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ABSTRACT 

In this project we present a possible expansion of the sampleRNN project for trombone 
synthesis. The project is divided in three main blocks: the database creation, the 
sampleRNN analysis and the sampleRNN modification. 

The first block contains the generation of a database suitable for the project’s application in 
the second and third block. 

The second block consists on an analysis of the published code of sampleRNN and a first 
approach on training the model with a portion of the database. 

The third and final block explains the modifications made to the code to be able to accept 
note and length values in the input vector of the Neural Network. 

Unfortunately, due to time constraints, the expected results were not obtained, as explained 
in the results and conclusion of the document. 
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RESUM 

En aquest projecte presentem una possible ampliació del projecte anomenat sampleRNN 
per utilitzar-lo per la síntesi de ones d’audio de Trombó. El projecte esta dividit en tres fases: 
la creació d’una base de dades, l’analisi de sampleRNN i la modificació del codi. 

El primer bloc conté la generació de una base de dades adaptada per la aplicació desitjada 
en el segon i tercer bloc. 

El segon bloc constisteix en l’analisi del codi publicat de sampleRNN I un primer 
entrenament del model amb una fracció de la base de dades. 

I el tercer i bloc final explica les modificacions que s’han fet al codi perquè aquest pugui 
acceptar valors de la nota i de la llargada de la nota com a entrada a la Xarxa Neuronal. 

Malauradament, degut a una manca de temps, els resultats no han estat obtingut tal i com 
s’explica a l’apartat dels resultats i la conclusió del document. 
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RESUMEN 

En este proyecto se presenta una posible ampliación del proyecto sampleRNN para la 
síntesis de ondas de audio de Trombón. El proyecto esta fragmentado en tres fases: la 
creación de una base de datos, el análisis del código de sampleRNN y la modificación del 
mismo. 

El primer bloque contiene la generación de una base de datos adaptada para la aplicación 
deseada en el segundo y tercer bloque. 

El segundo bloque consiste en el análisis del código publicado de sampleRNN y un primer 
entrenamiento del model con una fracción de la base de datos. 

Y el tercer bloque y bloque final explica las modificaciones llevadas a cabo en el código 
para que sea capaz de aceptar los valores de nota y duración como entrada a la Red 
Neuronal. 

Desafortunadamente, debido a la falta de tiempo, los resultados deseados no se han 
obtenido tal y como se explica en los apartados conclusión y resultado del documento. 
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1.INTRODUCTION 
Audio generation is a complex task in it’s whole. The high requirement in computation when 
implemented in real-time is a struggle to programmers and overall, to everyone working in 
the field. The evolution of audio synthesis has experienced a huge improvement in the last 
decade, as hardware became powerful enough to support the needs of the field.  

As the usual sample rate in audio is 44,1kHz and 16 bit depth, most environments which 
work in the field are used to work at higher sample rates in order to avoid aliasing in mixing, 
mastering and digital synthesis as well as working at higher bit rates to avoid quality loss. 
Those sampling frequencies are usually 48kHz, 96kHz, 192kHz, and 24 or 32 bit depth, 
which demand an extremely high computation to operate correctly. 

In the music industry, digital synthesizers of many kinds are mainly used for music creation 
in many environments such as Electronic Music Production, Film Scores and different 
layering mixing techniques. However, the synths used for those applications are wavetable 
or additive synthesis, but with the recent success of Deep Learning in a lot of fields, the 
interest in Deep Leaning based synths has risen. Thanks to computing power greatly 
enhanced by Graphics Processing Units (GPU), a level of computing power has been 
reached so that it is possible to work with Deep Neural Networks with reasonably short 
training times when mapping the speech features from the source speaker to those of the 
target speaker. 

This chapter contains a brief introduction to Audio Synthesis and Deep Learning history and 
the main constrains that could potentially have had an impact in the development 
performed. It also provides an overview of the current state of the project and the 
requirements that the different components of project have to meet.  

1.1 OBJECTIVE 
The objective of this project is to develop a digital synthesizer of an analog instrument’s 
waveform (trombone) controlled by a midi pattern. The result of the project should be an 
audio signal with a recognizable pitch and timbre. To do that, the sampleRNN  project is 1

used, which is implemented in Pytorch. 

 paper regarding sampleRNN https://arxiv.org/pdf/1612.07837.pdf and the repository with the code: https://github.com/deepsound-1

project/samplernn-pytorch (the one in the paper is in Theano, which is an earlier implementation of the same network).
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Sample RNN is an implementation of a Recursive Neural Network (RNN) Deep Leaning  (DL) 
model that does not accept other variables other than the previous samples of the 
waveform. Therefore, it generates random unconstrained music by its own. The main 
contribution of this project is to accept other types of input information streams beside the 
already implemented previous sample conditioning. 

1.2 GOALS OF THE PROJECT 
The main goals of this project are to: 

1. Using sampleRNN to generate the audio waveform. 
2. Modifying sampleRNN to match the specifications of the project. 
3. Being able to generate raw audio at a 16kHz sample rate and 8bit depth. 
4. Generating single note files. 
5. Creating a database to train the system. 

1.3 REQUIREMENTS AND SPECIFICATIONS. 
To ensure the correct execution of the software: 
• The computer must be running Matlab 2015b or newer, as some of the functions used in 

the implementation are exclusive to those versions. 
• The user should be able to generate a midi file using a DAW (Digital Audio Workstation) 

such as Ableton Live, Presonus Studio One, Avid Pro Tools, Steinberg Cubase, Fruity 
Loops Studio or, as in the project, Logic Pro X. 

• The computer must  be running python 3.5 or higher and must install the following 
libraries: torch, natsort, librosa, numpy, matplotlib, math, os and pickle. 

• The user should have access to a dedicated GPU in order to train or execute the 
software. 

The software will be working at 16kHz and 16bit depth, with 4 second (64000 samples) 
input sound files and will generate 16kHz 8bit audio files. 
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1.4 BRIEF HISTORY OF SOUND SYNTHESIS 
One of the first electric devices to produce a sound was the musical telegraph, based on a 
single note oscillator. This device was invented in 1876 by accident by Elisha Gray, who also 
built speakers later on to be able to listen to the electrical signal. 

In 1906, Lee De Forest invented the first amplifying vacuum tube. This led to new 
technologies such as radio and sound films, but it also influenced the music industry and 
resulted in early musical instruments that used them such as the Theremin. 

In the 1930s and 1940s, the basic elements required for the newer form of synthesis were 
invented: audio oscillators (wavetable oscillators which could generate on cycle of diverse 
waveforms), audio filters, envelope controllers and various effects. And were used to 
develop more electronic-heavy synths. It also was the decades in which polyphonic synths 
were invented (more than one note at the time). 

In the late 1940s, Hugh Le Caine invented a voltage-controlled electronic instrument that 
provided the three main parameters that we know nowadays: volume, pith and timbre, 
which correspond to today’s touch-sensitive keyboard, pitch and modulation controllers. 

From then on, different methods of audio synthesis were discovered: Frequency Modulator 
Synthesis (FM), Additive Synthesis, Subtractive Synthesis basically. Then, when digital 
synths were available, granular synthesis, Wavetable Synthesis and sample-based synthesis 
were available to develop and have become a huge part of the market as digital soft-synths 
became cheaper and way more useful. 

1.5 BRIEF HISTORY OF DEEP LEARNING 
It’s story goes back to the 1940s, but over the past 5 years, Deep Learning has gone from a 
somewhat little field of a cloistered group of researchers to being a worldwide mainstream 
phenomenon. Interest in Deep Learning has sky-rocketed, with constant coverage in the 
popular media such as top journals like Science, Nature Methods and JAMA among others. 
DL has learned to drive a car, diagnosed skin cancer and autism and can even create 
photorealistic pictures. As a good example of the growth in DL interest, the NIPS’s (Neural 
Information Processing Systems) conference has experienced a lot of new methodological 
research papers published in the last 5 years, as shown in the figure (1). 
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1.5.1 1940 

Early work in machine learning was largely 
informed by the current working theories of the 
brain. The first investigators to explore the area 
were Walter Pitts and 	 Warren McCul loch. 
They had developed a technique known as 
“thresholded logic unit” and was designed to 
mimic the way a neuron was thought to work 
(which will be a recurring theme). But it isn’t until 
Frank Rosenblatt’s “perception” that we see the 
first real precursor to modern neural networks. 
For its day, this thing was pretty impressive and 
it came with a learning procedure that would 
probably converge to the correct solution and 
could recognize letters and numbers 

1.5.2 1969 

Along with the double-PhD wielding Seymor Papert, Marvin Minsky wrote a book entitled 
Perceptrons 	 that effectively killed the perceptron, ending embryonic idea of a neural net. 
They showed that the perceptron was incapable of learning the simple exclusive-or (XOR) 
function. Worse, they proved that 	 it was theoretically impossible for it to learn such a 
function, no matter how long you let it train. Now this isn’t surprising to us, as the model 
implied by the perceptron is a linear one and the XOR function 	is nonlinear, but at the time 
this was enough to kill all research on neural nets and begin a long period in which no 
research was done in the field. 
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1.5.3 1986 

Geoff Hinton finished his PhD studying neural networks in 1978 and by 1986, along with 
David Rumelhart and Ronald Williams, Hinton published a paper: “Learning representations 
by back-propagating errors”. In this paper they showed that neural nets with many hidden 
layers could be effectively trained by a relatively simple procedure. This would allow neural 
nets to get around the weakness of the perceptron because of the additional layers 
endowed the network with the ability to learn nonlinear functions. Around the same time it 
was shown that such networks had the ability to learn any function, a result known as the 
universal approximation theorem .  2

1.5.4 2006 

In 2006, the idea of unsupervised pre-training was introduced by Hinton once again. The 
main idea behind that concept was to train a 2-layer unsupervised model, freeze the 
parameters, add another layer and just train that layer. Then adding multiple layers to the 
network until you had a deep network. 

