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ABSTRACT
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The measurement of wave-induced impacts on structures involves significant scientific and engineering challenges. Regular nearly breaking pgb-
gand broken waves generated following cnoidal and first-order Stokes wavemaker theory have been considered to study the variability of wave
impacts on vertical breakwaters. Four small-scale hydraulic experiments were carried out and repeated 120 times using high-speed pressure and
force measurement equipment. High variability in the measured pressure field and total force were observed, reflecting the random nature of the
studied phenomena. The force variability was similar for the nearly breaking and broken waves. The maximum measured force was between 166
and 177% of the minimum measured force. In relation to the force distribution and maximum pressure points, the observed variability is higher
for broken waves. To deal with such variability in the observations, suitable probability distributions for forces (GEV) and pressures (Gamma) are

proposed.

Keywords: Impact loads; pressure/force measurements; test repeatability; vertical structures; wave impact; wave loads

1 Introduction

The continuous draft increase in big vessels implies the con-
struction of harbour protection structures at deeper waters.
At these depths, the amount of material needed for rubble
mound breakwaters makes them less cost-effective than verti-
cal structures. However, during severe storms, wave breaking
often happens in front of vertical breakwaters. This is mainly
due to the high reflection associated to vertical structures,
which can induce very steep and plunging wave conditions in
front of the structure. Oumeraci (1994) provided a comprehen-
sive review of the most important historical failures of this
type of structure, highlighting the impact induced by breaking
clapotis as the main reason for failure. Large-scale hydraulic
tests have been performed over the last 20 years, leading to

different formulations that allow calculation of loads induced
by wave breaking on vertical breakwaters (Allsop, Kortenhaus,
Oumeraci, & McConnell, 1999; Bullock, Obhrai, Peregrine,
& Bredmose, 2007; Cuomo, Allsop, Bruce, & Pearson, 2010;
Oumeraci et al., 2001). However, for impulsive loads on vertical
breakwaters Takahashi’s formula (Takahashi, 2002; Takahashi,
Tanimoto, & Shimosako, 1994), based on small-scale hydraulic
experiments, is one of the most frequently used. Takahashi’s for-
mula introduces an impulsive pressure coefficient into the Goda
formula (Goda, 1974, 1985), initially developed for quasi-static
loads. Most equations for impulsive loads on vertical breakwa-
ters are based on semi-empirical models calibrated with wave
flume (small and large-scale) data and, in some cases, with
prototype-measured data (Minikin, 1963). For a comprehensive
hydraulic design of vertical breakwaters, the following wave
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induced load-related variables should be considered: (i) maxi-
mum pressure; (ii) location of pressure maxima; and (iii) total
force and its application point (overturning moment).

Vertical pressure distributions in hydraulic tests can be deter-
mined using the results from arrays of pressure transducers.
The maximum pressure and its location can then be extracted
from the pressure distribution diagram. During the design pro-
cess, particular attention should be paid to where the structure
joints are located (Cox & Cooker, 2001), as they should not be
placed close to the maximum pressure point. For the hydraulic
design of a vertical breakwater, sliding and overturning are the
primary failure modes (Goda, 1974) and are directly associated
with force/pressure distribution. During hydraulic tests, the total
force can be calculated from data obtained by load cells or by
computing the integral of the vertical pressure distribution. The
resulting force application point can be calculated by finding the
mass centre of the vertical pressure distribution, experimentally
determined if a combination of two (or more) load cells have
been used for measuring the total force. Historically, in most of
the wave impact physical tests, a vertical array of pressure trans-
ducers was installed on the seaward side of the structure (e.g.
Bullock et al., 2007; Cuomo et al., 2010). Only a few experi-
ments were performed using load cells for the direct measure-
ment of the total force (e.g. Hofland, Lech Kaminski, & Wolters,
2010). This is mainly due to the complexity, especially at large
scale, of hanging large structures directly from the load cells.

The uncertainties regarding the measurements of pressures
generated by impulsive wave conditions are very high (Bullock
et al., 2007). Due to these uncertainties, generating correct mea-
surements of wave impact loads on marine structures is probably
one of the biggest challenges for coastal and maritime hydraulic
modellers. Stagonas, Marzeddu, Gironella, and Sanchez-Arcilla
(2016) performed a series of experiments to validate a pres-
sure mapping system against classical measurements (pressure
arrays and load cells). Their work showed that the spatial distri-
bution of these impacts is characterized by pressure hot spots
that appear slightly above the still water level (SWL). How-
ever, the horizontal position of the hot spots remains largely
unpredictable (Bullock et al., 2007). The highly turbulent envi-
ronment and the air/water mixture during wave breaking add
further difficulty to the measurements. Furthermore, even if an
almost perfect repeatability of the generated wave is guaranteed,
this does not translate into perfect repeatability of the impact
conditions (Stagonas et al., 2016).

