
Trombone Synthesis using DL Degree Thesis Report

TROMBONE SYNTHESIS USING DEEP LEARNING
A Degree Thesis submitted to the Faculty of the Escola Tècnica d’Enginyeria de Telecomunicació
de Barcelona

Universitat Politéctinca de Catalunya

By Víctor Badenas Crespo

In partial fulfillment of the requirements for the degree in Telecommunications Systems
Engineering

Advisor: Antonio Bonafonte

Barcelona 2017  

Página ! de !1 75

Trombone Synthesis using DL Degree Thesis Report

ABSTRACT

In this project we present a possible expansion of the sampleRNN project for trombone
synthesis. The project is divided in three main blocks: the database creation, the
sampleRNN analysis and the sampleRNN modification.

The first block contains the generation of a database suitable for the project’s application in
the second and third block.

The second block consists on an analysis of the published code of sampleRNN and a first
approach on training the model with a portion of the database.

The third and final block explains the modifications made to the code to be able to accept
note and length values in the input vector of the Neural Network.

Unfortunately, due to time constraints, the expected results were not obtained, as explained
in the results and conclusion of the document.

Página ! de !2 75

Trombone Synthesis using DL Degree Thesis Report

RESUM

En aquest projecte presentem una possible ampliació del projecte anomenat sampleRNN
per utilitzar-lo per la síntesi de ones d’audio de Trombó. El projecte esta dividit en tres fases:
la creació d’una base de dades, l’analisi de sampleRNN i la modificació del codi.

El primer bloc conté la generació de una base de dades adaptada per la aplicació desitjada
en el segon i tercer bloc.

El segon bloc constisteix en l’analisi del codi publicat de sampleRNN I un primer
entrenament del model amb una fracció de la base de dades.

I el tercer i bloc final explica les modificacions que s’han fet al codi perquè aquest pugui
acceptar valors de la nota i de la llargada de la nota com a entrada a la Xarxa Neuronal.

Malauradament, degut a una manca de temps, els resultats no han estat obtingut tal i com
s’explica a l’apartat dels resultats i la conclusió del document.

Página ! de !3 75

Trombone Synthesis using DL Degree Thesis Report

RESUMEN

En este proyecto se presenta una posible ampliación del proyecto sampleRNN para la
síntesis de ondas de audio de Trombón. El proyecto esta fragmentado en tres fases: la
creación de una base de datos, el análisis del código de sampleRNN y la modificación del
mismo.

El primer bloque contiene la generación de una base de datos adaptada para la aplicación
deseada en el segundo y tercer bloque.

El segundo bloque consiste en el análisis del código publicado de sampleRNN y un primer
entrenamiento del model con una fracción de la base de datos.

Y el tercer bloque y bloque final explica las modificaciones llevadas a cabo en el código
para que sea capaz de aceptar los valores de nota y duración como entrada a la Red
Neuronal.

Desafortunadamente, debido a la falta de tiempo, los resultados deseados no se han
obtenido tal y como se explica en los apartados conclusión y resultado del documento.

Página ! de !4 75

Trombone Synthesis using DL Degree Thesis Report

DEDICATION
To my family and their countless hours supporting me through the career, either emotionally
or economically and for always keeping my hopes up even when I was having a breakdown.

To Clara for always having my back, and even though she did not understand a word of
what I was doing, she always supported me.

To my friends in Angangas for helping me find the passion in music and in what I do.

Página ! de !5 75

Trombone Synthesis using DL Degree Thesis Report

ACKNOWLEDGEMENTS
First and most importantly, I would like to thank my advisor Antonio Bonafonte for its
invaluable help in the development of this project.

I would also like to thank Santiago Pascual for its help in learning the Pytorch environment.

I would also like to thank the Veu group in the Signal Theory and Communications
Department for allowing me to use its computing power.

Página ! de !6 75

Trombone Synthesis using DL Degree Thesis Report

REVISION HISTORY AND APPROVAL
RECORD

DOCUMENT DISTRIBUTION LIST

Revision Date Purpose

0 15/09/2017 Document creation

1 27/09/2017 Document revision
2 29/09/2017 Document revision
3 01/10/2017 Document revision
4 04/10/2017 Document revision
5 09/10/2017 Document Approval

Name e-mail

Victor Badenas Crespo victor.badenas@gmail.com

Antonio Bonafonte Cavez antonio.bonafonte@upc.edu

Written by Reviewed and approved by

Date 27/09/2017 Date 09/10/2017

Name Victor Badenas Crespo Name Antonio Bonafonte Cavez

Position Project Author Position Project Supervisor

Página ! de !7 75

mailto:victor.badenas@gmail.com
mailto:antonio.bonafonte@upc.edu

Trombone Synthesis using DL Degree Thesis Report

TABLE OF CONTENTS
ABSTRACT	 2 ..
RESUM	 3 ..
RESUMEN	 4 ..
DEDICATION	 5 ..
ACKNOWLEDGEMENTS	 6 ..
REVISION HISTORY AND APPROVAL RECORD	 7 ..
TABLE OF CONTENTS	 8 ...
LIST OF FIGURES	 10 ..
1.INTRODUCTION	 12 ..
1.1 OBJECTIVE	 12 ..
1.2 GOALS OF THE PROJECT	 13 ...
1.3 REQUIREMENTS AND SPECIFICATIONS.	 13 ...
1.4 BRIEF HISTORY OF SOUND SYNTHESIS	 14 ...
1.5 BRIEF HISTORY OF DEEP LEARNING	 14 ..
1.5.1 1940	 15 ..

1.5.2 1969	 15 ..

1.5.3 1986	 16 ..

1.5.4 2006	 16 ..

1.5.5 2010 AND FORWARD	 16 ..

1.6 TIME PLAN	 17 ..

2.STATE OF THE ART	 18 ...
2.1 DIGITAL AUDIO SYNTHESIS	 18 ...
2.1.1 WAVETABLE SYNTHESIS	 18 ...

2.1.2 SUBTRACTIVE SYNTHESIS	 19 ...

2.1.3 ADDITIVE SYNTHESIS	 20 ...

2.1.4 SAMPLERS	 20 ...

2.1.5 DEEP LEARNING BASED SYNTHESIZERS	 20 ...

2.2 DEEP LEARNING	 21 ...
2.2.1 SUPERVISED LEARNING	 21 ...

2.2.2 LINEAR MODEL	 22 ...

2.2.3 ACTIVATION FUNCTION	 24 ...

2.2.4 TRAINING THE MODEL	 24 ..

2.2.4.1 ADAM OPTIMIZER	 25 ..

Página ! de !8 75

Trombone Synthesis using DL Degree Thesis Report

2.2.5 RECURRENT NEURAL NETWORKS (RNN)	 25 ...

2.2.6 LONG SHORT TERM MEMORY UNITS	 27 ...

2.2.7 GATED RECURRENT UNITS	 28 ...

2.3 MIDI	 28 ...
2.3.1 MESSAGES	 29 ...

2.3.2 SYSTEM EXCLUSIVE MESSAGES	 30 ..

2.4 WAV AUDIO	 30 ..

3.METHODOLOGY	 31 ...
3.1 DATABASE	 31 ...

3.1.1 SAMPLE RECORDING	 31 ...

3.1.2 SAMPLE CONDITIONING	 34 ...

3.1.2.1 AUDIO CONDITIONING	 34 ...

3.1.2.2 READING MIDI AND TEXT FILE GENERATION	 36 ...

3.2 SAMPLERNN ARCHITECTURE	 37 ...
3.2.1 FRAME LEVEL MODULES	 39 ..

3.2.2 SAMPLE LEVEL MODULES	 39 ..

3.2.3 SAMPLE RNN CODE ANALYSIS	 40 ...

3.3 USAGE OF THE CODE	 41 ...
4.RESULTS	 43 ..
5.BUDGET	 45 ...
6.CONCLUSIONS	 46 ...
7.BIBLIOGRAPHY	 47 ..
ANNEX1: SCRIPT FOR AUDIO REGULARIZATION	 50 ...
ANNEX2: SCRIPT FOR GENERATING TXT	 54 ..
ANNEX3: GANTT DIAGRAM AND TIME PLAN	 56 ...
ANNEX4: BASH OUTPUT FOR CODE MODIFICATION	 57 ...
ANNEX5: MODIFIED CODE IN SAMPLERNN	 60 ...
DATASET.PY	 60 ...

MODEL.PY	 62 ...

__INIT__.PY IN TRAINER MODULE	 72..

Página ! de !9 75

Trombone Synthesis using DL Degree Thesis Report

LIST OF FIGURES
• Figure 1: Attendance chart to NIPS (page 15)

• Figure 2: example of a wavetable from Xfer’s Serum (page 19)

• Figure 3: block diagram of a subtractive synth (page 19)

• Equation 4: additive synthesis equation (page 20)

• Figure 5: capture of a sample based synth, Kontakt 5 from Native Instruments (page 20)

• Figure 6: block diagram of a supervised training model (page 22)

• Figure 7: single neuron diagram (page 22)

• Equation 8: single neuron model matrix formula (page 23)

• Equation 9: linearity demonstration in concatenation of linear regressions (page 23)

• Figure 10: block representation of a 2-layer model (page 23)

• Equation 11: Sigmoid, Tanh, Softmax and Relu mathematical expressions (page 24)

• Equation 12: Gradient Descent equation (page 24)

• Figure 13: RNN forward in time and forward in layers diagram (page 25)

• Equation 14: Mathematical expression for the hidden weights in a typical RNN (page 26)

• Equation 15: Equation and diagram of a whole RNN (page 26)

• Figure / Equation 16: LSTM block diagram and equations (page 27)

• Figure / Equation 17: GRU block diagram and equations (page 28)

• Figure 18: MIDI messages hierarchy (page 29)

• Figure 19: Microphone Frequency responses (page 32)

• Figure 20: Logic Pro X file (page 33)

• Figure 21: Example Audio File A_50 (page 34)

• Figure 22: Block diagram of the MATLAB script for audio regularization (page 35)

• Figure 23: Audio sample after regularization (page 35)

• Figure 24: Block diagram for the script to generate the txt variables file (page 37)

Página ! de !10 75

Trombone Synthesis using DL Degree Thesis Report

• Figure 25: SampleRNN Probability model equation (page 38)

• Equation 26: RNN equations (page 38)

• Figure 27: Simplified block diagram of sampleRNN for 3 tiers (page 38)

• Equation 28: Tier equations for K>1 (page 39)

• Equation 29: Tier equations for K=1 (page 40)

• Figure 30: block diagram of the modifications done to the code (page 42)

• Figure 31: Loss diagrams (page 43-44)

• Figure 32: Trim C output signal (page 44)

Página ! de !11 75

Trombone Synthesis using DL Degree Thesis Report

1.INTRODUCTION
Audio generation is a complex task in it’s whole. The high requirement in computation when
implemented in real-time is a struggle to programmers and overall, to everyone working in
the field. The evolution of audio synthesis has experienced a huge improvement in the last
decade, as hardware became powerful enough to support the needs of the field.

As the usual sample rate in audio is 44,1kHz and 16 bit depth, most environments which
work in the field are used to work at higher sample rates in order to avoid aliasing in mixing,
mastering and digital synthesis as well as working at higher bit rates to avoid quality loss.
Those sampling frequencies are usually 48kHz, 96kHz, 192kHz, and 24 or 32 bit depth,
which demand an extremely high computation to operate correctly.

