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∗Department of Applied Mathematics III, Universitat Politècnica de
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Abstract: In this work, a contribution to the contractibility of decentralized control laws, in the context
of the Inclusion Principle, is offered. By means of this principle, an overlapping system can be expanded
to another bigger one where the subsystems are considered as disjoint. Under a control criterion, local
controllers are designed for each subsystem. After this expansion-design process, the decentralized
control laws need to be contracted and implemented in the original system. However, the contractibility
conditions are not satisfied by arbitrary local gain matrices. In this paper, an explicit structure for the local
gain matrices ensuring contractibility is presented; moreover, the possibility of using different control
criteria in accordance with these structures is discussed.
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1. INTRODUCTION

Numerous real systems are composed by overlapped subsys-
tems sharing states, inputs and/or outputs. When dealing with
interconnected large-scale or complex systems, the design of
a centralized control law could be inappropriate due to sev-
eral reasons: high dimensionality of the systems, information
structure constraints, great computational effort, the presence
of uncertainties, or a mixture of some of them. With the ob-
jective of controlling these systems, strategies based on the
design of local controllers have been profusely developed in the
literature, İftar (1993), Stanković and Šiljak (2001), Chen and
Stanković (2004), Stipanović et al. (2004), Chen and Stanković
(2005), Zečević and Šiljak (2005).

The Inclusion Principle appears as a powerful mathematical
tool to work with overlapping systems. By means of this prin-
ciple, an expansion-design-contraction process can be carried
out in three phases: (1) expansion of the original overlapping
system into a bigger one, where the subsystems are considered
as disjoint; (2) local design of controllers for each decoupled
subsystem; (3) contraction of the obtained local controllers to
be implemented as an overlapping control law into the initial
system. A rigorous treatment of the inclusion principle can be
found in Ikeda et al. (1981), Ikeda et al. (1984), Šiljak (1991).

In phase (1), certain matrices involved in the expansion pro-
cess, known as complementary matrices, play a crucial role
for achieving decoupled or weakly coupled expanded systems.
It has been proved that, by adding convenient complementary
matrices, some desired properties are preserved, Bakule et al.
(2000), Bakule et al. (2001a), Bakule et al. (2001b). In this
paper, only two types of complementary matrices will be con-
sidered, which define the two most important cases of expan-
sion: aggregations and restrictions. The result of this expansion
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phase is an expanded system formed by subsystems which can
be treated as decoupled.

In phase (2), using only local information, decentralized con-
trollers for each subsystem are designed by means of standard
methods. Then, a set of local controllers are obtained and joined
together in a diagonal gain matrix to be later contracted to the
initial system. To satisfy the inclusion principle, the expanded
closed-loop system has to include the corresponding contracted
one. In order to guarantee this inclusion, some conditions on the
expanded gain matrices are required. Sometimes, convenient
adjustments on the block diagonal gain matrix need to be done
in order to assure contractibility. In any case, there exists no
general methodology to properly modify the elements of the
extended gain matrices, Ikeda and Šiljak (1986).

Finally, phase (3) is straightforward when the contractibility
conditions are satisfied. The contracted overlapping controller,
which has a tridiagonal structure, can be implemented into the
original system.

This article attempts to be a contribution to clarify the con-
tractibility problem in the framework of the inclusion principle.
In this line, we firstly present a class of gain matrices which
are contractible for implementation in the original system. Sec-
ondly, we determine if such structures can be achieved when
different control criteria are used in the design of local ex-
panded controllers. In particular, optimal control, guaranteed
cost control, and H∞ control are considered. It is worth to
mention that, in the present study, the initial system consists of
only two overlapped subsystems; however, the obtained results
could be easily extended to a greater number of overlapped
subsystems.

2. PRELIMINARIES

2.1 The inclusion principle

Consider a pair of linear systems



S : ẋ(t) = Ax(t)+Bu(t), S̃ : ˙̃x(t) = Ãx̃(t)+ B̃ũ(t), (1)

where x(t)∈Rn
, u(t)∈Rm

are the state and input of the system
S at time t>0, while x̃(t)∈Rñ

, ũ(t)∈Rm̃
are the state and input

of S̃. A, B and Ã, B̃ are constant matrices of dimensions n×n,
n×m and ñ×ñ, ñ×m̃, respectively. We assume ñ>n, m̃>m. By
x(t;x0,u) we denote the state behavior of S for a fixed input u(t)
and initial state x(0)=x0. The notation x̃(t; x̃0, ũ) is used for the
state behavior of S̃.