The effects of sampling frequency on the measurement of
wave induced impact loads poses another important problem
(see e.g. Marzeddu, Gironella, Sachez-Arcilla, & Sutherland,
2014). At higher sampling frequencies, the magnitude of the
measured load peak can vary up to 10 times. Bullock et al.
(2007) studied the scale and laboratory effects on wave induced
impact loads. Using a Froude-scale model, a good agreement
was found between prototype and model results. Furthermore,
they illustrated the importance of having the same spatial
and temporal resolution (laboratory tests were performed with
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lower spatial and temporal resolution) for a reliable comparison.
According to Bullock et al. (2007), an unexpected behaviour of
the measured loads at laboratory and prototype scales should not
be excluded, due to the complex interactions occurring in the
presence of air/water mixtures in a highly turbulent medium. A
review of the literature on hydraulic tests dealing with wave-
induced impact forces and pressures (Bullock et al., 2007,
Marzeddu et al., 2014; Stagonas et al., 2016) revealed a lim-
ited understanding of the results variability, suggesting the need
of a larger number of test repetitions for statistically robust and
comparable datasets.

For most wave impact hydraulic tests, extreme long waves
(d/L < 0.1 and wave periods between 15 and 25 s) in inter-
mediate and shallow water-wave conditions need to be con-
sidered (Frostick, McLelland, & Mercer, 2011; Hughes, 1993).
Therefore, the accuracy of the laboratory results depends on
how precisely such nonlinear waves are generated. In many
wave-impact hydraulic studies (e.g. Marzeddu et al., 2014;
Stagonas et al., 2016), waves are generated by piston or
flap wavemakers moving according to the linear wave theory
(Biésel & Suquet, 1951). However, some studies (Goda, 1967,
1997; Morison, Crooke, & Washington, 1953; Oliveira, Sachez-
Arcilla, Gironella, & Madsen, 2017) reported the presence of
secondary harmonic free waves for extreme long wave condi-
tions, when the waves were generated by sinusoidally moving
a paddle. To prevent the generation of unwanted secondary
waves, various authors proposed different wavemaker theories
based on second-order wave theory (Hudspeth & Sulisz, 1991;
Madsen, 1971; Schaffer, 1996), cnoidal wave theory (Goring,
1979), and stream function theory (Zhang & Schiffer, 2007).

In this study, we aim to understand the effects of hydraulic
test repeatability on the pressure and force on vertical break-
waters under regular wave-induced impact conditions. For this,
nearly breaking and broken wave conditions generated by
cnoidal and Stokes first-order wavemaker theory have been
analysed and compared. Nearly breaking waves generate higher
impact pressures/forces, this clearly being a condition to be
taken into account for the design of vertical breakwaters. On the
other hand, broken wave attacks cause highly turbulent envi-
ronments (complicating the measurement conditions) and are
a common situation in designing rigid structures in shallow
waters. Unlike linear waves, cnoidal waves represent relatively
long waves in intermediate and shallow waters. Both types of
wave theories are applied in this study to evaluate the laboratory
effects on wave generation. Four different small-scale experi-
ments have been carried out and repeated 120 times. High-speed
recordings with load cells and pressure transducers are used in
all the test runs.

This paper is divided into five sections. In Section 2 we
present the set-up of the small-scale hydraulic tests. Results of
the loads induced by nearly breaking and broken waves, as gen-
erated by cnoidal and Stokes first-order wavemaker theories,
are described in Section 3. The discussion is in Section 4 and
conclusions are in Section 5.
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2 Physical model tests

2.1 Experimental layout

The experiments were carried out in the CIEMito wave flume
at the Laboratori d’Enginyeria Maritima (LIM) of the Uni-
versitat Politecnica de Catalunya (LIM-UPC BarcelonaTech).
The flume is 18 m long, 0.38 m wide, and 0.56 m deep; it is
equipped with a piston type wave paddle that creates regular
and irregular waves and a pumping system for currents. During
the experiments, only 13.3 m of the flume was used and a verti-
cal seawall model was placed at the end of a 1:15 smooth slope
(Fig. 1). The water level was kept constant in all the experiments
with a water depth of 0.285 m in front of the wave paddle and
0.115 m in front of the vertical wall. Figure la and 1c¢ show
the experimental layout for nearly breaking wave conditions.
A 0.2 x 0.38 x 0.05m (length x width x height) block was
placed at 0.5 m from the vertical wall to induce broken wave
conditions (Fig. 1b and 1d).

