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Abstract- Resonance instabilities in power systems can be 

assessed with the positive-net-damping stability criterion. This 

criterion is a review of the complex torque coefficients method 

but it does not provide the frequency of the closed-loop oscillatory 

modes. This paper presents an alternative approach of the 

positive-net-damping stability criterion to analyze electrical 

resonance instability. In this approach, resonance instabilities are 

identified in feedback systems derived from impedance-based 

equivalent circuits. The proposed approach is used to 

characterize the frequency of closed-loop oscillatory modes and 

identify the physical and control parameters of the system that 

increase or reduce the damping of these modes. The extension of 

the proposed approach to study the stability of Single-Input 

Single-Output and Multiple-Input Multiple-Output feedback 

systems is analyzed and the approach is also compared with other 

stability methods in the literature. An example of an offshore 

wind power plant illustrates the theoretical study and compares 

the proposed approach with different methods to evaluate 

stability. Time-domain simulations in PSCAD/EMTDC are shown 

to validate the stability study.  

Index Terms— Electrical resonance, voltage stability, voltage 

source converters. 

I.  INTRODUCTION 

rid-connected voltage source converters (VSCs) are 
widely used in renewable energy conversion systems 

(variable speed wind turbines and photovoltaics) and energy 
storage systems to improve controllability of power systems 
(e.g., microgrids [1] and wind power plants (WPPs) [2], [3]). 
However, resonance instabilities can appear in poorly damped 
power systems due to interaction between VSC control and the 
grid. In general, these resonance instabilities can be classified 
in two categories [4]: (i) Harmonic resonance instabilities 
which approximately range from 0.75 to 2 kHz and are caused 
by negative dampings due to VSC time delay and current 
control dynamics. (ii) Near-synchronous resonance instabilities 
which approximately range from 50 to 300 Hz and are caused 
by negative dampings due to current control dynamics and 
outer controls. The harmonic resonance instabilities are 
reported in different grid-connected VSC applications such as 
single-phase ac traction systems [6] and WPPs [7]. Also, a 
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number of methods to analyze resonance stability are reported 
in the literature [4], [8] − [19]. A good method is expected to 
have the following characteristics: (i) be simple to evaluate 
and compute, (ii) offer the possibility to assess stability from 
measurements and not requiring detailed knowledge of the 
system, (iii) provide enough information to understand 
physically instabilities and their causes and (iv) characterize 
the frequency of closed-loop unstable oscillatory modes.  

The state space eigenvalue analysis (or closed-loop root 
study) and frequency domain methods are used to analyze the 
impact of system and control parameters on stability 
[8] − [13]. The Nyquist criterion and the phase and gain 
margin from the Bode diagram are the most used frequency 
domain methods to determine stability [9] − [13]. Other 
frequency domain methods are based on the impedance 
characterization of the system which allows considering the 
individual contribution that source and load subsystems have 
on the closed-loop stability [4], [9] − [20]. The passivity-based 
method ensures that a closed-loop system is stable if the real 
part of each subsystem is non-negative for all frequencies [4], 
[13], [14]. This method imposes passivity on all system 
elements to achieve stability but the non-passivity of a 
subsystem does not necessarily mean that the system is 
unstable. On the other hand, the following methods derived 
from the Nyquist criterion consider the stability contribution of 
each subsystem even when they are not passive: 
• The impedance-based stability criterion [10] − [12] 

evaluates the phase of the open-loop functions at 
frequencies where the open-loop magnitudes intersect. 

• The positive-net-damping stability criterion [19], [20] 
evaluates the net damping of the system at frequencies 
where the loop gain is greater than 1 as well as at 
frequencies of each open-loop resonance. This criterion is 
proposed by [20] to review the complex torque coefficients 
method [15] − [18] which is applied to study 
subsynchronous torsional interactions of turbine-generator 
sets [15], [16]. 
The impedance-based stability criterion provides 

information on the frequency of the closed-loop oscillatory 
modes from the frequency of the open-loop magnitude 
intersection while the positive-net-damping stability criterion 
only provides information on the frequency range of these 
oscillatory modes. The positive-net-damping stability criterion 
focuses on the net damping (i.e., the sum of the source and 
load resistances or conductances) while the impedance-based 
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stability criterion focuses on the phase margin of the source 
and load impedance ratio. A recent study based on the 
complex torque coefficients method investigates near-
synchronous resonance instabilities in grid-connected VSC 
systems from the analysis of the damping at the closed-loop 
oscillatory modes [21]. The damping is also used in [22] to 
study stability in weak grid-connected VSC systems. The 
conclusions in [22] are graphically obtained from the damping 
evaluation using the phase of the system transfer function 
instead of the real part of this function. 

This paper presents and mathematically demonstrates an 
alternative approach to the positive-net-damping stability 
criterion in order to study harmonic resonance instabilities in 
grid-connected VSC systems. This approach meets the 
advantages of the impedance-based stability criterion (it allows 
characterizing the frequency of closed-loop oscillatory modes) 
and the positive-net-damping stability criterion (it allows 
identifying the physical and control parameters of the system 
that increase or reduce the damping of the closed-loop 
oscillatory modes). The approach is also compared analytically 
and numerically with other methods in the literature. 
Moreover, the extension of the proposed approach to assess 
the stability of Single-Input Single-Output (SISO) and 
Multiple-Input Multiple-Output (MIMO) feedback systems is 
discussed. An example of an offshore WPP illustrates the 
application of this criterion. The analytical and numerical 
results are validated by time-domain simulations in 
PSCAD/EMTDC. 

II.  GRID-CONNECTED VSC MODELING 

Fig. 1(a) presents a grid-connected VSC system where the 
grid can include the effect of other VSCs. The dq-frame PI-
based current control of the VSC is explicitly illustrated with 
bold letters denoting the complex space vectors (i.e., 
x = xd + j·xq) [13]. These space vectors are related to the grid 
components of angular fundamental (synchronous) frequency 
ω1 = 2π· f1 by means of the corresponding transfer matrices. It 
must be noted that the converter model in this Section only 
represents the inner current control loop because the outer 
loops (e.g., the phase-locked loop, PLL, and the direct-voltage 
controller, DVC) do not affect harmonic resonance instabilities 
in the 0.75 kHz to 2 kHz frequency range due to their low 
bandwidths [4], [5]. It can be observed that the transfer 
matrices of the VSC model in [14] become the common 
diagonal matrices of the VSC inner current control loop for 
frequencies greater than the low bandwidths of the outer 

control loops. A symmetrical VSC model is obtained from this 
assumption and this model can be characterized with complex 
impedances or admittances. If outer loops are included, the 
system becomes nonlinear and VSCs must be represented by 
real vectors and transfer matrices leading to a two-dimensional 
MIMO model [23]. 