Consider the following expansion-contraction transformations:

V : R
n−→ R

ñ
, U : R

ñ−→ R
n
,

R : R
m−→ R

m̃
, Q : R

m̃−→ R
m
,

(2)

where rank(V )=n, rank(R)=m so that UV =In, QR=Im, where In,
Im denote the identity matrices of indicated dimensions.
Definition 1. (Inclusion Principle) A system S̃ includes the
system S, if there exists a quadruplet of matrices (V,U,R,Q)
satisfying (2) such that, for any initial state x0 and any fixed
input u(t) of S, the choice x̃0=V x0 and ũ(t)=Ru(t), implies
x(t;x0,u)=Ux̃(t; x̃0, ũ), for all t>0.

Definition 2. If a system S̃ includes the system S, denoted
by S̃⊃S, then S̃ is said to be an expansion of S, and S is a
contraction of S̃.
Definition 3. A the system S is an aggregation of S̃, if there
exists a pair (U,Q) satisfying (2) such that, for any initial
state x̃0 and any fixed input ũ(t) of S̃, the choice x0=Ux̃0 and
u(t)=Qũ(t), implies x(t;x0,u)=Ux̃(t; x̃0, ũ) for all t>0.

Definition 4. A the system S is a restriction of S̃, if there exists
a pair (V,R) satisfying (2) such that, for any initial state x0 and
any fixed input u(t) of S, the choice x̃0=V x0 and ũ(t)=Ru(t),
implies x̃(t; x̃0, ũ)=V x(t;x0,u) for all t>0.

Definition 5. (Contractibility) A control law ũ(t)=K̃x̃(t) for S̃
is contractible to the control law u(t)=Kx(t) for S, if the choice
x̃0=V x0 and ũ(t)=Ru(t), implies Kx(t;x0,u)= QK̃x̃(t; x̃0, ũ), for
all t>0, any initial state x0, and any fixed input u(t) of S.

2.2 Complementary matrices

Suppose that the expansion transformations V and R are se-
lected a priori. Then, the relationship between the systems S
and S̃ can be expressed as

Ã =VAU +M, B̃ =V BQ+N, (3)
where M and N are complementary matrices to be determined.
As it is well known, the complementary matrices M and N play
an important role in the framework of the inclusion principle,
providing freedom and flexibility to the obtention of expanded
systems. Numerous papers have studied the structures of these
matrices guaranteeing some properties in the expanded spaces,
such as stability, controllability, observability or contractibility,
Bakule et al. (2000), Bakule et al. (2001a), Bakule et al.
(2001b).

By using the relationships given in (3), we can rewrite the
inclusion principle in terms of complementary matrices. This
approach offers the possibility to show the matrix structures and
the conditions under which the inclusion principle is satisfied,
Ikeda et al. (1981), Ikeda et al. (1984), Ikeda and Šiljak (1986),
Šiljak (1991).
Theorem 6. A system S̃ is an expansion of the system S if and
only if UMiV =0, UMi−1NR=0, for all i=1,2, · · · , ñ. 2

Proposition 7. A system S is an aggregation of the system S̃ if
and only if UM=0 and UN=0. 2

Proposition 8. A system S is a restriction of the system S̃ if
and only if MV =0 and NR=0. 2

Analogously, Definition 5 can we rewritten in the following
way.

Proposition 9. A control law ũ(t)=K̃x̃(t) for S̃ is contractible
to the control law u(t)=Kx(t) for S, if and only if K=QK̃V ,
QK̃MiV =0, QK̃Mi−1NR=0, for all i=1, · · · , ñ. 2

Remark 10. From Propositions 8 and 9, we can observe that
the conditions QK̃MiV =0, QK̃Mi−1NR=0, for all i=1, · · · , ñ, are
automatically satisfied when the system is expanded by means
of a restriction. Moreover, in this case the contracted controller
is given by K=QK̃V .

