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Abstract Multicomponent reactive transport involves the solution of a system of nonlinear coupled partial
differential equations. A number of methods have been developed to simplify the problem. In the case where
all reactions are in instantaneous equilibrium and the mineral assemblage is constant in both space and time,
de Simoni et al. (2007) provide an analytical solution that separates transport of aqueous components and
minerals using scalar dissipation of ‘‘mixing ratios’’ between a number of boundary/initial solutions. In this
approach, aqueous speciation is solved in conventional terms of primary and secondary species, and the min-
eral dissolution/precipitation rate is given in terms of the scalar dissipation and a chemical transformation
term, both involving the secondary species associated with the mineral reaction. However, the identification
of the secondary species is nonunique, and so it is not clear how to use the approach in general, a problem
that is keenly manifest in the case of multiple minerals which may share aqueous ions. We address this prob-
lem by developing an approach to identify the secondary species required in the presence of one or multiple
minerals. We also remedy a significant error in the de Simoni et al. (2007) approach. The result is a fixed and
extended de Simoni et al. (2007) approach that allows construction of analytical solutions to multicomponent
equilibrium reactive transport problems in which the mineral assemblage does not change in space or time
and where the transport is described by closed-form solutions of the mixing ratios.

1. Introduction

The mixing-components approach to multicomponent equilibrium reactive transport (de Simoni et al.,
2007) is an important contribution to the upscaling of subsurface reactive transport because it quantita-
tively distinguishes chemical controls from transport limitations on the net rate of transformations in the
general class of mixing-limited reactive problems between solutions that are otherwise in equilibrium. As
an analytical solution relying on closed-form solution of transport, it is free of operator-splitting errors and
allows writing the mineral dissolution/precipitation rate in closed-form, providing a useful expression for its
quantification without having to rely on balancing the species at every time step. In brief it works like this.
Consider the case of very fast bimolecular reaction, M () C1 1 C2 where the quantity M is a pure mineral
phase with assumed unit chemical activity, and corresponding law of mass action K5C2C1 where K is the
equilibrium constant of the mineral equilibrium. Suppose this equilibrium is satisfied respectively by both
chemical compositions of two solutions that obey advective-dispersive transport. De Simoni et al. (2005)
showed that the time rate of change of the volumetric mass or molar density of M is the product of the sca-
lar dissipation rate rCð ÞT nDrC and the chemical transformation term d2C1=dC2 where C � C2 – C1 is a con-
ventional chemical ‘‘component’’ (e.g., Bethke, 2006) that behaves as a passive tracer (resulting from the
cancellation of the reaction term by subtraction of the mole balance equations for C2 and C1). The authors
demonstrate how to do this also in the general multicomponent case, where the time rate of change of the
mineral is factored into a mixing factor that is the scalar dissipation rate of aqueous components, and a
chemical transformation term for the minerals’ secondary species that depends only on the components’
concentrations, each one again acting as a passive tracer.
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This has resulted in an expansion of research on how to characterize the mixing limitation factor, whether it
be a dilution index where the concentrations are weighted by their natural log, or a scalar dissipation rate
where the gradient of concentration is squared, and how this applies to the idealized ‘‘bimolecular’’ reaction
of de Simoni and beyond (e.g., Dentz et al., 2011; de Simoni et al., 2007; Le Borgne et al., 2014; Luo et al.,
2008; Pelizardi et al., 2017; Sanchez-Vila et al., 2010; Willmann et al., 2010). The concept of de Simoni et al.
(2005) was extended in de Simoni et al. (2007) to analysis of the same multicomponent reactive transport
but this time using ‘‘mixing ratios’’ instead of explicit components, as will be explained below; furthermore
in this same work, the authors extended the problem to include the mass action law written in terms of
activities, rather than the simplified version where all activity coefficients are assumed equal to one.

Here our focus is on clarifying some aspects of the de Simoni et al. (2007) approach including fixing an
important error in the mathematics, and extending it to the case of multiple minerals in equilibrium with
the solutions involved. For simplicity, we assume all activity coefficients are unity, also that the activities of
minerals (and under the dilute solution assumption) of water are all assumed unity; these assumptions can
be relaxed as shown in de Simoni et al. (2005, 2007), referred to hereafter as dS05 and dS07, respectively. In
this redress of the theory, we (section 2) briefly review the multicomponent reactive transport mole balance
formulation when all the reaction rates are sufficiently fast on the time scales of observation; (section 3) clar-
ify the number of mixing ratios that may be used for a given problem and recast the expression for compo-
nents solution; (section 4) fix an error in the key result equation (13) of dS07; (sections 4.1 and 4.2) discuss
the identification of the end-members and the impact of changes to the mineral assemblage; and (section
5) address the nonuniqueness of the (required) identification of secondaries in applying the method to the
common case where more than one mineral equilibrium reaction is involved.

2. Summary of the Formulation of the Multicomponent Equilibrium Reactive
Transport System

When NR equilibrium reactions occur among a number NS of chemical species, techniques of linear algebra
can be applied to reduce the NS mole balance expressions (one per species) to NS – NR mole balance expres-
sions, one per ‘‘component.’’ Construction of components is an elementary exercise in modeling equilibrium
reaction networks and the stuff of textbooks and monographs (e.g., Bethke 2006; Lichtner, 1992; Lichtner,
1996; Morel & Hering, 1993; Steefel, 1992; Steefel & MacQuarrie, 1996; Wolery, 1992). In short, one associates a
single chemical species (‘‘secondary’’) with each equilibrium reaction, and writes the reactions in terms of the
remaining (‘‘primary’’) species, so that the secondaries appear only once, in their associated reaction, and not
in any other reaction. This is always possible when reactions are independent. Then in the mole balance
expressions, one eliminates the reaction rates by substituting the material derivatives of the secondaries for
the occurrences of the (sufficiently fast on the time scales of observation) reaction rates in the mole balance
expressions of the primaries. (In batch models, the material derivatives are ordinary time derivatives; in reac-
tive transport scenarios they are partial time derivatives and transport operators.) Because each reaction corre-
sponds to the material derivative of one and only one secondary species, by construction, this can be done
easily. The resulting mole balance expressions give an NS – NR ODE (PDE) system for linear combinations of
primary and secondary species interacting in reactive batch (reactive transport) with all equilibrium reactions
eliminated, and so in the absence of other, e.g., kinetically controlled reactions, the right-hand side of this
ODE (PDE) system is zero and the dependent variables termed components act as conservative (i.e., not
affected by reactions) species. The presence of immobile minerals disrupts the definition of components
because they do not move while their associated primary or secondary aqueous species do.

