A Datalog Framework for Modeling Relationship-based Access Control Policies

Edelmira Pasarella
Universitat Politècnica de Catalunya
Computer Science Department
edelmira@cs.upc.edu

Jorge Lobo
Institució Catalana de Recerca i Estudis Avançats (ICREA)
Universitat Pompeu Fabra
jorge.lobo@upf.edu

Abstract
Relationships like friendship to limit access to resources have been part of social network applications since their beginnings. Describing access control policies in terms of relationships is not particular to social networks and it arises naturally in many situations. Hence, we have recently seen several proposals formalizing different Relationship-based Access Control (ReBAC) models. In this paper, we introduce a class of Datalog programs suitable for modeling ReBAC and argue that this class of programs, that we called ReBAC Datalog policies, provides a very general framework to specify and implement ReBAC policies. To support our claim, we first formalize the merging of two recent proposals for modeling ReBAC, one based on hybrid logic and the other one based on path regular expressions. We present extensions to handle negative authorizations and temporal policies. We describe mechanism for policy analysis, and then discuss the feasibility of using Datalog-based systems as implementations.

1 Introduction
Lately, there has been a growing interest within the access control community in the concept of Relationship-based Access Control (ReBAC). ReBAC has been used in social networks almost since their beginnings with the well-known friendship relationship of Facebook as its prototypical example. Technical awareness of the concept was first reported in [15], and perhaps the first formalization in the context of social networks was reported in [5]. Describing access control policies in terms of relationships is not particular to social networks. For example, a doctor can look at your medical records if he or she is your family doctor, or you can read a paper in a repository if you are one of its reviewers. At the core of the model there is a graph in which nodes represent users and resources, and arcs are labeled with relationships. Policies are described through paths among nodes in the graph (e.g., a-friend-of-a-friend represents a path of three nodes and two arcs). Recently, several papers have proposed different formalizations for ReBAC [4, 7, 8, 13, 17]. In this paper we argue that Datalog provides a very general framework for ReBAC modeling. To support our claim we work with two of the most sophisticated proposals, one based on hybrid logic and the other one based on path regular expressions, and show how complementary features of the two approaches can be captured in Datalog. The hybrid logic proposal has been developed in a series of papers that started with a modal logic as a modeling language [14], then it evolved into a model based on hybrid logic [4, 13], and more recently, an implementation embedded in the open source medical records system OpenMRS has been reported in [25]. This provides some maturity to the project. The second proposal follows the more explicit approach of defining a path specification language over the relationship graph to write policies. Results for path based ReBAC are more dispersed since more empha-
sis has been given to describing other parts of the access control systems (see for example [6, 17, 7]) and less to the formal characterizations of the expressibility. The work we have chosen for path specification, [8], is one of the most recent proposals and it incorporates features of earlier works with a more precise description of its expressibility. We then show how working under the Datalog framework we can easily extend the model (in ways that it would not be obvious to do formally in hybrid logic), we can also do policy analysis and have efficient implementations. Our contributions in this paper are the following:

1. We introduce a carefully selected subset of Datalog with equality constraints as a ReBAC policy specification language which ensures efficient implementations.

2. We then extend the hybrid logic HL of [4] to be able to express the path expressions of [8] and show a sound and complete translation of the extended HL policies into ReBAC Datalog policies.

3. We extend ReBAC Datalog policies to be able to express negative authorizations, all easily done formally because of Datalog.

4. We show how we can also use Datalog itself to find policy gaps and policy conflicts, and briefly discuss how to implement conflict resolution strategies.

5. We further extend the language to handle temporal policies.

6. We present precise complexity and expressibility results of the basic ReBAC Datalog which together with item (2) characterize the complexity of the (extended) hybrid logic for ReBAC.

7. We present evidence that policy evaluation can be done in the order of a few milliseconds using off-the-shelf Datalog engines with relationship graphs having hundred of thousands of arcs.

We end with some concluding remarks.