3. EXPANSION PROCESS

In order to simplify the discussion, we assume that the system
S given in (1) is composed by two overlapped subsystems S1,
S2. Consider the matrices

A=


A11 A12

p
p
p

A13−−−
p
p
p
−−−

A21 A22 A23−−−
p
p
p
−−−

A31
p
p
p

A32 A33

 , B=

 B11 B12
p
p
p

B13−−−
p
p
p
−−−

B21 B22 B23−−−
p
p
p
−−−

B31
p
p
p

B32 B33

 , (4)

where Aii, Bi j for i=1,2,3, j=1,2,3 are ni×ni, ni×m j dimen-
sional matrices, respectively. The overlapped parts correspond
to the subsystems A22 and B22. A useful selection of the expan-
sion transformations V and R is given by

V =

 In1 0 0
0 In2 0
0 In2 0
0 0 In3

 , R =

 Im1 0 0
0 Im2 0
0 Im2 0
0 0 Im3

 . (5)

The corresponding pseudoinverse matrices U and Q are com-
puted as

U =
(
V TV

)−1
V T =

[
In1 0 0 0

0 1
2 In2

1
2 In2 0

0 0 0 In3

]
,

Q =
(
RT R

)−1
RT =

[
Im1 0 0 0

0 1
2 Im2

1
2 Im2 0

0 0 0 Im3

]
.

(6)

Then, the expanded matrix Ã=VAU+M adopts the form

Ã=

 A11
1
2 A12+M12

1
2 A12−M12 A13

A21+M21
1
2 A22+M22

1
2 A22+M23 A23+M24

A21−M21
1
2 A22−(M22+M23+M33)

1
2 A22+M33 A23−M24

A31
1
2 A32+M42

1
2 A32−M42 A33

 .
A similar structure for the matrix B̃=V BQ+N is obtained.
Theorem 11. Consider a system S given in (1) with the struc-
ture (4) and the transformations (5)-(6). Then, S̃⊃S if and only
if the complementary matrices M and N have the following
structures

M =

[ 0 M12 −M12 0
M21 M22 M23 M24
−M21 −(M22+M23+M33) M33 −M24

0 M42 −M42 0

]
,

N =

[ 0 N12 −N12 0
N21 N22 N23 N24
−N21 −(N22+N23+N33) N33 −N24

0 N42 −N42 0

] (7)

and satisfy



[
M12

M23+M33
M42

]
[M22+M33 ]

i [M21 M22+M23 M24 ] = 0,[
M12

M23+M33
M42

]
[M22+M33 ]

i [N21 N22+N23 N24 ] = 0,
(8)

for all i=0,1, · · · , ñ−1. 2

Remark 12. We note how the requirements (8) are, in practice,
very difficult to be satisfied. To avoid these hard matrix condi-
tions, two particular cases are considered: (i) the first column
matrices in (8) are zero (aggregations) or, (ii) the last row
matrices in (8) are zero (restrictions). The structure of the com-
plementary matrices for both cases is given by the following
propositions.
Proposition 13. Consider a system S as in (1) with the structure
(4) and the transformations (5)-(6). Then, S is an aggregation
of S̃ if and only if the matrices M and N have the following
structures:

M=

[
0 0 0 0

M21 M22 M23 M24
−M21 −M22 −M23 −M24

0 0 0 0

]
, N=

[
0 0 0 0

N21 N22 N23 N24
−N21 −N22 −N23 −N24

0 0 0 0

]
.

(9)
Proposition 14. Consider a system S as in (1) with the structure
(4) and the transformations (5)-(6). Then, S is a restriction
of S̃ if and only if the matrices M and N have the following
structures:

M =

[
0 M12 −M12 0
0 M22 −M22 0
0 M32 −M32 0
0 M42 −M42 0

]
, N =

[
0 N12 −N12 0
0 N22 −N22 0
0 N32 −N32 0
0 N42 −N42 0

]
. (10)

Since in the expansion process the basic idea is to achieve de-
coupled or weakly coupled expanded systems, a proper choice
of the matrices M and N is required (see Fig. 1). In the expanded
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Fig. 1. Expansion-decoupling process of the system S.

space S̃, we denote

S̃1 : ˙̃x1(t)= Ã11x̃1(t)+ B̃11ũ1(t)+ Ã12x̃2(t)+ B̃12ũ2(t),

S̃2 : ˙̃x2(t)= Ã22x̃2(t)+ B̃22ũ2(t)+ Ã21x̃1(t)+ B̃21ũ1(t),

where Ãi j, B̃i j, i, j=1,2, i 6= j are the interconnection matrices.
The decoupled subsystems can be expressed as

S̃
1

D
: ˙̃x1(t) = Ã11 x̃1(t)+ B̃11ũ1(t),

S̃
2

D
: ˙̃x2(t) = Ã22 x̃2(t)+ B̃22 ũ2(t)

(11)

or denoted by

S̃D : ˙̃x(t) = ÃD x̃(t)+ B̃D ũ(t), (12)

in a more compact notation, where ÃD= diag{Ã11, Ã22}, B̃D=
diag{B̃11, B̃22}.