In the music industry, digital synthesizers of many kinds are mainly used for music creation
in many environments such as Electronic Music Production, Film Scores and different
layering mixing techniques. However, the synths used for those applications are wavetable
or additive synthesis, but with the recent success of Deep Learning in a lot of fields, the
interest in Deep Leaning based synths has risen. Thanks to computing power greatly
enhanced by Graphics Processing Units (GPU), a level of computing power has been
reached so that it is possible to work with Deep Neural Networks with reasonably short
training times when mapping the speech features from the source speaker to those of the
target speaker.

This chapter contains a brief introduction to Audio Synthesis and Deep Learning history and
the main constrains that could potentially have had an impact in the development
performed. It also provides an overview of the current state of the project and the
requirements that the different components of project have to meet.

1.1 OBJECTIVE
The objective of this project is to develop a digital synthesizer of an analog instrument’s
waveform (trombone) controlled by a midi pattern. The result of the project should be an
audio signal with a recognizable pitch and timbre. To do that, the sampleRNN project is 1

used, which is implemented in Pytorch.

 paper regarding sampleRNN https://arxiv.org/pdf/1612.07837.pdf and the repository with the code: https://github.com/deepsound-1

project/samplernn-pytorch (the one in the paper is in Theano, which is an earlier implementation of the same network).

Página ! de !12 75

https://arxiv.org/pdf/1612.07837.pdf
https://github.com/deepsound-project/samplernn-pytorch
https://github.com/deepsound-project/samplernn-pytorch

Trombone Synthesis using DL Degree Thesis Report

Sample RNN is an implementation of a Recursive Neural Network (RNN) Deep Leaning (DL)
model that does not accept other variables other than the previous samples of the
waveform. Therefore, it generates random unconstrained music by its own. The main
contribution of this project is to accept other types of input information streams beside the
already implemented previous sample conditioning.

1.2 GOALS OF THE PROJECT
The main goals of this project are to:

1. Using sampleRNN to generate the audio waveform.
2. Modifying sampleRNN to match the specifications of the project.
3. Being able to generate raw audio at a 16kHz sample rate and 8bit depth.
4. Generating single note files.
5. Creating a database to train the system.

1.3 REQUIREMENTS AND SPECIFICATIONS.
To ensure the correct execution of the software:
• The computer must be running Matlab 2015b or newer, as some of the functions used in

the implementation are exclusive to those versions.
• The user should be able to generate a midi file using a DAW (Digital Audio Workstation)

such as Ableton Live, Presonus Studio One, Avid Pro Tools, Steinberg Cubase, Fruity
Loops Studio or, as in the project, Logic Pro X.

• The computer must be running python 3.5 or higher and must install the following
libraries: torch, natsort, librosa, numpy, matplotlib, math, os and pickle.

• The user should have access to a dedicated GPU in order to train or execute the
software.

The software will be working at 16kHz and 16bit depth, with 4 second (64000 samples)
input sound files and will generate 16kHz 8bit audio files.

Página ! de !13 75

Trombone Synthesis using DL Degree Thesis Report

1.4 BRIEF HISTORY OF SOUND SYNTHESIS
One of the first electric devices to produce a sound was the musical telegraph, based on a
single note oscillator. This device was invented in 1876 by accident by Elisha Gray, who also
built speakers later on to be able to listen to the electrical signal.

In 1906, Lee De Forest invented the first amplifying vacuum tube. This led to new
technologies such as radio and sound films, but it also influenced the music industry and
resulted in early musical instruments that used them such as the Theremin.

In the 1930s and 1940s, the basic elements required for the newer form of synthesis were
invented: audio oscillators (wavetable oscillators which could generate on cycle of diverse
waveforms), audio filters, envelope controllers and various effects. And were used to
develop more electronic-heavy synths. It also was the decades in which polyphonic synths
were invented (more than one note at the time).

In the late 1940s, Hugh Le Caine invented a voltage-controlled electronic instrument that
provided the three main parameters that we know nowadays: volume, pith and timbre,
which correspond to today’s touch-sensitive keyboard, pitch and modulation controllers.

From then on, different methods of audio synthesis were discovered: Frequency Modulator
Synthesis (FM), Additive Synthesis, Subtractive Synthesis basically. Then, when digital
synths were available, granular synthesis, Wavetable Synthesis and sample-based synthesis
were available to develop and have become a huge part of the market as digital soft-synths
became cheaper and way more useful.

1.5 BRIEF HISTORY OF DEEP LEARNING
It’s story goes back to the 1940s, but over the past 5 years, Deep Learning has gone from a
somewhat little field of a cloistered group of researchers to being a worldwide mainstream
phenomenon. Interest in Deep Learning has sky-rocketed, with constant coverage in the
popular media such as top journals like Science, Nature Methods and JAMA among others.
DL has learned to drive a car, diagnosed skin cancer and autism and can even create
photorealistic pictures. As a good example of the growth in DL interest, the NIPS’s (Neural
Information Processing Systems) conference has experienced a lot of new methodological
research papers published in the last 5 years, as shown in the figure (1).

Página ! de !14 75

Trombone Synthesis using DL Degree Thesis Report

1.5.1 1940

Early work in machine learning was largely
informed by the current working theories of the
brain. The first investigators to explore the area
were Walter Pitts and 	 Warren McCul loch.
They had developed a technique known as
“thresholded logic unit” and was designed to
mimic the way a neuron was thought to work
(which will be a recurring theme). But it isn’t until
Frank Rosenblatt’s “perception” that we see the
first real precursor to modern neural networks.
For its day, this thing was pretty impressive and
it came with a learning procedure that would
probably converge to the correct solution and
could recognize letters and numbers

1.5.2 1969

Along with the double-PhD wielding Seymor Papert, Marvin Minsky wrote a book entitled
Perceptrons 	 that effectively killed the perceptron, ending embryonic idea of a neural net.
They showed that the perceptron was incapable of learning the simple exclusive-or (XOR)
function. Worse, they proved that 	 it was theoretically impossible for it to learn such a
function, no matter how long you let it train. Now this isn’t surprising to us, as the model
implied by the perceptron is a linear one and the XOR function 	is nonlinear, but at the time
this was enough to kill all research on neural nets and begin a long period in which no
research was done in the field.

Página ! de !15 75

Figure 1: from [4]

Trombone Synthesis using DL Degree Thesis Report

1.5.3 1986

Geoff Hinton finished his PhD studying neural networks in 1978 and by 1986, along with
David Rumelhart and Ronald Williams, Hinton published a paper: “Learning representations
by back-propagating errors”. In this paper they showed that neural nets with many hidden
layers could be effectively trained by a relatively simple procedure. This would allow neural
nets to get around the weakness of the perceptron because of the additional layers
endowed the network with the ability to learn nonlinear functions. Around the same time it
was shown that such networks had the ability to learn any function, a result known as the
universal approximation theorem . 2

1.5.4 2006

In 2006, the idea of unsupervised pre-training was introduced by Hinton once again. The
main idea behind that concept was to train a 2-layer unsupervised model, freeze the
parameters, add another layer and just train that layer. Then adding multiple layers to the
network until you had a deep network.

Using this strategy, people were able to train networks that were deeper than previous
attempts, prompting a rebranding of Neural Networks to Deep Learning.

1.5.5 2010 and forward

With the incorporation of Graphic Processing Units (GPUs) to train models, the accuracy
and the speed of training Deep Learning models increased exponentially compared to
training with CPU power. GPUs are parallel floating-point calculators with a large quantity of
cores. More speed with GPUs meant that larger models could be trained, which meant
lower error rates.

In addition to that the method known as dropout was introduced to prevent overfitting and
used the Rectified Linear Activation Unit (ReLU). One large example of the improvement
described above is the “Alexnet” network.

 https://en.wikipedia.org/wiki/Universal_approximation_theorem2

Página ! de !16 75

Trombone Synthesis using DL Degree Thesis Report

1.6 TIME PLAN
The Gantt diagram and the time plan are detailed in the third annex.

Once the history of Deep Learning and the History of Sound Synthesis have been briefly
exposed, the technical specifications needed for the development of the project will be
explained in 2.State of the Art and further in the document, the Methodology, Results and
Conclusions will be exposed.  

Página ! de !17 75

Trombone Synthesis using DL Degree Thesis Report

2.STATE OF THE ART
2.1 DIGITAL AUDIO SYNTHESIS
A Digital Synthesizer is a piece of software which is capable of generating a stream of
numbers representing the voltage outputs of each sample of an audio waveform in the
digital domain. Instead of using analog electronics and samplers that play back recordings
of acoustic, electric or electronic instruments as analog synthesizers do, digital synthesizers
use Digital Signal Processing techniques to generate the sound. Some digital synthesizers
emulate analog ones.

A Digital synthesizer is in essence a computer with a piano keyboard (or a midi file as an
input) and a LCD screen as an interface. Because of the rapid advancing of computational
power, it is often possible to offer more features in a digital synthesizer than in an analog one
at a given price. For instance, some forms of synthesis as sampling and additive synthesis
are not possible regarding an analog synthesizer, but many musicians prefer the character
or the warmth of an analog synth over their digital modeled software.

As stated before, a digital synthesizer generates a stream of audio samples, those are
audible by sending the samples through a DAC (Digital/Analog Converter) which will convert
the stream to a continuous voltage that will be amplified and reproduced by a speaker. The
main concern is to generate those samples, and to do that, one of the most efficient way to
obtain it is to get a list of values, called a wavetable which contains periodic information of
the wave to generate regardless of the pitch (frequency) at which the synth is generating the
signal. To repeatedly scan a wavetable is called table-lookup synthesis and, as computers
take somewhat similar to a nanosecond to read a value from memory, table-lookup
synthesis is an efficient way of modeling an analog oscillator. The name given to the block
which performs table-lookup synthesis is called digital oscillator.

2.1.1 Wavetable Synthesis

Wavetable Synthesis employs the use of a table with various switchable frequencies played
in certain orders. The sound moves in order through the wavetable, smoothly changing its
shape into the various waves in the table.

This method produces sounds that can evolve really quickly and smoothly. The method was
intended to create digital sounding noises, so it is not used for instrument replication very

Página ! de !18 75

Trombone Synthesis using DL Degree Thesis Report

often, but is an effective way to create pads or
harsh-sounding tones like bells or digital sounds.

Some examples of commercial Wavetable
Synthesizers are Xfer Records Serum, Lennar Digital
Sylenth1, Native Instruments Massive, etc.

2.1.2 Subtractive Synthesis

This is the most common method that gave birth to the concept of sound-synthesis.

Subtractive Synthesis consists of simple signal chain regarding an oscillator running going
into an EQ filter sent to an amplifier for gain staging.

The main principle behind Subtractive Synthesis is that any harmonic character can be
constructed by an oscillator, or the combination of multiple oscillators. Then, by running
these oscillators through various filters, and controlling the envelope response (an amplitude
modifier), the harmonics can be represented as harmonic structures that mirror those of
actual instruments.

Página ! de !19 75

Figure 2: example of a wavetable

figure3: block diagram of a subtractive synth

Trombone Synthesis using DL Degree Thesis Report

2.1.3 Additive Synthesis

Additive Synthesis is trying to achieve the same result as Subtractive Synthesis, but
approaches the method creating frequencies instead of filtering them. Rather than
generating an spectrum and filtering out the harmonic structure desired, in additive
synthesis multiple sine waves of varying levels and frequencies are combined together to
build the harmonic structure desired. Equation 4.

" (4)

2.1.4 Samplers

Sample-Based Synthesis is different from other forms of synthesis because it does not
employ the use of oscillators. In their place, recorded samples are the sound source. Each
sample is pitch-shifted to span about 5 notes until a new sample is needed (to avoid
noticeable distortion).

This method is meant to emulate real
instruments by recalling actual samples
of those instruments. These types of
synthesizers can take up a lot of
processing power due to the storage
and instant recall of samples.