2 ReBAC Datalog policies

We are going to closely follow the terminology from the hybrid logic of [4] in our definitions, but first, we need to recall some basic notions of Datalog with constraints. For writing Datalog programs we need three disjoint (possibly infinite) sets \mathcal{C}, \mathcal{V} and \mathcal{P} of constant symbols, variables and predicate symbols. There is a positive integer associated to each predicate symbol called its arity. A term in Datalog is any variable or constant symbol. An atom is an expression of the form $p(t_1, \ldots, t_k)$, where p is a predicate symbol of arity k and t_1 through t_k are terms. A literal is any atom $p(t_1, \ldots, t_k)$ or its negation $\neg p(t_1, \ldots, t_k)$. A negated atom is called a negative literal; otherwise it is called positive. If all the terms appearing in a literal/atom are constants the literal/atom is called ground. Constraints are expressions of the form $t_1 = t_2$ or $t_1 \neq t_2$ for any two terms t_1 and t_2. Variables will be denoted using capital letters. A Datalog rule is an expression of the form:

$$c_1, \ldots, c_k, L_1, \ldots, L_m \rightarrow A$$

where the L_i are literals, A is an atom, the c_i are constraints, for $k, m \geq 0$. The expression $c_1, \ldots, c_k, L_1, \ldots, L_m$ is called the body of the rule, A the head, and the rule a definition of the predicate that appears in A. An informal reading of a Datalog rule is that if there is a ground instance of the rule (i.e., all variables in the rule are replaced with constants) for which the constraints in the rule are valid, and we already know that every ground literal in the body is true then we can infer that the ground instance of A in the head of rule is true. A Datalog program is a finite set of Datalog rules.

The intended meaning of a Datalog program is given by a set of ground atoms M and is defined in terms of another set of ground atoms I given as input to the program. The set M contains the (ground) atoms in I, which are assumed to be true, plus the set of ground atoms that can be inferred to be true using the rules and the input I. Ground atoms outside M are assumed to be false. More formally, given a set of Datalog rules D, we call the set of all constants mentioned in D the active language of D. We denote
by \(\text{Gr}(D)\) the set of Datalog rules obtained by replacing in all possible ways the variables in the rules with constants in the active language of \(D\). Note that \(\text{Gr}(D)\) will be empty if \(D\) does not mention any constant. Since ground atoms are also Datalog rules the same definitions of active language and \(\text{Gr}(\cdot)\) apply when we consider a Datalog program and an input. We will use for the interpretation of constraints the unique name assumption \([24]\) in which all constants are assumed to be different from each other. Given a set of ground atoms \(M\), and an atom \(A\), we write \(M \models \text{Datalog} A\) iff there exists a ground instance \(A'\) of \(A\) such that \(A' \in M\). If \(A\) is ground and \(A \notin M\), we write \(M \models \text{Datalog} \lnot A\).

Definition 2.1 Given a Datalog program \(D\) and an input \(I\), a set of ground atoms \(M\) is a model of \(I \cup D\) iff \(M\) is a minimal set (i.e., there is no a proper subset of \(M\)) for which the following equation holds:

\[
M = \{A \mid c_1, \ldots, c_k, L_1, \ldots, L_m \rightarrow A \in \text{Gr}(I \cup D), \\
\forall c_i : c_i \text{ is true, and } \forall L_i : M \models \text{Datalog} L_i\}
\]

In general, \(I \cup D\) may have zero, one or more models. But as we will see later, policies will have a single model. In its most simplest form, a *query* to a Datalog program \(D\) with input \(I\) is to ask whether a ground atom \(A\) is true in every model of \(I \cup D\). If this is the case we will write \(I \cup D \models \text{Datalog} A\), we write \(I \cup D \models \text{Datalog} \lnot A\) if \(\lnot A\) is not true in any model of \(I \cup D\). The definition can be extended to non-ground atoms if \(I \cup D\) has a unique model \(M\):

\[
I \cup D \models \text{Datalog} A \iff M \models \text{Datalog} A.
\]

We can also have a conjunction of literals \(L_1, \ldots, L_m\), \(m > 1\), as a query and we write \(M \models \text{Datalog} L_1, \ldots, L_m\) as an answer if and only if \(L_1', \ldots, L_m'\) are ground instances of the literals \(L_1, \ldots, L_m\) where variables are consistently replaced across the literals and \(\forall i M \models \text{Datalog} L_i'\).