Using this strategy, people were able to train networks that were deeper than previous 
attempts, prompting a rebranding of Neural Networks to Deep Learning. 

1.5.5 2010 and forward 

With the incorporation of Graphic Processing Units (GPUs) to train models, the accuracy 
and the speed of training Deep Learning models increased exponentially compared to 
training with CPU power. GPUs are parallel floating-point calculators with a large quantity of 
cores. More speed with GPUs meant that larger models could be trained, which meant 
lower error rates.  

In addition to that the method known as dropout was introduced to prevent overfitting and 
used the Rectified Linear Activation Unit (ReLU). One large example of the improvement 
described above is the “Alexnet” network. 

 https://en.wikipedia.org/wiki/Universal_approximation_theorem2
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1.6 TIME PLAN 
The Gantt diagram and the time plan are detailed in the third annex. 

Once the history of Deep Learning and the History of Sound Synthesis have been briefly 
exposed, the technical specifications needed for the development of the project will be 
explained in 2.State of the Art and further in the document, the Methodology, Results and 
Conclusions will be exposed.  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2.STATE OF THE ART 
2.1 DIGITAL AUDIO SYNTHESIS 
A Digital Synthesizer is a piece of software which is capable of generating a stream of 
numbers representing the voltage outputs of each sample of an audio waveform in the 
digital domain. Instead of using analog electronics and samplers that play back recordings 
of acoustic, electric or electronic instruments as analog synthesizers do, digital synthesizers 
use Digital Signal Processing techniques to generate the sound. Some digital synthesizers 
emulate analog ones. 

A Digital synthesizer is in essence a computer with a piano keyboard (or a midi file as an 
input) and a LCD screen as an interface. Because of the rapid advancing of computational 
power, it is often possible to offer more features in a digital synthesizer than in an analog one 
at a given price. For instance, some forms of synthesis as sampling and additive synthesis 
are not possible regarding an analog synthesizer, but many musicians prefer the character 
or the warmth of an analog synth over their digital modeled software. 

As stated before, a digital synthesizer generates a stream of audio samples, those are 
audible by sending the samples through a DAC (Digital/Analog Converter) which will convert 
the stream to a continuous voltage that will be amplified and reproduced by a speaker. The 
main concern is to generate those samples, and to do that, one of the most efficient way to 
obtain it is to get a list of values, called a wavetable which contains periodic information of 
the wave to generate regardless of the pitch (frequency) at which the synth is generating the 
signal. To repeatedly scan a wavetable is called table-lookup synthesis and, as computers 
take somewhat similar to a nanosecond to read a value from memory, table-lookup 
synthesis is an efficient way of modeling an analog oscillator. The name given to the block 
which performs table-lookup synthesis is called digital oscillator. 

2.1.1 Wavetable Synthesis 

Wavetable Synthesis employs the use of a table with various switchable frequencies played 
in certain orders. The sound moves in order through the wavetable, smoothly changing its 
shape into the various waves in the table. 

This method produces sounds that can evolve really quickly and smoothly. The method was 
intended to create digital sounding noises, so it is not used for instrument replication very 
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often, but is an effective way to create pads or 
harsh-sounding tones like bells or digital sounds. 

Some examples of commercial Wavetable 
Synthesizers are Xfer Records Serum, Lennar Digital 
Sylenth1, Native Instruments Massive, etc. 

2.1.2 Subtractive Synthesis 

This is the most common method that gave birth to the concept of sound-synthesis. 

Subtractive Synthesis consists of simple signal chain regarding an oscillator running going 
into an EQ filter  sent to an amplifier for gain staging.  

The main principle behind Subtractive Synthesis is that any harmonic character can be 
constructed by an oscillator, or the combination of multiple oscillators. Then, by running 
these oscillators through various filters, and controlling the envelope response (an amplitude 
modifier), the harmonics can be represented as harmonic structures that mirror those of 
actual instruments. 
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2.1.3 Additive Synthesis 

Additive Synthesis is trying to achieve the same result as Subtractive Synthesis, but 
approaches the method creating frequencies instead of filtering them. Rather than 
generating an spectrum and filtering out the harmonic structure desired, in additive 
synthesis multiple sine waves of varying levels and frequencies are combined together to 
build the harmonic structure desired. Equation 4. 

"    (4) 

2.1.4 Samplers 

Sample-Based Synthesis is different from other forms of synthesis because it does not 
employ the use of oscillators. In their place, recorded samples are the sound source. Each 
sample is pitch-shifted to span about 5 notes until a new sample is needed (to avoid 
noticeable distortion). 

This method is meant to emulate real 
instruments by recalling actual samples 
of those instruments. These types of 
synthesizers can take up a lot of 
processing power due to the storage 
and instant recall of samples. 

2.1.5 Deep Learning based synthesizers 

Deep Learning synthesis is somewhat recent and it has not been yet fully developed 
commercially except in the field of speech synthesis where multiple algorithms and software 
have been released. 

With the creation of big data and it’s massive datasets, music synthesis using this method 
has become more feasible, because of that, multiple projects have been emerging regarding 

y(n) = ∑N
i=1 Ai * sin(2π * fin)
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this field such as NSynth (implemented by google in Magenta, Tensorflow), Wavenet (also 
developed by google in Tensorflow) or sampleRNN, the one that will be using in this project.  

Deep Learning synthesis also relies in samples but for training the model instead of directly 
recalling a sample. Because of that and the high computational cost that these synthesizers 
need, they have not yet overcome sample-based synthesis, as most of DL based synths 
rely on the previous samples to predict the next one and that is an extremely high speed 
requirement as they need 44100 samples a second minimum to match the quality of other 
synths. 

2.2 DEEP LEARNING 
Deep Learning has become a well known resource in many fields such as Image 
Processing, Speech Processing and Computer Vision. Its main feature is to be able to learn 
complex non-linear mapping functions. 

There is not such thing as a unique definition of Deep Learning but in general we could say 
that Deep Learning is a group of automatized learning algorithms. Beyond this common 
definition, it has features such as: 

• Transforming and extracting variables using a concatenation of non-linear processing 
layers while using as input of each layer the output from the previous one. The 
algorithms can use supervised learning (when you train with a known output value for 
each input value) or unsupervised learning (no output). 

• They are able to learn multiple level features or data representation. Higher level features 
derive into low level features to create a hierarchy. 

2.2.1 Supervised Learning 

Supervised Learning is going to be the training method for sampleRNN. Supervised 
Learning is a technique used to deduce a given function from the training data. The training 
data consist on pairs of vectors, the input arguments and the desired results. The output 
vector can be either a numeric value (regression) or a class label (classification). The main 
objective in supervised learning is to create a function able to predict the output regardless 
of the input vector (whenever is valid) after seeing a series of examples (training dataset). To 
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do that the model has to be able to generalize into a family of objects to foresee data that 
has not seen before and give the correct output. 

2.2.2 Linear Model 

Also known as the most basic Neural Network. It was implemented in the Perceptron, one 
of the first models using what later on will be known as Deep Learning. It consists on a 
simple diagram which was named single neuron model for it’s simplicity and similarity to a 
real neuron. 
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The diagram shows a graphical representation of the model, which can also be written and 
represented in matrix form (Equation 8). 

Where "  are the weights, b are the bias values and compared to the real neuron model, the 
weights are the strength of the connection between two neurons and the bias determines 
how input to a neuron is translated into the state of that neuron.  

This model belongs into a category known as fully connected layer in which each output 
depends on all input values, with every weight "  is different than 0. 