2.1.5 Deep Learning based synthesizers

Deep Learning synthesis is somewhat recent and it has not been yet fully developed
commercially except in the field of speech synthesis where multiple algorithms and software
have been released.

With the creation of big data and it’s massive datasets, music synthesis using this method
has become more feasible, because of that, multiple projects have been emerging regarding

y(n) = ∑N
i=1 Ai * sin(2π * fin)

Página ! de !20 75

Figure 5: Native Instrument’s Kontakt, a sample
based Synth

Trombone Synthesis using DL Degree Thesis Report

this field such as NSynth (implemented by google in Magenta, Tensorflow), Wavenet (also
developed by google in Tensorflow) or sampleRNN, the one that will be using in this project.

Deep Learning synthesis also relies in samples but for training the model instead of directly
recalling a sample. Because of that and the high computational cost that these synthesizers
need, they have not yet overcome sample-based synthesis, as most of DL based synths
rely on the previous samples to predict the next one and that is an extremely high speed
requirement as they need 44100 samples a second minimum to match the quality of other
synths.

2.2 DEEP LEARNING
Deep Learning has become a well known resource in many fields such as Image
Processing, Speech Processing and Computer Vision. Its main feature is to be able to learn
complex non-linear mapping functions.

There is not such thing as a unique definition of Deep Learning but in general we could say
that Deep Learning is a group of automatized learning algorithms. Beyond this common
definition, it has features such as:

• Transforming and extracting variables using a concatenation of non-linear processing
layers while using as input of each layer the output from the previous one. The
algorithms can use supervised learning (when you train with a known output value for
each input value) or unsupervised learning (no output).

• They are able to learn multiple level features or data representation. Higher level features
derive into low level features to create a hierarchy.

2.2.1 Supervised Learning

Supervised Learning is going to be the training method for sampleRNN. Supervised
Learning is a technique used to deduce a given function from the training data. The training
data consist on pairs of vectors, the input arguments and the desired results. The output
vector can be either a numeric value (regression) or a class label (classification). The main
objective in supervised learning is to create a function able to predict the output regardless
of the input vector (whenever is valid) after seeing a series of examples (training dataset). To

Página ! de !21 75

Trombone Synthesis using DL Degree Thesis Report

do that the model has to be able to generalize into a family of objects to foresee data that
has not seen before and give the correct output.

2.2.2 Linear Model

Also known as the most basic Neural Network. It was implemented in the Perceptron, one
of the first models using what later on will be known as Deep Learning. It consists on a
simple diagram which was named single neuron model for it’s simplicity and similarity to a
real neuron.

Página ! de !22 75

figure 6: diagram of a supervised learning model from [12]

figure 7: diagram of a single neuron model from [12]

Trombone Synthesis using DL Degree Thesis Report

The diagram shows a graphical representation of the model, which can also be written and
represented in matrix form (Equation 8).

Where " are the weights, b are the bias values and compared to the real neuron model, the
weights are the strength of the connection between two neurons and the bias determines
how input to a neuron is translated into the state of that neuron.

This model belongs into a category known as fully connected layer in which each output
depends on all input values, with every weight " is different than 0.

The function f is the activation function, which is a non linear function that is mainly used to
connect one neuron after another because without the non-linear function would resolve in:

" (9)

Which is a different linear function and thus, it is not able to learn non-linear regressions and,
more importantly, it causes no improvement in relation to a model with only one layer. But, if
a non-linear function is added to both layers it takes a step further in complexity (Figure 10)

ω

ω

Y = W2(W1X + b1) + b2 = W2W1X + W2b1 + b2 = W′�X + b′ �

Página ! de !23 75

(8)

Figure 10: Block Representation of 2 layers (from [41])

Trombone Synthesis using DL Degree Thesis Report

2.2.3 Activation function

As mentioned above, the activation function is a non-linear function between layers than
allows the neural network to be concatenated without becoming another linear regression.
The most common activation functions are the following the sigmoid function (Equation
11.1), the ReLu function (Equation 11.2), the Softmax function (Equation 11.4) and the
hyperbolic tangent (Equation 11.3).

2.2.4 Training the model

The model is trained updating their parameters according to a loss function such as the
Mean Square Error (MSE) or the Cross Entropy. The result of this function is an indication of
the prediction errors from the model.

In order to adjust the weights of the DNN, we use an Optimizer. The most basic of them and
the first used in these algorithms is the Gradient Descent. This method updates the weights
(Equation 12) by defining a learning rate " which defines how quick the method converges
and subtracts the derivative of the loss function in terms of the weights in order to obtain the
value of " for which the error loss is minimum.

The biggest issue in this method is that as the Loss function has a very complex
dependance on the coefficients, Gradient Descent does not ensure that the minimum value
of the loss function is reached, for that matter, it is possible to never reach the minimum.

η

ω

Página ! de !24 75

(11.1)

(12)

(11.2)

(11.3) (11.4)

Trombone Synthesis using DL Degree Thesis Report

However, the speed at which the Gradient Descent function converges is very slow and to
solve that, optimizers were implemented, which modified the learning rate and the direction
with different strategies. The one used in this project is the Adam Optimizer.

Some networks never learn with enough accuracy to be usable with new data. This could
be because the input data do not contain the specific information from which the desired
output is derived. Ideally, there should be enough data so that part of the data can be held
back as a validation set.

2.2.4.1 Adam Optimizer

Adaptive Moment Estimation (Adam) computes adaptive learning rates for each parameter.
It stores the exponentially decaying average of past squared gradients and keeps an
exponentially decaying average of past gradients.

It works estimating the first and second order momentum (the mean and the variance) of the
gradients, updating them with other parameters that work as a numerical modification
speed for those parameters.

2.2.5 Recurrent Neural Networks (RNN)

Recurrent Neural Networks are networks with some fully connected layers and some layers
that have shared weights In time. That allows the hierarchy to have memory and thus being
able to reduce the number of inputs compared
to the same application with a non RNN
network. If a desired output value has
correlation to an input value located 32
samples before the predicted output, the
input values’ input window should be at least
of 32, but as RNN have hidden memory
layers, it is possible to reduce that input
window’s size while preserving the information
of the correlated sample.

The figure on the side represents an RNN
model which has the shared weights in the
red rectangle.

Página ! de !25 75

Figure 13.1: Forward in Layers
representation of an RNN from
[12]

Trombone Synthesis using DL Degree Thesis Report

In Equation 14 it is shown a Time progression of the hidden layer of shared weights.
The figure above represents the update function of the shared weights. W is the weights
matrix, " is the inputs at the time step (a group of samples at a fixed discrete time), U is the
matrix that updates the hidden layer’s values for the next time step and b is the bias.

The final equations that will express the
answer in terms of the previous hidden state
are represented in the diagram if the U matrix
is the update matrix and the update function
used is an hyperbolic tangent.

xt

Página ! de !26 75

Figure 13.2: Forward in Time
representation of an RNN from
[12]

Figure 15.2: example of an RNN
from [12]

(15.1)

(14)

Trombone Synthesis using DL Degree Thesis Report

The main issue with RNN is the vanishing gradient, which is a flaw of RNN cells in which the
gradient approaches at early steps as a consequence of multiplying a relatively long
sequence of numbers smaller than one, converging the product to 0. This can be an issue
when training models with a log sequence of correlated data, as it is the case in Audio.

2.2.6 Long Short Term Memory Units
LSTM is an added complexity to the RNN model, for example in (15.1). It is now widely used
because of its revolutionary solution to long term dependences of the sample generated "
to the previous input samples that are out of reach of the window used in t iteration of the
network. LSTM includes gate modules that, unlike all other modules, should be analog for
the best performance possible (because of analog’s possibility to be differentiable) however,
that is not possible so it is instead implemented as element-wise multiplication y sigmoids,
which range from 0 to 1.

" (16.2)

" (16.3)

yt

Ct = σ (Wf * [ht−1, xt] + bf) * Ct−1 + σ (Wi * [ht−1, xt] + bi) * tanh(Wc * [ht−1, xt] + bc)

ht = σ (Wo * [tt−1, xt] + bo) * tanh(Ct)

Página ! de !27 75

Figure 16.1: block diagram of an LSTM Unit
from [34]

Trombone Synthesis using DL Degree Thesis Report

In the mathematical expression of the LSTM we can see that it consists basically of 4 linear
regressions each of them actuating in a different way, and thus, increases the complexity of
the network. Each matrix and each bias is trained independently.

2.2.7 Gated Recurrent Units
GRUs or Gated Recurrent Units were developed by Yoshua Bengio in 2014 in his paper [36]
and they are a variation of RNN cells. They are easier to train and avoid the vanishing
gradient issue that experiment most of the RNN cells. GRUs are less computationally
expensive compared to LSTMs and they work as shown in figure(17)

2.3 MIDI
The MIDI protocol or Musical Instrument Digital Interface is a technological standard that
describes a protocol, a digital interface and connectors that allow different electronic
musical instruments (such as synths), computers and other devices to communicate
between them. A simple MIDI connection can transmit up to 16 information channels that
can be connected to different devices.

MIDI data carries messages that specify musical notation, tone and velocity among other
parameters but, for our application, only the pitch is relevant. Each MIDI file also contains
information about the instrument of the General MIDI sound bank used for each channel

Página ! de !28 75

Figure 17: GRU’s implementation from [34]

Trombone Synthesis using DL Degree Thesis Report

and information regarding the Tempo in ms, allowing it to send a master clock track to all
the devices connected with the protocol.

These data can also be recorded in a computer in a standalone software called Sequencer,
which is a built-it feature in all DAW (Digital Audio Workstation) such as Ableton Live, Logic
Pro or Avid Pro Tools which has the capability of saving MIDI files and play it with different
sounds afterwards.

Some of the advantages of using MIDI are it’s size (as it is not sound but information, a
whole song can be stored in a few kilobytes of memory) and the ease of use (modification
and instrument selection).

For more information regarding MIDI messages [16].

MIDI was patented by the Yamaha corporation in 2001: [17]

2.3.1 Messages

A MIDI message is an instruction that controls some parameter of the receiver device. It
consists on a status byte, which states which type of message is the one that follows it
followed y two bytes that contain the parameters. MIDI Messages can be classified as
Channel Messages which are sent to some of the 16 channels or as System Messages,
which can be heard by all connected devices. Any data non relevant for a device is ignored.

Channel Voice messages transmit real-time performance data through a single channel.
Some examples of it are the Note On message, that contain the midi note number that

Página ! de !29 75

Figure 18: different MIDI messages types

Trombone Synthesis using DL Degree Thesis Report

specifies its pitch and a velocity value that determines the intensity with which the note has
been played and the Note Off message that indicates the culmination of a single MIDI note.

Inside the Channel Voice messages, are also included those that change the program and
change the devices patch and those messages that adjust or modify instruments’
parameters.

Channel Mode messages include the Omni/mono/poly mode on/off messages as well as
messages that reset all controllers to its initial state or even to send Note Off messages for
all the notes.

2.3.2 System Exclusive Messages

These kind of messages are the reason for MIDI’s flexibility and longevity. These messages
allow manufacturers to create specific messages for their devices that otherwise, MIDI
information would not be enough.

Each Manufacturer has a unique ID that is included in the SysEx messages, which help the
messages to only be heard by those devices for whom the message is directed to and
ignored by the other ones.

2.4 WAV AUDIO
The Wave Audio Format or WAVE (WAV) is a wrapper that allows to store audio files with
different formats.It was developed by Microsoft and IBM and it is commonly used to store
high quality digital audio files.

The most common format used in the wave files is PCM (Pulse Code Modulation) either in
16bit or 8bit, and will be the format used in this project.