A.  VSC model 

The VSC current control model is obtained from the voltage 
balance across the converter filter, 

 1( ) ,f f fR L s jL ω= + + +ov i v  (1) 

and the control law 

 ( )PI 1( ) ( ) ,fF s jL H sω= − + +ref refv i i i v  (2) 

where v and i are the grid voltage and current, vo is the 
converter output voltage, vref and iref are the converter voltage 
and current reference and FPI(s) and H(s) are the transfer 
functions of the feedback PI controller and the grid voltage 
feedforward low-pass filter included in the control, 

 PI ( ) ( ) ,
fi

p

f

k
F s k H s

s s

α

α
= + =

+
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with kp and ki being the PI controller proportional and integral 
gains, respectively, and αf (or ff = αf/(2π)) the low-pass filter 
bandwidth. Based on [14], the control design results in 
kp = αcLf and ki = αcRf where αc is the closed current control 
loop bandwidth which should verify αc ≤ 0.2·(2πfsw) with fsw 
being the converter switching frequency. The selection of the 
low-pass filter bandwidth is a compromise between the 
stability of the VSC output and the whole system stability [2], 
[13], [14], [22]. A small value of this bandwidth is used to 
keep as narrow as possible the VSC non-passivity region and 
improve the VSC stability. On the other hand, a large value is 
required to improve dynamics during fast transients due to grid 
disturbances that affect stability of VSC terminal voltage. The 
recommended low-pass filter bandwidth is αf ≤ 0.1αc for 
normal-mode operation and αf ≥ αc for transient-mode 
operation [14]. If VSCs are connected to a stiff bus, the 
feedforward low-pass filter design αf ≤ 0.1αc ensures that 
current from the converter is stable [14]. If VSC connects to a 
weak grid, the feedforward low-pass filter design αf ≥ αc 
ensures that the terminal voltage is stable in case of grid 
disturbances [2], [22].  

The voltage vo generated by the VSC is related to the 
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Fig. 1. Grid-connected VSC system modeling: a) Grid-connected VSC system. b) Equivalent circuit. c) Closed-loop system. 
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converter voltage reference vref considering the VSC time 
delay Td as follows [4]: 

 .dsT
e

−=o refv v  (4) 

This time delay is caused by the computation and the 
switching process and is approximately given by Td ≈ 1.5Ts 
with Ts = 1/fs and fs being the converter sampling frequency 
which is assumed twice the converter switching frequency [4]. 
Considering (4), the following relation between the grid 
voltage and current is obtained from (1) and (2): 

  ( ) ( ) ,vsc vscG s Y s= −refi i v  (5) 
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where Gvsc(s) is the closed-loop transfer function and Yvsc(s) is 
the equivalent admittance of the VSC. 

Fig. 2 illustrates the frequency response of the positive-
sequence VSC equivalent impedance in αβ-frame, i.e., 
Zvsc(s) = 1/Yvsc(s) (6) with s = j(ω − ω1) [11], for the parameter 
values in Table I and four values of the low-pass filter 
bandwidth corresponding to normal-mode operation 
(αf = 0.01αc and αf = 0.1αc) and transient-mode operation 
(αf = αc and αf = 10αc). The frequency range of the harmonic 
resonance frequencies is also indicated in grey color [4]. It can 
be observed that for usual values of VSC parameters the VSC 
equivalent impedance presents a capacitive and an inductive 
response below and above the boundary frequency fb, 
respectively[12]. It can also be observed that the response 

above the boundary frequency fb is mainly inductive due to the 
low contribution of the VSC resistive response. Thus, the VSC 
equivalent impedance at harmonic resonance instability 
frequencies is mainly inductive [12] because these frequencies 
are greater than the boundary frequency [4], [5]. 

B.  Grid-connected VSC model 

Considering the above VSC model, the impedance-based 
equivalent circuit of the grid-connected VSC system is shown 
in Fig. 1(b), where the VSC is represented as a current source 
in parallel with the equivalent VSC admittance, and the grid 
(characterized as stiff − or ideal − voltage source vg in series 
with the grid equivalent impedance Zg(s)) is also modeled as a 
current source vg/Zg(s) in parallel with the grid equivalent 
admittance Yg(s) = 1/Zg(s). The resistive elements of the ac 
grids are usually neglected compared to the reactive elements 
and the impedance Zg(s) is commonly characterized by 
reactances in harmonic resonance studies [12], [14], [21]. It 
must be noted that the grid and VSC transfer functions are in 
phase and dq coordinates, respectively, and they must be in the 
same frame in Fig. 1(b) to evaluate stability. For that, both 
transfer functions are expressed in αβ coordinates with bold 
letters denoting the space vectors and superscript s denoting 
the αβ-frame (i.e., x

s = xα + j·xβ). The VSC closed-loop 
transfer function and equivalent admittance in (6) are 
transformed from dq coordinates to αβ coordinates by means 
of the frequency translation s → s − jω1 and the grid transfer 
function in phase coordinates is the same as in αβ coordinates 
[18], [23]. 

The impedance-based equivalent circuit in Fig. 1(b) can also 
be represented as the closed-loop system in Fig. 1(c), [10], 
[11], which is obtained from the transfer function between the 
sources and the grid voltage vs (or current is) as follows: 
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and it can be represented by the transfer function 

 
( )

( ) ( ) ( ) ( ) ( ),
1 ( )t

M s
F s Z s L s M s N s

L s
= = =

+
 (8) 

 
 

Harmonic  
resonances 

Frequency (kHz) 
1.0 0 

−80

−20

20

|R
e{

Z
vs

c}
|, 

|Im
{Z

vs
c}

| (
dB

) 

0.8 0.6 0.4 0.2 

0

1.2 1.4 1.6 

−40

−60

Frequency (kHz) 
1.0 0.8 0.6 0.4 0.2 1.2 1.4 1.6 0 

|Im{Zvsc(j(ω − ω1)}| 

fb = 0.11 kHz 
 

Inductive behavior 
Capacitive 
behavior 

fb = 0.07 kHz 
 

fb = 0.21 kHz 
 fb = 0.36 kHz 
 

Capacitive 
behavior 

Inductive behavior 

Normal-mode operation 
αf = 0.01αc & αf = 0.1αc  

 

Transient-mode operation 
αf = αc & αf = 10αc   

 

|Re{Zvsc(j(ω − ω1)}| 

Harmonic  
resonances 

|Re{Zvsc(j(ω − ω1)}| 

|Im{Zvsc(j(ω − ω1)}| 

 
Fig. 2. Study of the VSC equivalent impedance response. 