2.2 Wave generation

Two types of regular waves were generated. The first type was
based on cnoidal wavemaker theory (Goring, 1979), while for
the second type, Stokes first-order wave generation (Biésel &
Suquet, 1951) was used. According to Goring (1979), the piston
paddle displacement to generate a free surface cnoidal wave, X,
can be represented as:

Wave impact measurements 3

and L is the wave length, t is time, T is the wave period,
and K(w) is the complete elliptic integral of the first kind and
w = HL?/h? is the elliptic parameter.

A Stokes first-order wave (linear wave) can be generated by
a piston paddle displacement, X, as proposed by Biésel and
Suquet (1951):

sinh(2kh) + 2kh

X =2a ( 8 sinh? (kh)

) sin(wt) 3)
where a is the wave amplitude, h is the water depth in front
of the paddle, k is the wave number (k = 27/L), and w is the
angular frequency (o = 27 /T).

For each type of regular wave, a train of three waves was
generated. The first and third waves (ramp-up and ramp-down
waves) were always smaller than the second wave (target wave
height). The ramp-up wave was fully reflected by the structure,
while the second wave resulted in an impact on the wall. Each
wave train was repeated 120 times for each generation type
(cnoidal and linear) and each impact condition (nearly breaking
and broken waves), adding up to a total of 480 independent wave
tests. Because the first wave of the train was always reflected
by the structure, the impact of the second wave was considered
the “cleanest” and most repeatable. The analysed wave could be
considered as representative of an extreme wave in an irregular
wave train. Thus, only the force/pressures induced by the impact
of this wave were considered in the analysis.

t 0c 2.3 Measurements
Xe(t) =L (? ~ 3K ) (1)
(m) Eight resistance wave gauges were used for measuring the
where: free surface evolution at 3.00, 5.00, 5.08, 5.20, 5.60, 10.50,
0. — 2K t X 5 10.71, and 11.11 m from the wavemaker. A sampling rate of
o = 2K(w) T L ) 100 Hz was used; the degree of accuracy of these sensors is
133
(a (b)
Wave paddle Vertical wall |, Vertical wall | ..,
= — block
2.06 0.5

Figure 1 Experimental layout for nearly breaking wave attacks (a and c) and broken wave attacks (b and d). A 0.2 m length rectangular box was
placed at 0.5 m from the vertical wall to induce broken waves onto the structure; all values in this figure are given in meter (m) unit
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(b)

LC2

25
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Figure 2 Experimental arrangement: (a) schematic frontal view of the wall showing the transducers (PS1-PS8); (b) schematic lateral view showing
load cells (LC1-LC2); (c) top view photo of the instrumented vertical wall (d) front view photo of the vertical wall. All values in this figure are given

in centimeter (cm) unit

approximately 0.001 m (Oliveira, Sanchez-Arcilla, & Gironella,
2012; Stagonas et al., 2016). The experimental arrangement
consisted of an array of eight HBM P8AP pressure transducers
(Hottinger Baldwin Messtechnik GmbH, Darmstadt, Germany)
placed in the middle of the vertical wall. The vertical distances
between the transducers (PS1 to PS3 and PS5 to PS8) are shown
in Fig. 2a while an additional transducer PS4 was placed near
the SWL and at a horizontal distance of 2.5 cm to the left of the
array. The array was mounted on a segment of the wall (35 x 10
cm) and supported by two load cells, LC1 and LC2 (Fig. 2b).

The force/pressure measurement systems were the same as
those used by Marzeddu et al. (2014), Marzeddu, Gironella, and
Sanchez-Arcilla (2013) and Stagonas et al. (2016). Marzeddu
et al. (2013) carried out tests with non-impulsive conditions to
evaluate the capability of P8SAP and Z6FC3 sensors to record
repeatable loads. Results showed a satisfactory repeatability of
the measured loads with a root mean square error of 5N m™,
compared to normal range value of 150 N m™" (3%).

The HBM P8AP is an absolute pressure transducer for mea-
suring static and dynamic liquid or gas induced pressures that

can be safely immersed in depths of up to 1 m. Each trans-
ducer is composed of a strain-gauge sensor and is provided
already calibrated (by HBM), holding an EC declaration of con-
formity and a test certificate. The maximum measuring range
of the PSAP sensors used for this study was 103 kN m2,
with a reported accuracy of 0.3% of the maximum load, a
24 bit resolution and a natural frequency of the diaphragm
of 12 kHz.