The function f is the activation function, which is a non linear function that is mainly used to 
connect one neuron after another because without the non-linear function would resolve in: 

"   (9) 

Which is a different linear function and thus, it is not able to learn non-linear regressions and, 
more importantly, it causes no improvement in relation to a model with only one layer. But, if 
a non-linear function is added to both layers it takes a step further in complexity (Figure 10) 

ω

ω

Y = W2(W1X + b1) + b2 = W2W1X + W2b1 + b2 = W′�X + b′ �
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2.2.3 Activation function 

As mentioned above, the activation function is a non-linear function between layers than 
allows the neural network to be concatenated without becoming another linear regression. 
The most common activation functions are the following the sigmoid function (Equation 
11.1), the ReLu function (Equation 11.2), the Softmax function (Equation 11.4) and the 
hyperbolic tangent (Equation 11.3). 

 

 

2.2.4 Training the model 

The model is trained updating their parameters according to a loss function such as the 
Mean Square Error (MSE) or the Cross Entropy. The result of this function is an indication of 
the prediction errors from the model. 

In order to adjust the weights of the DNN, we use an Optimizer. The most basic of them and 
the first used in these algorithms is the Gradient Descent. This method updates the weights 
(Equation 12) by defining a learning rate "  which defines how quick the method converges 
and subtracts the derivative of the loss function in terms of the weights in order to obtain the 
value of "  for which the error loss is minimum. 

The biggest issue in this method is that as the Loss function has a very complex 
dependance on the coefficients, Gradient Descent does not ensure that the minimum value 
of the loss function is reached, for that matter, it is possible to never reach the minimum.  

η

ω
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(11.3) (11.4) 
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However, the speed at which the Gradient Descent function converges is very slow and to 
solve that, optimizers were implemented, which modified the learning rate and the direction 
with different strategies. The one used in this project is the Adam Optimizer. 

Some networks never learn with enough accuracy to be usable with new data. This could 
be because the input data do not contain the specific information from which the desired 
output is derived. Ideally, there should be enough data so that part of the data can be held 
back as a validation set.  

2.2.4.1 Adam Optimizer 

Adaptive Moment Estimation (Adam) computes adaptive learning rates for each parameter. 
It stores the exponentially decaying average of past squared gradients and keeps an 
exponentially decaying average of past gradients.  

It works estimating the first and second order momentum (the mean and the variance) of the  
gradients, updating them with other parameters that work as a numerical modification 
speed for those parameters. 

2.2.5 Recurrent Neural Networks (RNN) 

Recurrent Neural Networks are networks with some fully connected layers and some layers 
that have shared weights In time. That allows the hierarchy to have memory and thus being 
able to reduce the number of inputs compared 
to the same application with a non RNN 
network. If a desired output value has 
correlation to an input value located 32 
samples before the predicted output, the 
input values’ input window should be at least 
of 32, but as RNN have hidden memory 
layers, it is possible to reduce that input 
window’s size while preserving the information 
of the correlated sample. 

The figure on the side represents an RNN 
model which has the shared weights in the 
red rectangle.  
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Figure 13.1: Forward in Layers 
representation of an RNN from 
[12]
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In Equation 14 it is shown a Time progression of the hidden layer of shared weights. 
The figure above represents the update function of the shared weights. W is the weights 
matrix, "  is the inputs at the time step (a group of samples at a fixed discrete time), U is the 
matrix that updates the hidden layer’s values for the next time step and b is the bias. 

The final equations that will express the 
answer in terms of the previous hidden state 
are represented in the diagram if the U matrix 
is the update matrix and the update function 
used is an hyperbolic tangent. 

 

 

 

xt
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Figure 13.2: Forward in Time 
representation of an RNN from 
[12]

Figure 15.2: example of an RNN 
from [12]

(15.1)

(14)
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The main issue with RNN is the vanishing gradient, which is a flaw of RNN cells in which the 
gradient approaches at early steps as a consequence of multiplying a relatively long 
sequence of numbers smaller than one, converging the product to 0. This can be an issue 
when training models with a log sequence of correlated data, as it is the case in Audio. 

2.2.6 Long Short Term Memory Units 
LSTM is an added complexity to the RNN model, for example in (15.1). It is now widely used 
because of its revolutionary solution to long term dependences of the sample generated "  
to the previous input samples that are out of reach of the window used in t iteration of the 
network. LSTM includes gate modules that, unlike all other modules, should be analog for 
the best performance possible (because of analog’s possibility to be differentiable) however, 
that is not possible so it is instead implemented as element-wise multiplication y sigmoids, 
which range from 0 to 1. 

"  (16.2) 

"  (16.3) 

yt

Ct = σ (Wf * [ht−1, xt] + bf ) * Ct−1 + σ (Wi * [ht−1, xt] + bi) * tanh(Wc * [ht−1, xt] + bc)

ht = σ (Wo * [tt−1, xt] + bo) * tanh(Ct)
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Figure 16.1: block diagram of an LSTM Unit 
from [34]
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In the mathematical expression of the LSTM we can see that it consists basically of 4 linear 
regressions each of them actuating in a different way, and thus, increases the complexity of 
the network. Each matrix and each bias is trained independently. 

2.2.7 Gated Recurrent Units 
GRUs or Gated Recurrent Units were developed by Yoshua Bengio in 2014 in his paper [36] 
and they are a variation of RNN cells. They are easier to train and avoid the vanishing 
gradient issue that experiment most of the RNN cells. GRUs are less computationally 
expensive compared to LSTMs and they work as shown in figure(17)  

2.3 MIDI 
The MIDI protocol or Musical Instrument Digital Interface is a technological standard that 
describes a protocol, a digital interface and connectors that allow different electronic 
musical instruments (such as synths), computers and other devices to communicate 
between them. A simple MIDI connection can transmit up to 16 information channels that 
can be connected to different devices. 

MIDI data carries messages that specify musical notation, tone and velocity among other 
parameters but, for our application, only the pitch is relevant. Each MIDI file also contains 
information about the instrument of the General MIDI sound bank used for each channel 
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Figure 17: GRU’s implementation from [34]
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and information regarding the Tempo in ms, allowing it to send a master clock track to all 
the devices connected with the protocol. 

These data can also be recorded in a computer in a standalone software called Sequencer, 
which is a built-it feature in all DAW (Digital Audio Workstation) such as Ableton Live, Logic 
Pro or Avid Pro Tools which has the capability of saving MIDI files and play it with different 
sounds afterwards. 

Some of the advantages of using MIDI are it’s size (as it is not sound but information, a 
whole song can be stored in a few kilobytes of memory) and the ease of use (modification 
and instrument selection). 

For more information regarding MIDI messages [16]. 

MIDI was patented by the Yamaha corporation in 2001: [17] 

2.3.1 Messages 

A MIDI message is an instruction that controls some parameter of the receiver device. It 
consists on a status byte, which states which type of message is the one that follows it 
followed y two bytes that contain the parameters. MIDI Messages can be classified as 
Channel Messages which are sent to some of the 16 channels or as System Messages, 
which can be heard by all connected devices. Any data non relevant for a device is ignored. 

Channel Voice messages transmit real-time performance data through a single channel. 
Some examples of it are the Note On message, that contain the midi note number that 

Página !  de !29 75

Figure 18: different MIDI messages types
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specifies its pitch and a velocity value that determines the intensity with which the note has 
been played and the Note Off message that indicates the culmination of a single MIDI note. 

Inside the Channel Voice messages, are also included those that change the program and 
change the devices patch and those messages that adjust or modify instruments’ 
parameters. 

Channel Mode messages include the Omni/mono/poly mode on/off messages as well as 
messages that reset all controllers to its initial state or even to send Note Off messages for 
all the notes. 

2.3.2 System Exclusive Messages 

These kind of messages are the reason for MIDI’s flexibility and longevity. These messages 
allow manufacturers to create specific messages for their devices that otherwise, MIDI 
information would not be enough.  

Each Manufacturer has a unique ID that is included in the SysEx messages, which help the 
messages to only be heard by those devices for whom the message is directed to and 
ignored by the other ones. 

2.4 WAV AUDIO 
The Wave Audio Format or WAVE (WAV) is a wrapper that allows to store audio files with 
different formats.It was developed by Microsoft and IBM and it is commonly used to store 
high quality digital audio files. 

The most common format used in the wave files is PCM (Pulse Code Modulation) either in 
16bit or 8bit, and will be the format used in this project. 
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3.METHODOLOGY 
On this chapter all the stages of the project’s development will be exposed as well as the 
methods used to reach the conclusion. First, the creation of the dataset will be explained, 
then, how the data has been prepared for the model. In the end, the modifications made to 
sampleRNN to match the specifications stated at the beginning of this document. 

For the development of the project, learning a programming language was required. The 
candidates were: Python [23] (common to all possibilities); to develop a project’s exclusive 
model using Keras [22]; to adapt and comprehend Google’s Wavenet implemented in 
Tensorflow [24] and the one that has finally been used that is SampleRNN with Pytorch [25].  

In the development stage of the project (regarding the first months) those possibilities were 
submitted to an extensive evaluation of viability. It was finally decided that SampleRNN and 
Pytorch were the ones to better fit the needs of the project as well as having some sort of 
viability regarding the capabilities of the author. 