Consider transport and interaction of NS chemical species, the first NC of which are immobile mineral spe-
cies, and all of which may interact via NR chemical reactions that have a vector of reaction rates r. The NR

chemical reactions may be expressed as

0() Sec; S0ea;2I
� �

�

ac

a0a

a00a

2
664

3
775 (1)

where ac is the vector of NC mineral species, a0a is the vector of NS – NC – NR ‘‘primary’’ aqueous species, a00a is
the vector of NR ‘‘secondary’’ aqueous species; Sec (NR x NC) and S0ea(NR 3 (NS – NC – NR)) are the

Water Resources Research 10.1002/2017WR020759

GINN ET AL. ANALYTICAL SOLUTION TO REACTIVETRANSPORT 2



stoichiometric submatrices providing the moles of mineral species ac and primary aqueous species a0a;
respectively, contributing to the row-wise reactions per unit of secondary species a00a, and where subscript
‘‘a’’ means ‘‘aqueous.’’ I is the NR 3 NR identity matrix, and so every independent reaction has one and only
one secondary associated with it which appears nowhere else in the reaction system. There are multiple
ways to assign primaries and secondaries. Denoting by c0a and c00a, the moles per aqueous volume of primary
and secondary species, respectively, and assuming activity coefficients of both solutes and minerals are
unity, the law of mass action can be written as a set of equations:

log c00a5S0ealog c0a2log K (2)

Note that mineral equilibria are included in this system despite the absence of mineral activities that are
assumed unity. Writing a reaction network in this way with a subset a00a of the reactants isolated to singleton
appearances as secondaries can always be done as a result of the phase rule and when the reactions are
independent (e.g., Steefel & MacQuarrie, 1996, p. 99, with exceptions due to dependent reactions discussed
on p. 89), and allows formal reduction of the number of unknowns as will be shown in batch (equations (4))
and reactive transport (equations (7)) formulations that are spanned by the primary chemical species a0a,
which thus serve as a basis for the problem in the sense of vector spaces. This allows us to reduce the origi-
nal NS mole balance equations to NS – NR mole balances of ‘‘components’’ that are linear combinations of
singleton primary and multiple secondary species concentrations. Introducing the molar concentrations
where mc are moles of mineral species per unit bulk volume and n is porosity, mole balance of the NS chem-
ical species can be written in terms of the reaction rates r, as (e.g., Lichtner, 1996; Steefel & MacQuarrie,
1996):

@mc

@t
5ST

ecr (3a)

@nc0a
@t

2L nc0a
� �

5S0Tear (3b)

@nc00a
@t

2L nc00a
� �

52Ir (3c)

Note that in equations (3a) we adopt only aqueous secondaries, so henceforth all minerals (stable since the
mineral assemblage is assumed a constant) are treated here as primaries.

If the reactions are treated at equilibrium always, then the reaction rates r are sufficiently fast on the time
scale of observation and only limited by the capability of the reactants to meet, and are eliminated by sub-
stitution of the left-hand side of the secondaries’ mole balances (3c) for r in the mole balances for minerals
(3a) and for primaries (3b). We do this first for the case of no transport (i.e., L 5 null and the partial deriva-
tives become total derivatives in equations (3a)) in which case (3a) and (3b) with substitution of (3c)
become

dm
dt

50 (4a)

dnu
dt

50 (4b)

where NC mineral and NU aqueous components are defined, respectively, by

m5mc1nST
ecc00a (5)

u5c0a1S0Teac00a (6)

A simple example formulation following equations (1–6) is given in Appendix A. The solution procedure (for
constant n) starts by noticing that the solution of (4) for homogeneous initial conditions is m5m0 and
u5u0, the subindex indicating the initial values. Then (2) and (6) become a system of NR 1 NU algebraic
equations that can be solved with simple numerical models. Finally from (5) it is possible to obtain the mc

components explicitly (NC equations). The alternative is to solve together the full system of
NC 1 NU 1 NR 5 NS ODEs with NR law of mass action equation (2) that can be solved with combined time
stepping and Newton-Raphson algorithm. Details of these classical formulations are given in, e.g., Steefel
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and MacQuarrie (1996) and Bethke (2006), with further attention to electroneutrality, the phase rule, and
mineral formation, as well as basis swapping and mineral elimination and other extended topics.

In the case of transport and equilibrium reactions, elimination of r in (3) yields

@mc

@t
5ST

ec 2
@nc00a
@t

1L nc00a
� �� �

(7a)

@nu
@t

1L nuð Þ50 (7b)

Note the disruption in analogy caused by transport: aqueous components u in (7b) are just as useful as they
were in (4b), but mineral components m are not as useful in (7a) as they were in (4a) because their corre-
sponding primary species (minerals mc) do not move, unlike their respective secondaries nST

ecc00a , and so
while aqueous components u are conservative per (7b), minerals per (7a) do not solve an independent con-
servation expression and cannot be solved in terms of mc alone. This inconvenience is ultimately what
blocks analytical solutions to problems with varying mineral assemblages as described in section 4.2.

This system (7) of NC 1 NU equations is closed when it is combined with the NR nonlinear equilibrium law of
mass action equation (2) and component definitions (6), giving NC 1 NU 1 NR 1 NU 5 NS 1 NU equations
with NS 1 NU unknowns. The simplest classical workflow of a time stepping solution to calculate mineral
moles over time is to: solve (7b) for u, that is then used in (6) to obtain an expression for c0a in terms of c00a ,
which in turn is substituted in (2) to get

log c00a5S0ealog u2S0Teac00a
� �

2log K

as done in codes such as PHREEQCII (Parkhurst & Appelo, 1999) to obtain c00a , which allows solution of (7a)
for mc, per time step.

This and other more sophisticated law of mass action (LMA)-based schemes are described, e.g., in Steefel
and MacQuarrie (1996) and Bethke (2006), and recently reviewed in Steefel et al. (2015), as well as in the
book Zhang et al. (2012) that discusses the major codes developed on this basis. Additional surveys are
found in Steefel et al. (2005) on applications in earth sciences and in MacQuarrie and Mayer (2005) on reac-
tive transport in fractured media. As noted in Steefel et al. (2015), ‘‘Other approaches are possible in which
kinetic and equilibrium reactions are decoupled. This approach allows for the use of free energy minimiza-
tion routines.’’ The origin of this ‘‘Gibbs energy minimization’’ (GEM) approach is summarized in Steefel and
MacQuarrie (1996, p. 100) and in Bethke (2006, p. 3, where the controversy between proponents of LMA
versus GEM proponents is colorfully reviewed). Recent contributions to the GEM approach include Kulik
et al. (2013) and Leal et al. (2014, 2016a, 2016b). Leal et al. (2016b) hybridized GEM with LMA to construct
an ‘‘extended LMA’’ method where equilibrium is calculated at each time step using Lagrange multipliers to
solve the GEM problem, with a wide set of LMAs (thus the extended) that covers all possible unstable
phases. Here since we assume the simple case of one stable aqueous phase, and a number of stable mineral
phases making up the mineral assemblage, and because our focus is on developing analytical solutions to
mixing-limited reactions, we build on the LMA approach for which speciation code modules are widely
available (e.g., Charlton & Parkhurst, 2011).