The local control laws corresponding to the decoupled ex-
panded subsystems S̃1

D
and S̃2

D
, are given by

ũ1(t) = K̃11 x̃1(t), ũ2(t) = K̃22 x̃2(t), (13)

where x̃1(t)=
[
xT

1 (t), xT
2 (t)

]T , x̃2(t)=
[
xT

2 (t), xT
3 (t)

]T , ũ1(t)=[
uT

1 (t), uT
2 (t)

]T, ũ2(t)=
[
uT

2 (t), uT
3 (t)

]T (see Fig. 2).

ũ1

ũ2

S̃
1

D

•x1

•x2

•x2

•x3

S̃
2

D

S̃
D

Fig. 2. Local controllers designed in S̃D .

4. DESIGN OF LOCAL CONTROLLERS

In order to perform a decentralized design of the controller for
the expanded system, the expanded gain matrix K̃D is taken as
a block diagonal matrix with the following structure

K̃D =

[
K̃11

p
p 0

−−−−−−
0 p

p K̃22

]
, (14)

where each diagonal block matrix K̃11, K̃22 is independently
designed by means of a certain control criterion. The goal
is to implement an overlapping controller in the system S,
denoted by u(t)=Kx(t), but as a contraction of a control law
ũD(t)=K̃D x̃(t) designed in S̃D . Then, taking into account the
previous structures, the gain matrices in the expanded and
initial systems have the following form:

K̃D =

[
K̃11

p
p 0

−−−−−−
0 p

p K̃22

]
contraction−−−−−−→ K=QK̃DV =

[∗ ∗ 0
∗ ∗ ∗
0 ∗ ∗

]
.

According to Remark 10, we can restrict our attention to ag-
gregations. When an aggregation is used to expand an original
system, some structural conditions on the expanded gain ma-
trices have to be satisfied to ensure their contractibility. The
purpose is to design local gain matrices K̃11 and K̃22, as given
in (14), so that the diagonal gain matrix K̃D can be contracted to
the initial system. The structure and the conditions on the local
gain matrices are given by the following theorem.
Theorem 15. Suppose that S is an aggregation of S̃. Then, a
block diagonal gain matrix K̃D , designed for the decoupled
expanded system, having the following structure

K̃D =

K11 0 0 0
K21 K22 0 0

0 0 K22 K34
0 0 0 K44

 , (15)

is contractible to the system S. Moreover, the contracted gain
matrix will be in the form

K =

[
K11 0 0

1
2 K21 K22

1
2 K34

0 0 K44

]
. (16)



Proof. Consider S an aggregation of S̃, with the structures
given in (4), (5), (6) and (9). Suppose that a block diagonal gain
matrix

K̃D =

K11 K12 0 0
K21 K22 0 0

0 0 K33 K34
0 0 K43 K44

 , (17)

has to be designed in the decoupled expanded space S̃D .
From Proposition 9, and in order to obtain a contractible con-
troller, the requirements QK̃DMiV =0, QK̃DMi−1NR=0, for all
i=1, · · · , ñ, have to be satisfied. By imposing the condition
QK̃DMiV =0, for i=1, we obtain

K12 M21 = 0, K12 [M22 +M23] = 0,
K12 M24 = 0, [K22−K33]M21 = 0,

[K22−K33] [M22 +M23] = 0, [K22−K33]M24 = 0,
K43 M21 = 0, K43 [M22 +M23] = 0,
K43 M24 = 0.

(18)

If the matrices M2 j, j=1, · · · ,4, are previously selected, the con-
ditions (18) are reduced, in practice, to the following sufficient
conditions:

K12 = 0, K22−K33 = 0, K43 = 0, (19)
which lead to the gain matrix

K̃D =

K11 0 0 0
K21 K22 0 0

0 0 K22 K34
0 0 0 K44

 . (20)

It is easy to prove that the gain matrix (20) satisfies the re-
maining conditions QK̃DMiV =0 for all i=2, · · · , ñ. Moreover,
the conditions QK̃DMi−1NR=0 are automatically satisfied too,
for all i=1, · · · , ñ. Finally, from Proposition 9, the contracted
gain matrix K=QK̃DV adopts the structure (16). 2

Remark 16. At the end of this process, we can observe that
the overlapping controller u(t)=

[
uT

1 (t),u
T
2 (t),u

T
3 (t)

]T does not
need the information on the overall states of the system S. Thus,
u1(t) and u3(t) only use the information contained in x1(t) and
x3(t), respectively. Fig. 3 shows how the contracted overlapping
controller acts on the original system S.

u1

u3

•x1

u2•x2

•x3

S

S1

S2

Fig. 3. Overlapping controller for the initial system S.