3.1 DATABASE 
The goal of the database creation stage is to create a sound-bank suitable for the desired 
model. As the first try of implementation was Google’s wavenet, a database was created 
with five different musicians playing simple melodies. That database was lost due to 
hardware issues and because of the inconvenience that would have been for the 
collaborators to redo the whole dataset, it was decided to simplify it. 

The database for sampleRNN was created with two different musicians playing onto three 
different microphones in a professional recording studio. The database consists of 904 
single-note wav files at a 16kHz sampling frequency and 16 bit resolution. 

3.1.1 Sample Recording 

The samples were recorded at Beat Studio BCN, a professionally acoustically treated room 
which helped capture the trombones’ sound without early wall reflections. The samples 
recorded were from five different frequencies: a F2(174Hz), a G2(196Hz), an A2(220Hz), a 
Bb2(233Hz) and a C3(261Hz) and had variable time decay from 1 to 3 seconds. For the 
sake of variety, three microphones with different frequency response curves were used to 
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capture the sound: a Sennheiser MD421 (Figure 19.3), a Shure SM57 (Figure 19.2), and a 
Behringer ECM8000 (Figure 19.1). 
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Figure 19.1: Behringer ECM8000 Frequency Response 
from http://recordinghacks.com/microphones

Figure 19.2: Shure SM57 Frequency Response 
from http://recordinghacks.com/microphones

Figure 19.3: Sennheiser MD421 Frequency Response 
from http://recordinghacks.com/microphones

http://recordinghacks.com/microphones
http://recordinghacks.com/microphones
http://recordinghacks.com/microphones
http://recordinghacks.com/microphones
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After the microphones captured the sound, this was fed with an XLR balanced cable to a 
MIDAS XL48 microphone preamplifier, which is a transistor-based amplifier with a Low cut 
frequency of 100Hz. Then the audio signal was fed into an Eventide Orion32, a A/D 
converter which imported the audio signal to ProTools 10. 

Then each note had to be synchronized with a MIDI file for further purposes. To do that, a 
session of Logic Pro X was used (Figure 20). It has been also used to break the audio files 
into single-note files. 
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Figure 20: Logic Pro X file 
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The audio files were then rendered and exported into single audio wav files to further feed 
the model. But before it is suitable for working as a training sequence, the samples must go 
under a depuration through MATLAB. 

3.1.2 Sample Conditioning 

This part of the project consists in two main parts, the audio conditioning and the MIDI 
reading and text file generation. 

3.1.2.1 Audio Conditioning 

In order to be able to feed the audio to train the model, each wave file must be of the same 
length, be 8bit resolution wave and have a sampling frequency of 16kHz. To fulfill this need, 
a Matlab script was created to condition every file all with one script.  

To do that, Matlab has to be able to browse through folders, and then regularize the audio 
samples. The audio files have a length of 176400 samples (4 seconds at a 44,1kHz 
sampling frequency). It is decided that, to be able to conserve the transients, a 1 second 
stream of silence will be added at the start of the sample. 
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Figure 21: Example audio file (A_50)
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Variable declaration and folder names 

Iteration for the folders containing each pitch

Obtention of the file names inside 
each folder and going to the folder

Audio file reading, normalization, and index retrieval

Out of range exception control and zero padding

File name creation, Downsampling and Quantization

Iteration for the files containing each sample

Return to the previous folder

Return to the previous folder

1

2

Figure 22: Block diagram of the MATLAB script for audio regularization

Figure 23: Audio sample after normalization and regularization A_1
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The MATLAB Script used to develop this task mainly relies on the dir functionality of 
MATLAB which allows the program to explore the folders in a MATLAB path. It also relies on 
the audio reading capabilities of the software which also allows the user to modify the audio 
file and store it in a new mono wave file. 

The signal flow diagram as it is shown in Figure (22) represents the different sections of the 
script which performs different tasks. 1 and 2 in the diagram represent the iterations in the 
for loop where the loop 1 iterates for all the files in the directory and 2 iterates for the five 
folders containing each pitch. 

3.1.2.2 Reading MIDI and text file generation 

To condition sampleRNN, two different parameters will be used: the MIDI note value and a 
vector that contains a counter (in samples) until the end of the note.  

The MIDI note value is a 7bit coded value (128 values) which correspond to the notes on a 
keyboard reaching from the -2 octave to the 5th one. In this part of the development of the 
project, it is used [28] a series of MATLAB/GNU Octave functions that provide the software 
the capabilities of reading MIDI files and adapting them to be read in a simple matrix among 
other functionalities. 

In the resulting text file, two columns are included. The first one containing the note value for 
each sample and the second one containing the number of samples remaining until the 
audio waveform is at the 0.8% of its maximum value. It mainly relies on the previously 
mentioned functions and on the fopen [32] and fprintf [31] functions. 
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3.2 SAMPLERNN ARCHITECTURE 
One of the objectives of the project was to be able to comprehend and analyze how 
sampleRNN, a previously designed Deep Neural Network, worked. On the theoretical side, 
the paper attached to this project [33] describes how does the architecture work regardless 
of the environment in which is implemented (Theano or Pytorch are the ones that have been 
explored so far, but we are going to use the Pytorch implementation as is the most recent 
one) and we further analyze the Python implementation for that hierarchy. After successfully 
doing that, the modifications to accept other input variables will be studied. 

SampleRNN is a project that models the probability of a digital audio signal stream
"  as the product of the probability from each sample conditioned 
to the ones before that. Figure (25) shows the mathematical expression of the desired 
expression explained above. 

X = [x0, x1, x2, . . . , xN−1]
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Variable declaration and folder names

Iteration for the folders containing each 

MIDI read and note vector 

Obtention of the file names inside each 

Iteration for the files in each folder

Audio reading, exception control

Text file creation

Return to the previous folder

Return to the previous folder

1

2

Figure 24: Block diagram for the script to generate the txt variables file
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"   (25) 

This is implemented using a Recursive Neural Network or RNN which, as explained before, 
is a Deep Neural Network with a hidden state that depends on the previous states and it is 
also trained. RNNs usually have a function such as shown in Figure (26). Where "  is one of 
the known memory cells either a GRU (Gated Recurrent Units) or a LSTM (Long-Short Term 
Memory Units). 

"     (26.1) 

"   (26.2) 

Because of audio samples being extremely correlated to samples far beyond the actual 
sample’s time step, sampleRNN adopts a multi-model hierarchy in which each model has a 
different time span in samples, because of that it is able to recognize multiple samples 
before the actual sample to use them in the prediction of the next one. 

The hierarchy consists of two main categories of modules: 

p(X ) =
N−2

∏
i=0

p(xi+1 |x0, x1, . . . xi)

Υ

ht = Υ(ht−1, xt)

p(xi+1 |x0, . . . xi) = Sof tma x(MLP(ht))
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Figure 27: Block diagram of the model for 3 tiers [33]
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3.2.1 Frame Level Modules 

Frame Level Modules are implemented in the higher tiers of the hierarchy and operate with 
non overlapping frames of the length frame-size "  for the "  tier in the hierarchy. In the 
case of Figure 28, "  and " . As a regular RNN, it stores a memory from the 
previous time step and updates it as a function of the previous hidden state "  and the 

input vector " . As each module operates with a different temporal resolution, an 

upsampling module is needed. So each vector "  is upsampled to "  vectors before 
feeding it to the next module. ( "  is the ratio between the output of the previous module 
and the input of the next one) 

Figure 28 shows the mathematical expression for a frame level module given a time step t 
for simplification where  "  represents the frame input for the "  module. 

 

	 	 	 	 	     "  

	 	 	 	
	       

3.2.2 Sample Level modules 

Sample Level modules are always located in the first tier "  of the hierarchy and takes 
the resized output of tier2 which will notate as "  and its "  which will contain the 

preceding samples of the sample "  which is the one that the final tier (this one) must 
predict. To perform this task and given that the correlation between samples that are this 
close is somewhat small, a Multi Layer Perceptron (MLP) is used instead of an RNN 
architecture which will speed up the process slightly. The previous samples are quantized to 

FSk kth

FS3 = 16 FS2 = 4
h(k)

t−1

x(k)
t

c r(k)

r(k)

f (k) kth

ht = Υ(ht−1, inpt)

k = 1
c(2)

i FS(1)

xi+1
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(28.3) from [33]

(28.1) from [33]

(28.2) from [33]
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8bit instead of 16 by a linear quantization function and the resulting samples will be noted as 
" . Figure 29 represents the mathematical expression of the layer which contains a matrix 

named "  which purpose is only to match the input from the previous tier to the one in " . 

The flatten function returns a 1-dimensional vector of the input. 

