Virtual Reality to teach anatomy

edu1007

Abstract

Virtual Reality (VR) and Augmented Reality (AR) are being introduced in the curriculum of schools gradually thanks to the benefits they contributed to the classical education. We present an experiment designed to give to students a specific VR session where they can directly inspect 3D models of several human organs by using Virtual Reality systems. It allows the students to see the models directly visualized in 3D and interact with them as if they were real.

The experiment has involved 254 students of the Nursing Degree, enrolled in the Human anatomy and physiology subject during 2 years (2 consecutive courses), and includes 10 3D models representing different anatomical structures which have been improved with meta-data to help on the understanding of the structure. In order to evaluate the students satisfaction in front of a new teaching methodology by using Virtual Reality techniques, the students filled in a questionnaire with two categories, the first one measuring whether the teaching VR session facilitates the structures understanding or not and the second one measuring the student satisfaction with this VR session.

From the results we can observe that the best valued items are the use of the activity to learn and the satisfaction of the students’ expectations, so we can conclude that the teaching VR session is useful to learn and help to understand the anatomical structures.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—Virtual Reality

Keywords: Virtual Reality, Health sciences, Nursing, Teaching.

1. Introduction

Any teaching subject that needs to present 3D objects to be inspected by students has a great difficulty on transmitting the right understanding of the real shape of the object by only using 2D images. This difficulty is even worse when the object has also internal information, this is when it is a volumetric object.

This is exactly the problem existing when some anatomical structures are presented to nursing students. Many times teachers need to explain textually what the students are unable to imagine from the 2D images.

The human heart and its internal structures like ventricles, atriums, valves, arteries, veins, etc, is a clear example of a complex anatomical organ which is difficult to understand. Also the real position of some organs inside the human body or the relative dimensions of them are also examples of difficult issues in teaching anatomy.

In this paper we present our experience on teaching an anatomy class to nursing students in their first course of the degree. In this class students may experiment with 3D models of several anatomical organs by using two different Virtual Reality systems, a power-wall and a CAVE. Each VR session is given to a reduced group of 15-20 students divided in two subgroups of 6-10, and is directed by two assistant teachers (one per group) that explain the anatomical organs and their functions while the students are interacting with them.

By using Virtual Reality the student is able to inspect and interact directly with the anatomical structure. This experience has been really appreciated by both teachers and students.

This paper is organized as follows; first we review previous work in using Virtual Reality applications to teach in other disciplines. Then we detail the difficulties the students have to understand the anatomy structures by only using 2D pictures. In section 4 we explain in some detail the models the students inspect and the Virtual Reality systems used. Finally we provide an evaluation of the results, the opinions obtained and discuss our conclusions.

2. Related work

Virtual Reality (VR) and Augmented Reality (AR) are technologies that have become popular in recent years and have been successfully used in applications for education. They are what is known as the Virtual Reality Learning Environments (VRLEs) (Chit-taro et al, 2007 [CR07], Monahan et al, 2008 [MMB08], Azuma 1997 [Azu97]). Both technologies (VR and AR) are being intro-
duced in the curriculum of schools gradually thanks to the benefits they contributed to the classical education.

Although both technologies (VR and AR) have much in common, they have very different objectives. When we talk about augmented reality, the intent is to improve the reality, adding things to it through our senses, overcome other artificial realities that combine with reality. Instead, virtual reality attempts to replace reality through devices that allow us to "feel" that we are somewhere else, dive into a reality that does not exist, transport us to a built reality, a Virtual Reality.

In the field of education, these technologies have been used in many areas, including the medical field. This field has taken advantage of its enormous potential especially in creating simulations for the training of professionals in surgical procedures (Larsen et al., 2009 [LSG09]; Cabrilo et al., 2014 [CSB14]; Okamoto et al. 2015 [OYY15]; Soler et al., 2014 [SNP14]; Nishimoto et al., 2016 [NTF16]). It has also been used in recreating medical emergencies (Kilmon et al. 2010 [KBGM10]) and, in a scope with real patients, with children with ASD to develop social and cognitive skills (Cunha et al., 2016 [CBV16]).