Force measurements were conducted using two Z6FC3 bend-
ing beam load cells (LC1-LC2 in Fig. 2b) with a nomi-
nal load of 50 kg, an accuracy of 0.009% of the maximum
load and a 24-bit resolution. Similarly to pressure transduc-
ers, load cells were calibrated and could be immersed to a
maximum depth of 1 m. An HBM QuantumX data acqui-
sition system (Hottinger Baldwin Messtechnik GmbH) was
used to simultaneously obtain samples from each load cell
and pressure transducer at a sampling frequency of 4.8 kHz.
However, the system could be amplified and sample up to
16 channels with a maximum sampling rate of 19.2 kHz. For
experiments with pressure transducers, (Marzeddu et al., 2013,
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2014) concluded that a satisfactory description of the pres-
sure pulse can be obtained with a sampling frequency higher
than 2.4 kHz.

3 Results

3.1 Wave height

Table 1 summarizes wave characteristics at 3 m from the pad-
dle for cnoidal and linear waves. The values correspond to the
second wave in the wave train (wave highlighted in Fig. 3a),
representing nearly breaking and broken waves. The repeata-
bility of the generated waves was tested; the root mean square

Wave impact measurements 5

error (Egrymse) and percentage error (computed on wave height)
are shown in Table 1. The target wave height and period
were H=0.16 m and T = 2.3 s respectively. At a water depth
of 0.285 m, the target wave presented a large Ursell number
(Ur = 94.95) and low relative water depth (h/L = 0.08), indi-
cating highly nonlinear wave characteristics with corresponding
implication for their evolution (Oliveira, Gironella, Sanchez-
Arcilla, Sierra, & Celigueta, 2009; Oliveira et al., 2017). The
wave periods of the generated cnoidal and linear waves matched
the target period perfectly. The generated wave height was 0.120
and 0.155 m for cnoidal and linear waves, respectively. These
differences between target and generated wave height can be due
in part to the leakage around the paddle, which can decrease

Table 1 Incoming wave parameters, Erpsg, and percentage of error on surface elevation measurements for 120 waves from each category. Wave
characteristics and wave height error calculation were computed from wave probe number 1 at 3 m from the wave paddle

Ermse (m) Error (%)
H (m) T(s) d (m) N° rep. ur d/L Max Mean Max Mean
Target 0.160 23 0.285 120 95.0 0.08
Cnoidal 0.120 23 0.285 120 71.2 0.08 0.0035 0.0011 2.9 1.0
Linear 0.155 23 0.285 120 92.0 0.08 0.0021 6.4e-4 1.3 0.4
@ (b) 0.06
r 0.05
0.1
50.04 r
. [
£ 005 2003
s =
g
<

-0.05

(©

0.17

-0.05
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(=]
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-0.05
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Figure 3 (a) Free surface evolution and selection of the analysed wave using the zero-crossing (zero-up) technique. (b) Amplitude spectrum (the
frequencies for the cnoidal generation have been moved slightly forward in order to avoid overlap and make the figure clearer). Black and grey
lines represent the results obtained with cnoidal and linear wave generation, respectively. (c¢) and (d) show for cnoidal and linear wave generation,
respectively, the free surface evolution, »j, of all 120 test repetitions (black lines) and the corresponding Ermse (grey line)
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Table 2 Amplitudes (m) and energy (m? s%) calculated as the inte-
gral of the spectrums of the two types of wave attacks. Different
intervals for the integral calculation were used in order to calculate
the energy associated at each sub-harmonic

Total
043Hz 0.86Hz 129Hz spectrum
Cnoidal Energy (m? s?) 8.6 e-04 1.38e-04 2.21e-05 0.00103

Amplitude (m) ~ 0.050  0.021  0.008  0.06
Linear Energy (m? s?) 5.65¢-04 3.54e-04 1.04e-04  0.00106
Amplitude (m) ~ 0.031  0.027  0.019  0.076

the amplitude of a generated wave (Hughes, 1993; Madsen,
1971). Wave heights in Table 1 were calculated as the dif-
ference between the maximum (wave crest) and the minimum
(wave trough) free surface level. Regarding Eruse and error,
hardly any variations were determined due to test repeatability
(Table 1).

For each time instant, t, the Egryse was calculated using:

Ermse (1) =

N (i) — at)?
\/Z._l(n(n) ) @

where (1) is the value of the free surface for repetition i at time
instant t, 7(t) is the average free surface at time instant t, and
n = 120 is the total number of repetitions.

In Fig. 3c and 3d all the 120 »; time series and Egyse are
plotted from t = 1.5 to t = 10.5 for cnoidal and linear waves,
respectively.

The error is defined for each time instant by:

error(t) = Ermse (1)

)
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where H,, = (9max — nmin) is calculated for the second wave of
the train (target wave).