TABLE I. VSC PARAMETERS 

   Switching frequency fsw 2.5 kHz 
Filter resistance Rf 0.0075 mΩ 
Filter inductance Lf 0.07 mH 
Filter capacitance Cf 1150 µF 
Closed-loop time constant τc = 1/αc 1 ms 
Voltage filter bandwidth ff = αf/2π 1.25 kHz 
PI control proportional gain kp = αc·Lf 0.07 
PI control integral gain ki = αc·Rf 0.0075 
Time delay Td = 1.5/fs 0.3 ms 
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where L(s) is the loop transfer function and 

 
1

( ) ( ) ( )
( ) vsc

g

M s N s Y s
Y s

= =  (9) 

are the open-loop and feedback transfer functions, 
respectively.  

If the outer loops are considered in the VSC 
characterization, the VSC model in αβ- or dq-frame is a two-
dimensional MIMO system because VSC must be represented 
by real vectors and transfer matrices. The impedance-based 
representation of the grid-connected VSC system (8) becomes 
[23], 
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III.  PASSIVITY AND STABILITY OF GRID-CONNECTED VSCS 

Harmonic resonance can destabilize grid-connected VSCs 
due to VSC non-passivity [4], [13]. These instabilities can be 
investigated from the impedance-based closed-loop system in 
Fig. 1(c). This impedance-based system allows stability to be 
assessed from a frequency-domain approach. Frequency 
domain methods for stability assessment must analyze the 
system response for positive- (s = jω, ω > 0) and negative- 
(s = −jω, ω > 0) sequence because the frequency response of 
F(jω) and F(−jω), ω > 0 may not be equal since F*(jω) may be 
different from F(−jω) (see example in Appendix A) [11], [23]. 
Passivity and stability analysis can be considered in the study.  

A.  Passivity 

According to [13], the closed-loop system defined by F(s) in 
(8) is passive if M(s) and N(s) are passive (i.e., M(s) and N(s) 
are stable, Re{M(jω )} ≥ 0, −∞ < ω < ∞, and Re{N(jω )} ≥ 0, 
−∞ < ω < ∞) because it is verified that F(s) is also passive, i.e., 
• F(s) is stable since −π ≤ arg{L(jω )} ≤ π, −∞ < ω < ∞, and 

therefore the Nyquist criterion is satisfied. 
• Re{F(jω )} ≥ 0, ∀ω. 

B.  Stability 

The passivity condition of grid-connected VSC systems can 
be reduced when only their stability is analyzed because F(s) 

in (8) is not necessarily unstable if M(s) and N(s) are not 
passive. For these cases, system stability can be studied in 
different ways: 
• Analyzing the state-space eigenvalues, the poles of F(s) or 

the roots of 1 + L(s) = Yg(s) + Yvsc(s) = 0. 
• Applying the Nyquist criterion to the loop transfer function 

L(s) for s = jω, −∞ < ω < ∞ or the phase and gain margin 
conditions from the Bode diagram to the loop transfer 
function L(s) for s = ±jω, ω > 0 [9] − [13], [21].  

• Applying the impedance-based stability criterion. This 
criterion evaluates the difference between the phase of the 
VSC and grid admittances Yvsc(±jω ), Yg(±jω ), ω >0 at 
frequencies where their magnitudes intersect [10] − [12]. 

• Applying the positive-net-damping stability criterion in 
[19], [20] or the alternative approach to this criterion 
presented in the paper. These criteria evaluate the net 
damping contribution of grid and VSC admittances at 
resonance frequencies (see next Section). 
The impedance-based and positive-net-damping stability 

criteria allow analyzing stability considering the contribution 
of each system admittance. 

IV.  POSITIVE-NET-DAMPING STABILITY CRITERION 

The positive-net-damping stability criterion is proposed and 
strictly demonstrated for stability studies of SISO systems in 
[18] − [20]. It is applied to subsynchronous torsional 
interactions in [18] and two-terminal VSC-HVDC systems in 
[20]. Although this criterion is a powerful tool for stability 
assessment, it does not characterize the frequency of the 
closed-loop unstable oscillatory modes. A reformulation of the 
positive-net-damping stability criterion for harmonic 
resonance instabilities of SISO feedback systems is presented 
to address the above drawback. This is analytically 
demonstrated in the frequency- and s-domains.  

A.  Study in the frequency-domain 

Considering that M(s) and N(s) are both stable, the closed-
loop system defined by F(s) in (8) is asymptotically stable if 
the Nyquist curve of the loop transfer function L(s) = M(s)N(s) 
for s = jω, −∞ < ω < ∞ does not encircle the −1 point. In the 
literature, the analysis of the Nyquist criterion is conducted 
from the gain margin condition to prove the positive-net-
damping stability criterion for SISO feedback systems [19]. 
The alternative approach of the positive-net-damping stability 
criterion in the paper is based on the impedance-based stability 
criterion [10] − [12] which evaluates the phase margin 
condition of the Nyquist criterion. In the following 
Subsections, the study of the positive-net-damping stability 
criterion based on the gain and phase margin conditions are 
presented. Although these criteria must be evaluated for the 
positive- (s = jω, ω > 0) and negative- (s = −jω, ω > 0) 
sequence [11], [12], [23], the study below is made considering 
only the positive sequence for sake of simplicity in the 
exposition. Nevertheless, the conclusions must also be applied 
for the negative-sequence.  
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    1)  Positive-net-damping criterion from the gain margin 

The analysis of the Nyquist criterion from the gain margin 
means that L(s) must verify two necessary conditions at the 
same angular frequencyω : 

 { }Im ( ) ( ) 0,M j N jω ω =  (12) 

 ( ) ( ) 1.M j N jω ω > −  (13) 

Note that the M(jω)N(jω) value at the frequency of (12) is 
the cross point of the Nyquist curve L(jω) with the real axis 
which should be on the right hand side of −1 to ensure 
stability, i.e. (13) may be hold. The above conditions lead to 
the theorem proposed in [19], which states that the closed-loop 
system F(s) in (8) is asymptotically stable if the net damping 
of the system is positive, i.e., Re{Yg(jω) + Yvsc(jω)} > 0, at the 
angular frequencies for which Im{M(jω)N(jω)} = 0 (i.e., at the 
angular frequencies where the Nyquist curve intersects with 
the real axis). This theorem allows system stability to be 
accurately evaluated. The positive-net-damping stability 
criterion is derived from the above theorem to avoid solving 
(12). This criterion states that the closed-loop system is 
asymptotically stable if the net damping of the system is 
positive for low frequencies where |M(jω)N(jω)| > 1, as well as 
in the neighborhood of each open-loop M(jω) and N(jω) 
resonance (i.e., in the neighborhood of the grid and VSC 
resonances). The conditions that replace the equation of the 
Nyquist curve intersection with the real axis in (12) are based 
on [18] and provide reasonable possibilities of stability for 
SISO feedback systems. However, they do not provide a clear 
relation between harmonic resonances of the grid-connected 
VSC system and stability (see Section V). The application of 
this criterion is not limited to an impedance-based 
representation of the grid and VSC as presented in [20].  

