1w1(k)−HCW2w2(k+1) (55)

From (54)-(55), it can be seen that the dynamics of e(k) does not depend on ez(k), while at the

same time there exists a static relationship between e(k), w1(k), w2(k+1) and ez(k).
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For this reason, in order to design the gain K, the QB-based procedure described previously can

be applied, starting from (29), but using:

ē(k) = e(k) (56)

v(k) =
[
w1(k)T ,w2(k)T ,w2(k+1)T ]T (57)

X = Ā−KC (58)

Z =

[
W̄1 0 W̄2

]
−K

[
0 W2 0

]
(59)

Qv =
1
3

diag(Qw1 ,Qw2 ,Qw2) (60)

4. APPLICATION TO THE WIND TURBINE CASE STUDY

4.1. Fault scenario 1: faults in the pitch subsystem

First of all, let us evaluate the effectiveness of the PFE described in Section 3.1, i.e. for the case

where (21) does not hold, by considering faults affecting the pitch system, as described in Section

2.3.

The design procedure described in Section 3.1 has been applied to the discrete-time model

obtained from (10)-(11) using an Euler discretization with sampling time Ts = 0.01s.

The exogenous disturbance distribution matrices are considered as follows:

W1 =

 1

0

 W2 = 1

while the matrices Qε , Qw1 and Qw2 are:

Qw1 = 1000 Qw2 = 106 Qε = 100
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Theorem 1 has been applied for designing the gains K, L, with a value α = 0.1, obtaining:

P = 103


1.8242 −0.0397 −0.0052

−0.0397 0.0829 −0.0049

−0.0052 −0.0049 0.0004



K =

 0.7843

4.7511

 L = 88.2718

In order to assess the performance of this observer, the following evolution of the signal f1(t)

(fault in the first pitch system) has been considered:

f1(t) =



0 t ≤ 2900s

1 2900s < t ≤ 3000s

0 3000s < t ≤ 3500s

t−3500
30 3500s < t ≤ 3530s

1 3530s < t ≤ 3570s

3600−t
30 3570s < t ≤ 3600s

0 3600s < t ≤ 4100s

1 4100s < t ≤ 4300s

0 else

(61)

which contains both abrupt and incipient faults.

The results shown hereafter refer to a simulation that lasts 4400s, where the input for the first

pitch system βre f ,1(t) is as depicted in Fig. 2.

Fig. 3 shows the evolution of the state variables β1(t) and β̇1(t), and their estimation using the

designed observer. On the other hand, Fig. 4 shows the estimation errors for both the state variables

β1(t) and β̇1(t). It can be seen that the designed observer is able to estimate correctly the state,

although its effectiveness is affected by the presence of faults.
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Fig. 6 compares the fault signal zβ1(t) with its estimation. It can be seen that ẑβ1 is affected by

the presence of exogenous disturbances even when no fault acts on the system. This motivates the

introduction of a threshold-based filtering which returns ẑβ1, f ilt., as follows:

ẑβ1, f ilt.(k) =


ẑβ1 i f ẑβ1 ≥ 0.6

0 else

Then, recursive least squares with forgetting factor 0.997 are applied taking into account (12),

obtaining the estimation of the fault effectiveness parameter f̂1, which is shown in Figs. 6-7. Taking

into account the presence of external disturbances, noise, and discretization errors, the obtained

estimation is considered to be satisfactorily accurate.

0 500 1000 1500 2000 2500 3000 3500 4000
0

2

4

6

8

10

12

time (s)

β re
f,1

 (
º)

Figure 2. Reference for the pitch system 1: β1,re f .

4.2. Fault scenario 2: faults in the drive train subsystem

Let us now evaluate the effectiveness of the PFE described in Section 3.2, i.e. for the case where

(21) holds, by considering faults affecting the drive train subsystem, as described in Section 2.3.
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Figure 3. Pitch system 1: state variables β1 and β̇1 (real vs. estimation).
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Figure 4. Estimation errors e1 = β1− β̂1, e2 = β̇1− ˆ̇
β1.