5. CONTROL CRITERIA AND CONTRACTIBILITY

The first objective has been to design a gain matrix in the
expanded space, possessing a contractible structure as given
in (15). However, the design of a control law also depends on
a control criterion. In this paper, we consider three different
control criteria: (1) optimal control, (2) guaranteed cost control,

and (3) H∞ control. For each one of them, we study the possibil-
ity of designing decentralized controllers in the expanded space
which fit in with the structure provided by Theorem 15.

5.1 Optimal control

Consider an optimal control problem in the initial space, de-
scribed by

J(x0,u) =
∫

∞

0

[
xT (t)Q∗x(t)+uT (t)R∗u(t)

]
dt,

s.t. S : ẋ(t) = Ax(t)+Bu(t).
(21)

Following the process described before, we are interested in
designing an optimal control law for the initial system. In the
expanded space, two local cost functions corresponding to the
disjoint subsystems are considered

J̃1(x̃10 , ũ1(t)) =
∫

∞

0

[
x̃T

1 (t)Q̃
∗
11x̃1(t)+ ũT

1 (t)R̃
∗
11ũ1(t)

]
dt,

J̃2(x̃20 , ũ2(t)) =
∫

∞

0

[
x̃T

2 (t)Q̃
∗
22x̃2(t)+ ũT

2 (t)R̃
∗
22ũ2(t)

]
dt,

(22)

where x̃10 , x̃20 are the initial states and Q̃∗11, R̃∗11, Q̃∗22, R̃∗22 are
appropriate weighting matrices. The local control gain matrices
minimizing the cost functions (22) are independently computed
as

K̃11 =
[
R̃∗11
]−1B̃T

11P̃11, K̃22 =
[
R̃∗22
]−1B̃T

22P̃22, (23)
where P̃11, P̃22 are the solutions of the corresponding Riccati
equations. However, from (15), the structures of the local gain
matrices have to be in the form

K̃11 =
[

K11 0
K21 K22

]
, K̃22 =

[
K22 K34

0 K44

]
. (24)

Since the matrices K̃11 and K̃22 have zero blocks in their struc-
tures, they cannot be obtained from (23) due to the uniqueness
of P̃11 and P̃22. Then, by means of an optimal control criterion,
it is practically impossible to obtain a contractible gain matrix
K̃D .

5.2 Guaranteed cost control

Consider a guaranteed cost problem described by

J(x0,u) =
∫

∞

0

[
xT (t)Q∗x(t)+uT (t)R∗u(t)

]
dt,

s.t. S : ẋ(t) = [A+∆A(t)]x(t)+ [B+∆B(t)]u(t),
(25)

where A, B are real constant matrices with appropriate dimen-
sions and ∆A(t) and ∆B(t) are real-valued matrices of uncertain
parameters. Norm-bounded time-varying uncertainties are con-
sidered in the form

∆A(t) = HA F(t)EA , ∆B(t) = HB F(t)EB , (26)
where HA , EA , HB , EB are known real constant matrices of
appropriate dimensions and F(t)∈Ri×j is an unknown real
time-varying matrix satisfying FT (t)F(t)6 I. For these types
of systems, and in order to obtain a gain matrix so that J6J∗
(guaranteed cost), an LMI approach may be appropriate. The
following theorem supplies a desired gain matrix, Yu and Chu
(1999), Mukaidani (2003).
Theorem 17. Consider a linear continuous-time uncertain sys-
tem with an associated cost function as given in (25) and satis-
fying (26). If there exist matrices M>0, Y , and constants α1>0,
α2>0 such that the following LMI