Página ! de !30 75

Trombone Synthesis using DL Degree Thesis Report

3.METHODOLOGY
On this chapter all the stages of the project’s development will be exposed as well as the
methods used to reach the conclusion. First, the creation of the dataset will be explained,
then, how the data has been prepared for the model. In the end, the modifications made to
sampleRNN to match the specifications stated at the beginning of this document.

For the development of the project, learning a programming language was required. The
candidates were: Python [23] (common to all possibilities); to develop a project’s exclusive
model using Keras [22]; to adapt and comprehend Google’s Wavenet implemented in
Tensorflow [24] and the one that has finally been used that is SampleRNN with Pytorch [25].

In the development stage of the project (regarding the first months) those possibilities were
submitted to an extensive evaluation of viability. It was finally decided that SampleRNN and
Pytorch were the ones to better fit the needs of the project as well as having some sort of
viability regarding the capabilities of the author.

3.1 DATABASE
The goal of the database creation stage is to create a sound-bank suitable for the desired
model. As the first try of implementation was Google’s wavenet, a database was created
with five different musicians playing simple melodies. That database was lost due to
hardware issues and because of the inconvenience that would have been for the
collaborators to redo the whole dataset, it was decided to simplify it.

The database for sampleRNN was created with two different musicians playing onto three
different microphones in a professional recording studio. The database consists of 904
single-note wav files at a 16kHz sampling frequency and 16 bit resolution.

3.1.1 Sample Recording

The samples were recorded at Beat Studio BCN, a professionally acoustically treated room
which helped capture the trombones’ sound without early wall reflections. The samples
recorded were from five different frequencies: a F2(174Hz), a G2(196Hz), an A2(220Hz), a
Bb2(233Hz) and a C3(261Hz) and had variable time decay from 1 to 3 seconds. For the
sake of variety, three microphones with different frequency response curves were used to

Página ! de !31 75

Trombone Synthesis using DL Degree Thesis Report

capture the sound: a Sennheiser MD421 (Figure 19.3), a Shure SM57 (Figure 19.2), and a
Behringer ECM8000 (Figure 19.1).

Página ! de !32 75

Figure 19.1: Behringer ECM8000 Frequency Response
from http://recordinghacks.com/microphones

Figure 19.2: Shure SM57 Frequency Response
from http://recordinghacks.com/microphones

Figure 19.3: Sennheiser MD421 Frequency Response
from http://recordinghacks.com/microphones

http://recordinghacks.com/microphones
http://recordinghacks.com/microphones
http://recordinghacks.com/microphones
http://recordinghacks.com/microphones

Trombone Synthesis using DL Degree Thesis Report

After the microphones captured the sound, this was fed with an XLR balanced cable to a
MIDAS XL48 microphone preamplifier, which is a transistor-based amplifier with a Low cut
frequency of 100Hz. Then the audio signal was fed into an Eventide Orion32, a A/D
converter which imported the audio signal to ProTools 10.

Then each note had to be synchronized with a MIDI file for further purposes. To do that, a
session of Logic Pro X was used (Figure 20). It has been also used to break the audio files
into single-note files.

Página ! de !33 75

Figure 20: Logic Pro X file

Trombone Synthesis using DL Degree Thesis Report

The audio files were then rendered and exported into single audio wav files to further feed
the model. But before it is suitable for working as a training sequence, the samples must go
under a depuration through MATLAB.

3.1.2 Sample Conditioning

This part of the project consists in two main parts, the audio conditioning and the MIDI
reading and text file generation.

3.1.2.1 Audio Conditioning

In order to be able to feed the audio to train the model, each wave file must be of the same
length, be 8bit resolution wave and have a sampling frequency of 16kHz. To fulfill this need,
a Matlab script was created to condition every file all with one script.

To do that, Matlab has to be able to browse through folders, and then regularize the audio
samples. The audio files have a length of 176400 samples (4 seconds at a 44,1kHz
sampling frequency). It is decided that, to be able to conserve the transients, a 1 second
stream of silence will be added at the start of the sample.

Página ! de !34 75

Figure 21: Example audio file (A_50)

Trombone Synthesis using DL Degree Thesis Report

Página ! de !35 75

Variable declaration and folder names

Iteration for the folders containing each pitch

Obtention of the file names inside
each folder and going to the folder

Audio file reading, normalization, and index retrieval

Out of range exception control and zero padding

File name creation, Downsampling and Quantization

Iteration for the files containing each sample

Return to the previous folder

Return to the previous folder

1

2

Figure 22: Block diagram of the MATLAB script for audio regularization

Figure 23: Audio sample after normalization and regularization A_1

Trombone Synthesis using DL Degree Thesis Report

The MATLAB Script used to develop this task mainly relies on the dir functionality of
MATLAB which allows the program to explore the folders in a MATLAB path. It also relies on
the audio reading capabilities of the software which also allows the user to modify the audio
file and store it in a new mono wave file.

The signal flow diagram as it is shown in Figure (22) represents the different sections of the
script which performs different tasks. 1 and 2 in the diagram represent the iterations in the
for loop where the loop 1 iterates for all the files in the directory and 2 iterates for the five
folders containing each pitch.

3.1.2.2 Reading MIDI and text file generation

To condition sampleRNN, two different parameters will be used: the MIDI note value and a
vector that contains a counter (in samples) until the end of the note.

The MIDI note value is a 7bit coded value (128 values) which correspond to the notes on a
keyboard reaching from the -2 octave to the 5th one. In this part of the development of the
project, it is used [28] a series of MATLAB/GNU Octave functions that provide the software
the capabilities of reading MIDI files and adapting them to be read in a simple matrix among
other functionalities.

In the resulting text file, two columns are included. The first one containing the note value for
each sample and the second one containing the number of samples remaining until the
audio waveform is at the 0.8% of its maximum value. It mainly relies on the previously
mentioned functions and on the fopen [32] and fprintf [31] functions.

Página ! de !36 75

Trombone Synthesis using DL Degree Thesis Report

3.2 SAMPLERNN ARCHITECTURE
One of the objectives of the project was to be able to comprehend and analyze how
sampleRNN, a previously designed Deep Neural Network, worked. On the theoretical side,
the paper attached to this project [33] describes how does the architecture work regardless
of the environment in which is implemented (Theano or Pytorch are the ones that have been
explored so far, but we are going to use the Pytorch implementation as is the most recent
one) and we further analyze the Python implementation for that hierarchy. After successfully
doing that, the modifications to accept other input variables will be studied.

SampleRNN is a project that models the probability of a digital audio signal stream
" as the product of the probability from each sample conditioned
to the ones before that. Figure (25) shows the mathematical expression of the desired
expression explained above.

X = [x0, x1, x2, . . . , xN−1]

Página ! de !37 75

Variable declaration and folder names

Iteration for the folders containing each

MIDI read and note vector

Obtention of the file names inside each

Iteration for the files in each folder

Audio reading, exception control

Text file creation

Return to the previous folder

Return to the previous folder

1

2

Figure 24: Block diagram for the script to generate the txt variables file

Trombone Synthesis using DL Degree Thesis Report

" (25)

This is implemented using a Recursive Neural Network or RNN which, as explained before,
is a Deep Neural Network with a hidden state that depends on the previous states and it is
also trained. RNNs usually have a function such as shown in Figure (26). Where " is one of
the known memory cells either a GRU (Gated Recurrent Units) or a LSTM (Long-Short Term
Memory Units).

" (26.1)

" (26.2)

Because of audio samples being extremely correlated to samples far beyond the actual
sample’s time step, sampleRNN adopts a multi-model hierarchy in which each model has a
different time span in samples, because of that it is able to recognize multiple samples
before the actual sample to use them in the prediction of the next one.

The hierarchy consists of two main categories of modules:

p(X) =
N−2

∏
i=0

p(xi+1 |x0, x1, . . . xi)

Υ

ht = Υ(ht−1, xt)

p(xi+1 |x0, . . . xi) = Sof tma x(MLP(ht))

Página ! de !38 75

Figure 27: Block diagram of the model for 3 tiers [33]

Trombone Synthesis using DL Degree Thesis Report

3.2.1 Frame Level Modules

Frame Level Modules are implemented in the higher tiers of the hierarchy and operate with
non overlapping frames of the length frame-size " for the " tier in the hierarchy. In the
case of Figure 28, " and " . As a regular RNN, it stores a memory from the
previous time step and updates it as a function of the previous hidden state " and the

input vector " . As each module operates with a different temporal resolution, an

upsampling module is needed. So each vector " is upsampled to " vectors before
feeding it to the next module. (" is the ratio between the output of the previous module
and the input of the next one)

Figure 28 shows the mathematical expression for a frame level module given a time step t
for simplification where " represents the frame input for the " module.

	 	 	 	 	 "

	 	 	 	
	

3.2.2 Sample Level modules

Sample Level modules are always located in the first tier " of the hierarchy and takes
the resized output of tier2 which will notate as " and its " which will contain the

preceding samples of the sample " which is the one that the final tier (this one) must
predict. To perform this task and given that the correlation between samples that are this
close is somewhat small, a Multi Layer Perceptron (MLP) is used instead of an RNN
architecture which will speed up the process slightly. The previous samples are quantized to

FSk kth

FS3 = 16 FS2 = 4
h(k)

t−1

x(k)
t

c r(k)

r(k)

f (k) kth

ht = Υ(ht−1, inpt)

k = 1
c(2)

i FS(1)

xi+1

Página ! de !39 75

(28.3) from [33]

(28.1) from [33]

(28.2) from [33]

Trombone Synthesis using DL Degree Thesis Report

8bit instead of 16 by a linear quantization function and the resulting samples will be noted as
" . Figure 29 represents the mathematical expression of the layer which contains a matrix

named " which purpose is only to match the input from the previous tier to the one in " .

The flatten function returns a 1-dimensional vector of the input.

	 	 "

 "

 "

3.2.3 Sample RNN code analysis

The previous explanation is a summary of sampleRNN paper’s aspects concerning this
project, but, when inspecting the code to adapt it to multiple inputs, I noticed that some
aspects of the actual implementation of the layers were not explained on the paper, thus, I’ll
explain some of the features noticed.

In the Pytorch implementation of the sampleRNN project there are 6 python files and a
module which are: train.py, dataset.py, model.py, utils.py, optim.py and nn.py. The module is
the trainer module which has two files: __init__.py and trainer.py. Each script contains
different classes with multiple functionalities on the program, in this section, the most
important details from each script.

The program is called with a parse of arguments, the ones with special importance are: --
exp : the experiment name to create a folder in the results folder ,—dataset : the folder
inside the datasets path containing the dataset, --datasets_path contains the information of
the path, --n_rnn : number of RNN layers in each tier ,--val_frac and --test_frac : fraction of
the dataset that is used for validation and test respectively. ,--keep_old_checkpoints : keeps
the state from previous epochs (must have the same parameters) ,--sample_length : each
epoch generates a test output and stores it, this parameter (in samples) sets the length of
each audio file.

train.py gets the parser arguments and stores them in the params struct, that is the main
container of the global parameters of the code. It also initializes all the modules.

ei

Wx f (1)

f (1)
i = f lat ten([ei−FS(1)+1, . . . , ei])

inp(1)
i = W (1)

x f (1) + c(2)
i

p(xi+1| |xi, . . . , x1) = Sof tma x(MLP(inp(1)
i))

Página ! de !40 75

(29.1) from [33]

(29.2) from [33]

(29.3) from [33]

Trombone Synthesis using DL Degree Thesis Report

In model.py, where the modules of the Figure 27 implementation are implemented, it is
noticeable that in each RNN layer inside the frame-level modules and in the MLP modules.