Protection states (see \([4]\)) The underlying principle behind ReBAC is that from the point of view of specifying access control policies it is sufficient to have an abstract representation of the state of the system to protect built upon three fundamental concepts: the set of objects that form part of the system (e.g., users, resources), a set of properties that can be associated to individual objects, and a set of binary relationships between these objects - a relationship graph where vertices are objects and edges are labeled with relationship names. Hence, a *protection state* in ReBAC Datalog will be described by a set of ground atoms where only two predicate symbols are used, a 3-ary predicate rel and a 2-ary predicate prop. The set of constants \(C\), is partitioned into three disjoint sets, a set of nominal constants \(C_n\) representing names of objects, a set propositional constants \(C_p\), representing properties, and a set of (binary) relationship names \(C_r\). A ground atom of the form \(\text{rel}(n_1, r_1, n_2)\) can be member of a protection state only if \(n_1, n_2 \in C_n\) and \(r_1 \in C_r\). A ground atom of the form \(\text{prop}(n_1, p_1)\) can be member of a protection state only if \(n_1 \in C_n\) and \(p_1 \in C_p\). Intuitively speaking, \(C_n\) is the set of objects over which policies will be expressed. It contains the names of all the objects that can request access to resources, usually called *principals*, as well as the names of resources for which principals can request access to. \(C_r\) is the set of names of relationships that can be defined over these objects such as Alice is friend of Bob (\(\text{rel}(\text{alice}, \text{friend}, \text{bob})\): a principal-to-principal relationship), Bob owns Printer1 (\(\text{rel}(\text{bob}, \text{own}, \text{printer}_1)\): a principal-to-resource relationship), or Alice is member of Department Alpha (\(\text{rel}(\text{alice}, \text{member}, \text{alpha})\): here Alpha is an abstract entity which is used only to simplify policy specifications, e.g. all members of Alpha have access to Printer1). A propositional name in \(C_p\) is meant to represent a property that a collection of objects may have, like being a medical doctor, \(\text{prop}(\text{alice}, \text{doctor})\), or a patient, \(\text{prop}(\text{bob}, \text{patient})\), or the property of being a Java program, \(\text{prop}(\text{file.jar}, \text{java})\), or a video file, \(\text{prop}(\text{file.} \text{avi}, \text{video})\).

Policies Policy defines a new relation between principals and resources that *grants* the principals access to the resources. In ReBAC Datalog policies this relationship is defined by checking properties of the objects typically reachable through the relationship graph either from the principal making the request or the resource that the principal wants to access as

\[\text{3Other representations could be used (e.g., to better represent numerical attributes such as age), but they might never express relationships between objects. Our model just simplifies the presentation.}\]
Before we formally introduce policies let us examine a few examples based on the following scenario. Assume there is a head hunter company, HHC, that has a ReBAC system to manage the access privileges of its clients to profiles of its pool of candidates. To this end, HHC uses the LinkedIn and Facebook profiles of its candidates and clients. Fig. 1 depicts a partial view of the protection state held by HHC. In this graph principals are the nodes alice, bob, carl, eve, mary, rose and will and the nodes pr_b and pr_a are resources. Arcs are labeled with the relationship names profile (of), friend (of) and contact (of). HHC has a special group of candidates qualified as senior advisors depicted inside dark squares in the graph. The principal alice is in this group. Hence, the protection state will contain atoms like rel(bob, profile, pr_b), rel(carl, friend, alice), or prop(alice, senior_advisor), etc. HHC policies grant its clients (requesters) access to the professional profiles (resources) from its pool of candidates.

One of the simplest policies HHC could define is that any LinkedIn contact of the owner of a profile can access the profile. This policy can be expressed in Datalog as follows:

Policy1
rel(Res, profile, O), rel(Req, contact, O) → grant(Req, Res)

Following this policy, if rel(pr_b, profile, bob) and rel(eve, contact, bob) are in the protection state, eve is granted access to pr_b. It is easy to see that in the protection state depicted in Fig. 1, the access is granted, i.e., we are able to infer grant(eve, pr_b). Expressing this simple policy in Datalog allows us to highlight very basic features of the model. First, the protection state I will be defined independently from the set of policies D, and will be the input to the program to answer queries. Second, typically an access request comes with at least two parameters: who/what is making the request and what resource is being requested. This fact is captured in our formalization by granting to a requester (eve) access to a resource (pr_b), if the query grant(eve, pr_b) is true in $I \cup D$: $I \cup D \models_{Datalog} grant(eve, pr_b)$.