	 	               "  

                                               "  

                               "  

3.2.3 Sample RNN code analysis 

The previous explanation is a summary of sampleRNN paper’s aspects concerning this 
project, but, when inspecting the code to adapt it to multiple inputs, I noticed that some 
aspects of the actual implementation of the layers were not explained on the paper, thus, I’ll 
explain some of the features noticed. 

In the Pytorch implementation of the sampleRNN project there are 6 python files and a 
module which are: train.py, dataset.py, model.py, utils.py, optim.py and nn.py. The module is 
the trainer module which has two files: __init__.py and trainer.py. Each script contains 
different classes with multiple functionalities on the program, in this section, the most 
important details from each script. 

The program is called with a parse of arguments, the ones with special importance are: --
exp : the experiment name to create a folder in the results folder ,—dataset : the folder 
inside the datasets path containing the dataset, --datasets_path contains the information of 
the path, --n_rnn : number of RNN layers in each tier ,--val_frac and --test_frac : fraction of 
the dataset that is used for validation and test respectively. ,--keep_old_checkpoints : keeps 
the state from previous epochs (must have the same parameters) ,--sample_length : each 
epoch generates a test output and stores it, this parameter (in samples) sets the length of 
each audio file. 

train.py gets the parser arguments and stores them in the params struct, that is the main 
container of the global parameters of the code. It also initializes all the modules.  

ei

Wx f (1)

f (1)
i = f lat ten([ei−FS(1)+1, . . . , ei])

inp(1)
i = W (1)

x f (1) + c(2)
i

p(xi+1| |xi, . . . , x1) = Sof tma x(MLP(inp(1)
i ))
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(29.1) from [33]
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(29.3) from [33]
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In model.py, where the modules of the Figure 27 implementation are implemented, it is 
noticeable that in each RNN layer inside the frame-level modules and in the MLP modules. 

Each Tier in Figure 27 is composed by a 1D convolution that upsamples a 
[1,n_frame_samples] size matrix into a [1,dim], then a linear regression is used, then a GRU 
module is implemented with a [1,dim] input and output, then an iteration of rnn modules is 
used to implement the layer (always using linear regressions as well) and then, to finish  
each tier, a 1D convolution as the first one, but now the input and output dimensions are the 
same. 

3.3 USAGE OF THE CODE 
Using UPC’s calcula remotely, uploading the code and executing the program was possible. 
As a first execution, a single-note database was used to generate audio files without 
modifying the original code but only for a little detail which is that the -epoch_limit 
parameters were not correctly implemented and a type=int specification had to be added. 
Once it was trained with different parameters (different batch_size, epochs and rnn 
iterations), it was decided that the best result was obtained for the default batch_size (128) 
and 3 rnn iterations, but the epoch value depends on the note. 

Once the code was working, we proceeded to modify the code to fit the other input 
parameters. 
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Once the code for the correct data reading is done and working, there is the need of 
changing the train function to manipulate the 3D matrixes and there is also a need to get 
only the audio of the target matrix as the output is going to be still an audio signal and not a 
3D matrix. This is done in the __init__ python file of the trainer module. 

Then, once the signal arrives in the desired format to the model python file, the Predictor 
and Generator file must be altered to give the framelevelRNN class the input of 3 times the 
size in the dimension number 1 to enter the three parameters.  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Reading parameters (note, samples until 
0.008%) and storing them in a 3D matrix.


FolderDataset[annex5]

Formatting parameters to get matrixes of 
(batch_size, n_samples,n_features)


DataLoader[annex5]

Trainer’s __init__.py chunks data into input 
and target sequences, calls for optimizer


__init__.py [annex5]

Model now accepts 3 times the inputs and 
is able to process the 3 variables 

independently


model.py [annex5]

Figure 30: block diagram of the modifications done to the 
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4.RESULTS 
As two different phases of the project were developed, the results of each one will be 
explained accordingly.  

On the first stage, as explained before, 5 networks were trained, each one with a trimmed 
note bunch of the dataset. Because of that 5 different loss functions in terms of the epoch 
are obtained (each model was trained with 3 rnn and 40 epochs to detect overfitting): 
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Figure 31.1: TrimF loss diagram Figure 31.2: TrimG loss diagram

Figure 31.3: TrimA loss diagram Figure 31.4: TrimBb loss diagram
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Figures 31.1-31.5 shows the training_loss 
(blue), training_loss avg (orange), validation_loss 
(green) and test_loss (red) as a function of the 
number of files read, where the epochs are: 

"  

The training_loss is the value of the training loss 
in each train for each batch_size piece of data in  
the input dataset. Training_loss running_avg is the mean 
of the training_loss for each epoch. And the validation and training loss graphs are the loss 
measured with the portion of the dataset used to validate and test the results in each 
epoch. 

On the figures we can clearly see an 
overfitting of the model by looking at the 
validation and train loss curves that 
experiment a growth around the 20th epoch. 
That means that the best epochs are around 
the 20 epochs, which generate waveforms 
such as Figure 32, which is the generated 
waveform of the note C. Because of the 
overfitting with a saturated output we can 
conclude that the model had little samples to 
train and we are in need of a higher number 
of files. This should be fixed in the second phase of 
the project, when the database is three times bigger. 

For the second phase, due to time constrictions, I was not able to execute it because, even 
though the model was able to train, It was not capable of generate the audio sample for 
each epoch because the variables needed for loading the text file and formatting it were not 
reaching the Generator Class in model.py. For that matter I am not able to present 
quantitative results for the execution. The only thing to present is the bash output (Annex 4) 
to demonstrate that the program is training the model and that it prints errors for the 
Generation Class. 

numepoch = f ilesread /f ilesinthefolder
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Figure 31.5: TrimC loss diagram

Figure 32: TrimC output signal
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5.BUDGET 

For the budget calculations, I contemplated the working hours of myself, for whom I have 
considered a reduced wage of 10€/h and I contemplated the working hours of my advisor, 
whom I considered of 60€/h. 

The price for the amazon gpu servers were taken from: https://aws.amazon.com/ec2/spot/
pricing/ where, as I didn’t know what kind was the GPU used in Calcula, I contemplated the 
most expensive one used with UNIX/Linux for the sake of a “realistic” budget. 

The computer’s price is taken from a standard average price in laptops, as it does not need 
a paid OS (because it uses linux) and it only works as a connection to the GPU servers and 
to run Pycharm. 

Descripción Cantid. Precio 
unitario

Importe

Junior Engineer 30h/week 10€/hour €	 10.500

Senior Engineer 2h/week 60€/hour €	 4.200

Amazon GPU servers 100h €	 0,4079 €	 40,79

UNIX Computer 1 €	 500 €	 500

MATLAB License 1 €	 1.000 €	 1.000

Total € 16.240,79
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6.CONCLUSIONS 
The project was concluded with the thought that the goal for the project was a little bit too 
ambitious because of the time needed to finish it. A lot more resources were needed to 
choose which model to use for that application and that ended up being very time-
consuming.  

Unfortunately, the desired results were not obtained, even though a partial modification of 
the code was achieved, and the generation modifications were almost finished. 

As for the second stage of the project, the model was successfully trained and generated a 
sample for each note, but was completely clipping even though the model was overfitted 
which leads us to think that there were not enough different samples for it to train correctly. 
That was planned to be fixed once the modifications were done, as the database would be 
3 times greater and it would only have 3 times the inputs. 

However, the goal in terms of generation was to generate 16kHz 8bit files and, even though 
the waveform is not quite trombone-like, the pitch of the wave file is fairly recognizable.  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ANNEX1: SCRIPT FOR AUDIO 
REGULARIZATION 
%Script to resize, quantize and downsample the audio files. 

clear all 

listroot = dir('Samples_44100_16bits'); %get the directories inside the folder 

cd Samples_44100_16bits %go to the folder 

fs = 44100; %sampling frequency 

fsout = 16000; %output sampling frequency 

warning('off','all') %turn off warnings 

count = 0; 

fo=[ones(48000,1);(linspace(1,0,16000))']; %envelope controller (linear volume reducion in 
the final 16000 samples). fade-out 

%fo=[ones(12000,1);(linspace(1,0,4000))’]; 

for ix=4:length(listroot) %iteration for the folders in the directory 

    listin = dir(listroot(ix).name); %get the directories in the ix position of the directory list 

    cd(listroot(ix).name) %go to that folder 

    for iy = 4:length(listin) %iteration for the files in the directory 

        xin = audioread(listin(iy).name); %import the iy audio file 

        x = xin/max(abs(xin)); %normalization 

         

        [st,en] = findlim(x,0.008,fs); %function that returns the index at which the signal is the 
0.8% of the max. 