Each Tier in Figure 27 is composed by a 1D convolution that upsamples a
[1,n_frame_samples] size matrix into a [1,dim], then a linear regression is used, then a GRU
module is implemented with a [1,dim] input and output, then an iteration of rnn modules is
used to implement the layer (always using linear regressions as well) and then, to finish
each tier, a 1D convolution as the first one, but now the input and output dimensions are the
same.

3.3 USAGE OF THE CODE
Using UPC’s calcula remotely, uploading the code and executing the program was possible.
As a first execution, a single-note database was used to generate audio files without
modifying the original code but only for a little detail which is that the -epoch_limit
parameters were not correctly implemented and a type=int specification had to be added.
Once it was trained with different parameters (different batch_size, epochs and rnn
iterations), it was decided that the best result was obtained for the default batch_size (128)
and 3 rnn iterations, but the epoch value depends on the note.

Once the code was working, we proceeded to modify the code to fit the other input
parameters.

Página ! de !41 75

Trombone Synthesis using DL Degree Thesis Report

Once the code for the correct data reading is done and working, there is the need of
changing the train function to manipulate the 3D matrixes and there is also a need to get
only the audio of the target matrix as the output is going to be still an audio signal and not a
3D matrix. This is done in the __init__ python file of the trainer module.

Then, once the signal arrives in the desired format to the model python file, the Predictor
and Generator file must be altered to give the framelevelRNN class the input of 3 times the
size in the dimension number 1 to enter the three parameters.  

Página ! de !42 75

Reading parameters (note, samples until
0.008%) and storing them in a 3D matrix.

FolderDataset[annex5]

Formatting parameters to get matrixes of
(batch_size, n_samples,n_features)

DataLoader[annex5]

Trainer’s __init__.py chunks data into input
and target sequences, calls for optimizer

__init__.py [annex5]

Model now accepts 3 times the inputs and
is able to process the 3 variables

independently

model.py [annex5]

Figure 30: block diagram of the modifications done to the

Trombone Synthesis using DL Degree Thesis Report

4.RESULTS
As two different phases of the project were developed, the results of each one will be
explained accordingly.

On the first stage, as explained before, 5 networks were trained, each one with a trimmed
note bunch of the dataset. Because of that 5 different loss functions in terms of the epoch
are obtained (each model was trained with 3 rnn and 40 epochs to detect overfitting):

Página ! de !43 75

Figure 31.1: TrimF loss diagram Figure 31.2: TrimG loss diagram

Figure 31.3: TrimA loss diagram Figure 31.4: TrimBb loss diagram

Trombone Synthesis using DL Degree Thesis Report

Figures 31.1-31.5 shows the training_loss
(blue), training_loss avg (orange), validation_loss
(green) and test_loss (red) as a function of the
number of files read, where the epochs are:

"

The training_loss is the value of the training loss
in each train for each batch_size piece of data in
the input dataset. Training_loss running_avg is the mean
of the training_loss for each epoch. And the validation and training loss graphs are the loss
measured with the portion of the dataset used to validate and test the results in each
epoch.

On the figures we can clearly see an
overfitting of the model by looking at the
validation and train loss curves that
experiment a growth around the 20th epoch.
That means that the best epochs are around
the 20 epochs, which generate waveforms
such as Figure 32, which is the generated
waveform of the note C. Because of the
overfitting with a saturated output we can
conclude that the model had little samples to
train and we are in need of a higher number
of files. This should be fixed in the second phase of
the project, when the database is three times bigger.

For the second phase, due to time constrictions, I was not able to execute it because, even
though the model was able to train, It was not capable of generate the audio sample for
each epoch because the variables needed for loading the text file and formatting it were not
reaching the Generator Class in model.py. For that matter I am not able to present
quantitative results for the execution. The only thing to present is the bash output (Annex 4)
to demonstrate that the program is training the model and that it prints errors for the
Generation Class.

numepoch = f ilesread /f ilesinthefolder

Página ! de !44 75

Figure 31.5: TrimC loss diagram

Figure 32: TrimC output signal

Trombone Synthesis using DL Degree Thesis Report

5.BUDGET

For the budget calculations, I contemplated the working hours of myself, for whom I have
considered a reduced wage of 10€/h and I contemplated the working hours of my advisor,
whom I considered of 60€/h.

The price for the amazon gpu servers were taken from: https://aws.amazon.com/ec2/spot/
pricing/ where, as I didn’t know what kind was the GPU used in Calcula, I contemplated the
most expensive one used with UNIX/Linux for the sake of a “realistic” budget.

The computer’s price is taken from a standard average price in laptops, as it does not need
a paid OS (because it uses linux) and it only works as a connection to the GPU servers and
to run Pycharm.

Descripción Cantid. Precio
unitario

Importe

Junior Engineer 30h/week 10€/hour €	 10.500

Senior Engineer 2h/week 60€/hour €	 4.200

Amazon GPU servers 100h €	 0,4079 €	 40,79

UNIX Computer 1 €	 500 €	 500

MATLAB License 1 €	 1.000 €	 1.000

Total € 16.240,79

Página ! de !45 75

https://aws.amazon.com/ec2/spot/pricing/
https://aws.amazon.com/ec2/spot/pricing/

Trombone Synthesis using DL Degree Thesis Report

6.CONCLUSIONS
The project was concluded with the thought that the goal for the project was a little bit too
ambitious because of the time needed to finish it. A lot more resources were needed to
choose which model to use for that application and that ended up being very time-
consuming.

Unfortunately, the desired results were not obtained, even though a partial modification of
the code was achieved, and the generation modifications were almost finished.

As for the second stage of the project, the model was successfully trained and generated a
sample for each note, but was completely clipping even though the model was overfitted
which leads us to think that there were not enough different samples for it to train correctly.
That was planned to be fixed once the modifications were done, as the database would be
3 times greater and it would only have 3 times the inputs.

However, the goal in terms of generation was to generate 16kHz 8bit files and, even though
the waveform is not quite trombone-like, the pitch of the wave file is fairly recognizable.  

Página ! de !46 75

Trombone Synthesis using DL Degree Thesis Report

7.BIBLIOGRAPHY
[1] Wikipedia (2017,September 15), Synthesizer https://en.wikipedia.org/wiki/Synthesizer

[2] Julius Smith (2006, October), History and Practice of Digital Sound Synthsis http://
www.aes.org/technical/heyser/downloads/AES121heyser-Smith.pdf

[3] Tweakheadz lab, What are software Synthesizers and the types of Synthesis within
today’s software instruments http://tweakheadz.com/software-synths/

[4] Andrew L. Beam (2017, February 23), Deep Learning 101 - History and Background
https://beamandrew.github.io/deeplearning/2017/02/23/deep_learning_101_part1.html

[5] Keith D. Foote (2017, February 2), A Brief History of Deep Learning http://
www.dataversity.net/brief-history-deep-learning/

[6] John Strawn, Introduction to Digital Sound Synthesis https://courses.cs.washington.edu/
courses/cse490s/11au/Readings/SynthesisChapt3.pdf

[7] Wikipedia (2017,September 15), Digital Synthesizer https://en.wikipedia.org/wiki/
Digital_synthesizer

[8] Scott Rise, Wavetable Synthesis http://synthesizeracademy.com/wavetable-synthesis/

[9] Wikipedia (2017, September 10), Aprendizaje Profundo https://es.wikipedia.org/wiki/
Aprendizaje_profundo

[10] Jason Brownlee (2016, March 16) Supervised and Unsupervised Machine Learnu¡ing
Algorithms https://machinelearningmastery.com/supervised-and-unsupervised-machine-
learning-algorithms/

[11] (2014, March 13) Introduction to Computational NeuroScience https://courses.cs.ut.ee/
MTAT.03.291/2014_spring/uploads/Main/Lecture6.pdf

[12] Deep Learning Course Slides by Universitat Politecnica de Catalunya

[13] Rishabh Shukla (2017, January 5), How to train your Deep Neural Network http://
rishy.github.io/ml/2017/01/05/how-to-train-your-dnn/

[14]Training an Artificial Neural Network Intro https://www.solver.com/training-artificial-
neural-network-intro

Página ! de !47 75

https://en.wikipedia.org/wiki/Synthesizer
http://www.aes.org/technical/heyser/downloads/AES121heyser-Smith.pdf
http://www.aes.org/technical/heyser/downloads/AES121heyser-Smith.pdf
http://tweakheadz.com/software-synths/
https://beamandrew.github.io/deeplearning/2017/02/23/deep_learning_101_part1.html
http://www.dataversity.net/brief-history-deep-learning/
http://www.dataversity.net/brief-history-deep-learning/
https://courses.cs.washington.edu/courses/cse490s/11au/Readings/SynthesisChapt3.pdf
https://courses.cs.washington.edu/courses/cse490s/11au/Readings/SynthesisChapt3.pdf
http://synthesizeracademy.com/wavetable-synthesis/
https://es.wikipedia.org/wiki/Aprendizaje_profundo
https://es.wikipedia.org/wiki/Aprendizaje_profundo
https://machinelearningmastery.com/supervised-and-unsupervised-machine-learning-algorithms/
https://machinelearningmastery.com/supervised-and-unsupervised-machine-learning-algorithms/
https://machinelearningmastery.com/supervised-and-unsupervised-machine-learning-algorithms/
https://courses.cs.ut.ee/MTAT.03.291/2014_spring/uploads/Main/Lecture6.pdf
https://courses.cs.ut.ee/MTAT.03.291/2014_spring/uploads/Main/Lecture6.pdf
http://rishy.github.io/ml/2017/01/05/how-to-train-your-dnn/
http://rishy.github.io/ml/2017/01/05/how-to-train-your-dnn/
https://www.solver.com/training-artificial-neural-network-intro
https://www.solver.com/training-artificial-neural-network-intro

Trombone Synthesis using DL Degree Thesis Report

[15] Wikipedia (2017, October 2), MIDI https://es.wikipedia.org/wiki/MIDI

[16] Summary of MIDI Messages https://www.midi.org/specifications/item/table-1-
summary-of-midi-message

[17] Yamaha Corporation, Tomoyuki Kumagai (2001, May 15) Data sending apparatus and
data receiving apparatus communicating data storage control command in MIDI protocol,
and method therefor https://www.google.com/patents/US6232541

[18] https://blog.landr.com/es/que-es-el-midi-la-guia-del-principiante-para-la-herramienta-
musical-mas-poderosa/

[19] ¿Que es WAV? https://www.coolutils.com/es/Formats/WAV

[20] (2017, May 31) Waveform Audio Format (Wav) https://es.wikipedia.org/wiki/
Waveform_Audio_Format

[21] E. Fleischman (1998, June) WAVE and AVI Codec Registries https://tools.ietf.org/html/
rfc2361

[22] Keras: The Python Deep Learning library https://keras.io

[23] Python: https://www.python.org

[24] Tensorflow: An open-source software library for Machine Intelligence https://
www.tensorflow.org

[25] PyTorch documentation: http://pytorch.org/docs/master/

[26] https://es.mathworks.com/help/matlab/ref/dir.html

[27] https://es.mathworks.com/help/matlab/ref/audioread.html?
searchHighlight=audioread&s_tid=doc_srchtitle

[28] http://kenschutte.com/midi

[29] Diederik P. Kingma, Jimmy Lei Ba (2017, January 30) ADAM: A Method for Stochastic
Optimization https://arxiv.org/pdf/1412.6980.pdf