W1 MT MET
A

Y T ET
B

Y T

M −[Q∗]−1 0 0 0
EA M 0 −α1I 0 0
EBY 0 0 −α2I 0

Y 0 0 0 −[R∗]−1

< 0 (27)



is feasible, where
W1 = AM+MAT +BY +Y T BT +α1HA HT

A
+α2HB HT

B
,

W2 =
[
M MET

A
Y T ET

B
Y T ] ,

then the control law u(t)=Y M−1x(t) is a quadratic guaranteed
cost controller for the uncertain system (25). The gain matrix
has the form K=Y M−1. Moreover, the bounded cost is given by
J6tr(M−1), where tr ( ) denotes the trace of the corresponding
matrix. 2

In this case, and using the same process as in the optimal control
design, we are interested in obtaining two local gain matrices as
given in (24) by means of Theorem 17, which is now applied to
the disjoint subsystems. For the first local gain matrix K̃11, we
can impose on the matrix variables Ỹ11 and M̃11 the following
structural matrix conditions:

K̃11 =
[

K11 0
K21 K22

]
= Ỹ11M̃−1

11 =
[
∗ 0
∗ ∗

][
∗ 0
0 ∗

]
. (28)

Once the submatrix block K22 has been obtained, we compute
the other local gain matrix K̃22, taking into account that K22 is
not a free submatrix now. Then, we can write

K̃22 =
[

K22 K34
0 K44

]
= Ỹ22M̃−1

22 =
[

K22 ∗
0 ∗

][
I 0
0 ∗

]
. (29)

Then, if the two local LMI’s are feasible, the contractibility of
the gain matrix K̃D is ensured.

5.3 H∞ control

Consider a class of linear continuous-time uncertain systems
described by the equations

S : ẋ(t) = [A+∆A(t)]x(t)+ [B+∆B(t)]u(t)+B1w(t),
z(t) =Cx(t)+Du(t),

(30)

where x(t)∈Rn corresponds to the state, u(t)∈Rm is the input
control, w(t)∈Lp

2 [0,∞) the disturbance input, and z(t)∈Rq is
the controlled output. A, B, B1, C, D are known, real and
constant matrices of appropriate dimensions. Norm-bounded
time-varying uncertainties satisfy (26).

The H∞ control objective is to design controllers such that
the closed-loop system is stable guaranteeing the disturbance
attenuation of the closed-loop system from w(t) to z(t), i.e.

‖z(t)‖2 6 γ ‖w(t)‖2 , γ>0, (31)
for all non-zero w(t), under zero initial conditions. In this paper,
an LMI approach is used. The next theorem provides a state
feedback controller solving the H∞ control problem.
Theorem 18. Consider a linear continuous-time uncertain sys-
tem as given in (30) with norm-bounded uncertainties (26) and
a scalar γ>0. For given scalars β1>0, 0<β2<1, suppose that
there exist matrices X>0 and W such that the following linear
matrix inequality

W1 XET
A

X W T ET
B

W T
2

EA X −I 0 0 0
X 0 −I 0 0

EBW 0 0 −β1I 0
W2 0 0 0 −β2I

<0 (32)

holds, where
W1 = AX +XAT +BW +[BW ]T +HA HT

A
+(1+β1)HB HT

B

+ γ
−2B1BT

1 ,

W2 =CX +DW.

Then, there exists a state feedback controller in the form
u(t)=Kx(t) so that the resulting closed-loop system is asymp-
totically stable with H∞ norm-bound γ. Moreover, the control
gain matrix K is given by K=WX−1. 2

It should be noted that the expression of the gain matrix K is
analogous to the gain matrix obtained by means of a quadratic
guaranteed cost control. Then, the same conclusions can be
extracted when an H∞ control is used. In consequence, for this
type of control criterion a contractible gain matrix can also be
obtained.

6. CONCLUSIONS

In this paper, a contribution to the contractibility of decentral-
ized control laws for systems composed by overlapped subsys-
tems, has been offered. For these kinds of systems, the Inclu-
sion Principle provides an excellent mathematical framework
to design decentralized controllers, which can be finally con-
tracted to be implemented in the original space. However, to
guarantee the contractibility of the gain matrices, obtained in
the expanded systems, some requirements must be satisfied. In
this line, an explicit structure for the local gain matrices has
been presented. This structure has proven to be compatible with
the usage of guaranteed cost and H∞ control criteria. In both
cases, a convenient LMI formulation allows to impose a proper
structure on the expanded local gain matrices. On the contrary,
the approach is not suitable to be used together with a quadratic
optimal control strategy.
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Zečević, A. and Šiljak, D. (2005). A new approach to control
design with overlapping information structure constraints.
Automatica, 41, 265–272.