The form of (7a) suggests a more direct approach to calculating mineral moles over time, that takes advan-
tage of the assumed wholly equilibrium reaction network and that relies on the transport of the secondaries
c00a alone, an approach that was originally developed in dS05 and dS07 (summarized below). We next intro-
duce the conversion of (7a) using the approach of dS05/dS07, clarifying a few important issues/errors on
the way in sections 3 and 4, and then turn to the question of how to define the secondaries in the general
case of multiple minerals in section 5.

3. Clarification of the Number of Mixing Ratios That May Be Used

DS05 showed that, in the case of constant porosity and equilibrium coefficients (7a), and assuming that the
transport operator includes advection and dispersion with tensor hydrodynamic dispersion coefficient D,
the bracketed term of (7a) is
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@2c00a
@ui@uj

rTui � D � ruj (8)

This resulted from making use of the fact that c00a5c00a u x; tð Þð Þ through equations (6) and (2). The second
derivatives of the secondary species concentrations are taken with respect to the concentrations of the
component species. This result, which gives an analytical solution for the bracketed term of (7a) that suc-
cessfully decouples reactions and transport through the first and second factors of the sum, respectively,
was generalized in dS07 to the case where transport is entirely characterized through index species ai;

termed ‘‘mixing ratios,’’ with i indicating boundary of origin, as follows. The mixing ratio ai x; tð Þ is the solu-
tion to the nonreactive transport of a tracer emanating from time or space boundary i with unity boundary
or initial condition there and zero elsewhere, so that 8i; 0 < ai x; tð Þ < 1, and

XNi

i51

ai x; tð Þ51 (9)

where Ni is the number of mixing ratios we want to consider (generally the number of chemically distinct
aqueous boundary/initial conditions, and most frequently named end-members, as in Pelizardi et al., 2017).
This allows the aqueous components, vector u, to be expressed as

u x; tð Þ5
XNi

i51

uiai x; tð Þ (10)

where ui is the end-member component vector corresponding to the composition of the solution at the ith
boundary. Thus, one can find the component vector solution u(x,t) given the i 5 1, . . ., Ni boundary compo-
nent lists ui and the (mathematical) solution for transport of each passive tracer ai(x,t) emanating (with
unit b.c.) from each of the Ni respective boundaries. Only Ni – 1 such functions are needed, however,
because of the restriction imposed by equation (9), providing for instance, aNi 512

PNi 21
i51 ai x; tð Þ, allowing

us to rewrite 10 as

u x; tð Þ5
XNi 21

i51

Duiai x; tð Þ1uNi (11)

where Dui � ui2uNi . While in dS07 equations (9) (paragraph 15) and (10) (equation (12)) are pointed out,
(11) is not. This is relevant because (11) tells us that if we use Ni – 1 end-members, we must preprocess the
end-member components into Dui instead of using ui , and, later we are going to be relying on partial dif-
ferentiation with respect to the ai . In practice, either Ni – 1 or Ni end-members may be used as noted in the
next section.

4. Fixing an Error in the Key Result Equation (13) of De Simoni et al. (2007)

Continuing with dS07, the generalization of equation (8) for the case of mixing ratios appears as equation
(13) in dS07. However, that form is ambiguous due to unspecified upper limit of summation as just noted,
and erroneous due to the use of second derivatives in ai without cross-derivatives. The incorrect form given
as (13) in dS07 (with our left-hand side replacing the reaction rates r of dS07 which is mere convention and
not a problem) is

2
@nc00a
@t

1L nc00a
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5n
X

i

@2c00a
@a2

i
rTai � D � rai (12)

and the correct form is

2
@nc00a
@t

1L nc00a
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5n
XNi 21

i51

XNi21

j51

@2c00a
@ai@aj

rTai � D � raj (13)

This equation is derived by writing c00a5c00a a x; tð Þð Þ (a 5 ai(x,t), i 5 1,. . ., Ni – 1) and expanding the terms on
the left-hand side by the chain rule as shown in Appendix B. (The incorrect form 12 sufficed for all the
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examples presented and cited in dS07 because all of those examples involved either 2-D steady state or 1-
D transient problems so that Ni – 1 5 1.)

With this result (7a) becomes:

@mc

@t
5nST

ec

XNi21

i51

XNi21

j51

@2c00a
@ai@aj

rTai � D � raj

" #
(14)

This relation gives us a new way to solve for the mineral accumulation (by precipitation or dissolution) rates,
in terms of the passive transport of the mixing ratios and the Hessians of each term of the vector c00a að Þ that
tells how the secondary aqueous species concentrations depend on the mixing ratios through speciation.
The latter is a tabulation calculation that can be done completely independently of transport. Thus, this rela-
tion effectively factors reactions and transport. As a final point, one may suspect that one must use only the
Ni – 1 independent ratios because partial differentiation with respect to one of the ai requires the other ai

be held constant: however, this is erroneous, as pointed out by an anonymous reviewer, and in fact the
same result is obtained when all Ni end-members are used as long as the system of equations knows that
they sum to unity.

This scheme gives an analytical solution to multicomponent reactive transport problems given: invariant
mineral assemblage, closed-form solutions for the mixing ratios ai(x,t), i 5 1,. . ., Ni – 1, and the calculated
Hessians of each term of the vector c00a að Þ, as follows. Step 1: solve (11) for u x; tð Þ; step 2: solve (6) with the
law of mass action equation (2) for c0a and c00a and solve (14) for rates of change of mineral moles mc. Note
that the Step 2 calculation of mineral rates (that requires only ai(x,t) and their gradients) is completely inde-
pendent of the calculation of the aqueous species c0a and c00a , and vice versa. There are no numerical grid,
operator-splitting, or time-discretization errors, and mineral moles can be computed a posteriori by numeri-
cal integration of equation (14). As noted by an anonymous reviewer the Hessians in (14) may be estimated
by finite differences or by combining (2), (6), and (11) to obtain an expression for c00a in terms of a, and differ-
entiating twice. The latter may give fully analytical, albeit quite complex, forms.