Figure 3a shows the differences between the free surface evo-
Iution at 3 m from the wave paddle obtained with cnoidal and
Stokes first-order wavemaker theory. An unwanted free har-
monic can be observed in the case of linear waves (two distinct
waves can be seen in the trough area). The amplitude spectra
of cnoidal and linear waves are shown in Fig. 3b. Table 2 sum-
marizes the energy and amplitude for the first three harmonics.
Although the total energy is similar in both types of generated
waves, there are significant differences in energy distribution
through the harmonics. The cnoidal wave height calculated as
H,, is similar to the cnoidal height approximation calculated as
Ha = 2a,. The values are 0.120 and 0.100 m, respectively, with
n the surface elevation and a; the amplitude of the first har-
monic. However, a huge difference was found for H, and Ha
for the linear waves: 0.155 and 0.062 m, respectively. This dif-
ference is due to the presence of undesired free harmonics, with
amplitudes of the same order of magnitude as the first harmonic,
(Madsen, 1971) in linear waves.

A graphic summary of the time history of nearly breaking and
broken waves colliding directly with a vertical wall in a cnoidal
wave test is shown in Fig. 4.

3.2 Nearly breaking wave attack loads

Figure 5 shows the vertical pressure distributions induced by
the two types of generated waves for nearly breaking condi-
tions. Dimensional (Fig. 5a) and dimensionless results (Fig. 5b
and 5c) were considered. The maximum pressure in cnoidal
waves was always recorded at PS5 or PS6, placed at + 0.025
and + 0.051 m above the SWL, respectively. In PS6, where
maximum pressure was recorded in 86% of the repetitions, the
ratio between the maximum and minimum pressure was 482%,

Figure 4 Snapshot time history of nearly breaking (top) and broken (bottom) waves impacting directly onto a vertical wall. A cnoidal wave case is

seen in the photographs
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Figure 5 Comparison of vertical pressure distribution (means and standard deviations). Cnoidal (black) and linear (grey) wave generation theories:
(a) dimensional plot; (b) dimensionless plot in relation to H,); (¢) dimensionless plot in relation to Ha. Nearly breaking wave attack conditions

and the maximum/mean pressure ratio was 209%. For linear
waves, the maximum pressure was always recorded at PS4 or
PS5, placed at + 0.125 and + 0.025 m above the SWL, respec-
tively. In PS5, where the maximum was recorded in 78% of the
repetitions, the maximum/minimum pressure ratio was 419%,
and the maximum/mean pressure ratio was 178%.

The dimensionless pressures were calculated by dividing the
recorded pressure by pgH, where p is the water density and
g is the acceleration due to gravity. Both H, and H, are used
in the dimensionless analysis. The relative vertical position (y—
d)/H was selected as a dimensionless parameter, where Y is the
distance to the bottom and d the water depth at the toe of the
structure. For both maximum pressures and forces a number of
parametric distributions have been tested (for both nearly break-
ing and broken waves) to find the best fit for the studied datasets.
The selection of the “best distribution” has been done using a
Bayesian information criterion (BIC). A chi-squared test has
been performed to evaluate the goodness of fit of the “best distri-
bution”. All the observed populations accept the null hypothesis
(the observed sample proportions are equal to those expected
with a significance level of 0.05). The scores (p-values) of the
chi-square test are reported in Tables 3—6.

The Gamma distribution probability density function
presents the best fit for the maximum pressure recorded by PS6

in cnoidal waves and by PS5 in linear waves:

— s—1,—p/b
%= groP © (6)

where (), is the probability density function, p is the maximum
pressure, S is the shape parameter and b is the scale param-
eter. The results and Gamma distribution parameters for the
pressures induced by nearly breaking waves are summarized in
Table 3. The statistical distribution of the pressures, recorded by
the sensors with the higher probability to record the maximum
pressures (PS6 for the cnoidal and PS5 for the linear), with the
Gamma distribution and the histograms of the two datasets are
presented in Fig. 6.

Figure 7 shows the statistical distribution of the total force
measured for the dimensional (Fig. 7a) and dimensionless (Fig.
7b and 7c) analyses. A GEV distribution was fitted and the
histograms of the two sets of data are presented in the figure.
In the case of cnoidal waves, the variability found for pres-
sure was also observed for the force and the force application
point. The maximum force was 168% of the minimum force and
133% of the most probable force value. For linear waves, similar
ratios were determined, with a maximum recorded force 174%
of the minimum and 138% of the most probable force value.
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Table 3 Summary of the maximum pressure recorded for nearly breaking wave attack conditions

Journal of Hydraulic Research (2017)