These kind of simulations put students in situations that can live in real cases, allowing in many cases to modify many parameters that give rise to a new experience. They can experiment situations without risk, in controlled environments and with a view as realistic as you want (Jenson et al. 2012 [CD12]). Such simulations improve the skills of students and their retention of knowledge (Smith et al. 2016 [SFU16]).

Aside from simulations, Virtual Reality has also been used in the study of anatomy. The visualization of anatomical structures in 3D is a challenging aspect in the teaching-learning process. In this regard, plastic models of various organs and even complete bodies, help students to learn about different parts of the body with its spatial interpretation, but also with limited access to specific details of the organ or structure studied. While body parts are used for some disciplines, this resource is not available in all schools by the disadvantages in terms of cost, location, preservation and transfer of the pieces (Vernon et al. 2002 [VP02], Ferrer-Torregrosa et al. 2015 [FTTJ15]). Moreover, one of the great challenges in education is how to motivate and engage students in learning.

Virtual Reality, with technological advances regarding image and degree of immersion, lets deal with restrictions that plastic models have and with the difficulties of access to real cadaver models. Therefore, VR may provide a solution to those problems, but their use for educational purposes must begin with a solid education. In this sense, in terms of education, before choosing the technological tool, one must design, create and implement strategies that engage students in the learning process, which starts with solid targets set for each discipline and academic level.

The research in the field of VR, has often focused on technical aspects (Burdea & Coiffet, 2003 [BC03], Sherman & Craig, 2003 [SC03]). These include studies on the use of various VR technologies, discussions of how VR can be integrated into the curriculum and how it relates to the commitment of the student in learning (Dickey, 2005 [Dic05]). Focusing on the learning process, an important aspect to take into account is the motivation.

Motivation is defined as an internal state or condition that activates, guides and maintains or directs behavior (Kleinginna & Kleinginna, 1981 [KK81]).

The use of these technologies (VR and AR) as teaching tools makes the students, instead of being seated passively in a classroom watching a teacher reading a powerpoint for 1h or 2h, live an active experience, where immersion especially in the use of virtual reality, makes them fully engaged in the activity, without distractions, with all attention focused on what they are doing.

For Ferrer-Torregrosa et al. (2015) [FTTJ15], the motivation includes reciprocal interactions between context, behavior and personal characteristics. They claim that the motivation is a self-regulated process that occurs when students take conscious control of their motivation and behavior that leads to a satisfactory learning outcomes.

Huang et al. (2010) [HRL10], focused their work on students’ attitudes toward learning environments where you use VR. To them, student learning motivation is focused on three critical factors of VR applications: the intuitive interaction, physical sense of imagination and sense of immersion. They also say, with respect to learn, that motivation is an important cognitive factor, so that motivated students can learn more effectively.

Training is easier if the experience is pleasant or enjoyable, which means higher level of engagement and understanding. The majority of nursing students prefer a hands-on, active approach to education (Boctor, 2013 [Boc13]). But studying the attitude and motivation of students in VR environments do not compare the effectiveness of environments 3D versus 2D environments.

With respect to the effectiveness of learning through the use of VR in 3D, Nicholson et al. (2006) [NCFD06] support the hypothesis that students are more receptive to understand aspects of anatomy using 3D than using 2D. In comparing the teaching of musculoskeletal anatomy through VR traditional methods, Codd & Choudhury (2011) [CC11] indicate that VR can serve as a complement to traditional methods of teaching anatomy.

Recent studies has shown that virtual learning applications can provide the tools to allow users to learn in a quick and happy mode by playing in virtual environment (Pan et al. 2006 [PCY06]).

Having collected some of the goals in the use of VR and observing their effectiveness in the teaching of anatomy in 3D environments compared to 2D environments, in this paper we present the activity carried out with nursing students in the nursing teaching center, and how VR has been introduced in the curriculum as an immersive tool for learning and facilitating the imagination of the anatomical structures, improving satisfaction and motivation of students in their learning.