    2)  Positive-net-damping criterion from the phase margin 

The analysis of the Nyquist criterion from the phase margin 
means that L(jω) must verify the following two necessary 
conditions at the same angular frequencyω  [9] − [11]: 

 ( ) ( ) 1,M j N jω ω =  (14) 

 { }arg ( ) ( ) .M j N jπ ω ω π− ≤ ≤  (15) 

 Considering the frequency response of the positive-
sequence grid and the VSC admittances in Fig. 1(b) as follows: 
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the loop transfer function L(s) = M(s)N(s) can be written as the 
following expression: 
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which combines the stability conditions with the admittances 
of the equivalent circuit in Fig. 1(b).  

The first phase margin condition (14) can be expressed as  
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Considering the main reactive (inductive or capacitive) 
nature of the grid and VSCs at harmonic resonances (see 
Section II), Gi(ω) << Bi(ω) for i = g, vsc and (18) can be 
approximated as 

 ( ) ( ).g vscB Bω ω≈ ±  (19) 

The parallel resonance observed from the VSC current 
source in Fig. 1(b) considering the main capacitive and 
inductive nature of the grid and VSCs at the harmonic 
resonances (i.e., considering that Gi(ω ) << Bi(ω ) 
i = g, vsc), can be expressed as  

 { }Im ( ) ( ) 0 ( ) ( ),g vsc g vscY j Y j B Bω ω ω ω+ ≈ ⇒ ≈ −  (20) 

which matches with the negative sign expression in (19). Thus, 
this parallel resonance is a particular case of the stability 
condition |M(jω )N(jω )| = 1. The parallel resonance can also be 
obtained from the parallel equivalent impedance Zt(jω) (7). 
Most resonance studies in grid-connected VSC systems 
consider VSC as an ideal current source and impose Bg(ω ) = 0 
to characterize parallel resonance [3]. However, Section VI 
shows that this approximation can provide inaccurate results.  

The second phase margin condition (15) can be expressed in 
terms of the imaginary part of M(jω )N(jω ) in the following 
two cases  

• Case #1: If ( ) 0,d L j dω ω >  

 { }0 arg ( ) : ( ) ( ) ( ) ( ) 0.g vsc vsc gL j G B G Bω π ω ω ω ω< < − >  (21) 

• Case #2: If ( ) 0,d L j dω ω <  

 { }arg ( ) 0 : ( ) ( ) ( ) ( ) 0.g vsc vsc gL j G B G Bπ ω ω ω ω ω− < < − < (22) 

Imposing the parallel resonance relation (20), (21) and (22) 
can be rewritten as 

 
( )

( )

Case #1:

( ) 0 ( ) ( ) ( ) 0

Case #2 :

( ) 0 ( ) ( ) ( ) 0.

vsc g vsc

vsc g vsc

d L j d B G G

d L j d B G G

ω ω ω ω ω

ω ω ω ω ω

> ⇒ + >

< ⇒ + <

(23) 

As demonstrated in Appendix B, Case #1 is produced by 
inductive grid and capacitive VSC admittances (i.e., Bg < 0 
and Bvsc > 0, respectively) and Case #2 is produced by 
capacitive grid and inductive VSC admittances (i.e., Bg > 0 
and Bvsc < 0, respectively). Therefore, the condition in (23) is 
always satisfied if 

 ( ) ( ) ( ) 0,g vscG G Gω ω ω= + >  (24) 
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where the conductance G(ω ) corresponds to the net damping 
of the grid-connected VSC, the conductance Gg(ω ) is the grid 
damping and the conductance Gvsc(ω ) is the VSC damping. 
Therefore, grid-connected VSC systems are asymptotically 
stable if (24) holds at the angular frequency ω for which (20) 
holds. This result demonstrates an alternative approach for the 
positive-net-damping stability criterion based on the gain 
margin condition [19]: grid-connected VSC systems are 
asymptotically stable if net damping G(ω ) is positive in a 
neighborhood of parallel resonances between the grid and 
VSC admittances. This demonstration can be extended to 
SISO feedback systems derived from impedance-based 
equivalent circuits if the equivalent resistances of the circuit 
are not significant compared to the reactances (i.e., the 
equivalent impedances of the circuit are mainly inductive or 
capacitive). Although the criterion is demonstrated for the 
positive-sequence (s = jω, ω > 0), it must also applied for the 
negative-sequence (s = −jω, ω > 0). Note that, although the 
VSC could be considered as an ideal current source for 
parallel resonance determination, its representation as a 
Norton equivalent source is necessary to consider the VSC 
control influence on net damping, and therefore on electrical 
resonance instabilities. If the VSC is connected to a passive 
grid, grid damping Gg(ω ) is always positive and the converter 
control could be designed only by considering the passivity 
conditions of the VSC equivalent admittance [4], [13], [14]. 

If the outer loops are considered in the VSC 
characterization, the VSC model in αβ- or dq-frame is a two-
dimensional MIMO system (10) and the stability must be 
analyzed using the generalized Nyquist criterion (GNC) which 
extends the traditional Nyquist criterion to the eigenloci of the 
system return-ratio matrix (i.e., to the Nyquist curves of the 
eigenvalues of the loop gain transfer matrix) [9], [23]. These 
eigenvalues are obtained from the loop transfer function L(s) 
(11), 

 

[ ] 1,2

2

det ( ) ( ) 0 ( 1, 2) ( )

( ) ( ) ( ) ( )
( ) ( ).

2 2

i s I L s i s

L s L s L s L s
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αβ βα
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± + 

 

 (25) 

The non-diagonal terms of the VSC transfer matrix function 
(11) are usually smaller than the diagonal terms [9], and 
therefore the non-diagonal terms of the loop transfer function 
L(s) can be neglected in front of the diagonal terms. 
Considering this approximation, the eigenvalues of the loop 
transfer function result as 
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 (26) 

In this case, the impedance-based and positive-net-damping 
stability criteria may be directly applied to the αα- and ββ-
components for stability assessment. Otherwise, there is not 

obvious relation between the GNC and the impedance-based 
and positive-net-damping stability criteria and further analysis 
(out of the paper scope) should be made to extend the 
application of these criteria to MIMO systems. The above 
comments can also be applied to dq-frame. 