Maximum pressure

Position Statistics Recorded pressures PDF Gamma distribution
Symbol PS  Value Symbol Max Min Mean=+SD S b p-value
Cnoidal  Dimensional y-d(m) PS6 0.051 PS514% P(kPam™!) 82 17 394+126 10.1 39 0.9
d PS6 86%
Dimensionless H, y - 0.42 P 70 14 33.4+10.7 3.3
Hy rgH;,
Dimensionless Ha y—d 0.49 P 83 17 39.8+12.7 3.9
Ha pYHa
Linear Dimensional y-d(m) PS5 0.025 PS422% P(kPam™!) 69 16 38.8+11.1 12 3.23 0.92
d PS5 78%
Dimensionless H, y— 0.16 P 45 11 255+73 2.13
Hy PgH,
Dimensionless Ha y- 0.4 P 114 27 63.8+18.2 5.32
Ha p9Ha
Table 4 Summary of the maximum force recorded in the case of nearly breaking wave attack conditions
Application point position Recorded force PDF GEV distribution
Symbol Max Min Mean  Symbol Max Min  Mode r o “ p-value
Cnoidal  Dimensional y-d(@m) 0.034 002 003 FNm~') 2210 1311 1662 —0214 160 1626 0.09
—d F
Dimensionless H; y 0.28 0.17 025 16 10 12 1.182  12.009
H, pgH, d
. . y —d =
Dimensionless Ha 0.34 0.2 0.3 19 12 15 1.407 14.296
Ha pgHad
Linear Dimensional y-d(@m) 0.023 001 002 FNm~!') 1885 1082 1367 —0.061 169 1350 0.25
—d F
Dimensionless H, y 0.15 0.06 0.11 11 6 8 0.934 7.723
H, pgH, d
. . y —d F
Dimensionless Hg 0.23 0.1 0.17 27 15 20 2.334 1931
Ha pgHa d
Table 5 Summary of the maximum pressure recorded for broken wave conditions
Maximum pressure
PDF Gamma
Position Statistics Recorded pressures distribution
Symbol PS  Value Symbol Max Min Mean=+ SD S b p-value
Cnoidal Dimensional y—d (m) PS2 —0.025 PS2 42% p 26 4 82+32 8.47 0968 047
PS3 38% (kPam™")
—d
Dimensionless H,, yH —0.17 PS4 15% pH 2 34 7427 0.822
n PS5 5% POy
—d
Dimensionless Ha yH —0.25 PS1.1% pH 26 4 83432 0.979
a PS2 34% POFa
Linear = Dimensional y—d(m) PS2 PS3 20% p: 26 4 82+32 11.03 0.502  0.07
; PS4 28% (kPam~)
Dimensionless H, y— PS5 13% P 22 34 727 0.33
Hy PgHy
—d
Dimensionless Hy y PS6 4% P 26 4 83432 0.826
Ha pYHa
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Table 6 Summary of the maximum force recorded for broken wave conditions

Application point position Recorded force PDF GEYV distribution
Symbol Max  Min  Mean Symbol ~ Max Min Mode r o m p-value
Cnoidal  Dimensional y —d(@m) 002 —0014 0007 FNm™') 442 267 315 —0.063 28 312 0.17
—d F
Dimensionless H, yH 0.18 —0.12 0.06 oH, d 33 2.0 2.3 N/A 021 231 N/A
1 gy
—d F
Dimensionless Hy YH 0.20 —0.14 0.07 T 3.9 2.3 2.8 N/A 025 275 N/A
a pPYHa
Linear Dimensional y —d(@m) 0.19 —0.04 0.08 F(Nm~!) 380 215 278 —0.135 26 274 0.15
—d F
Dimensionless H;, yH 1.23 —0.25 0.52 oA d 2.2 1.3 1.6 N/A 0.15 1.57 N/A
1 P9y
. . y—d F
Dimensionless Ha H 3.17 —0.66 1.30 oHa d 54 3.1 4.0 N/A 0.37 392 N/A
a PYHa
(@ 0.06
0.05
0.04 |
i .
S0.03
i
0.02 |
0.01 1 H
0 |
0 20
(b) 0.07 ‘ ; ; | . (©) 0.07 . , : ; i
0.06 - 0.06 |
0.05 F 0.05 t
004} o 0.041
e 2
0.03 | 0.03
0.02F ] 002}
0.01 | 0.01 f
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0 80 100 120 0 20 40 60 80 100 120

p/pgH,

Figure 6 Theoretical Gamma pdf with histograms of the real datasets. Comparison of cnoidal (black) and linear (grey) wave generation theories.
(a) Dimensional plot; (b) dimensionless plot in relation to H;); (¢) dimensionless plot in relation to Ha. Nearly breaking wave attack conditions. The
sensors with the highest percentage of recorded maximum pressures are the PS6 for cnoidal and PS5 for linear

The dimensionless forces presented in Fig. 7b and 7c were 1 Fop\ "
calculated by dividing the recorded force by pgHd, using H, F = (_) exp |:_<1 +r ) ]
and H,.
Force results were fitted with a set of parametric probability « (1 Lr F— M)l(l/ K )
distributions and the GEV function gave the best fit: o
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Figure 7 Theoretical GEV pdf with histograms of the real datasets. Comparison of cnoidal (black) and linear (grey) wave generation theories. (a)
Dimensional plot; (b) dimensionless plot in relation to H,; (c) dimensionless plot in relation to Ha. Nearly breaking wave attack conditions

where Qr is the probability density function, F is the force, r is
the shape parameter, o is the scale parameter, and u is the loca-
tion parameter. The results and GEV parameters for the analysed
force and application point datasets are summarized in Table 4.