3. Problem statement

There are few empirical studies giving evidence that learning by using 3D structures facilitates the comprehension of the student in front of traditional methodologies like a master class or 2D images. Since the spatial ability of students is vital in prediction of success in learning anatomical structures, the study of Garg et al.,

© 2017 The Author(s)
4.1. Preparing the experiment

Throughout the year of the activity preparation, before its final implementation, members of the group of the VR center and members of the group of the nursing teaching center were involved. Among them there were anatomy teachers, engineers, members of the innovation team and student collaborators. It was needed to draw a questionnaire to gather information about the structures that were more difficult to understand for students. This questionnaire was answered by 10 students and the coordinators and teachers of human anatomy and physiology. From this information gathered we chose the anatomy structures to be worked using VR and we adapted the 3D chosen models to the students necessities. Before its implementation we did a pilot test with the same students and then we made an assessment of the activity.

In this assessment we decided the anatomy structures to be used and the VR interaction method for each structure and we also designed the experiment and prepared a support documentation for the activity with information about the anatomy structures the students will work on it. Then the teachers who would be the session guides were trained, agreeing with them the learning targets and dynamics of the activity.

4.2. Models and meta-data

We have chosen 10 different anatomical parts of the human body to be explored by the students using Virtual Reality. Each model has its own meta-data information and/or its own interaction method. Most of the models (8 from 10) are synthetic models† that show in detail the structures to be explained to the students in the session. But we have also decided to allow them to inspect other two models (Chest and Aneurysm) that have been reconstructed from CT (Computer Tomography) information of two real patients. These two models have been chosen in order to show the students real patient data and how these data is visualized in 3D.

Heart: This 3D model (by 3dregenerator) includes all the important parts involved in this vital organ. The students can observe ventricles, atriums, valves, arteries, veins and also papillary muscles and tendon strings.

In this model we have added, as a meta-data, a set of blue and red arrows that help on seeing the direction of the blood flow and the kind of blood (oxygenated or not). See figure 2-a).

Encephalon: This 3D model (by leo3Dmodels) includes the two hemispheres, the different lobules, the ventricular system, the basal ganglia, the cerebellum, the brain stem and the medulla bulb.

The model has been adapted to be shown complete and also in parts. We can remove half brain to be able to see all the internal parts together, and we can also show separately the ventricular system and the basal ganglia. The different lobules can also be colored in order to be able to differentiate them. See figure 2-b).

Eye: This 3D model (by Alef itd) has the different layers and parts of the human eye. The students can differentiate the sclerotic,

Figure 1: Master class explaining the human heart structure.
choroid and retina layers and also the cornea, iris, pupil and crystalline. At the rear part of the eye there are also the fovea and taint where the image is perceived by the special cells of the eye.

The original model has been modified to include an animation that separates the layers and shows clearly all the different parts, also including the vascularization in the choroid layer. The model can be also cut in half in order to let better see the back part where the fovea and taint are. See figure 2-c).

Ear: This 3D model (by Imagework) is the simplest one. It shows directly all parts involved in the sense of hearing. The students can see the auricle, the auditory canal, the eardrum, the Eustachian tube, the ossicles (malleus, incus, stapes), the cochlea and the semicircular ducts. See figure 2-d).

Lung: This 3D model (by scyrus) consists of two parts: the lungs as a complete organ, and an alveol. In the lungs the students can distinguish between the right lung (having 3 lobules) and the left lung (having only 2 lobules). They can also see the trachea, bronchi and bronchioles and the mediastinum. In the alveol they can observe how the blood is being oxygenated.

In this model we have included some blue and red arrows to simulate the blood flow through the arteries and veins and also an animation that goes from the complete lungs vision to a zoomed vision of the alveol. See figure 2-e) and 2-f).

Circulatory system: This 3d model (by dugongmodels) includes all the main arteries and veins of the human body. The student can distinguish in it the systemic circuit from the pulmonary circuit, the differences between arteries and veins, which is not related to the color that represent them. They can also see the renal circulatory system and its real position in the body. See figure 2-k).