Note that the chemistry aspects of the solution for mineral mole concentrations are exclusively captured in
the second derivative (Hessian) terms, each of which provide a mapping from (x, t) through the mixing
ratios ai , to the value of the second derivatives of each secondary with respect to pairs of mixing ratios.
Given a particular mineral assemblage and Ni – 1 mixing ratios, one may tabulate the Hessian of each com-
ponent of c00a with respect to each possible pair of the Ni – 1 mixing ratios. This may be done as noted in
dS07 numerically or by curve fitting, but there the suggestion was erroneously for only the diagonal terms
of the Hessian. In fact one needs the full Hessian, including the cross-terms as shown in equation (14). For
instance, assume 3-D (could be 2-D) transient reactive transport problem with Ni – 1 5 3, for each compo-
nent of vector c00a, one would need to fit all second derivatives (i.e., with respect to: ai , aj ; i, j 5 1,. . ., 3, with a
total of six as Schwartz’s Theorem applies). Each of these 6NR second derivatives would be mapped a priori
over the three-dimensional domain (defined in all the internal points of a tetrahedron limited by points
[0,0,0], [1,0,0], [0,1,0], [0,0,1] in space [a1, a2, a3]). This task needs only be done once per mineral assem-
blage and can then serve as a look-up table for any problem with the same number of mixing ratios and
the same minerals, resulting in formidable savings in the solution over that of the classical approach that
requires solving (2) with (7) every time step on a spatial grid.

4.1. Identification of the End-Members
Defining the end-members becomes critical. One option consists of making a partition of the boundary and
running the conservative transport equation for a homogeneous problem where the initial or the boundary
value is set to the unity. This is most probably not the smartest solution.

We suggest to obtain Ni from a combination of the inverse problem and equation (11). The choice is based
upon the actual hydrogeological setup that would indicate potential sources of water that eventually reach
and mix within the study area. Each one of the end-members is then characterized by a given chemical sig-
nature that can be stated in terms of components. There is a compromise in the total number. Setting a
large number for Ni allows for a large degree of flexibility in reproducing observations; on the other hand, it
would reduce the robustness in the estimation of the ai values at each individual point in space and time.
Again, there is nonuniqueness in this process.
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Once the number of end-members is set, there is a need to characterize their chemical signatures. This is
based both on a priori knowledge of the recharge or contributing sources of groundwater, plus on the
actual measurements of water sampled at the site. The a posteriori chemical signatures can be obtained
with the methodology outlined in Carrera et al. (2004) and in Pelizardi et al. (2017). An iterative process can
be used so that if two chemical signatures are quite similar it would be possible to consider them as the
same end-member, recomputing again all chemical compositions.

4.2. What About Changes to the Mineral Assemblage?
Equation (14) can be used in place of (7a) in any conventional time stepping solution workflow, or in the
analytical approach outlined above when the mineral assemblage remains the same everywhere in the
domain, as demonstrated in dS07. But in fact the minerals initially present may be heterogeneous in their
occurrence, may dissolve completely in some parts of the domain, and equally challenging, some minerals
not originally present may come into existence. The treatment of this aspect is currently not within the
capability of the dS07 approach (despite the suggestion in paragraph 55, dS07 that it is), because when the
mineral assemblage changes with space, the structure of u (and of c0a, c00a , and S0Tea) becomes a property of
space through (6), i.e., an Eulerian quantity, that must be updated as minerals (dis)appear at different times
and points in space. For instance, when a solution previously in equilibrium with calcite moves into a place
without calcite, the length of u must increase by one because there is one less reaction in the reaction net-
work. That is, while conventional basis-swapping can always be used to make a basis given the minerals
that are present (e.g., Bethke, 2006), the part of the basis corresponding to the aqueous components u
changes in dimension, preventing mathematical mixing of the components corresponding to different
bases. This challenge so far requires a numerical discretization of space which defeats the relative computa-
tional simplicity of the mixing ratios approach, and is a key area for future study of the mixing ratios
approach. One promising possibility is to combine the extended LMA approach of Leal et al. (2016b) with
the scalar dissipation rate concept to reconstruct (14) in a way that admits varying mineral assemblages.

5. Which Species Do We Use as the Secondaries and How Do We Identify the
Corresponding Matrices Sec and S0ea When multiple Minerals Are Present?

The purpose of this section is to introduce and demonstrate a direct way to compute the relevant stoichio-
metric matrices needed for the dS07 approach when multiple minerals (that may share ions) are involved.
Mineral reactions are assumed independent (e.g., aragonite and calcite are treated as the same mineral) so
that minerals can be expressed as independent combinations of primary species. The fact that the choice of
secondaries is nonunique means that the vector of secondary species concentrations c00a , and so the brack-
eted quantity in (14), are not uniquely defined. This is a pragmatical and not fundamental problem because
for every distinct set of secondaries there is a corresponding ST

ec so that the right-hand side of (14) (and
(7a)) itself is unique and invariant of the secondaries selection. Nevertheless, the identification of the
secondaries is still a requirement for writing equation (14) and since this is not uniquely determined when
using practical computational codes for the solution of (2) such as PHREEQC, this requirement leaves the
solution of more realistic problems with multiple minerals ambiguous. Thus, applications of the dS05/dS07
approach are heretofore mainly upon simple systems, e.g., dS07 and Dreybrodt et al. (2009) use Ca11 as
the secondary for calcite mineral equilibrium (termed ‘‘Ceq’’ in Romanov & Dreybrodt, 2006) and no other
minerals used, and Guadagnini et al. (2009) used total calcium and manually calculated Sec (gathered all
species containing Ca and in aqueous form), without explaining why.

Thus it is not straightforward how to apply the dS07 approach for three reasons: (1) multiple choices for the
set of secondaries exist, (2) the manual construction of Sec (as well as S0ea) for each choice is manual, and (3)
in the natural case of multiple minerals sharing an ion, the secondaries appearing in one mineral may
appear in another. For more realistic simulations involving a full suite of compounds that exist in environ-
mental aqueous solutions, or when available multicomponent codes such as PHREEQC are used with com-
prehensive thermodynamic databases including very many aqueous and mineral species by default, we
need a simple way to determine a set of feasible secondaries c00a and corresponding matrices Sec and S0ea for
a given problem that works for the general case. This would allow the modeler wishing to apply the dS07
approach to more realistic multimineral problems to select from the set of feasible secondaries c00a and to
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immediately calculate the Sec and S0ea matrices needed for computations of rates of mixing-limited reactions
in systems with multiple minerals possibly sharing ions. Here we outline such a method.