[30] https://es.mathworks.com/help/matlab/ref/audiowrite.html?s_tid=doc_ta

[31] https://es.mathworks.com/help/matlab/ref/fprintf.html

Página ! de !48 75

https://es.wikipedia.org/wiki/MIDI
https://www.midi.org/specifications/item/table-1-summary-of-midi-message
https://www.midi.org/specifications/item/table-1-summary-of-midi-message
https://www.google.com/patents/US6232541
https://blog.landr.com/es/que-es-el-midi-la-guia-del-principiante-para-la-herramienta-musical-mas-poderosa/
https://blog.landr.com/es/que-es-el-midi-la-guia-del-principiante-para-la-herramienta-musical-mas-poderosa/
https://blog.landr.com/es/que-es-el-midi-la-guia-del-principiante-para-la-herramienta-musical-mas-poderosa/
https://www.coolutils.com/es/Formats/WAV
https://es.wikipedia.org/wiki/Waveform_Audio_Format
https://es.wikipedia.org/wiki/Waveform_Audio_Format
https://tools.ietf.org/html/rfc2361
https://tools.ietf.org/html/rfc2361
https://www.python.org
http://pytorch.org/docs/master/
https://es.mathworks.com/help/matlab/ref/dir.html
https://es.mathworks.com/help/matlab/ref/audioread.html?searchHighlight=audioread&s_tid=doc_srchtitle
https://es.mathworks.com/help/matlab/ref/audioread.html?searchHighlight=audioread&s_tid=doc_srchtitle
https://es.mathworks.com/help/matlab/ref/audioread.html?searchHighlight=audioread&s_tid=doc_srchtitle
https://arxiv.org/pdf/1412.6980.pdf
https://es.mathworks.com/help/matlab/ref/audiowrite.html?s_tid=doc_ta
https://es.mathworks.com/help/matlab/ref/fprintf.html

Trombone Synthesis using DL Degree Thesis Report

[32] https://es.mathworks.com/help/matlab/ref/fopen.html?
searchHighlight=fileID&s_tid=doc_srchtitle

[33] Soroush Mehri, Kundan Kumar, Ishaan Gulrajani, Rithesh Kumar, Shubham Jain, Jose
Sotelo, Aaron Courville, Yoshua Bengio (2017, February 11) SampleRNN: An Unconditional
End-To-End Neural Audio Generation Model https://arxiv.org/pdf/1612.07837.pdf

[34] What are gated recurrent units and how can they be implemented using TensorFlow?
https://www.quora.com/What-are-gated-recurrent-units-and-how-can-they-be-
implemented-using-TensorFlow

[35] Wikipedia (2017, May 21) Gated Recurrent Unit https://en.wikipedia.org/wiki/
Gated_recurrent_unit

[36] Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, Yoshua Bengio (2014, September 3) Learning Phrase
Representations using RNN Encoder–Decoder for Statistical Machine Translation https://
arxiv.org/pdf/1406.1078v3.pdf

[37] Wikipedia (2017, October 3) Long Short Term Memory https://en.wikipedia.org/wiki/
Long_short-term_memory

[38] A Beginner’s Guide to Recurrent Networks and LSTM’s https://deeplearning4j.org/
lstm.html

[39] (2015, August 27) Understanding LSTM Networks http://colah.github.io/posts/
2015-08-Understanding-LSTMs/

[40] http://pythonhosted.org/natsort/natsorted.html

[41] Albert Aparicio Isarn (2017, May 15) Voice Conversion using Deep Learning https://
upcommons.upc.edu/bitstream/handle/2117/105638/AparicioAlbert_FinalReport.pdf?
sequence=1&isAllowed=y

[42] Sebastian Ruder (2016, January 16) An Overview of Gradient Descent Optimization
Algoritms http://ruder.io/optimizing-gradient-descent/index.html#adam

Página ! de !49 75

https://es.mathworks.com/help/matlab/ref/fopen.html?searchHighlight=fileID&s_tid=doc_srchtitle
https://es.mathworks.com/help/matlab/ref/fopen.html?searchHighlight=fileID&s_tid=doc_srchtitle
https://es.mathworks.com/help/matlab/ref/fopen.html?searchHighlight=fileID&s_tid=doc_srchtitle
https://arxiv.org/pdf/1612.07837.pdf
https://www.quora.com/What-are-gated-recurrent-units-and-how-can-they-be-implemented-using-TensorFlow
https://www.quora.com/What-are-gated-recurrent-units-and-how-can-they-be-implemented-using-TensorFlow
https://en.wikipedia.org/wiki/Gated_recurrent_unit
https://en.wikipedia.org/wiki/Gated_recurrent_unit
https://arxiv.org/pdf/1406.1078v3.pdf
https://arxiv.org/pdf/1406.1078v3.pdf
https://en.wikipedia.org/wiki/Long_short-term_memory
https://en.wikipedia.org/wiki/Long_short-term_memory
https://upcommons.upc.edu/bitstream/handle/2117/105638/AparicioAlbert_FinalReport.pdf?sequence=1&isAllowed=y
https://upcommons.upc.edu/bitstream/handle/2117/105638/AparicioAlbert_FinalReport.pdf?sequence=1&isAllowed=y
https://upcommons.upc.edu/bitstream/handle/2117/105638/AparicioAlbert_FinalReport.pdf?sequence=1&isAllowed=y
http://ruder.io/optimizing-gradient-descent/index.html#adam

Trombone Synthesis using DL Degree Thesis Report

ANNEX1: SCRIPT FOR AUDIO
REGULARIZATION
%Script to resize, quantize and downsample the audio files.

clear all

listroot = dir('Samples_44100_16bits'); %get the directories inside the folder

cd Samples_44100_16bits %go to the folder

fs = 44100; %sampling frequency

fsout = 16000; %output sampling frequency

warning('off','all') %turn off warnings

count = 0;

fo=[ones(48000,1);(linspace(1,0,16000))']; %envelope controller (linear volume reducion in
the final 16000 samples). fade-out

%fo=[ones(12000,1);(linspace(1,0,4000))’];

for ix=4:length(listroot) %iteration for the folders in the directory

 listin = dir(listroot(ix).name); %get the directories in the ix position of the directory list

 cd(listroot(ix).name) %go to that folder

 for iy = 4:length(listin) %iteration for the files in the directory

 xin = audioread(listin(iy).name); %import the iy audio file

 x = xin/max(abs(xin)); %normalization

 [st,en] = findlim(x,0.008,fs); %function that returns the index at which the signal is the
0.8% of the max.

 if (en+400)<length(x) %controlling index exceds matrix dimentions

Página ! de !50 75

Trombone Synthesis using DL Degree Thesis Report

 x2 = x((st-100):(en+400)); %increasing the span in 500 samples to avoid harsh
variations

 x = [zeros(fs,1);x2]; %zero padding of 1second

 else

 x2 = x((st-100):end); %increasing the span in 100 samples to avoid harsh variations

 x = [zeros(fs,1);x2]; %zero padding of 1second

 end

 if length(x)>4*fs %controlling index exceds matrix dimentions

 x = x(1:4*fs); %truncating the audio file to 4seconds

 else

 x = [x ; zeros((4*fs-length(x)),1)]; %truncating the audio file to 4seconds

 end

 x = srconv(x,fs,fsout); %downsampling

 %obtention of the name of the new file and quantization to 8 bit

 %signal

 name = strsplit(listin(iy).name,'.');

 sprintf('%s',char(name(1)))

 audiowrite(strcat(char(name(1)),'_mod.wav'),x.*fo,fs,'BitsPerSample',16);

 %audiowrite(strcat(char(name(1)),’_trim.wav'),x(16000:31999).*fo,fs,'BitsPerSample',
16);

 count = count + 1;

 end

 cd ..

end

cd ..

sprintf('%s : %i elements','Finished',count)

Página ! de !51 75

Trombone Synthesis using DL Degree Thesis Report

function [st , en] = findlim(x , th)

%function to find the start and the end of the audio signal given a desired

%threshold

%Inputs:

% x: input signal

% th: threshold

% Output:

% st: start index of the signal

% en: end index of the signal

tmp=find(abs(hilbert(x))>th); %tmp vector containing the vector positions where the
amplitude is greater than the 0.8% of the max (as it is normalised)

%first and last position of the vector gives the start and end of the audio

%signal (approximate)

st=tmp(1);

en=tmp(end);

end

function [y] = srconv(x,fsin,fsout)

% function to convert sampling rate from one sampling rate to another

% so long as the sampling rates have an integer least common multiple

% Inputs:

% x: input signal at rate fsin

% fsin: sampling rate on input

% fsout: new sampling rate on output

% Output:

Página ! de !52 75

Trombone Synthesis using DL Degree Thesis Report

% y: output signal at sampling rate fsout

% determine m, the least common multiple (lcm) of fsin and fsout

 m=lcm(fsin,fsout);

% determine the up and down sampling rates

 up=m/fsin;

 down=m/fsout;

% resample the input using the computed up/down rates

 y=resample(x,up,down);

end

Página ! de !53 75

Trombone Synthesis using DL Degree Thesis Report

ANNEX2: SCRIPT FOR GENERATING TXT
clear all

listroot = dir('Samples_16000_8bits_nl'); %get the directories inside the folder

cd Samples_16000_8bits_nl %go to the folder

fs = 16000; %output sampling frequency

warning('off','all') %turn off warnings

count = 0;

for ix=4:2:length(listroot) %iteration for the folders, the step is 2 to bypass midi files with the
same name as the folders

 namenote = {'A.mid'; 'Bb.mid'; 'C.mid'; 'F.mid'; 'G.mid'}; %name of the midi file

 midi = readmidi(char(namenote(0.5*ix-1))); %import midi

 [notes,endtime] = midiInfo(midi); %returns a matrix notes that contains the notes
messages in a matrix

 note = notes(2,3); %gets the value of the note

 arr = [zeros(fs,1) ; note.*ones(1.5*fs,1) ; zeros(1.5*fs,1)]; %creation of the note array

 listin = dir(listroot(ix).name); %get the directories in the ix position of the directory list

 cd(listroot(ix).name) %go to that folder

 for iy = 3:length(listin) %iteration for the files in the directory

 x = audioread(listin(iy).name); %import the iy audio file

 [st,en] = findlim(x,0.008); %function that returns the index at which the signal is the
0.8% of the max

 if en+400<length(x) %controlling index exceds matrix dimentions

 en = en + 400; %tail preservation by adding 400 samples

 end

 if st-100>0

 st = st - 100; %transient preservation by adding 100 samples

 end

Página ! de !54 75

Trombone Synthesis using DL Degree Thesis Report

 out=[zeros(st,1) ; (en-st-1:-1:0)' ; zeros((length(x)-en),1)]; %forward seeing vector

 %creation of the txt file

 tmp2 = strsplit(listin(iy).name,'.');

 tmp2 = strcat(tmp2(1),'.txt');

 fileID = fopen(char(tmp2),'w');

 mat=[out';arr'];

 fprintf(fileID,'%5.0f\t%5.0f\n',mat);

 fclose(fileID);

 count = count + 1;

 end

 cd ..

end

cd ..

sprintf('%s : %i elements','Finished',count)

Página ! de !55 75

Trombone Synthesis using DL Degree Thesis Report

ANNEX3: GANTT DIAGRAM AND TIME PLAN

Página ! de !56 75

Trombone Synthesis using DL Degree Thesis Report

ANNEX4: BASH OUTPUT FOR CODE
MODIFICATION
In this annex the loss values for the training of each batch. In the step between epochs, the
model is stored and audio samples are generated which is the part that returns the error
and it is in need of a revision.