B.  Study in the s-domain 

The positive-net-damping stability criterion applied for 
harmonic resonance instabilities can also be demonstrated by 
analyzing the poles of F(s) or the roots of 1 + L(s) = 0 in (8). 
Considering that the dominant pole of the system is the poorly-
damped pole related to the harmonic parallel resonance 
between the grid and the VSC [20] and that around this 
resonance the VSC has an inductive response and the grid has 
a capacitive response (see Section II and example in 
Section VI), the grid and VSC admittances in (9) can be 
expressed as follows: 

 
1 1

( ) ( ) ,
1 ( )g vsc

g g vsc vsc

Y s Y s
R C s R L s

≈ ≈
+ +

 (27) 

 and the positive-sequence equivalent admittance observed 
form the VSC current source in Fig. 1(b) is 
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The terms Rg
2 and Rvsc

2 can be neglected with respect to the 
terms 1/(Cgω )

2 and (Lvscω )
2 due to the main capacitive and 

inductive response of the grid and VSCs. Thus, the equivalent 
admittance can be approximated as 

 
2

2

( ) ( )

1
( ) .

( )

g vsc

vsc
g g g

vscvsc

Y j Y j

R
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LL
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 (29) 

Moreover, considering (27), 1 + L(s) can be written as 

 
21 ( ) ( ) 1

1 ( ) 1 .
( )

g g g vsc g g vsc

vsc vsc g vsc vsc

R C s C L s C R R s
L s
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 (30) 

The roots of (30) are  
 

 
2 2( ) ( ) 4

,
2

g g vsc g g vsc g vsc

g vsc

C R R C R R C L
s

C L

− + ± + −
=  (31) 

which, considering that Cg(Rg + Rvsc)
2 << 4Lvsc, can be 

approximated as 

 
1

.
2
g vsc

vsc g vsc

R R
s j

L C L

+
≈ − ±  (32) 

It can be observed that the parallel resonance condition in 
(29) matches with the imaginary part of the roots in (32). 
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Moreover, according to (29), if (24) holds (i.e., if (29) is 
passive) at the resonance frequency, the poles have a negative 
real part: 

 
2

( ) ( ) 0 0.
2( )

g vsc g vsc

g vsc

vscvsc

R R R R
G G

LL
ω ω

ω

+ +
+ = > ⇒ − <  (33) 

From this demonstration, it can be stated that the frequency 
at the parallel resonance observed from the VSC current 
source approximately matches with the frequency of the 
oscillations in case of instability. Thus, the alternative 
approach of the positive-net-damping stability criterion based 
on the phase margin condition allows predicting the frequency 
of the closed-loop unstable oscillatory modes. It can be 
observed in (32) that a negative VSC resistance Rvsc may lead 
to a positive real part of the poles if |Rvsc| > |Rg| (i.e., to a 
system instability) which is correctly predicted with the 
negative value of the net damping Gg(ω) + Gvsc(ω) in (33). 

V.  COMPARISON OF STABILITY METHODS  

Fig. 3 shows the flowchart of the different methods for 
stability assessment of grid-connected VSC systems and 
Table II presents their main characteristics. The state space 
eigenvalue analysis (or closed-loop root study) is a useful tool 
to analyze the impact of system and control parameters on 
stability [8]. However, this method requires detailed 
information for all elements in the system (including physical 
and control parameters) and high-order dynamic models for 
large systems that could exceed the computation limits of the 
solvers due to the large amount of information to manage from 
these models which must be update every time if any of the 
system parameter changes. Moreover, this information is not 
always completely available limiting an adequate system 
modeling. On the other hand, frequency domain methods are 
used to identify the causes of instabilities with less compute-

intensive effort and less detailed system information 
[9] − [20]. These methods can be applied by using either 
simulations or system measurements if the system parameter 
information of analytical models is not available, which offers 
an advantage over the state space eigenvalue analysis. 

The Nyquist criterion and the Bode diagram are the most 
used frequency domain methods but these methods only show 
numerical results and they focus on the loop transfer function 
of the entire system which does not allow investigating 
separately the contribution of the source and load subsystems 
to the closed-loop stability [9] − [13]. This may limit the 
analysis of oscillations and instabilities caused by particular 
impedances or filters connected to the system even though the 
loop transfer function could be measured. These drawbacks 
are avoided with the frequency domain methods that analyze 
the individual contribution of the source and load subsystems 
from the open-loop transfer functions [4], [9] − [20]. Among 
these methods, the passivity-based method imposes passivity 
in each subsystem (i.e., Gg(ω) > 0 and Gvsc(ω) > 0, (16)) in 
order to ensure the closed-loop system stability [4], [13], [14], 
while the impedance-based and the positive-net-damping 
stability criteria are less restrictive and do not impose this 
passivity condition because consider the contribution of each 
subsystem to stability assessment. As an example, the positive-
net-damping stability criterion ensures the closed-loop system 
stability if Gg(ω) + Gvsc(ω) > 0 (24), and therefore a system 
could be stable even when the VSCs are not passive (i.e., even 
with Gvsc(ω) < 0) if Gg(ω) > 0 and |Gg(ω)| > |Gvsc(ω)|. For all 
the previous comments, the impedance-based stability criterion 
[10] − [12] and the positive-net damping stability criterion 
based on the gain [19], [20] or phase margin conditions are 
useful tools for stability analysis offering several advantages in 
front of the other methods. Based on Fig. 3 and Table II, a 
comparison between the impedance-based and the positive-
net-damping stability criteria is presented below. 
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Fig. 3. Flowcharts of stability methods in grid-connected VSC systems. 
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According to (18), (19) and (20) and considering that the 
grid-connected VSC system resistances are smaller than the 
reactances, the condition |Yg(jω)| = |Yvsc(jω)| (i.e., the 
intersection of the grid and VSC admittances) of the 
impedance-based stability criterion is equivalent to the 
condition of the proposed positive-net-damping stability 
criterion Im{Yg(jω) + Yvsc(jω)} = 0 (i.e., the parallel resonances 
between the grid and VSC admittances) and both conditions 
provide the frequency of the oscillatory modes (see 
Subsection IV.B). Subsequently, the phase angle between the 
VSC and the grid admittance ratio (i.e., the phase margin of 
the loop transfer function, γm = arg{Yvsc(jω)} − arg{Yg(jω)}) in 
the impedance-based stability criterion and the net damping 
G(ω) = Gg(ω) + Gvsc(ω) (24) in the proposed positive-net-
damping stability criterion are evaluated at the above 
frequency to analyze stability. The evaluation of the damping 
stability condition Gg(ω) + Gvsc(ω) > 0 is more practical than 
the evaluation of the phase margin condition 
γm = arg{Yvsc(jω)} − arg{Yg(jω)} because damping is directly 
related to system resistances which are a common parameter in 
electric power systems (negative or small values of system 
resistances at specific frequencies may lead to instability 
problems). Moreover, the damping can be analytically 
characterized with simpler expressions than the phase margin 
because it is easier handle mathematically the real part of the 
source and load impedance sum than the phase angle of the 
source and load impedance ratio. As an example, let assume 
that the grid is modeled as a capacitor Cg in parallel with the 
short-circuit resistance Rg and inductance Lg, and the VSC 
model (6) is determined neglecting the filter resistance (i.e., 
Rf = 0 and ki = αc·Rf = 0) and considering that |ω| >> {ω1, αf} 
at the analyzed frequencies [14]. The positive-sequence grid 
and VSC admittances can be written as 
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and the stability conditions of the proposed positive-net-
damping stability criterion at the grid and VSC parallel 
resonances become 
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which is much easier to analytically handle and to physically 
relate with the system resistances that the stability condition of 
the impedance-based stability criterion because the phase of 
Yvsc(jω)} and Yg(jω) is complicated to determine analytically. 
Another example can be found in [22], where the influence of 
different VSC parameters is graphically analyzed from the 
VSC damping evaluated with the phase of the VSC transfer 
function but this study could be performed analytically if the 
VSC damping was evaluated with the real part of the VSC 
transfer function. 