Our approach is to formulate the reaction network twice, once with all the minerals out of the basis (this is
called the ‘‘reference’’ basis), and once with all the minerals included in the basis (this is called the ‘‘new’’
basis). Note that while there may be multiple ways to write the reference basis, the ions or compounds
comprising the minerals are necessarily primaries in all possible versions because the role of secondary is
already taken by the mineral per mineral reaction, by construction. Thus, for any given reference basis, the
question is which of the ions or compounds comprising the minerals will be swapped out of the basis when
the minerals are swapped into the new basis? Enumeration of the possible permutations of this new basis
gives the set of possible secondaries for the given mineral assemblage. We first show how to determine the
matrices Sec and S0ea for any one of these new bases. The procedure is a novel application of the mathemat-
ics of basis swapping as described in Bethke (2006) and relies on the linear algebra of basis swapping, a
basic tour through which is given in Appendix C.

Because the old basis necessarily contains all the ions needed to make the minerals, the new basis can be
written as a linear transformation of the old basis:

bNew5T bRef (15)

For such a transformation of the basis of any vector space, the components of a vector in the old basis are
converted to those of the same vector in the new basis by (Lipschutz, 1968, p. 153; note that our T is Lip-
schutz’ PT and is Bethke’s b):

vNew5 T21
� �T

vRef (16)

Because the material derivatives of the components of the reaction network are vectors in the vector space
defined by the basis, then they too can be converted this way leading to

_uNew5 T21
� �T

_uRef (17)

and because the new components vector uNew contains the minerals, this gives us a way to calculate the rate
of change of mineral species as linear combinations of the rates of change of that mineral’s dissolution ions
that necessarily appear in the old components vector uRef. An example of this conversion is given in Appendix
C. For present purposes, this does not provide complete information on Sec however, because the composi-
tion of the old components (e.g., all the species contributing to one component, such as carbonate(s)) is not
explicit in the above equations. To fix this, we write the reaction network according to the two bases, and
then find a relation between their respective stoichiometric matrices that gives the needed information.

The reaction system corresponding to the ‘‘New’’ basis (minerals are included in the basis) is already pre-
sented as

0() Sec; S0ea;2I
� �

�

ac

a0a

a00a

2
664

3
775 (18)

which can be written with secondaries (entirely aqueous by construction) on the left-hand side as

a00a() Sec; S0ea

� �
�

ac

a0a

" #
(19)

The modeler must split these New basis aqueous secondaries a00a into: a00ao that will remain secondaries in
the ‘‘Reference’’ basis, and the remainder a00ac , that wlill become primaries in the ‘‘Reference’’ basis where
they will replace the minerals. Then the reaction system in the ‘‘New’’ basis is expressed as

a00ac

a00ao

" #
() Sec; S0ea

� �
�

ac

a0a

" #
(20)

The same reaction network expressed in the ‘‘Reference’’ basis has a00ac as primaries replacing minerals ac

that appear as secondaries in the Reference basis:
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ac

a00ao

" #
() R00eac;R0ea

� �
�

a00ac

a0a

" #
(21)

Equation (21) can be written with partitioned matrices P00eac (NC x NC), Q00eac (NR – NC 3 NC), P0ea (NC 3 NS – NR –
NC), and Q0ea (NR – NC 3 NS – NR – NC), as

ac

a00ao

" #
()

P00eac P0ea

Q00eac Q0ea

" #
�

a00ac

a0a

" #
(22)

and then with 0ao (NC x NR – NC zero matrix), Iao (NR – NC 3 NR – NC identity), Ic(NC 3 NC identity), and 0c(NR

– NC 3 NC zero matrix) as

2P00eac 0ao

2Q00eac Iao

" #
a00ac

a00ao

" #
()

2Ic

0c

P0ea

Q0ea

2
4

3
5 � ac

a0a

" #
(23)

where the bracketed matrix on the left-hand side is square with dimensions NR x NR and that on the right-
hand side has dimensions NR x (NS – NR). While there may be multiple choices for the swapping species a00ac ,
the selection is not totally arbitrary because a00ao remain secondaries in both (20) and (21). Thus, a00ac must be
selected so that (per (20)) they can be constructed from ac and a0a. This is achieved by selecting a00ac so that
square P00eac is invertible. Because the mineral reactions are independent, the matrix P00eac P0ea

� �
is of full

row rank NC, and there are (generally multiple) choices of the NC columns of it corresponding to the a00ac

from which one can compose invertible P00eac . This is not difficult to see in practice because if the a00ac were to
be chosen so that P00eac were singular then the mineral reactions corresponding to the first NC rows of (22)
would not be independent.

With invertible P00eac we finally isolate the secondaries of the previous ‘‘New’’ basis by premultiplying by the
inverse of the bracketed matrix on the left-hand side, as

a00ac

a00ao

" #
()

2P00eac 0ao

2Q00eac Iao

" #21
2Ic

0c

P0ea

Q0ea

2
4

3
5 � ac

a0a

" #
(24)

the inversion can be performed using the relation for 2 3 2 block matrix inversion to write (24) as

a00ac

a00ao

" #
()

2P00eac21

2Q00eacP00eac21

0ao

Iao

2
4

3
5 2Ic

0c

P0ea

Q0ea

2
4

3
5 � ac

a0a

" #
(25)

By equivalence of (20) and (25) we have an expression for the sought-after matrices given any valid specifi-
cation of secondaries per mineral reaction a00ac :

Sec; S0ea

� �
5

2P00eac21

2Q00eacP00eac21

0ao

Iao

2
4

3
5 2Ic

0c

P0ea

Q0ea

2
4

3
5 (26)

which renders Sec and S0ea , respectively, as,

Sec

� �
5

P00eac21

Q00eacP00eac21

" #
(27a)

S0ea

� �
5

2P00eac21P0ea

2Q00eacP00eac21P0ea1Q0ea

" #
(27b)

Let us demonstrate the utility of (27) with an example that includes two minerals, calcite and magnesite.
We write the reaction system in the Reference basis {carbonate, magnesium, water, calcium, protons}, with
secondaries {calcite, magnesite, hydroxyl ion, bicarbonate, and calcium hydroxide}:
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CaCO3() CO22
3 1Ca11

MgCO3() CO22
3 1 Mg11

OH2() H2O 2 H1

HCO2
3() CO22

3 1 H1

Ca OHð Þ2() 2H2O 1Ca11 22H1

In the context of (21), we have

ac5
CaCO3

MgCO3

" #
; a00ao5

OH2

HCO2
3

Ca OHð Þ2

2
664

3
775; a00ac5

CO22
3

Mg11

" #
; and a0a5

H2O

Ca11

H1

2
664

3
775 (28)

and we will swap secondaries carbonate and magnesium into the basis for the two minerals calcite and
magnesite. The matrices P00eac , Q00eac , and R0ea are