Digestive system: The 3D model representing the Digestive system has been created by joining different models (by 3d moliere and Activepoly) in order to have at once esophagus, stomach and intestine, and also the liver, pancreas and gallbladder. By observing this model the students can be able to situate correctly all these organs into the body.

Students are able to travel through the digestive system by entering the esophagus and follow the whole way until the anus. See figure 2-h).

Reproductive and urinary system: This system is composed by two different models (by MotionCow), the one for female and the one for male. In both cases there is a skeleton model added in order to see how the organs are located with respect to the skeleton.

In the male system the students can see clearly the urinary track and the seminal duct, and the position of the prostate and how both circuits are combined. They can also see how the penis is used for both systems (urinary and seminal). See figure 2-i).

In the female system the students can inspect how the uterus and the urinary bladder are located with respect to the skeleton. They can also see the pubic symphysis, and also the vagina and urinary tracks. See figure 2-j).

Chest: This 3D model has been reconstructed from the CT information of a real patient. In this model the visible structures are bones, blood flow and structures which are in contact with the air.

Figure 3: User traveling through the interior of the arteries of the aneurysm model.

The students can see how a real chest is and they can inspect bones like breastbone, ribs, spine and clavicle. They can observe the blood flow distinguishing a very big amount of blood in the heart, aorta artery, kidneys blood flow, etc. They can also see clearly, since these structures are in contact with the air, lungs (very well defined), skin, stomach and intestinal gas. See figure 2-g).

The interaction with this model allows also to change the transferance function, what gives the user the possibility to decide whether to hide or show any of the anatomical structures represented in the model.

Aneurysm: The Aneurysm model has been also reconstructed from the CT information. It represents the arteries of the brain where the patient has an aneurysm. See figure 2-l).

This model has been augmented by adding a trajectory that the student can follow so he/she sees what the doctor would see in a catheterism. The model also let the students see that the aneurysm has been produced in those areas where there are more artery branches so where the walls are lighther. See figure 3.

4.3. Virtual Reality systems

The Virtual Reality systems chosen for the experience are a Powerwall (see figure 4) and a 4-wall CAVE (see figure 5). We decided to use projection-based VR systems because they are better than other VR systems (like HMDs) in order to share the experience with a small group of students. In both systems we used a tracking device to track the user position and orientation and detect his/her natural movements. This tracking allows an implicit interaction with the 3D model which gives more realism to the model inspection.

During the session there is only one student who is guiding the inspection (the one who wear the tracking for implicit interaction) but this inspection can be fairly followed by the rest of the group (5-9 students) and the teacher. All the students, then, can follow at once the explanations of the teacher which are directly related to the inspection that is being done at the moment.
There are also some activities or functionalities of the models that are implemented by using explicit interaction, like changing the part of the model to show, or turn on/off some added meta-data. In these cases we are using devices like keyboard, wanda or wii-mote.

In order to decide which models to see in each VR system, we took into account the real dimension of the model and the characteristics of the system. The final decision was that the models the students can inspect in the Powerwall are:

- Heart, Encephalon, Eye and Ear which are visualized using a commercial software.
- Chest which is visualized using VRMed software [MDNV09].

And the models shown in the 4-wall CAVE, all of them visualized using a CAVE visualization software, are:

- Lung, Circulatory system, Digestive system, Reproductive and urinary system and Aneurysm.

4.4. Session development

The activity with the nursing students consists in a 2 hours and a half session in the VR center. Each session involves 15 to 20 students who are briefly introduced to VR when the session starts.
After the introduction, the students are divided into 2 groups of 7-10 each, and the first hour one group is using the Powerwall system and the other the CAVE. At the end of the first hour, the groups interchange the VR system to use and the second hour of the session they experiment the other VR system (CAVE or Powerwall). Therefore all students can inspect all models and both VR systems involved in the activity.