The positive-net-damping stability criterion based on the 
gain margin condition evaluates the net damping at the 
frequencies derived from the conditions Im{1/Yg(jω)} ≈ 0, 
Im{Yvsc(jω)} ≈ 0 and |Yvsc(jω)/Yg(jω)| > 1 (i.e., at the 
frequencies of the open-loop resonances and the loop gain 
greater than 1). Considering (16), these conditions can be 

TABLE II. CHARACTERISTICS OF METHODS FOR STABILITY ASSESSMENT 
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expressed as 
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which match neither with the first gain margin condition (12) 
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nor with the first phase margin condition (19). Therefore, the 
frequencies obtained from (36) should not be strictly applied 
in the second gain and phase margin conditions (13) and (15) 
to derive the positive-net-damping stability criterion. 
Moreover, according to (19), the frequency of the oscillatory 
modes are not characterized by the conditions Bg(ω) ≈ 0 and 
Bvsc(ω) ≈ 0 in (36) and it may only be contained in the 
frequency range defined by |Bg(ω)| f |Bvsc(ω)|. This frequency 
range could be wide depending on the grid-connected VSC 
system [20]. As alternative, the proposed positive-net-damping 
stability criterion uses the frequency of the parallel resonances 
between the grid and VSC admittances. This parallel 
resonance condition is directly derived from (14), it is easy to 
determine from the impedance-based characterization of the 
system and approximately provides the frequencies of the 
oscillatory modes. 

According to the previous comparison, the positive-net-
damping stability criterion proposed in the paper offers several 

advantages respect to the impedance-based and positive-net-
damping stability criteria because it collects the best of them, 
i.e., the evaluation of the net damping, which is more practical 
than the phase angle between the VSC and the grid admittance 
ratio, and the evaluation of the parallel resonances between the 
grid and VSC admittances, which provides specific 
frequencies related with the oscillatory modes and it is easy to 
characterize. A recent work in [21] investigates near-
synchronous resonance instabilities in grid-connected VSC 
systems and the impact of PLL on the near-synchronous grid-
connected VSC oscillations from the damping at the frequency 
of the closed-loop oscillatory modes (called as intrinsic 
oscillatory points). The intrinsic oscillatory points are found 
from a VSC model which only considers the PI controller. 
This model leads to a system equivalent impedance with a 
constant resistance (i.e., the equivalent resistance does not 
depend on the frequency) and the resonance condition can be 
directly applied to the imaginary part of the impedance without 
neglecting the resistance (20). The stability criterion is 
established from the net damping analysis of the system’s 
transfer function at the intrinsic oscillatory points obtained 
with the simplified VSC model. This procedure results from 
the application of the complex torque coefficients method 
which is presented, but not strictly proof, to study 
subsynchronous torsional interactions of turbine-generator sets 
[15], [16]. This method is also used and mathematically 
analyzed in [17] and [18] presenting some cases where it does 
not correctly predict closed-loop oscillatory modes and 
instabilities of torsional interactions. The application of the 
proposed approach is similar to the complex torque 
coefficients method but it is mathematically demonstrated and 
extends its application to assess harmonic resonance 
instabilities in SISO feedback systems and MIMO feedback 
systems with negligible non-diagonal terms of the loop transfer 
function (e.g., grid-connected VSC systems). According to the 
proposed approach, the oscillatory modes are obtained from 
the parallel resonance between the grid and VSC admittances 
considering all the system and control parameters of the 
models. In this case, the resistance of the system’s equivalent 
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Fig. 4. Offshore WPP system: a) WPP connection scheme. b) Single-line equivalent circuit. 
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impedance may depend on frequency, and the resonance 
condition can only be applied if resistances are smaller than 
reactances. 

VI.  APPLICATION  

The application of the different methods to study harmonic 
resonance instabilities is illustrated in an offshore WPP. The 
alternative approach of the positive-net-damping stability 
criterion is compared with the other methods. This application 
is an example of a grid with multiple VSCs. The connection of 
multiple VSCs may affect the frequency response of the grid 
changing the frequency range of its capacitive response (i.e., 
changing the frequency of the parallel resonances) and it may 
also affect the damping of the grid because the non-passive 
response of the connected VSCs at the studied frequencies 
may reduce the grid damping and worsen system stability. 
However, the above influence does not affect the application 
of the different approaches and the assumptions of these 
approaches as it can be verified in the next Subsections.   

A.  Description 

A 125 MW offshore WPP with 25 type-4 WTs (i.e., full-
scale VSC WTs) is studied according to Fig. 4(a). The WPP 
consists of five 5-WT strings (i.e., Nr = 5 and Nc = 5). The 
WTs are connected at 0.69 kV, which is stepped up to 33 kV 
for the collector system and to 150 kV for the export system 
with a group of two 125 MVA transformers in parallel. Type-4 
WTs are equipped with two converters in back-to-back and 
harmonic filters are usually installed on the grid side of WT 
converters to mitigate frequency switching harmonics. Data of 
the VSC control and the WPP are shown in Table I and 
Table III, respectively. Instability problems can arise due to 
the interaction between the grid side VSC control of WTs and 
the WPP [7]. In order to analyze these problems, the WT VSC 
and the control are modeled as a Norton equivalent circuit (5) 
and the offshore WPP is modeled with the equivalent circuit in 

Fig. 4(b). In the examples, the HV and MV submarine cables 
are characterized as single concentrated parameter π circuits 
because they are short enough to be well represented for low 
frequencies. Moreover, the MV submarine cable model is 
simplified as the transversal capacitors of the cable because 
the longitudinal impedance is not significant compared with 
the inductance of the transformers. On the other hand, the LV 
submarine cables are omitted because their capacitance is very 
small and their longitudinal impedance can be included in the 
impedance of the MV/LV transformers.  The Norton 
equivalent model (5) and the filter capacitance of the WTs are 
considered in the study.  