P00eac5
1 0

1 1

" #
; Q00eac5

0 0

1 0

0 0

2
664

3
775; P0ea5

0 1 0

0 0 0

" #
; and Q0ea5

1 0 21

0 0 1

2 1 22

2
664

3
775 (29)

Sec is found from (27a) to be

Sec

� �
5

1

21

0

1

0 0

1

0

0

0

2
6666666664

3
7777777775

(30a)

and S0ea is found from (27b) to be

S0ea

� �
5

0

0

1

0

2

21

1

0

21

1

0

0

21

1

22

2
66666666666666664

3
77777777777777775

(30b)

We check this result by formulating the problem originally with the New basis {calcite, magnesite, water,
calcium, protons}, with secondaries {carbonate, magnesium, hydroxyl ion, bicarbonate, and calcium
hydroxide}:

CO—
3 () CaCO3 2Ca11

Mg11()2CaCO3 1 MgCO3 1Ca11

OH2() H2O 2 H1

HCO2
3() CaCO3 2Ca111H1

Ca OHð Þ2() 2H2O 1Ca1122H1

where it is seen that Sec (and S0ea) corresponding to the minerals calcite and magnesite, is indeed as put in
(30a) and (30b), respectively. This allows us to write the particular version of (14) corresponding to this
selection of secondaries replacing minerals, as:
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@mCaCO3

@t
5n

XNi21

i51

XNi 21

j51

@2 cCO—
3

2cMg11 1cHCO2
3

� 	
@ai@aj

rTai � D � raj

2
4

3
5

@mMgCO3

@t
5n

XNi21

i51

XNi 21

j51

@2 cMg11

� �
@ai@aj

rTai � D � raj

" # (31)

Where we have factored in the multiplication by the respective rows of ST
ec . This example demonstrates the

impact of including two minerals that share an ion; in order to use carbonate as a secondary for the rate of
change of calcite, one must correct for the simultaneous precipitation/dissolution of magnesite through
inclusion of the magnesite-associated secondaries. If one were to have selected calcium instead of carbon-
ate for the secondary swapping with calcite, it is easy to show by the same procedure that one would get

@mCaCO3

@t
5n

XNi21

i51

XNi 21

j51

@2 cCa11 1cCa OHð Þ2
� �

@ai@aj
rTai � D � raj

" #

@mMgCO3

@t
5n

XNi 21

i51

XNi 21

j51

@2 cMg11

� �
@ai@aj

rTai � D � raj

" # (32)

6. Summary

Recent strides in mathematical approaches to decouple reactions and transport have opened new paths to
upscaling quantitative biogeochemistry processes. Here we revisit the analytical approach of De Simoni
et al. (2005, 2007) in order to clarify some opaque aspects of its use and to outline a way to extend the
method to the more general cases of reactive transport involving multiple minerals. This entails construc-
tion of a certain, straightforward, and closed-form means to construct the necessary stoichiometric matrices
for any given valid selection of ‘‘secondary’’ chemical species involved in the mineral formation, within the
context of general multicomponent chemistry where these secondary species may participate in a number
of other reactions including reactions forming other minerals. This opens the way for using the approach of
De Simoni and coworkers with available codes such as PHREEQC that include very many such reactions
within the various thermodynamic databases that come with the codes. Fortunately one need to only con-
sider the subset of those reactions that involve the secondaries selected for swapping with the minerals,
that we have termed here a00ac . This allows relatively easy construction of the matrices P00eac and Q00eac needed
for the construction of that Sec corresponding to the selected a00ac .

Appendix A: Example for Equations (1–6)

Consider calcite precipitation/dissolution in batch with carbonate, bicarbonate, and protons, ignoring water
dissolution. The species are CaCO3, HCO2

3 , Ca11, CO—
3 , and H1 with reactions

CaCO3()
r1

Ca111CO—
3

HCO2
3()

r2
CO22

3 1H1

the mole balances are

D
Dt

CaCO3

HCO2
3

Ca11

CO—
3

H1

2
66666666666664

3
77777777777775

5

21 0

0 21

11 0

11 11

0 11

2
6666666666664

3
7777777777775

r1

r2

" #

and choosing HCO2
3 , Ca11 as secondaries leads to the equations (4) for this case:
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D
Dt

CaCO31Ca11

CO—
3 2Ca111HCO2

3

H11HCO2
3

2
664

3
77550

and equation (5) becomes (simplifying the notation to use chemical formulae for the compound mole
concentrations):

mcalcite5CaCO31n 1 0½ �
Ca11

HCO2
3

" #

and equation (6) become

u5c0a1S0Teac00a !
ucarbonate

uproton

" #
5

CO—
3

H1

" #
1

21 1

0 1

" #
Ca11

HCO2
3

" #

Appendix B: Deriving the Corrected Form of (13) of dS07

2
@nc00a
@t

1L nc00a
� �� �

5n
XNi21

i51

XNi21

j51

@2c00a
@ai@aj

rTai � D � raj (B1)

where

L �ð Þ5
def

2q � r �ð Þ1r � nD � r �ð Þð Þ:

Following de Simoni et al. (2007), we presume the secondaries are determined solely as a function of the
independent mixing ratios a 5 ai(x,t), i 5 1,. . ., Ni – 1, where Ni is the number of time-space boundaries to
the problem. Thus,

c00a5c00a a x; tð Þð Þ

and for each of the terms on the right-hand side of (B1) we may expand as follows, respectively:

@nc00a
@t

5
@nc00a
@a
� @a
@t

5
XNi 21

i51

@nc00a
@ai

@ai

@t

rc00a a x; tð Þð Þ5 @c00a
@a
� @a
@x
;
@c00a
@a
� @a
@y
;
@c00a
@a
� @a
@z


 �
5
XNi 21

i51

@c00a
@ai
rai

r � nD � rc00a a x; tð Þð Þ
� �

5
XI21

j51

XI21

i51

@2c00a
@ai@aj

raT
i � nD � raj1

XNi 21

i51

@c00a
@ai
r � nD � raið Þ

which when used in (B1) converts the left-hand side of (B1) to

2q �
XNi21

i51

@c00a
@ai
rai1

XNi 21

j51

XNi21

i51

@2c00a
@ai@aj

raT
i � nD � raj1

XNi 21

i51

@c00a
@ai
r � nD � raið Þ2 @nc00a

@a
� @a
@t

which, after some rearrangement and assuming n constant of time (actually it is enough if it is slowly vary-
ing as compared to concentrations or mixing ratios)

5
XNi 21

i51

@c00a
@ai

2q � rai1r � nD � raið Þ2n
@ai

@t


 �
1
XNi21

j51

XNi21

i51

@2c00a
@ai@aj

raT
i � nD � raj

and, since the parenthetical quantity in the first term is zero by conservation of ai,