3.3 Broken wave attack loads

Figure 8 shows vertical pressure distributions for broken wave
attack. Dimensional (Fig. 8a) and dimensionless results (Fig. 8b
and 8c) are presented. In the case of cnoidal waves, the maxi-
mum pressure was recorded by PS2 in 42% of the cases (PS2
was the most probable point). Although PS2 recorded more
maximum pressures events (42%), PS3 recorded higher pres-
sure values. This leads to higher mean maximum pressures
at PS3 than PS2. At PS2, the maximum/minimum pressure
ratio was 650%, while the maximum/mean pressure ratio was
318%. In the case of linear waves, the maximum pressure was
recorded in 34% of the cases by PS2. For linear waves the
maximum/minimum pressure ratio was 500%, while the max-
imum/mean pressure ratio was 291%. For broken waves, the
Gamma distribution function provides a best fit to the maximum
pressure recorded by PS2 for both the cnoidal and the linear
cases (Eq. (6)). Table 5 summarizes the results for pressure
induced by broken waves. The statistical distribution of the

pressures (recorded by the sensors with the higher probability
to register the maximum pressures) with the fitted Gamma dis-
tribution and the histograms of the two datasets are presented in
Fig. 9.

Figure 10 shows the statistical distribution of the total force
measured for broken waves. A GEV distribution was selected
because, as in the case of nearly breaking waves, this is the dis-
tribution that provides the best fit. The histograms of the two
sets of data are presented, showing that in the case of cnoidal
waves, pressure variability (Figs 9 and 10) is clearly higher
than force variability. The maximum force was 166% of the
minimum force and 140% of the most probable force value.
Similar ratios were determined for linear waves, with a maxi-
mum recorded force of 177% and 137% of the minimum and
the most probable values, respectively. Results for the forces
induced by broken wave conditions are summarized in Table 6.

4 Discussion

For nearly breaking cnoidal waves, a large range of pressures
and forces was found. In this case, the maximum/minimum
ratios for total force and maximum pressure were 168% and
482%, respectively. These high ratios highlight the significant
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Figure 8 Comparison of vertical pressure distribution (means and standard deviations). Cnoidal (black) and linear (grey) wave generation theories.
(a) Dimensional plot; (b) dimensionless plot in relation to H,;; (c) dimensionless plot in relation to Ha. Broken wave attack conditions

variability of the phenomena and the difficulties of predicting
reasonable values during the design process of vertical break-
waters when considering wave impact conditions. We found
that the measurements of forces and maximum pressures do not
follow the same statistical distributions. GEV and Gamma are
the three parameters distributions that best fit the set of data
for forces and maximum pressures, respectively. Variability was
also observed for the location of maximum pressure and force
application point. However, these positions are always located
between half and one wave amplitude above the SWL.

For broken cnoidal waves, the maximum/minimum ratio
of total force was 166%, similar to what was determined by
nearly breaking cnoidal waves. However, this similarity was not
observed for the maximum/minimum ratio of pressures. GEV
and Gamma were also the distributions that provide a best fit for
the total force and the maximum pressure for broken waves. For
the broken cnoidal waves, the application force point and maxi-
mum pressure point are located between a half wave amplitude
below and above the SWL.

When carrying out experiments with linear wave genera-
tion, the variability observed for total force, force application
point, and point of maximum pressure are similar to those
found for nearly breaking and broken cnoidal waves. However,

the force application point and the point of maximum pres-
sure have a slightly lower position in the case of linear waves.
In all four tested conditions, the highest variations in pressure
measurements were found close to the pressure peak point.

For linear waves (with the presence of unwanted harmon-
ics), the method for defining wave height can significantly affect
the dimensionless analysis, a typical engineering artefact to
extrapolate laboratory results to a prototype. When considering
wave height as H,,, for cnoidal and linear waves, dimension-
less and dimensional quantitative analysis of pressure and force
are similar. However, when considering wave height as H,,
dimensionless and dimensional results are significantly differ-
ent for linear waves. Differences of over 100% in magnitude
and positions of forces and pressures were observed between
the two dimensionless analyses used for the linear waves. Far
from being a comprehensive study on the repeatability of wave
generated impact forces/pressures, these results highlight the
significant variability of these phenomena and the challenges in
evaluating the correct design loads for vertical structures.