The activity is guided by two teachers and two technicians, one for each VR system. The teacher is in charge to explain the anatomical models and ask questions to students and interact with them to guide them through the session. The technician helps on the VR technical questions and follows the teacher explanation by doing the explicit interaction with the models. This makes the session more fluid since the students do not have to be trained in this explicit interaction with VR devices and they center their attention to the implicit interaction with the model and the teacher explanations. However, at the end of the session they can try, if they want, this explicit interaction too.

At any time one student is wearing the tracking device, so using in first person the implicit interaction, and the rest of the students follow his/her inspection. This is done by rotating the student who is directly interacting with the system, so all students inspect in first person at least one of the models, and the rest of the models following the inspection of other student in the group.

Once passed this two hours, the students are required to fill in an exercise answering questions about the session and the anatomical structures studied. This exercise counts a 10% of the grade of the anatomy course. They are also asked to complete a questionnaire (described in detail in next section) about their opinion of the experience.

5. Evaluation and results

The experiment described in last section has involved a total number of 254 students of the Nursing Degree of the nursing teaching center. The students were taking the Human anatomy and physiology subject, 123 students from the 2014-15 course and 131 students from the 2015-16 course. Both courses had a group of students in morning schedule and another in afternoon schedule. For all students was the first time they studied Human anatomy and physiology.

The questionnaire the students answered about their opinion of the experience had 8 items organized in two blocs or categories (see Table 1). Each item was assessed on an ordinal scale from 1 to 10. The first bloc assessed whether the VR tool facilitates learning (see Category 1 in Table 1 to see the questions). The second bloc assessed the student satisfaction (see Category 2 in Table 1 to see the questions).

Table 1: Questionnaire for assessing the activity.

<table>
<thead>
<tr>
<th>Category 1. Virtual Reality facilitates learning?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Do you think the powerwall tool facilitates the theoretical understanding of human anatomy?</td>
</tr>
<tr>
<td>2. Do you think the CAVE tool facilitates the theoretical understanding of human anatomy?</td>
</tr>
<tr>
<td>3. Do you think the activity is helpful to learn?</td>
</tr>
<tr>
<td>4. Respect your level of knowledge, do you think you have improved?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Category 2. Student satisfaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Do you think in the powerwall/cave you develop the contents of most interest in anatomy?</td>
</tr>
<tr>
<td>2. Do you think the coordination of the session, logistics and dynamics have been appropriate?</td>
</tr>
<tr>
<td>3. Do you think the session length has been adequate to achieve the objectives set?</td>
</tr>
<tr>
<td>4. Has the activity met your expectations?</td>
</tr>
</tbody>
</table>

The results of the first bloc or category are shown in Table 2. They show that all students (from both courses 2014-15 and 2015-16) assessed that the powerwall tool facilitates the understanding of the theoretical contents more than the CAVE tool. This can be caused by the fact that the models shown in the powerwall (heart, brain, eye, ear and thorax) are more attractive than those shown in the CAVE (digestive system, circulatory system, urinary system, lungs and aneurism). In both courses the best evaluated item is the use of the activity to learn and all other items have values above 7.4 (average) out of 10.

In Table 3, showing the results about satisfaction, you can see the students valued as the best item the satisfaction of their expectations, and the second is the one talking about the interest of the contents shown in the experience. The worst valued item in this category, for all students, is the session length, and this is because the students only have 2 hours and a half for the whole session, and this is too short time to see all the structures in both VR systems (powerwall and CAVE) and follow the explanations of the teacher.

We can also see in both tables that the students enrolled in the human anatomy and physiology subject in course 2015-16 valued more positively the activity (total average 8.12) than those enrolled in course 2014-15 (total average 7.86). This is because after the first year, which served as a pilot test, both teams, VR center group...
Table 2: Results of questions in Category 1. Average (standard deviation).