5
XNi21

j51

XNi 21

i51

@2c00a
@ai@aj

raT
i � nD � raj

This equation corrects and replaces (13) of de Simoni et al. (2007).
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Appendix C: Basis Swapping

The list of primary species makes a linear algebraic basis for the vector space constructed of all the species
identities and constrained by the equilibrium reaction relations. Basis swapping is the exchange of a subset
of the primaries of the old or ‘‘reference’’ basis to become secondaries, and the same number of old
secondaries to become primaries in the new basis. Basis swaps are called for as part of the numerical solu-
tion procedure especially when a species such as a mineral disappears (Bethke, 2006). However, quite little
attention has been paid to this basis swapping, and this has been attributed to its limited role in assisting
convergence of geochemical calculations, a role which vanishes when the solution is done in terms of loga-
rithms of concentrations (Steefel & MacQuarrie, 1996). In the present context, however, basis swapping is
fundamental to the identification of Sec given a valid set of secondaries, and to support this new use of
basis swapping, this appendix provides a background in the topic.

The manipulations associated with basis swapping follow exactly the notions of linear transformations of
bases in linear algebra (e.g., Lipschutz, 1968) and are briefly summarized in Steefel (1992) and Bethke
(2006). Here we connect the operations to the mathematics of linear algebra in more detail, which is not
available in the hydrology literature to our knowledge. We begin with an elementary case to set the con-
cept and then move through the procedure details to an example.

C1. Elementary Case
Consider the three-dimensional vector space R3 described by the coordinates (X, Y, Z) which we conceptu-
ally associate with three chemical species, and a single reaction among them that proceeds from left to
right at rate r:

Z()X1Y; or 0()2Z1X1Y

If all variations in concentration are solely related to the reaction (e.g., no transport), we can write the ODE system

_x

_y

_z

5

1

1

21

2
66664

3
77775 r½ �

where x, y, and z are concentrations of the chemical species X, Y, and Z, respectively. The reaction rate pro-
vides a linear dependency among the three ODEs so we can eliminate one of them; we eliminate the ODE
for z obtaining

_x1zð Þ
_y1zð Þ

" #
�

_u1

_u2

" #
5

0

0

" #
(C1)

where we now have steady state quantities (x 1 z) and (y 1 z) termed ‘‘components’’ u1 and u2. In this
case, the ‘‘basis’’ is X and Y, and the two equations can be viewed as their respective conservation equa-
tions. The mass of X is contained in the component u1, either in x (its ‘‘primary’’ species) or in z (a ‘‘second-
ary’’ species), so the sum of these two quantities is a constant. Similarly, the mass of Y is contained in the
component u2, either in its primary species y or in its secondary species z, the sum of which is also a
constant.

Alternatively, we could eliminate the ODE for x. To do this with consistent nomenclature we term x the ‘‘sec-
ondary’’ species, and y and z primary species, and to do this with consistent writing of reactions with the
secondary on the left-hand side we express the equation as:

X()Z2Y; or 0()2X1Z2Y

now with rate –r. With these changes the new ODE system becomes

_x

_y

_z

5

21

21

1

2
66664

3
77775 2r½ �

and now eliminating the ODE for x we obtain
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_z1xð Þ
_y2xð Þ

" #
�

_u1

_u2

" #
5

0

0

" #
(C2)

where our new components are u1 5 (y – x) and u2 5 (z 1 x). Summarizing our two cases:

C2. Swapping From One Basis to Another Via the Transformation Matrix in a Linear Algebraic
Formulation
The above demonstrates that the same chemical reaction system can be expressed in terms of two different
bases following elementary linear algebra. More generally the same thing works in the context of vector
spaces (e.g., Lipschutz, 1968, Chapter 7). Moreover, one can define a ‘‘transformation matrix’’ T that defines
the new basis in terms of the reference basis:

bNew5T bRef (C3)

and then the components of a vector in the old basis are converted to those of the same vector in the new
basis by

vNew5 T21
� �T

vRef (C4)

So we can convert a (chemical components) vector that was defined in the reference basis to a components
vector defined in the new basis by multiplying the components vector by the transpose of the inverse of
the transformation matrix. Equation (C3) in the case of our elementary example is clearly

Z

Y

" #
5

1 1

0 1

" #
X

Y

" #
;

and then inverting and transposing the above transformation matrix

1 1

0 1

" #21" #T

5
1 0

21 1

" #

we execute (C4) by multiplying the reference components vector to obtain the new components vector:

1 0

21 1

" #
u1

u2

" #
Ref

5
1 0

21 1

" #
x1z

y1z

" #
5

z1x

y2x

" #
5

u1

u2

" #
New

and indeed we obtain the correct New components vector as already appears in Appendix Table C1 (Lip-
schutz, 1968, p. 153).

Next we demonstrate a basis switch for a larger system with eight species and four reactions. The basis is
the species remaining after we assign exactly one species per reaction as the secondary species that
appears in no other reactions. Then our system has four secondaries, and thus four remaining primary spe-
cies corresponding to four components. Assuming each reaction is linearly independent from the others
comprising the system, then one can always write the system so that each secondary appears only once in
its respective reaction. In the case of linearly dependent reactions, the secondaries appear in more than one
instance as described in Steefel and MacQuarrie (1996, p. 89), and this complicates the solution approach. It
should be noted that for kinetically controlled reactions, linear dependency causes no difficulty. For present
purposes, we assume all reactions independent

Table C1
Species, Components (of Basis), Primaries and Secondaries for Elementary Example

Species Basis Primaries Secondaries Components

Reference basis x, y, z X, Y x, y z (x 1 z)
(y 1 z)

New basis x, y, z Z, Y z, y x (z 1 x)
(y – x)
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This system combines calcite precipitation (reaction 1) with simplified carbonate reactions (reactions 2
and 3) and water dissociation (reaction 4):

CaCO3()
r1

Ca111CO—
3

HCO2
3()

r2
CO22

3 1H1

CO2 aqð Þ()
r3

CO22
3 2H2O12H1

OH2()
r4

H2O2H1

where the ri are the rates of the reactions, with the convention that ri is positive as the reaction proceeds
from left-to-right. We have written the reactions with the secondaries already on the left-hand side, and so
this establishes the Reference basis to include calcium, carbonate, water, and protons. The set of mass bal-
ance equations for the eight species is