WPP stability is analyzed from WT51 (see Fig. 4(b)). In 
order to do that, the VSC WT equivalent admittance Yvsc(s) 
and the offshore WPP equivalent admittance Yg(s) observed 
from the analyzed WT must be determined to perform the 
stability studies. The former is obtained from (6) and the latter 
is calculated as follows: 
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B.  Examples 

The effect that the VSC control parameters and passive 
components have on the stability is analyzed. As an example, 
the influence that the feedforward low-pass filter bandwidth 
ff = αf/(2π) (from 1.25 to 2 kHz) and the converter filter 

TABLE III.  125 MW OFFSHORE WIND POWER PLANT PARAMETERS  

   

Main grid 
Open-circuit voltage Uo 150 kV (50 Hz) 
Short-circuit power Ss 10000MVA 
Ratio XS/RS tanϕS 25 

HV/MV 
transformers 

Transformer ratio UNH/ UNM 150/33 kV 
Rated power SN 125 MVA 
Short-circuit impedance εcc 0.1 pu 
Ratio XT/RT tanϕT 25 

HV 
submarine 

cable 

Longitudinal π resistance RL 0.32 Ω/km 

Longitudinal π reactance XL 0.126 Ω/km 

Transversal π reactance XC 0.15·105 Ω·km 
Length DH  10 km 

MV submarine 
cable 

Transversal π reactance XC 0.14·105 Ω·km 
Length DM  1 km 

MV/LV 
transformer 

Transformer ratio UNM/ UNL 33/0.69 kV 
Rated power SN 5 MVA 
Short-circuit impedance εcc 0.05 pu 
Ratio XT/RT tanϕT 25 

WT 
Active power consumption PL 5 MW 
Displacement power factor λL ≈ 1.0 
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Fig. 5. Root locus of the offshore WPP poles related to the instability: a) 
Variation of feedforward low-pass filter bandwidth from 1.25 to 2 kHz when 
Lf = 0.07 mH. b) Variation of converter filter inductance from 0.07 to 
0.15 mH when ff = 1.25 kHz. 
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inductance Lf (from 0.07 to 0.15 mH) have on WP stability is 
studied. The WP stability is analyzed from WT51 (see 
Fig. 4(b)) when the parameters ff = αf/(2π) and Lf of this WT 
are modified. Note that the VSC feedforward low-pass filter 
bandwidth is varied from αf = 7.85αc to αf = 11.9αc 
considering the low-pass filter design for transient-mode 
operation in weak grids. The grid and VSC transfer functions 
are in phase and dq coordinates, respectively, and they must be 
in the same frame to evaluate stability. According to 
Subsection II.B, both transfer functions are transformed to αβ-
frame: the VSC transfer function by means of the frequency 
translation s → s − jω1 and the grid transfer function is the 
same as in phase coordinates [23].   

The state space eigenvalue analysis (or closed-loop root 
study) can be used to analyze the impact of system parameters 
on stability. Multiple poles are numerically obtained from the 
WPP transfer function and their analysis allows studying the 
system instabilities. Fig. 5 describes only the root locus of the 
poles related to instability. These poles are not exactly 
complex conjugate because the complex gain jLfω1 of the 
current feedforward in the control law (2) and the 
transformation of the VSC equivalent admittance from dq 
coordinates to αβ coordinates by means of the frequency 
rotation s → s − jω1 introduce complex components into the 
closed-loop transfer function F(s) in (8). These components 
may produce a different frequency response of F(jω) and 
F(−jω), ω > 0 since F

*(jω) is different from F(−jω) (see 

example in Appendix A) [23]. The system becomes unstable 
when one of the poles moves to the positive side of the real 
axis, which is equivalent to a negative damping (see 
Subsection IV.B). As can be seen in Fig. 5, small values of 
low-pass filter bandwidth may lead to instability problems 
whereas large values of converter filter inductances may 
improve resonance stability. It can also be observed that filter 
bandwidth does not affect closed-loop oscillatory modes while 
high filter inductance slightly shifts closed-loop oscillatory 
modes to lower frequencies.  

The application of the frequency-domain methods is shown 
in Fig. 6 and Fig. 7. Only the frequency response of the 
positive-sequence (s = jω, ω > 0) is analyzed because it is the 
first to cause system instability (i.e., it is the less damped).  
Stable and unstable examples are illustrated modifying the 
low-pass filter bandwidth (ff = 1.9 and 1.25 kHz, respectively) 
when Lf = 0.07 mH. The Nyquist and Bode diagrams in 
Fig. 6(a) and Fig. 7(a) confirm the previous results on stability. 
For ff = 1.9 kHz, the Nyquist curve does not encircle the −1 
point (nor the open-loop system has positive poles) and the 
Bode plot presents a phase margin equal to φm = 3.3º. For 
ff = 1.25 kHz, the Nyquist curve encircles the −1 point in 
clockwise direction and the Bode plot presents a phase margin 
equal to φm = −1.9º. Note that both methods focus on the loop 
transfer function L(s) = M(s)·N(s) (8) which does not allow 
investigating separately the contribution of the subsystems 
M(s) and N(s) to the closed-loop stability.  
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Frequency response of equivalent impedance and net damping. c) 
Instantaneous waveforms of the voltage and current at the WT terminals. 
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Fig. 6. Stable example of the offshore WPP (Lf = 0.07 mH and ff = 1.9 kHz): 
a) Nyquist (left) and Bode (right) plots of M(jω)N(jω). b) Frequency response 
of equivalent impedance and net damping. c) Instantaneous waveforms of the 
voltage and current at the WT terminals. 
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The application of the alternative approach of the positive-
net-damping stability criterion proposed in the paper is shown 
in Fig. 6(b) and Fig. 7(b). The frequency response of the 
equivalent impedance Zt(jω ) = (Yg(jω ) + Yvsc(jω ))

−1 (7) and 
the net damping G(ω ) shows that the system is stable for 
ff = 1.9 kHz because the Zt(jω ) parallel resonance at 1439 Hz 
is in the positive damping region. The system becomes 
unstable when ff = 1.25 kHz due to the negative damping at the 
Zt(jω ) parallel resonance (i.e., at 1430 Hz). These resonances 
are caused from the interaction between the inductive response 
of the VSC and the capacitive response of the grid at these 
frequencies (see Section II). The origin of the instability is a 
damping reduction in the VSC contribution because the 
boundary frequency of the negative damping region is 
decreased from 1496 Hz to 1381 Hz due to the low-pass filter 
bandwidth decrease [22]. According to the demonstration in 
Subsection IV.B, the frequency of the resonance matches with 
the closed-loop oscillatory modes of the poles in Fig. 5. Note 
that the alternative approach of the positive-net-damping 
stability criterion combines the advantages of the eigenvalue 
analysis and Nyquist and Bode criteria: it is simple to evaluate 
as the Nyquist and Bode criterion and provides information 
about the cause of instability and the frequency of the 
oscillatory modes, as the eigenvalue analysis. Moreover, it 
allows considering the stability contribution of each 
subsystem. Time-domain simulations in PSCAD/EMTDC are 
shown in Fig. 6(c) and Fig. 7(c) to validate the stability study. 
The stable (ff = 1.9 kHz) and unstable (ff = 1.25 kHz) 
waveforms of the instantaneous voltages and currents at the 
WT51 PCC when this WT is connected at 0.2 s are plotted. 