        if (en+400)<length(x) %controlling index exceds matrix dimentions 
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            x2 = x((st-100):(en+400)); %increasing the span in 500 samples to avoid harsh 
variations 

            x = [zeros(fs,1);x2]; %zero padding of 1second 

        else 

            x2 = x((st-100):end); %increasing the span in 100 samples to avoid harsh variations 

            x = [zeros(fs,1);x2]; %zero padding of 1second 

        end 

         

        if length(x)>4*fs %controlling index exceds matrix dimentions 

            x = x(1:4*fs); %truncating the audio file to 4seconds 

        else 

            x = [x ; zeros((4*fs-length(x)),1)]; %truncating the audio file to 4seconds 

        end 

        x = srconv(x,fs,fsout); %downsampling 

        %obtention of the name of the new file and quantization to 8 bit 

        %signal 

        name = strsplit(listin(iy).name,'.');  

        sprintf('%s',char(name(1))) 

        audiowrite(strcat(char(name(1)),'_mod.wav'),x.*fo,fs,'BitsPerSample',16); 

        %audiowrite(strcat(char(name(1)),’_trim.wav'),x(16000:31999).*fo,fs,'BitsPerSample',
16); 

        count = count + 1; 

    end 

    cd .. 

end 

cd .. 

sprintf('%s : %i elements','Finished',count) 
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function [ st , en ] = findlim( x , th ) 

%function to find the start and the end of the audio signal given a desired 

%threshold 

%Inputs: 

%  x: input signal  

%  th: threshold 

% Output: 

%   st: start index of the signal 

%   en: end index of the signal 

tmp=find(abs(hilbert(x))>th); %tmp vector containing the vector positions where the 
amplitude is greater than the 0.8% of the max (as it is normalised) 

%first and last position of the vector gives the start and end of the audio 

%signal (approximate) 

st=tmp(1);  

en=tmp(end); 

end 

function [y] = srconv(x,fsin,fsout) 

% function to convert sampling rate from one sampling rate to another 

% so long as the sampling rates have an integer least common multiple 

% Inputs: 

%   x: input signal at rate fsin 

%   fsin: sampling rate on input 

%   fsout: new sampling rate on output 

% Output: 
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%   y: output signal at sampling rate fsout 

% determine m, the least common multiple (lcm) of fsin and fsout 

    m=lcm(fsin,fsout); 

% determine the up and down sampling rates 

    up=m/fsin; 

    down=m/fsout; 

% resample the input using the computed up/down rates 

    y=resample(x,up,down); 

end 
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ANNEX2: SCRIPT FOR GENERATING TXT 
clear all 

listroot = dir('Samples_16000_8bits_nl'); %get the directories inside the folder 

cd Samples_16000_8bits_nl %go to the folder 

fs = 16000; %output sampling frequency 

warning('off','all') %turn off warnings 

count = 0; 

for ix=4:2:length(listroot) %iteration for the folders, the step is 2 to bypass midi files with the 
same name as the folders 

    namenote = {'A.mid'; 'Bb.mid'; 'C.mid'; 'F.mid'; 'G.mid'}; %name of the midi file 

    midi = readmidi(char(namenote(0.5*ix-1))); %import midi 

    [notes,endtime] = midiInfo(midi); %returns a matrix notes that contains the notes 
messages in a matrix 

    note = notes(2,3); %gets the value of the note 

    arr = [zeros(fs,1) ; note.*ones(1.5*fs,1) ; zeros(1.5*fs,1)]; %creation of the note array 

    listin = dir(listroot(ix).name); %get the directories in the ix position of the directory list 

    cd(listroot(ix).name) %go to that folder 

    for iy = 3:length(listin) %iteration for the files in the directory 

        x = audioread(listin(iy).name); %import the iy audio file 

        [st,en] = findlim(x,0.008); %function that returns the index at which the signal is the 
0.8% of the max  

        if en+400<length(x) %controlling index exceds matrix dimentions 

            en = en + 400; %tail preservation by adding 400 samples 

        end 

        if st-100>0 

            st = st - 100; %transient preservation by adding 100 samples 

        end 
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        out=[zeros(st,1) ; (en-st-1:-1:0)' ; zeros((length(x)-en),1)]; %forward seeing vector 

        %creation of the txt file 

        tmp2 = strsplit(listin(iy).name,'.');  

        tmp2 = strcat(tmp2(1),'.txt'); 

        fileID = fopen(char(tmp2),'w'); 

        mat=[out';arr']; 

        fprintf(fileID,'%5.0f\t%5.0f\n',mat); 

        fclose(fileID); 

        count = count + 1; 

    end 

    cd .. 

end 

cd .. 

sprintf('%s : %i elements','Finished',count) 
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ANNEX3: GANTT DIAGRAM AND TIME PLAN 
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ANNEX4: BASH OUTPUT FOR CODE 
MODIFICATION 
In this annex the loss values for the training of each batch. In the step between epochs, the 
model is stored and audio samples are generated which is the part that returns the error 
and it is in need of a revision. 

(/Users/vbadenas/miniconda3) MacBook-Pro-de-Victor:SampleRNNcond vbadenas$ python train.py --exp 
PRUEBA --frame_sizes 16 4 --n_rnn 2 --epoch_limit 2 --dataset datasetVBC 

training_loss: 0.0000  (0.0000) time: 0s 

training_loss: 0.0000  (0.0000) time: 58s 

training_loss: 0.0000  (0.0000) time: 112s 

training_loss: 0.0000  (0.0000) time: 962s 

training_loss: 0.0000  (0.0000) time: 1018s 

training_loss: 0.0000  (0.0000) time: 1079s 

training_loss: 0.0000  (0.0000) time: 1141s 

training_loss: 0.0000  (0.0000) time: 1207s 

training_loss: 0.0000  (0.0000) time: 1280s 

training_loss: 0.0000  (0.0000) time: 1362s 

training_loss: 0.0000  (0.0000) time: 1461s 

training_loss: 0.0000  (0.0000) time: 1571s 

training_loss: 0.0000  (0.0000) time: 1685s 

training_loss: 0.0000  (0.0000) time: 1804s 

training_loss: 0.0000  (0.0000) time: 1927s 

training_loss: 1.1093  (0.0111) time: 2015s 

training_loss: 3.0088  (0.0411) time: 2071s 

training_loss: 2.9893  (0.0706) time: 2129s 

training_loss: 2.8245  (0.0981) time: 2189s 

training_loss: 2.8122  (0.1252) time: 2242s 

training_loss: 2.8055  (0.1520) time: 2299s 

training_loss: 2.7814  (0.1783) time: 2353s 
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training_loss: 2.7691  (0.2042) time: 2406s 

training_loss: 2.7605  (0.2298) time: 2460s 

training_loss: 2.7677  (0.2552) time: 2513s 

training_loss: 2.7706  (0.2803) time: 2570s 

training_loss: 2.6931  (0.3045) time: 2626s 

training_loss: 2.6640  (0.3281) time: 2682s 

training_loss: 2.6129  (0.3509) time: 2736s 

training_loss: 2.5790  (0.3732) time: 2790s 

training_loss: 2.5510  (0.3950) time: 2846s 

training_loss: 2.5238  (0.4163) time: 2900s 

training_loss: 2.5175  (0.4373) time: 2952s 

training_loss: 2.4929  (0.4578) time: 3006s 

training_loss: 2.4704  (0.4779) time: 3059s 

training_loss: 2.4625  (0.4978) time: 3113s 

training_loss: 2.4243  (0.5171) time: 3165s 

training_loss: 2.3112  (0.5350) time: 3217s 

training_loss: 2.0943  (0.5506) time: 3269s 

training_loss: 1.7596  (0.5627) time: 3322s 

training_loss: 1.4101  (0.5712) time: 3374s 

training_loss: 1.0891  (0.5763) time: 3426s 

training_loss: 0.8536  (0.5791) time: 3479s 

training_loss: 0.6651  (0.5800) time: 3530s 

training_loss: 0.5192  (0.5794) time: 3581s 

training_loss: 0.4033  (0.5776) time: 3634s 

training_loss: 0.2976  (0.5748) time: 3687s 

training_loss: 0.2272  (0.5713) time: 3739s 

training_loss: 0.1704  (0.5673) time: 3791s 

training_loss: 0.1094  (0.5627) time: 3842s 

training_loss: 0.0662  (0.5578) time: 3894s 

training_loss: 0.0354  (0.5525) time: 3946s 
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training_loss: 0.0136  (0.5472) time: 3999s 

training_loss: 0.0087  (0.5418) time: 4052s 

training_loss: 0.0065  (0.5364) time: 4105s 

training_loss: 0.0083  (0.5311) time: 4159s 

training_loss: 0.0078  (0.5259) time: 4212s 

training_loss: 0.0084  (0.5207) time: 4266s 

training_loss: 0.0078  (0.5156) time: 4318s 

training_loss: 0.0081  (0.5105) time: 4371s 

training_loss: 0.0081  (0.5055) time: 4425s 

training_loss: 0.0078  (0.5005) time: 4479s 

training_loss: 0.0109  (0.4956) time: 4506s 

RuntimeError: invalid argument 2: dimension 2 out of range of 2D tensor at /Users/soumith/miniconda2/
conda-bld/pytorch_1503975723910/work/torch/lib/TH/generic/THTensor.c:24 
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ANNEX5: MODIFIED CODE IN SAMPLERNN 
dataset.py 
import utils 
import numpy as np 

import torch 

from torch.utils.data import ( 

    Dataset, DataLoader as DataLoaderBase 

) 

from librosa.core import load 

from natsort import natsorted 

from os import listdir 

from os.path import join 

class FolderDataset(Dataset): 

    def __init__(self, path, overlap_len, q_levels, ratio_min=0, ratio_max=1): 

        super().__init__() 

        self.overlap_len = overlap_len 

        self.q_levels = q_levels 

        file_names = natsorted( 

            [join(path + '/wav', file_name) for file_name in listdir(path + '/wav')] #'/wav' añadido 