D
Dt

CaCO3

HCO2
3

CO2 aqð Þ

OH2

Ca11

CO—
3

H2O

H1

2
6666666666666666666666666664

3
7777777777777777777777777775

5

21

21

21

21

1

1 1 1

21 1

1 2 21

2
666666666666666666666666664

3
777777777777777777777777775

r1

r2

r3

r4

2
6666664

3
7777775

where the secondaries appear in the first four expressions. Components are formed by eliminating the reac-
tion rates in a way that eliminates the equations for the secondaries, but direct substitution to get four
equations for the components ui corresponding to the reference basis:

_uCa

uCO3

uH2O

uH

2
66666664

3
77777775

5

1 0 0 0 1 0 0 0

1 1 1 0 0 1 0 0

0 0 21 1 0 0 1 0

0 1 2 21 0 0 0 1

2
666664

3
777775

CaCO3

HCO2
3

CO2 aqð Þ

OH2

Ca11

CO—
3

H2O

H1

2
6666666666666666666666666664

3
7777777777777777777777777775

(C5)

Notice that the matrix in (C5) can be written also as S0Tea; I
� �

(we used bold to indicate the presence of
the identity matrix). Now we establish the system for the new basis: if one were to choose Ca11 and
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CO22
3 as secondaries instead of calcite and bicarbonate, the new components in this case would

satisfy

_uNew
Ca

uNew
CO3

uNew
H2O

uNew
H

2
66666664

3
77777775

5

1 0 0 0 1 0 0 0

0 1 1 0 21 1 0 0

0 0 21 1 0 0 1 0

0 0 1 21 1 21 0 1

2
666664

3
777775

CaCO3

HCO2
3

CO2 aqð Þ

OH2

Ca11

CO—
3

H2O

H1

2
6666666666666666666666666664

3
7777777777777777777777777775

(C6)

with the new basis of calcite, bicarbonate, water and protons. Notice that similar to (C5), here we
have highlighted in bold the primaries and the corresponding columns (becoming the identity
matrix), so with a proper rearrangement in the species vector we could write it again as S0Tea; I

� �
. Notice

also that the two matrices S0Tea in (C5) and (C6) are different, to adapt to the choice of primary species
done by the modeler.

One may obtain the new components from the original components using the same procedure as outlined
above for the Elementary case. First we find the transformation matrix that gives the new basis in terms of
the reference basis,

CaCO3

HCO2
3

H2O

H1

2
66666664

3
77777775

5

1 1 0 0

0 1 0 1

0 0 1 0

0 0 0 1

2
666664

3
777775

Ca11

CO—
3

H2O

H1

2
66666664

3
77777775

Thus the transformation matrix T is

T5

1 1 0 0

0 1 0 1

0 0 1 0

0 0 0 1

2
666664

3
777775

and the transpose of its inverse is

T21
� �T

5

1 0 0 0

21 1 0 0

0 0 1 0

1 21 0 1

2
666664

3
777775

and if we use this matrix to multiply the original components,
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T21
� �T

UCa

UCO3

UH2O

UH

2
66666664

3
77777775

we obtain the new components,

T21
� �T

uCa

uCO3

uH2O

uH

2
66666664

3
77777775

5

1 0 0 0

21 1 0 0

0 0 1 0

1 21 0 1

2
666664

3
777775

1 0 0 0 1 0 0 0

1 1 1 0 0 1 0 0

0 0 21 1 0 0 1 0

0 1 2 21 0 0 0 1

2
666664

3
777775

CaCO3

HCO2
3

CO2 aqð Þ

OH2

Ca11

CO—
3

H2O

H1

2
6666666666666666666666666664

3
7777777777777777777777777775

5

1 0 0 0 1 0 0 0

0 1 1 0 21 1 0 0

0 0 21 1 0 0 1 0

0 0 1 21 1 21 0 1

2
666664

3
777775

CaCO3

HCO2
3

CO2 aqð Þ

OH2

Ca11

CO—
3

H2O

H1

2
6666666666666666666666666664

3
7777777777777777777777777775

5

uNew
Ca

uNew
CO3

uNew
H2O

uNew
H

2
66666664

3
77777775

as can be seen by comparison to the already determined new components in equation (C6).

Notation

Ni number of time-space boundaries for solution sources (end-members) in the
transport.

NC number of mineral species in the reaction network.
NR number of reactions.
NS total number of chemical species in the reaction network.
NU (5 NS – NR – NC) number of aqueous components, equal to number of aqueous primary species

Following definitions are for the role played by the given symbols in the ‘‘New’’ basis unless
otherwise noted

ai x; tð Þ solution to the nonreactive transport of a tracer emanating from time or space boundary i
with unity boundary or initial condition there and zero elsewhere [dimensionless].
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ac NC primary mineral species.
a0a NU (5NS – NR – NC) primary aqueous species.
a00a NR secondary aqueous species.
a00ac NC secondary aqueous species corresponding to the mineral equilibria.
a00ao NR – NC secondary aqueous species not corresponding to the mineral equilibria.
bNew basis vector (of NU dimensional vector space) defining New basis.
bRef basis vector (of NU dimensional vector space) defining Reference basis.
mc vector of NC bulk-volumetric mineral moles [moles/vol].
N porosity [volume/volume].
c0a vector of NU aqueous-volumetric moles of primary species [moles/vol].
c00a vector of NR aqueous-volumetric moles of secondary species [moles/vol].
ui end-member component vector corresponding to the composition of the solution at the ith

boundary.
vNew a vector of NU components in the New basis.
vRef a vector of NU components in the Reference basis.
0ao NC 3 (NR – NC) matrix of zeroes.
0c (NR – NC) 3 NC matrix of zeroes.
Iao (NR – NC) 3 (NR – NC) Identity matrix.
Ic NC 3 NC Identity matrix.
P00eac NC 3 NC upper partition of R00eac corresponding to mineral equilibria reactions.
Q00eac (NR – NC) 3 NC lower partition of R00eac .
P0ea NC 3 (NS – NR – NC) upper partition of R0ea corresponding to mineral equilibria.
Q0ea (NR – NC) 3 (NS – NR – NC), lower partition of R00eac .

R00eac;R0ea

� �
NR 3 (NS – NR) stoichiometric matrix for the reaction network expressed in the Reference
basis.

R00eac NR 3 NC stoichiometric submatrix that is columns of R00eac;R0ea

� �
:

R0ea NR 3 (NS – NR – NC) stoichiometric submatrix that is columns of R00eac;R0ea

� �
:

Sec; S0ea

� �
NR 3 (NS – NR) stoichiometric matrix for the reaction network.

Sec NR 3 NC stoichiometric submatrix that is columns of Sec; S0ea

� �
corresponding to mineral

primaries.
S0ea NR 3 (NS – NR – NC) stoichiometric submatrix that is columns of Sec; S0ea

� �
corresponding to

aqueous primaries.
T NU 3 NU Transformation matrix.
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