The initial motivation behind ReBAC came from social networks where policies are expressed in terms of the relationships between owners of resources and requesters independent of the resources (think of the friend relationship in Facebook and the access that having that relationship grants). Nevertheless, requesters ask for access to resources; the ownership relation is kept as a “tacit condition.” Our policy makes explicit this “tacit condition” by reaching an owner of a resource through the relationship graph (e.g., rel(Res, profile, O)), and then, having identified the owner, checking conditions in the paths between the owner and the requester (e.g., rel(Req, contact, O))². Now, let’s assume HHC extends the access to any contact of a contact of the owner of the profile. This condition is modeled in Datalog by the rule below with the introduction of a new variable Z:

Policy2
rel(Res, profile, O), rel(Req, contact, Z),
rel(Z, contact, O) → grant(Req, Res)

²For the sake of explanation, we describe as if the rule body is evaluated from left to right, but positive literals can be evaluated in any order. Datalog engines aim to find the order that produces the most efficient evaluation.
From this policy rule and the protection state depicted in Fig. 1, we have that $I \cup D \models_{Datalog} grant(\text{will}, \text{pr}_b)$. In this case, Z will be instantiated with Mary. This policy alone grants access only to contacts that are at a distance of two of the owner of the profile. To keep access to direct contacts of the owner we need both policy rules. Several rules represent the disjunction of the rules, e.g., Policy1 or Policy2. Notice that neither Carl nor Rose has access to pr_b. To extend the chain to contacts at distance three we just need a new fresh variable, for instance, W and the rule will be:

$$rel(Res, profile, O), rel(Req, contact, Z), rel(Z, contact, W), rel(W, contact, O) \rightarrow grant(Req, Res)$$

In general, fresh variables memorize intermediate nodes reached along the traversal of chains in the relationship graph to later be recalled in another part of the rule. Observe that evaluating the rule from left to right, in the sub-query $rel(Req, contact, Z)$, the variable Req is bound since it occurs in the request and is “passed” to the program by a query such as $grant(carl, pr_b)$. Then, if there exists an atom $rel(carl, contact, o)$ in the protection state (like $rel(carl, contact, will)$), Z will get bound to o, and hence, bound in the sub-query $rel(Z, contact, W)$ and so on. This way of traversing relationships in the protection state can be followed to limit the traversal of the graph during policy evaluation to be through objects related to Req or Res.

Next, assume HHC wants to grant access to senior advisors’ profiles only when the requester has two different contacts in common with the advisor. This policy can be captured by the following rule:

Policy3

$$rel(Res, profile, O), prop(O, senior_advisor), rel(Req, contact, Z1), rel(Req, contact, Z2), rel(O, contact, Z1), rel(O, contact, Z2), Z1 \neq Z2 \rightarrow grant(Req, Res)$$

This policy introduces two new features. One is an example of how properties over objects in the protection state are expressed - the second literal in the body of the rule. The second one is the use of inequalities to express some counting over relationships that will not be possible without constraints. From Policy3 and the protection state in Fig. 1, we get $I \cup D \models_{Datalog} grant(\text{will}, \text{pr}_a)$. To extend the policy to three or four contacts we merely need to add extra predicates to traverse the contact relation with new variables and then make sure that the variables get bound to different values by introducing more inequalities.