        ) 

        self.file_names = file_names[ 

            int(ratio_min * len(file_names)): int(ratio_max * len(file_names)) 

        ] 

        # añadido por mi 

        txt_names = natsorted( 

            [join(path + '/txt', file_name) for file_name in listdir(path + '/txt')] 

        ) 

        self.txt_names = txt_names[ 
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            int(ratio_min * len(txt_names)): int(ratio_max * len(txt_names)) 

        ] 

        assert len(file_names) == len(txt_names), 'txt and wav folders do not have the same items’ 

    def __getitem__(self, index): 

        (seq, _) = load(self.file_names[index], sr=None, mono=True) 

        data = np.loadtxt(self.txt_names[index]) 

        [data1, data2] = torch.chunk(torch.from_numpy(data), 2, 1) 

        ret1 = torch.cat([torch.LongTensor(self.overlap_len).fill_(utils.q_zero(self.q_levels)), 

                          utils.linear_quantize(torch.from_numpy(seq), self.q_levels)]) 

        ret2 = torch.cat([torch.LongTensor(self.overlap_len).fill_(utils.q_zero(self.q_levels)), data1.long()]) 

        ret3 = torch.cat([torch.LongTensor(self.overlap_len).fill_(utils.q_zero(self.q_levels)), data2.long()]) 

        ret = torch.squeeze(torch.stack([ret1, ret2, ret3], dim=1)) 

        return ret 

    def __len__(self): 

        return len(self.file_names) 

class DataLoader(DataLoaderBase): 

    def __init__(self, dataset, batch_size, seq_len, overlap_len, 

                 *args, **kwargs): 

        super().__init__(dataset, batch_size, *args, **kwargs) 

        self.seq_len = seq_len 

        self.overlap_len = overlap_len 

    def __iter__(self): 

        for batch in super().__iter__(): 

            (batch_size, n_samples, n_features) = batch.size() 

            reset = True 

            for seq_begin in range(self.overlap_len, n_samples, self.seq_len): 

                from_index = seq_begin - self.overlap_len 

                to_index = seq_begin + self.seq_len 
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                sequences = batch[:, from_index : to_index, :] 

                input_sequences = sequences[:, : -1, :] 

                target_sequences = sequences[:, self.overlap_len :, :] 

                yield (input_sequences, reset, target_sequences) 

                reset = False 

    def __len__(self): 

        raise NotImplementedError() 

Model.py 
import nn 

import utils 

import torch 

from torch.nn import functional as F 

from torch.nn import init 

import numpy as np 

from natsort import natsorted 

from os import listdir 

from os.path import join 

import os 

class SampleRNN(torch.nn.Module): 

    def __init__(self, frame_sizes, n_rnn, dim, learn_h0, q_levels, path):  

        super().__init__()  

        self.dim = dim 

        self.q_levels = q_levels 

        self.path = path 

        ns_frame_samples = map(int, np.cumprod(frame_sizes)) 
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        self.frame_level_rnns = torch.nn.ModuleList([  

            FrameLevelRNN(frame_size, n_frame_samples, n_rnn, dim, learn_h0)  

            for (frame_size, n_frame_samples) in zip(frame_sizes, ns_frame_samples) 

        ]) 

        self.sample_level_mlp = SampleLevelMLP(frame_sizes[0], dim, q_levels)  

    @property 

    def lookback(self): 

        return self.frame_level_rnns[-1].n_frame_samples 

class FrameLevelRNN(torch.nn.Module): 

    def __init__(self, frame_size, n_frame_samples, n_rnn, dim,learn_h0): 

        super().__init__() 

        self.frame_size = frame_size 

        self.n_frame_samples = n_frame_samples 

        self.dim = dim 

        h0 = torch.zeros(n_rnn, dim) 

        if learn_h0: 

            self.h0 = torch.nn.Parameter(h0) 

        else: 

            self.register_buffer('h0', torch.autograd.Variable(h0)) # 

        self.input_expand = torch.nn.Conv1d( 

            in_channels=3*n_frame_samples, 

            out_channels=dim, 

            kernel_size=1 

        ) 

        init.kaiming_uniform(self.input_expand.weight) 
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        init.constant(self.input_expand.bias, 0) 

        self.rnn = torch.nn.GRU( 

            input_size=dim, 

            hidden_size=dim, 

            num_layers=n_rnn, 

            batch_first=True 

        ) 

        for i in range(n_rnn): 

            nn.concat_init( 

                getattr(self.rnn, 'weight_ih_l{}'.format(i)), 

                [nn.lecun_uniform, nn.lecun_uniform, nn.lecun_uniform] 

            ) 

            init.constant(getattr(self.rnn, 'bias_ih_l{}'.format(i)), 0) 

            nn.concat_init( 

                getattr(self.rnn, 'weight_hh_l{}'.format(i)), 

                [nn.lecun_uniform, nn.lecun_uniform, init.orthogonal] 

            ) 

            init.constant(getattr(self.rnn, 'bias_hh_l{}'.format(i)), 0) 

        self.upsampling = nn.LearnedUpsampling1d( 

            in_channels=dim, 

            out_channels=dim, 

            kernel_size=frame_size 

        ) 

        init.uniform( 

            self.upsampling.conv_t.weight, -np.sqrt(6 / dim), np.sqrt(6 / dim) 

        ) 

        init.constant(self.upsampling.bias, 0) 
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    def forward(self, prev_samples, upper_tier_conditioning, hidden): 

        (batch_size, _, _) = prev_samples.size() 

        input = self.input_expand( 

          prev_samples.permute(0, 2, 1) 

        ).permute(0, 2, 1) 

        #print(input.size()) 

        if upper_tier_conditioning is not None: 

            input += upper_tier_conditioning 

        reset = hidden is None 

        if hidden is None: 

            (n_rnn, _) = self.h0.size() 

            hidden = self.h0.unsqueeze(1) \ 

                            .expand(n_rnn, batch_size, self.dim) \ 

                            .contiguous() 

        (output, hidden) = self.rnn(input, hidden) 

        output = self.upsampling( 

            output.permute(0, 2, 1) 

        ).permute(0, 2, 1) 

        return (output, hidden) 

class SampleLevelMLP(torch.nn.Module): 

    def __init__(self, frame_size, dim, q_levels): 

        super().__init__() 

        self.q_levels = q_levels 

        self.embedding = torch.nn.Embedding( 

            self.q_levels, 

            self.q_levels 
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        ) 

        self.input = torch.nn.Conv1d( 

            in_channels=q_levels, 

            out_channels=dim, 

            kernel_size=frame_size, 

            bias=False 

        ) 

        init.kaiming_uniform(self.input.weight) 

        self.hidden = torch.nn.Conv1d( 

            in_channels=dim, 

            out_channels=dim, 

            kernel_size=1 

        ) 

        init.kaiming_uniform(self.hidden.weight) 

        init.constant(self.hidden.bias, 0) 

        self.output = torch.nn.Conv1d( 

            in_channels=dim, 

            out_channels=q_levels, 

            kernel_size=1 

        ) 

        nn.lecun_uniform(self.output.weight) 

        init.constant(self.output.bias, 0) 

    def forward(self, prev_samples, upper_tier_conditioning): 

        (batch_size, _, _) = upper_tier_conditioning.size() 

        prev_samples = self.embedding( 

            prev_samples.contiguous().view(-1) 
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        ).view( 

            batch_size, -1, self.q_levels 

        ) 

        prev_samples = prev_samples.permute(0, 2, 1) 

        upper_tier_conditioning = upper_tier_conditioning.permute(0, 2, 1) 

        x = F.relu(self.input(prev_samples) + upper_tier_conditioning) 

        x = F.relu(self.hidden(x)) 

        x = self.output(x).permute(0, 2, 1).contiguous() 

        return F.log_softmax(x.view(-1, self.q_levels)) \ 

                .view(batch_size, -1, self.q_levels) 

class Runner: 

    def __init__(self, model): 

        super().__init__() 

        self.model = model 

        self.reset_hidden_states() 

    def reset_hidden_states(self): 

        self.hidden_states = {rnn: None for rnn in self.model.frame_level_rnns} 

    def run_rnn(self, rnn, prev_samples, upper_tier_conditioning): 