C.  Comparison with other frequency-domain methods 

The alternative approach of the positive-net-damping 
stability criterion proposed in the paper is further analyzed in 
Fig. 8, where the unstable situation in Fig. 7 is represented by 
plotting the Bode diagram of N(jω) = Yvsc(jω), 
M(jω) = 1/Yg(jω), 1/M(jω) and M(jω)N(jω) (9). According to 
the demonstration in Subsection IV.A, the Zt(jω ) parallel 

resonance in Fig. 7 approximately corresponds to the 
frequency of point A in Fig. 8 where |M(jω )N(jω )| = 1 and the 
zero crossing point of the net damping G(ω ) in Fig. 7 
approximately corresponds to point B in Fig. 8 where 
φMN = −180º. 

The impedance-based stability criterion [10] − [12] analyzes 
the system stability from the difference between the phases of 
Yg(jω) and Yvsc(jω) at the frequency of point C. This point 
corresponds to the intersection of the grid and VSC admittance 
magnitudes |Yg(jω)| and |Yvsc(jω)|, and the difference between 
the phases of Yg(jω) and Yvsc(jω) characterizes the phase 
margin of M(jω )N(jω ), i.e., φm = 180 − (89.8 −92.1) = −1.9º 
which identifies the system instability. Comparing the 
proposed positive-net-damping stability criterion with the 
impedance-based stability criterion, the stability is evaluated at 
the same frequency for both methods (i.e., the frequency of the 
parallel resonance of Zt(jω ) at point A and the intersection 
frequency of |Yg(jω)| and |Yvsc(jω)| at point C). Also, the 
evaluation of the net damping sign is equivalent to determine 
the phase margin of M(jω )N(jω ) from the difference between 
the phase of Yg(jω) and Yvsc(jω). However, the evaluation of net 
damping is more practical than the phase evaluation because 
the resonance instabilities are related to a lack of damping. 

The original positive-net-damping stability criterion in [19] 
analyzes the system stability from the net damping at the open-
loop N(jω) and M(jω) resonances and the frequencies where 
the loop gain |M(jω)·N(jω)| exceeds unity. In this case, N(jω) 
does not have any resonance, point D corresponds to the 
resonance frequency of M(jω) and the zone below point A 
corresponds to the frequency range where |M(jω)·N(jω)| 
exceeds unity. The net damping at point D is positive because 
the phase of M(jω)·N(jω) is greater than −180º, and therefore 
the instability is not predicted by the open-loop transfer 
function M(jω). On the other hand, the net damping at 
frequencies below point A is negative because the phase 
between points A and B is smaller than −180º (grey area in 
Fig. 8) which predicts the system instability. It can be noted 
that in this example the positive-net-damping stability criterion 
in [19] evaluates the instability of the example from the loop 
transfer function M(jω)N(jω) while the proposed positive-net-
damping stability criterion evaluates this instability from the 
grid and the VSC admittance contribution at the resonance of 
the closed-loop system. Comparing the two positive-net-
damping stability criteria, both methods are simple to evaluate, 
but only the proposed positive-net-damping stability criterion 
always considers the contribution of each subsystem and 
provides information of the closed-loop oscillatory mode 
frequencies.  

VII.  CONCLUSIONS 

This paper proposes an alternative approach of the positive-
net-damping stability criterion for assessing harmonic 
resonance instabilities. The proposed approach demonstrates 
mathematically the complex torque coefficients method from 
the evaluation of the phase margin condition at harmonic 
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resonance frequencies and extends its application to SISO and 
MIMO feedback systems derived from impedance-based 
equivalent circuits (e.g., grid-connected VSC systems). This 
approach can be used if the reactive elements of the system are 
large compared to the resistive elements (e.g., at the 
frequencies of the harmonic resonance instabilities in grid-
connected VSC systems). The stability criterion proposed in 
the paper is compared with those in the literature highlighting 
the following contributions:  
• It is simple to evaluate as the frequency domain methods. 
• It considers the stability contribution of each subsystem as 

the impedance-based and positive-net-damping stability 
criteria. 

• It provides an intuitive explanation and physical 
understanding of the instability phenomenon considering the 
net damping at electrical resonances as the positive-net-
damping criterion. 

• It provides a clear relation between harmonic resonances of 
the grid-connected VSC system and stability. 

• It predicts the frequency of unstable oscillations. 

APPENDIX A 

EXAMPLE OF VSC COMPLEX TRANSFER FUNCTION 

An example is presented to illustrate the different response 
of the VSC complex transfer function for the positive- and 
negative-sequences. 

Assuming Rf ≈ 0, ki = αc·Rf ≈ 0, H(s) ≈ 1 (i.e., the low-filter 
bandwidth is high to decouple VSC and grid dynamics [2]) 
and approximating the VSC time delay Td by a first-order 
transfer function [22] as 
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The VSC equivalent admittance (6) can be written in dq-
frame as follows, 
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The frequency response of the VSC equivalent impedance 
for the positive- and negative-sequence is 
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and the resonance frequencies are 
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The poles and the resonance frequency in the αβ-frame 
become 
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It can be observed that the system poles are not complex 
conjugate and the resonance frequency is different for the 
positive- and negative-sequence due to the feedforward 
complex gains introduced in the current control loop (e.g., the 
feedforward term jLfω1i) and the frequency translation. 

APPENDIX B 

THE VSC AND GRID INDUCTIVE AND CAPACITIVE RESPONSE 

Considering that Gi(ω ) << Bi(ω ) for i = g and vsc, (18) can 
be approximated as L(jω ) ≈ Bvsc(ω ) /Bg(ω ). Therefore, 
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From (47), the two cases of the second stability condition, 
(21) and (22), can be identified with the following parallel 
resonance situations: 
• Case #1: Inductive response of the grid and capacitive 

response of the VSC, i.e.,  
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• Case #2: Capacitive response of the grid and inductive 
response of the VSC, i.e.,  
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