(/Users/vbadenas/miniconda3) MacBook-Pro-de-Victor:SampleRNNcond vbadenas$ python train.py --exp
PRUEBA --frame_sizes 16 4 --n_rnn 2 --epoch_limit 2 --dataset datasetVBC

training_loss: 0.0000 (0.0000) time: 0s

training_loss: 0.0000 (0.0000) time: 58s

training_loss: 0.0000 (0.0000) time: 112s

training_loss: 0.0000 (0.0000) time: 962s

training_loss: 0.0000 (0.0000) time: 1018s

training_loss: 0.0000 (0.0000) time: 1079s

training_loss: 0.0000 (0.0000) time: 1141s

training_loss: 0.0000 (0.0000) time: 1207s

training_loss: 0.0000 (0.0000) time: 1280s

training_loss: 0.0000 (0.0000) time: 1362s

training_loss: 0.0000 (0.0000) time: 1461s

training_loss: 0.0000 (0.0000) time: 1571s

training_loss: 0.0000 (0.0000) time: 1685s

training_loss: 0.0000 (0.0000) time: 1804s

training_loss: 0.0000 (0.0000) time: 1927s

training_loss: 1.1093 (0.0111) time: 2015s

training_loss: 3.0088 (0.0411) time: 2071s

training_loss: 2.9893 (0.0706) time: 2129s

training_loss: 2.8245 (0.0981) time: 2189s

training_loss: 2.8122 (0.1252) time: 2242s

training_loss: 2.8055 (0.1520) time: 2299s

training_loss: 2.7814 (0.1783) time: 2353s

Página ! de !57 75

Trombone Synthesis using DL Degree Thesis Report

training_loss: 2.7691 (0.2042) time: 2406s

training_loss: 2.7605 (0.2298) time: 2460s

training_loss: 2.7677 (0.2552) time: 2513s

training_loss: 2.7706 (0.2803) time: 2570s

training_loss: 2.6931 (0.3045) time: 2626s

training_loss: 2.6640 (0.3281) time: 2682s

training_loss: 2.6129 (0.3509) time: 2736s

training_loss: 2.5790 (0.3732) time: 2790s

training_loss: 2.5510 (0.3950) time: 2846s

training_loss: 2.5238 (0.4163) time: 2900s

training_loss: 2.5175 (0.4373) time: 2952s

training_loss: 2.4929 (0.4578) time: 3006s

training_loss: 2.4704 (0.4779) time: 3059s

training_loss: 2.4625 (0.4978) time: 3113s

training_loss: 2.4243 (0.5171) time: 3165s

training_loss: 2.3112 (0.5350) time: 3217s

training_loss: 2.0943 (0.5506) time: 3269s

training_loss: 1.7596 (0.5627) time: 3322s

training_loss: 1.4101 (0.5712) time: 3374s

training_loss: 1.0891 (0.5763) time: 3426s

training_loss: 0.8536 (0.5791) time: 3479s

training_loss: 0.6651 (0.5800) time: 3530s

training_loss: 0.5192 (0.5794) time: 3581s

training_loss: 0.4033 (0.5776) time: 3634s

training_loss: 0.2976 (0.5748) time: 3687s

training_loss: 0.2272 (0.5713) time: 3739s

training_loss: 0.1704 (0.5673) time: 3791s

training_loss: 0.1094 (0.5627) time: 3842s

training_loss: 0.0662 (0.5578) time: 3894s

training_loss: 0.0354 (0.5525) time: 3946s

Página ! de !58 75

Trombone Synthesis using DL Degree Thesis Report

training_loss: 0.0136 (0.5472) time: 3999s

training_loss: 0.0087 (0.5418) time: 4052s

training_loss: 0.0065 (0.5364) time: 4105s

training_loss: 0.0083 (0.5311) time: 4159s

training_loss: 0.0078 (0.5259) time: 4212s

training_loss: 0.0084 (0.5207) time: 4266s

training_loss: 0.0078 (0.5156) time: 4318s

training_loss: 0.0081 (0.5105) time: 4371s

training_loss: 0.0081 (0.5055) time: 4425s

training_loss: 0.0078 (0.5005) time: 4479s

training_loss: 0.0109 (0.4956) time: 4506s

RuntimeError: invalid argument 2: dimension 2 out of range of 2D tensor at /Users/soumith/miniconda2/
conda-bld/pytorch_1503975723910/work/torch/lib/TH/generic/THTensor.c:24

Página ! de !59 75

Trombone Synthesis using DL Degree Thesis Report

ANNEX5: MODIFIED CODE IN SAMPLERNN
dataset.py
import utils
import numpy as np

import torch

from torch.utils.data import (

 Dataset, DataLoader as DataLoaderBase

)

from librosa.core import load

from natsort import natsorted

from os import listdir

from os.path import join

class FolderDataset(Dataset):

 def __init__(self, path, overlap_len, q_levels, ratio_min=0, ratio_max=1):

 super().__init__()

 self.overlap_len = overlap_len

 self.q_levels = q_levels

 file_names = natsorted(

 [join(path + '/wav', file_name) for file_name in listdir(path + '/wav')] #'/wav' añadido

)

 self.file_names = file_names[

 int(ratio_min * len(file_names)): int(ratio_max * len(file_names))

]

 # añadido por mi

 txt_names = natsorted(

 [join(path + '/txt', file_name) for file_name in listdir(path + '/txt')]

)

 self.txt_names = txt_names[

Página ! de !60 75

Trombone Synthesis using DL Degree Thesis Report

 int(ratio_min * len(txt_names)): int(ratio_max * len(txt_names))

]

 assert len(file_names) == len(txt_names), 'txt and wav folders do not have the same items’

 def __getitem__(self, index):

 (seq, _) = load(self.file_names[index], sr=None, mono=True)

 data = np.loadtxt(self.txt_names[index])

 [data1, data2] = torch.chunk(torch.from_numpy(data), 2, 1)

 ret1 = torch.cat([torch.LongTensor(self.overlap_len).fill_(utils.q_zero(self.q_levels)),

 utils.linear_quantize(torch.from_numpy(seq), self.q_levels)])

 ret2 = torch.cat([torch.LongTensor(self.overlap_len).fill_(utils.q_zero(self.q_levels)), data1.long()])

 ret3 = torch.cat([torch.LongTensor(self.overlap_len).fill_(utils.q_zero(self.q_levels)), data2.long()])

 ret = torch.squeeze(torch.stack([ret1, ret2, ret3], dim=1))

 return ret

 def __len__(self):

 return len(self.file_names)

class DataLoader(DataLoaderBase):

 def __init__(self, dataset, batch_size, seq_len, overlap_len,

 *args, **kwargs):

 super().__init__(dataset, batch_size, *args, **kwargs)

 self.seq_len = seq_len

 self.overlap_len = overlap_len

 def __iter__(self):

 for batch in super().__iter__():

 (batch_size, n_samples, n_features) = batch.size()

 reset = True

 for seq_begin in range(self.overlap_len, n_samples, self.seq_len):

 from_index = seq_begin - self.overlap_len

 to_index = seq_begin + self.seq_len

Página ! de !61 75

Trombone Synthesis using DL Degree Thesis Report

 sequences = batch[:, from_index : to_index, :]

 input_sequences = sequences[:, : -1, :]

 target_sequences = sequences[:, self.overlap_len :, :]

 yield (input_sequences, reset, target_sequences)

 reset = False

 def __len__(self):

 raise NotImplementedError()

Model.py
import nn

import utils

import torch

from torch.nn import functional as F

from torch.nn import init

import numpy as np

from natsort import natsorted

from os import listdir

from os.path import join

import os

class SampleRNN(torch.nn.Module):

 def __init__(self, frame_sizes, n_rnn, dim, learn_h0, q_levels, path):

 super().__init__()

 self.dim = dim

 self.q_levels = q_levels

 self.path = path

 ns_frame_samples = map(int, np.cumprod(frame_sizes))

Página ! de !62 75

Trombone Synthesis using DL Degree Thesis Report

 self.frame_level_rnns = torch.nn.ModuleList([

 FrameLevelRNN(frame_size, n_frame_samples, n_rnn, dim, learn_h0)

 for (frame_size, n_frame_samples) in zip(frame_sizes, ns_frame_samples)

])

 self.sample_level_mlp = SampleLevelMLP(frame_sizes[0], dim, q_levels)

 @property

 def lookback(self):

 return self.frame_level_rnns[-1].n_frame_samples

class FrameLevelRNN(torch.nn.Module):

 def __init__(self, frame_size, n_frame_samples, n_rnn, dim,learn_h0):

 super().__init__()

 self.frame_size = frame_size

 self.n_frame_samples = n_frame_samples

 self.dim = dim

 h0 = torch.zeros(n_rnn, dim)

 if learn_h0:

 self.h0 = torch.nn.Parameter(h0)

 else:

 self.register_buffer('h0', torch.autograd.Variable(h0)) #

 self.input_expand = torch.nn.Conv1d(

 in_channels=3*n_frame_samples,

 out_channels=dim,

 kernel_size=1

)

 init.kaiming_uniform(self.input_expand.weight)

Página ! de !63 75

Trombone Synthesis using DL Degree Thesis Report

 init.constant(self.input_expand.bias, 0)

 self.rnn = torch.nn.GRU(

 input_size=dim,

 hidden_size=dim,

 num_layers=n_rnn,

 batch_first=True

)

 for i in range(n_rnn):

 nn.concat_init(

 getattr(self.rnn, 'weight_ih_l{}'.format(i)),

 [nn.lecun_uniform, nn.lecun_uniform, nn.lecun_uniform]

)

 init.constant(getattr(self.rnn, 'bias_ih_l{}'.format(i)), 0)

 nn.concat_init(

 getattr(self.rnn, 'weight_hh_l{}'.format(i)),

 [nn.lecun_uniform, nn.lecun_uniform, init.orthogonal]

)

 init.constant(getattr(self.rnn, 'bias_hh_l{}'.format(i)), 0)

 self.upsampling = nn.LearnedUpsampling1d(

 in_channels=dim,

 out_channels=dim,

 kernel_size=frame_size

)

 init.uniform(

 self.upsampling.conv_t.weight, -np.sqrt(6 / dim), np.sqrt(6 / dim)

)

 init.constant(self.upsampling.bias, 0)

Página ! de !64 75

Trombone Synthesis using DL Degree Thesis Report

 def forward(self, prev_samples, upper_tier_conditioning, hidden):

 (batch_size, _, _) = prev_samples.size()

 input = self.input_expand(

 prev_samples.permute(0, 2, 1)

).permute(0, 2, 1)

 #print(input.size())

 if upper_tier_conditioning is not None:

 input += upper_tier_conditioning

 reset = hidden is None

 if hidden is None:

 (n_rnn, _) = self.h0.size()

 hidden = self.h0.unsqueeze(1) \

 .expand(n_rnn, batch_size, self.dim) \

 .contiguous()

 (output, hidden) = self.rnn(input, hidden)

 output = self.upsampling(

 output.permute(0, 2, 1)

).permute(0, 2, 1)

 return (output, hidden)

class SampleLevelMLP(torch.nn.Module):

 def __init__(self, frame_size, dim, q_levels):

 super().__init__()

 self.q_levels = q_levels

 self.embedding = torch.nn.Embedding(

 self.q_levels,

 self.q_levels

Página ! de !65 75

Trombone Synthesis using DL Degree Thesis Report

)

 self.input = torch.nn.Conv1d(

 in_channels=q_levels,

 out_channels=dim,

 kernel_size=frame_size,

 bias=False

)

 init.kaiming_uniform(self.input.weight)

 self.hidden = torch.nn.Conv1d(

 in_channels=dim,

 out_channels=dim,

 kernel_size=1

)

 init.kaiming_uniform(self.hidden.weight)

 init.constant(self.hidden.bias, 0)

 self.output = torch.nn.Conv1d(

 in_channels=dim,

 out_channels=q_levels,

 kernel_size=1

)

 nn.lecun_uniform(self.output.weight)

 init.constant(self.output.bias, 0)

 def forward(self, prev_samples, upper_tier_conditioning):