        (output, new_hidden) = rnn( 

            prev_samples, upper_tier_conditioning, self.hidden_states[rnn] 

        ) 

        self.hidden_states[rnn] = new_hidden.detach() 

        return output 

class Predictor(Runner, torch.nn.Module): 
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    def __init__(self, model): 

        super().__init__(model) 

    def forward(self, input_sequences, reset): 

        if reset: 

            self.reset_hidden_states() 

        (batch_size, _, _) = input_sequences.size() 

        (input_sequences, other1, other2) = torch.chunk(input_sequences, chunks=3, dim=2) 

        upper_tier_conditioning = None 

        for rnn in reversed(self.model.frame_level_rnns): 

            from_index = self.model.lookback - rnn.n_frame_samples 

            to_index = -rnn.n_frame_samples + 1 

            prev_samples = 2 * utils.linear_dequantize( 

                input_sequences[:, from_index : to_index], 

                self.model.q_levels 

            ) 

            #print(other1) 

            prev_other1 = other1[:, from_index : to_index]; 

            prev_other2 = other2[:, from_index: to_index]; 

            prev_samples = prev_samples.contiguous().view( 

                batch_size, -1, rnn.n_frame_samples 

            ) 

            prev_other1 = prev_other1.contiguous().view( 

                batch_size, -1, rnn.n_frame_samples 

            ) 
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            prev_other2 = prev_other2.contiguous().view( 

                batch_size, -1, rnn.n_frame_samples 

            ) 

            prev_samples = torch.cat((prev_samples.long(), prev_other1, prev_other2), dim=2) 

            prev_samples = prev_samples.float() 

            upper_tier_conditioning = self.run_rnn( 

                rnn, prev_samples, upper_tier_conditioning 

            ) 

        bottom_frame_size = self.model.frame_level_rnns[0].frame_size 

        mlp_input_sequences = input_sequences \ 

            [:, self.model.lookback - bottom_frame_size :]  

            return self.model.sample_level_mlp( 

            mlp_input_sequences, upper_tier_conditioning 

        ) 

class Generator(Runner): 

    def __init__(self, model, cuda=False): 

        super().__init__(model) 

        self.cuda = cuda 

    def __call__(self, n_seqs, seq_len): 

        # generation doesn't work with CUDNN for some reason 

        torch.backends.cudnn.enabled = False 

        self.reset_hidden_states() 

        bottom_frame_size = self.model.frame_level_rnns[0].n_frame_samples 

        sequences = torch.LongTensor(n_seqs, self.model.lookback + seq_len) \ 

                         .fill_(utils.q_zero(self.model.q_levels)) 

        frame_level_outputs = [None for _ in self.model.frame_level_rnns] 
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        path = os.path.join('datasets', 'datasetVBC') 

        txt_names = natsorted( 

            [join(path + '/txt', file_name) for file_name in listdir(path + '/txt')] 

        ) 

        data = np.loadtxt(txt_names[0]) 

        [data1, data2] = torch.chunk(torch.from_numpy(data), 2, 1) 

        other1 = torch.cat([torch.LongTensor(64).fill_(utils.q_zero(128)), data1.long()]) 

        other2 = torch.cat([torch.LongTensor(64).fill_(utils.q_zero(128)), data2.long()]) 

        for i in range(self.model.lookback, self.model.lookback + seq_len): 

            for (tier_index, rnn) in \ 

                    reversed(list(enumerate(self.model.frame_level_rnns))): 

                if i % rnn.n_frame_samples != 0: 

                    continue 

                prev_samples = torch.autograd.Variable( 

                    2 * utils.linear_dequantize( 

                        sequences[:, i - rnn.n_frame_samples : i], 

                        self.model.q_levels 

                    ).unsqueeze(1), 

                    volatile=True 

                ) 

                prev_other1 = torch.autograd.Variable(other1[:, i - rnn.n_frame_samples: i], 

                    volatile=True 

                ) 

                prev_other2 = torch.autograd.Variable(other2[:, i - rnn.n_frame_samples: i], 

                    volatile=True 

                ) 

                if self.cuda: 
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                    prev_samples = prev_samples.cuda() 

                    prev_other1 = prev_other1.cuda() 

                    prev_other2 = prev_other2.cuda() 

                if tier_index == len(self.model.frame_level_rnns) - 1: 

                    upper_tier_conditioning = None 

                else: 

                    frame_index = (i // rnn.n_frame_samples) % \ 

                        self.model.frame_level_rnns[tier_index + 1].frame_size 

                    upper_tier_conditioning = \ 

                        frame_level_outputs[tier_index + 1][:, frame_index, :] \ 

                                           .unsqueeze(1) 

                prev_samples = torch.cat((prev_samples.long(), prev_other1, prev_other2), dim=2) 

                prev_samples = prev_samples.float() 

                frame_level_outputs[tier_index] = self.run_rnn( 

                    rnn, prev_samples, upper_tier_conditioning 

                ) 

            prev_samples = torch.autograd.Variable( 

                sequences[:, i - bottom_frame_size : i], 

                volatile=True 

            ) 

            if self.cuda: 

                prev_samples = prev_samples.cuda() 

            upper_tier_conditioning = \ 

                frame_level_outputs[0][:, i % bottom_frame_size, :] \ 

                                      .unsqueeze(1) 

            sample_dist = self.model.sample_level_mlp( 
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                prev_samples, upper_tier_conditioning 

            ).squeeze(1).exp_().data 

            sequences[:, i] = sample_dist.multinomial(1).squeeze(1) 

        torch.backends.cudnn.enabled = True 

        return sequences[:, self.model.lookback :] 

__init__.py in trainer module 
import torch 

from torch.autograd import Variable 

import heapq 

# Based on torch.utils.trainer.Trainer code. 

class Trainer(object): 

    def __init__(self, model, criterion, optimizer, dataset, cuda=False): 

        self.model = model 

        self.criterion = criterion 

        self.optimizer = optimizer 

        self.dataset = dataset 

        self.cuda = cuda 

        self.iterations = 0 

        self.epochs = 0 

        self.stats = {} 

        self.plugin_queues = { 

            'iteration': [], 

            'epoch': [], 

            'batch': [], 

            'update': [], 

        } 

    def register_plugin(self, plugin): 
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        plugin.register(self) 

        intervals = plugin.trigger_interval 

        if not isinstance(intervals, list): 

            intervals = [intervals] 

        for (duration, unit) in intervals: 

            queue = self.plugin_queues[unit] 

            queue.append((duration, len(queue), plugin)) 

    def call_plugins(self, queue_name, time, *args): 

        args = (time,) + args 

        queue = self.plugin_queues[queue_name] 

        if len(queue) == 0: 

            return 

        while queue[0][0] <= time: 

            plugin = queue[0][2] 

            getattr(plugin, queue_name)(*args) 

            for trigger in plugin.trigger_interval: 

                if trigger[1] == queue_name: 

                    interval = trigger[0] 

            new_item = (time + interval, queue[0][1], plugin) 

            heapq.heappushpop(queue, new_item) 

    def run(self, epochs=1): 

        for q in self.plugin_queues.values(): 

            heapq.heapify(q) 

        for self.epochs in range(self.epochs + 1, self.epochs + epochs + 1): 

            self.train() 

            self.call_plugins('epoch', self.epochs) 

    def train(self): 
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        for (self.iterations, data) in \ 

                enumerate(self.dataset, self.iterations + 1): 

            batch_inputs = data[: -1] 

            batch_target = data[-1] 

            self.call_plugins( 

                'batch', self.iterations, batch_inputs, batch_target 

            ) 

            def wrap(input): 

                if torch.is_tensor(input): 

                    input = Variable(input) 

                    if self.cuda: 

                        input = input.cuda() 

                return input 

            batch_inputs = list(map(wrap, batch_inputs)) 

            batch_target = Variable(batch_target) 

            #print(batch_inputs) 

            (batch_target, _, _) = torch.chunk(batch_target, chunks=3, dim=2) 

            batch_target = torch.squeeze(batch_target, dim=-1) 

            if self.cuda: 

                batch_target = batch_target.cuda() 

            plugin_data = [None, None] 

            def closure(): 

                batch_output = self.model(*batch_inputs) 

                #print(batch_output) 

                loss = self.criterion(batch_output, batch_target) 

                loss.backward() 

                if plugin_data[0] is None: 
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                    plugin_data[0] = batch_output.data 

                    plugin_data[1] = loss.data 

                return loss 

            self.optimizer.zero_grad() 

            self.optimizer.step(closure) 

            self.call_plugins( 

                'iteration', self.iterations, batch_inputs, batch_target, 

                *plugin_data 

            ) 

            self.call_plugins('update', self.iterations, self.model)
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