The high variability found in the study could be partly
attributed to the spatial density of pressure transducers and to
the randomness of wave breaking phenomena. A low spatial
density of pressure transducers may hinder the detection of the
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Figure 9 Theoretical Gamma pdf with histograms of the real datasets. Comparison of cnoidal (black) and linear (grey) wave generation theories.
(a) Dimensional plot; (b) dimensionless plot in relation to H,;; (c) dimensionless plot in relation to Ha. Broken wave attack conditions. The sensors
with the highest percentage of recorded maximum pressures are the one analysed (PS2 for both cnoidal and linear)

maximum pressure point. As shown by the results a higher vari-
ability is found around the maximum pressure point. In this
regard, a denser sensor distribution should decrease the uncer-
tainties on the characterization of pressures induced by wave
impacts on vertical breakwaters. Moreover, the lower variabil-
ity found for force measurements, obtained with load cells,
confirms the effect of sensor distribution on pressure characteri-
zation. The mixing of air and water during wave breaking could
be considered as an almost random phenomenon and therefore
hardly repeatable. Because of that, the randomness of wave
breaking phenomena can induce variability both in pressure and
force measurements.

It is important to remember that both scale and laboratory
effects can play a major role in the evaluation of such loads.
The hydraulic tests presented here correspond to typical work
scales (between 1/50 and 1/80), and therefore scale effects are
to be expected. Moreover, it is also important to separate the
variability induced by sensor distribution and wave breaking
from the uncertainties generated by laboratory effects, such
as the wave generation method and the accuracy of sensors.
For example, it would be possible to extrapolate our results
to irregular wave tests, considering the analysed regular wave
as the maximum wave height in an irregular wave train. The

probability of appearance of this type of loads is, in an irregular
wave train, very low and a very small number of waves could
be analysed (e.g. one to two waves) in comparison to the total
number of generated waves (e.g. 1000 waves).

5 Conclusions

Test control and repeatability are essential to gain understand-
ing in wave-induced pressure and forces on vertical structures.
The analysis performed of impact conditions for nearly breaking
and broken waves has allowed determination of total force vari-
ability, maximum pressure, and their corresponding locations.
Based on four small-scale hydraulic experiments, probability
distributions for regular wave-induced impact measurements
(force and maximum pressure) are proposed. GEV and Gamma
are the distributions that best fit the set of data for forces and
maximum pressures, respectively. This proposal facilitates the
setting up of hydraulic tests and selection of the appropriate
wave conditions when designing vertical breakwaters. For all
tested conditions, high variability in the measured pressure field
and total force according to the random features of the stud-
ied phenomena were observed. The variability in the force
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was similar for the nearly breaking and broken waves. The
maximum measured force was between 166 and 177% of the
minimum measured force and higher variability was found for
more local data such as the maximum pressure. In this case,
the maximum measured value was between 430 and 650% of
the minimum measured value. For the force application point
and maximum pressure point, variability was higher for bro-
ken waves due to the inherent randomness of breaking induced
turbulence.

Performing the proposed type of analysis (120 repetitions for
each wave attack condition) for long series of irregular waves
would be extremely time-consuming. However, with a small
number of irregular wave tests repetitions and the suggested
non-dimensional distributions, it would be possible to have an
idea of the variability. Hydraulic test repeatability studies should
lead in the future to a significant reduction of experimental times
and improved quality of the resulting structural design.
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Notations

a = wave amplitude (m)

b = scale parameter of the Gamma pdf (—)

d = water depth at the toe of the structure (m)
Ermse = root mean square error

F = force (Nm™')

G = gravity acceleration (m s™?)

h = water depth in front of the paddle (m)

H = wave height (m)

k = wave number (m™")

K(w) = complete elliptic integral of the first kind (—)
L = wave length (m)
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p = maximum pressure (kPam~")

ar = force probability density function ( —)

dp = pressure probability density function (—)
r = shape parameter of the GEV pdf (—)

S = shape parameter of the Gamma pdf ( —)

t = time (s)

T = wave period (s)

ur = Ursell number (—)

w = elliptical parameter (—)

Xe = paddle displacement for a cnoidal wave (m)
X = paddle displacement for a linear wave (m)
y = vertical dimension (m)

'(z) = gamma function (—)

n = water surface elevation (m) water surface
elevation (m)

i = location parameter of the GEV pdf (—)
P = water density (kg m—>)

o = scale parameter of the GEV pdf (—)

w = angular frequency (s7')
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