 (batch_size, _, _) = upper_tier_conditioning.size()

 prev_samples = self.embedding(

 prev_samples.contiguous().view(-1)

Página ! de !66 75

Trombone Synthesis using DL Degree Thesis Report

).view(

 batch_size, -1, self.q_levels

)

 prev_samples = prev_samples.permute(0, 2, 1)

 upper_tier_conditioning = upper_tier_conditioning.permute(0, 2, 1)

 x = F.relu(self.input(prev_samples) + upper_tier_conditioning)

 x = F.relu(self.hidden(x))

 x = self.output(x).permute(0, 2, 1).contiguous()

 return F.log_softmax(x.view(-1, self.q_levels)) \

 .view(batch_size, -1, self.q_levels)

class Runner:

 def __init__(self, model):

 super().__init__()

 self.model = model

 self.reset_hidden_states()

 def reset_hidden_states(self):

 self.hidden_states = {rnn: None for rnn in self.model.frame_level_rnns}

 def run_rnn(self, rnn, prev_samples, upper_tier_conditioning):

 (output, new_hidden) = rnn(

 prev_samples, upper_tier_conditioning, self.hidden_states[rnn]

)

 self.hidden_states[rnn] = new_hidden.detach()

 return output

class Predictor(Runner, torch.nn.Module):

Página ! de !67 75

Trombone Synthesis using DL Degree Thesis Report

 def __init__(self, model):

 super().__init__(model)

 def forward(self, input_sequences, reset):

 if reset:

 self.reset_hidden_states()

 (batch_size, _, _) = input_sequences.size()

 (input_sequences, other1, other2) = torch.chunk(input_sequences, chunks=3, dim=2)

 upper_tier_conditioning = None

 for rnn in reversed(self.model.frame_level_rnns):

 from_index = self.model.lookback - rnn.n_frame_samples

 to_index = -rnn.n_frame_samples + 1

 prev_samples = 2 * utils.linear_dequantize(

 input_sequences[:, from_index : to_index],

 self.model.q_levels

)

 #print(other1)

 prev_other1 = other1[:, from_index : to_index];

 prev_other2 = other2[:, from_index: to_index];

 prev_samples = prev_samples.contiguous().view(

 batch_size, -1, rnn.n_frame_samples

)

 prev_other1 = prev_other1.contiguous().view(

 batch_size, -1, rnn.n_frame_samples

)

Página ! de !68 75

Trombone Synthesis using DL Degree Thesis Report

 prev_other2 = prev_other2.contiguous().view(

 batch_size, -1, rnn.n_frame_samples

)

 prev_samples = torch.cat((prev_samples.long(), prev_other1, prev_other2), dim=2)

 prev_samples = prev_samples.float()

 upper_tier_conditioning = self.run_rnn(

 rnn, prev_samples, upper_tier_conditioning

)

 bottom_frame_size = self.model.frame_level_rnns[0].frame_size

 mlp_input_sequences = input_sequences \

 [:, self.model.lookback - bottom_frame_size :]

 return self.model.sample_level_mlp(

 mlp_input_sequences, upper_tier_conditioning

)

class Generator(Runner):

 def __init__(self, model, cuda=False):

 super().__init__(model)

 self.cuda = cuda

 def __call__(self, n_seqs, seq_len):

 # generation doesn't work with CUDNN for some reason

 torch.backends.cudnn.enabled = False

 self.reset_hidden_states()

 bottom_frame_size = self.model.frame_level_rnns[0].n_frame_samples

 sequences = torch.LongTensor(n_seqs, self.model.lookback + seq_len) \

 .fill_(utils.q_zero(self.model.q_levels))

 frame_level_outputs = [None for _ in self.model.frame_level_rnns]

Página ! de !69 75

Trombone Synthesis using DL Degree Thesis Report

 path = os.path.join('datasets', 'datasetVBC')

 txt_names = natsorted(

 [join(path + '/txt', file_name) for file_name in listdir(path + '/txt')]

)

 data = np.loadtxt(txt_names[0])

 [data1, data2] = torch.chunk(torch.from_numpy(data), 2, 1)

 other1 = torch.cat([torch.LongTensor(64).fill_(utils.q_zero(128)), data1.long()])

 other2 = torch.cat([torch.LongTensor(64).fill_(utils.q_zero(128)), data2.long()])

 for i in range(self.model.lookback, self.model.lookback + seq_len):

 for (tier_index, rnn) in \

 reversed(list(enumerate(self.model.frame_level_rnns))):

 if i % rnn.n_frame_samples != 0:

 continue

 prev_samples = torch.autograd.Variable(

 2 * utils.linear_dequantize(

 sequences[:, i - rnn.n_frame_samples : i],

 self.model.q_levels

).unsqueeze(1),

 volatile=True

)

 prev_other1 = torch.autograd.Variable(other1[:, i - rnn.n_frame_samples: i],

 volatile=True

)

 prev_other2 = torch.autograd.Variable(other2[:, i - rnn.n_frame_samples: i],

 volatile=True

)

 if self.cuda:

Página ! de !70 75

Trombone Synthesis using DL Degree Thesis Report

 prev_samples = prev_samples.cuda()

 prev_other1 = prev_other1.cuda()

 prev_other2 = prev_other2.cuda()

 if tier_index == len(self.model.frame_level_rnns) - 1:

 upper_tier_conditioning = None

 else:

 frame_index = (i // rnn.n_frame_samples) % \

 self.model.frame_level_rnns[tier_index + 1].frame_size

 upper_tier_conditioning = \

 frame_level_outputs[tier_index + 1][:, frame_index, :] \

 .unsqueeze(1)

 prev_samples = torch.cat((prev_samples.long(), prev_other1, prev_other2), dim=2)

 prev_samples = prev_samples.float()

 frame_level_outputs[tier_index] = self.run_rnn(

 rnn, prev_samples, upper_tier_conditioning

)

 prev_samples = torch.autograd.Variable(

 sequences[:, i - bottom_frame_size : i],

 volatile=True

)

 if self.cuda:

 prev_samples = prev_samples.cuda()

 upper_tier_conditioning = \

 frame_level_outputs[0][:, i % bottom_frame_size, :] \

 .unsqueeze(1)

 sample_dist = self.model.sample_level_mlp(

Página ! de !71 75

Trombone Synthesis using DL Degree Thesis Report

 prev_samples, upper_tier_conditioning

).squeeze(1).exp_().data

 sequences[:, i] = sample_dist.multinomial(1).squeeze(1)

 torch.backends.cudnn.enabled = True

 return sequences[:, self.model.lookback :]

__init__.py in trainer module
import torch

from torch.autograd import Variable

import heapq

Based on torch.utils.trainer.Trainer code.

class Trainer(object):

 def __init__(self, model, criterion, optimizer, dataset, cuda=False):

 self.model = model

 self.criterion = criterion

 self.optimizer = optimizer

 self.dataset = dataset

 self.cuda = cuda

 self.iterations = 0

 self.epochs = 0

 self.stats = {}

 self.plugin_queues = {

 'iteration': [],

 'epoch': [],

 'batch': [],

 'update': [],

 }

 def register_plugin(self, plugin):

Página ! de !72 75

Trombone Synthesis using DL Degree Thesis Report

 plugin.register(self)

 intervals = plugin.trigger_interval

 if not isinstance(intervals, list):

 intervals = [intervals]

 for (duration, unit) in intervals:

 queue = self.plugin_queues[unit]

 queue.append((duration, len(queue), plugin))

 def call_plugins(self, queue_name, time, *args):

 args = (time,) + args

 queue = self.plugin_queues[queue_name]

 if len(queue) == 0:

 return

 while queue[0][0] <= time:

 plugin = queue[0][2]

 getattr(plugin, queue_name)(*args)

 for trigger in plugin.trigger_interval:

 if trigger[1] == queue_name:

 interval = trigger[0]

 new_item = (time + interval, queue[0][1], plugin)

 heapq.heappushpop(queue, new_item)

 def run(self, epochs=1):

 for q in self.plugin_queues.values():

 heapq.heapify(q)

 for self.epochs in range(self.epochs + 1, self.epochs + epochs + 1):

 self.train()

 self.call_plugins('epoch', self.epochs)

 def train(self):

Página ! de !73 75

Trombone Synthesis using DL Degree Thesis Report

 for (self.iterations, data) in \

 enumerate(self.dataset, self.iterations + 1):

 batch_inputs = data[: -1]

 batch_target = data[-1]

 self.call_plugins(

 'batch', self.iterations, batch_inputs, batch_target

)

 def wrap(input):

 if torch.is_tensor(input):

 input = Variable(input)

 if self.cuda:

 input = input.cuda()

 return input

 batch_inputs = list(map(wrap, batch_inputs))

 batch_target = Variable(batch_target)

 #print(batch_inputs)

 (batch_target, _, _) = torch.chunk(batch_target, chunks=3, dim=2)

 batch_target = torch.squeeze(batch_target, dim=-1)

 if self.cuda:

 batch_target = batch_target.cuda()

 plugin_data = [None, None]

 def closure():

 batch_output = self.model(*batch_inputs)

 #print(batch_output)

 loss = self.criterion(batch_output, batch_target)

 loss.backward()

 if plugin_data[0] is None:

Página ! de !74 75

Trombone Synthesis using DL Degree Thesis Report

 plugin_data[0] = batch_output.data

 plugin_data[1] = loss.data

 return loss

 self.optimizer.zero_grad()

 self.optimizer.step(closure)

 self.call_plugins(

 'iteration', self.iterations, batch_inputs, batch_target,

 *plugin_data

)

 self.call_plugins('update', self.iterations, self.model)

Página ! de !75 75

	ABstract
	resum
	RESUMEN
	DEDICATION
	AcKNOWLEDGEMENTS
	Revision history and approval record
	TABLE OF CONTENTS
	LIST OF FIGURES
	1.INTRODUCtION
	1.1 Objective
	1.2 Goals of the Project
	1.3 Requirements and Specifications.
	1.4 Brief history of Sound Synthesis
	1.5 Brief history of Deep Learning
	1.5.1 1940
	1.5.2 1969
	1.5.3 1986
	1.5.4 2006
	1.5.5 2010 and forward
	1.6 Time Plan
	2.STATE OF THE ART
	2.1 Digital audio synthesis
	2.1.1 Wavetable Synthesis
	2.1.2 Subtractive Synthesis
	2.1.3 Additive Synthesis
	2.1.4 Samplers
	2.1.5 Deep Learning based synthesizers
	2.2 Deep Learning
	2.2.1 Supervised Learning
	2.2.2 Linear Model
	2.2.3 Activation function
	2.2.4 Training the model
	2.2.4.1 Adam Optimizer
	2.2.5 Recurrent Neural Networks (RNN)
	2.2.6 Long Short Term Memory Units
	2.2.7 Gated Recurrent Units
	2.3 MIDI
	2.3.1 Messages
	2.3.2 System Exclusive Messages
	2.4 Wav audio
	3.Methodology
	3.1 Database
	3.1.1 Sample Recording
	3.1.2 Sample Conditioning
	3.1.2.1 Audio Conditioning
	3.1.2.2 Reading MIDI and text file generation
	3.2 SampleRNN architecture
	3.2.1 Frame Level Modules
	3.2.2 Sample Level modules
	3.2.3 Sample RNN code analysis
	3.3 Usage of the code
	4.Results
	5.Budget
	6.Conclusions
	7.BIBLIOGRAPHY
	Annex1: Script for audio regularization
	ANNEX2: script for generating txt
	annex3: gantt diagram and time plan
	Annex4: bash output for code modification
	annex5: Modified code in sampleRNN
	dataset.py
	Model.py
	__init__.py in trainer module