<table>
<thead>
<tr>
<th>VR facilitates learning</th>
<th>2014-15</th>
<th>2015-16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Morning</td>
<td>Afternoon</td>
</tr>
<tr>
<td>1. Powerwall facilitates learning</td>
<td>8.12 (1.31)</td>
<td>7.92 (1.47)</td>
</tr>
<tr>
<td>2. CAVE facilitates learning</td>
<td>7.92 (1.33)</td>
<td>8.18 (1.51)</td>
</tr>
<tr>
<td>3. Activity helpful to learn</td>
<td>8.12 (1.39)</td>
<td>8.33 (1.50)</td>
</tr>
<tr>
<td>4. Improved knowledge</td>
<td>7.48 (1.62)</td>
<td>7.44 (1.64)</td>
</tr>
</tbody>
</table>

Table 3: Results of questions in Category 2. Average (standard deviation).

<table>
<thead>
<tr>
<th>Student satisfaction</th>
<th>2014-15</th>
<th>2015-16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Morning</td>
<td>Afternoon</td>
</tr>
<tr>
<td>1. Maximum interest contents</td>
<td>7.76 (1.33)</td>
<td>7.76 (1.29)</td>
</tr>
<tr>
<td>2. Activity coordination</td>
<td>7.83 (1.32)</td>
<td>7.75 (1.37)</td>
</tr>
<tr>
<td>3. Adequate session length</td>
<td>7.73 (1.53)</td>
<td>7.80 (1.51)</td>
</tr>
<tr>
<td>4. Expectations satisfaction</td>
<td>7.83 (1.74)</td>
<td>7.73 (1.57)</td>
</tr>
</tbody>
</table>

6. Discussion and conclusions

Before discussing the results we want to say that conducted the proposed activity led a multidisciplinary teaching design where an alternative learning of concepts in human anatomy and physiology was imagined. We want also to comment that, although we have not collected any questionnaire filled by teachers, they value very positively the experiment.

There are some limitations of the project that can be considered:

- **The number of sessions**: In order to make the activity feasible the number of students for each session has to be limited to 20, this means that the session has to be repeated several times for covering all students enrolled in the course. This means more time and economic cost. However it favours a learning centered in the student where there is more personal participation.
- **Location**: Although the powerwall VR system could be installed in a normal medium size room, the CAVE system requires a specific space in order to be able to project models immersively in a 3mx3mx3m room. In this case, the students from the nursing teaching center have moved to the facilities of the VR center, however, the sessions have been scheduled early or late in class time in order the students don’t spend too much time on the way.
- **Cost**: Creating 3D anatomical structures represents a cost that tend a bridge between that imagined in 2D and reality.
- **Interpretation of the experience**: Although students move between different levels of commitment, which involves varying degrees of intensity and conviction, based on their current needs and demands knowledge of the institution (university), they express at the end of the activity to be satisfied with the experience, having fulfilled their expectations.
- **Expectations**: In the same way that, as demonstrated by scientific evidence, expectations about the therapeutic effects lead to physiological and cognitive changes (see [Kir99]), you should think that expectations in learning also lead to cognitive changes and could provoke a response in learning. We would need more specific studies and a detailed assessment tool to verify if it is or not, but the documentation provided to students is a resource that helps to generate positive expectations even before the activity takes place. The results infer that the activity in the virtual environment is motivating for learning anatomical structures.
- **Interaction**: For students of first degree in nursing, this activity is one of the first contacts with the framework of the biomedical system. Teaching anatomy in a virtual environment entails assumptions that will be used to structure the whole experience because they exert influence on its construction. In this regard, firstly, the VR anatomy reinforces a style of reasoning focused on objectivity, reality and materiality, and secondly, participation in activity plays a role in the identity formation and the generation of the feeling of belonging to a potential community, the biomedical.

In a context where coexist various technologies and teaching tools and where traditional teaching methods coexist with other methods comming through the new technologies, Virtual Reality tends a bridge between that imagined in 2D and reality.

Although further studies would be necessary in this regard, the experiment has meant an opening lecture to explore alternatives to what previously imagined. The evocative power of images, im-
mersive environment, the words of the teachers as specific stimuli participate in creating links between students’ individual previous knowledge and responses to new learning.

References

[Du05] Dickey M.: Brave new (interactive) worlds: a review of the design affordances and constrains of two 3d virtual worlds as interactive learning environments. Interactive Learning Environments 13, 1-2 (2005), 121−137. 2