The design procedure described in Section 3.2 has been applied to the discrete-time model

obtained from (14)-(15) using an Euler discretization with sampling time Ts = 0.01s.

The exogenous disturbance matrices are considered as follows:

W1 =


1 0

0 1

0 0

 W2 =

 1 0

0 1



while the matrices Qw1 and Qw2 are:

Qw1 =

 108 0

0 5 ·108

 Qw2 =

 106 0

0 106


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Figure 5. Fault signal zβ1 (real vs. estimation).
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Figure 6. Fault effectiveness f1 (real vs. estimation).

Theorem 1 has been applied for designing the gain K, with a value α = 0.1, obtaining:
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Figure 7. Fault effectiveness f1 (real vs. estimation, zoom).

P = 104 ·


0.3364 0.3916 0.1799

0.3916 3.1667 0.1778

0.1799 0.1778 0.4687

 K =


1.1843 0.9086

−0.0036 −0.0485

−0.4081 −0.3402


In order to assess the performance of this observer, an evolution of the signal fg(t) similar to the

one of f1(t) provided in (61) has been considered.

The results shown hereafter refer to a simulation that lasts 4400s, where the inputs Tr(t) and Tg(t)

are as shown in Fig. 8.

Fig. 9 shows the evolution of the state variables ωr(t), ωg(t), θ∆(t) and their estimation. The

effectiveness of the designed observer is confirmed by the state estimation errors, which are plotted

in Fig. 10.

Fig. 11 compares the fault signal zg(t) with its estimation. In this case, the distinction between

the effect of the exogenous disturbances and the effect of the fault is not strong enough to motivate

the introduction of a threshold-based filtering.

Nevertheless, when recursive least squares with forgetting factor 0.997 are applied taking into

account (16), a satisfactory estimation of the fault effectiveness parameter fg is obtained, as shown

in Figs. 12-13.

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2016)

Prepared using acsauth.cls DOI: 10.1002/acs



22

0 1000 2000 3000 4000
0

2

4

6

8

10

12

14

16
x 10

6

time (s)

ae
ro

dy
na

m
ic

 to
rq

ue
 T

r (
N

m
)

0 1000 2000 3000 4000
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

time (s)

ge
ne

ra
to

r 
to

rq
ue

 T
g (

N
m

)

Figure 8. Inputs for the drive train subsystem: Tr and Tg.
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Figure 9. Drive train subsystem: state variables ωr, ωg and θ∆ (real vs. estimation).
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Figure 10. Estimation errors e1 = ωr− ω̂r, e2 = ωg− ω̂g and e3 = θ∆− θ̂∆.

5. CONCLUSIONS

This paper has presented a joint fault and state estimation scheme and its application to the fault

estimation in a benchmark wind turbine. The scheme assumes a set of possible faults affecting the

dynamics of the wind turbine. From the model of the system including the considered faults, a
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Figure 11. Fault signal zg (real vs. estimation).

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.2

0.4

0.6

0.8

1

1.2

time (s)

fa
ul

t e
ffe

ct
iv

en
es

s 
f g

 

 

real
estimation

Figure 12. Fault effectiveness fg (real vs. estimation).
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Figure 13. Fault effectiveness fg (real vs. estimation, zoom).
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joint process fault and state estimation scheme has been developed. The proposes scheme assumes

that process disturbances and sensor noises are bounded in an ellipsoid. The proposed scheme has

been applied to a well-known wind turbine benchmark. From the results obtained in simulation

considering a set of pre-defined fault scenarios, it has been assessed the satisfactory performance of

the proposed scheme for fault estimation. As a further research, it is planned to extend the proposed

scheme to non-linear systems via the LPV or TS approach. Moreover, it is planned to integrate

this joint fault and state estimation scheme with a fault-tolerant control scheme that relies on the

developed LPV/TS extended approach.
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