Suppose now that, to minimize conflicts of interest, HHC modifies Policy3, so that these two common contacts cannot both be personal friends of the senior advisor. The policy is modified as follows:

Policy4

$$rel(X, friend, Z1), rel(X, friend, Z2) \rightarrow r(X, Z1, Z2)$$

$$rel(Res, profile, O), prop(O, senior_advisor), rel(Req, contact, Z1), rel(Req, contact, Z2), rel(O, contact, Z1), rel(O, contact, Z2), Z1 \neq Z2, \neg r(O, Z1, Z2) \rightarrow grant(Req, Res)$$

The new feature in this policy is negation. The negative condition is defined in two steps. First, a new rule to describe the condition to be complemented is defined. Second, the negation of this condition is added to the policy rule. An important safety condition for the evaluation of negative sub-queries is that the values to check must be derived positively. This implies that all variable bindings in the negative conditions will be limited to values that are mentioned in the protection state (the active language). Hence, the negative sub-query $\neg r(O, Z1, Z2)$ must be evaluated after all its variables have been bound by other sub-queries in the rule. Considering Fig. 1, we can see that $I \cup D \models_{Datalog} grant(\text{will}, \text{p}_a)$ because $I \cup D \models_{Datalog} \neg r(\text{alice}, \text{carl}, \text{rose})$.

The last example introduces path traversals of unbounded length. HHC wants to grant access to a profile to any contact in the network of contacts of the candidate owning the profile. In this case, the condition over the network of contacts is that there must be a chain (of any length) with ending points the requester and the owner of the resource. This cor-
responds to checking whether for a requester u asking to get access to a resource r owned by o, the pair (u, o) belongs the transitive closure of the contact relation. The formalization in Datalog is the following:

Policy 5.

\[
\begin{align*}
\text{rel}(X, \text{contact}, Y) & \rightarrow r(X, Y) \\
\text{r}(X, Y) & \rightarrow r_{\text{tc}}(X, Y) \\
\text{r}(X, Z), r_{\text{tc}}(Z, Y) & \rightarrow r_{\text{tc}}(X, Y)
\end{align*}
\]

\[
\text{rel}(\text{Req}, \text{contact}, O), r_{\text{tc}}(\text{Req}, O) \rightarrow \text{grant}(\text{Req}, \text{Res})
\]

The relation \(r_{\text{tc}} \) consists of all those pairs that appear in some path connecting \(u \) and \(o \) with all the arcs labeled contact. This relation is defined in Datalog as a recursive rule (i.e., a rule in which the predicate in the head of the rule also appears in the body). In Fig. 1, we have \(I \cup D \models_{\text{Datalog}} \text{grant}(\text{rose}, \text{pr.b}) \).

In the rest of this section we formally define ReBAC Datalog policies. In particular, we define policies that cover all the features highlighted in Policy 1–Policy 5.

For writing policies, in addition to the predicates used in protection states, there are three more types of predicates in the language: a set of binary predicates called derived relationship predicates, \(\{n_{r_3}, \ldots, n_{r_5}\} \), a corresponding set of binary predicates called transitive closure relationship predicates \(\{t_{\text{tr}}_1, \ldots, t_{\text{tr}}_5\} \), and a set of predicates of different arities called global property predicates \(\{g_{1}, \ldots, g_{t}\} \).

We call \(n_r \) the basic predicate of the transitive closure predicate \(t_{\text{tr}}_i \). We call basic literal any literal of the form \(\text{rel}(t_1, r, t_2), \neg \text{rel}(t_1, r, t_2), \text{prop}(t_1, p) \) and \(\neg \text{prop}(t_1, p) \), where \(p \in C_p, r \in C_r \), and each \(t_i \) is either a variable or a constant in \(C_n \). Similarly, we call derived relationship literals, transitive closure literals and global property literals to literals that use predicate symbols from the appropriate sets.

Definition 2.2 A ReBAC policy \(D \), comprises two sets of Datalog rules:

1. A non-empty ordered set \(\hat{D} = \{r_1, \ldots, r_m\} \) such that the following conditions hold for every \(r_i \):

 (a) Every variable that appears either in a negative literal or in a (positive or negative)

 global condition literal in the body of \(r_i \), must also appear in the head or in a positive relationship, transitive closure or basic literal in the body of \(r_i \).

 (b) If \(r_i \) defines a derived relationship predicate then every variable that appears in the head must also appear in either a derived relationship, transitive closure or basic positive literal in the body of \(r_i \).

 (c) If a rule \(r_j \) defines either a derived relationship predicate or a global property predicate and the predicate appears in a literal in the body of \(r_i \), then \(j < i \).

 (d) Unless \(r_i \) defines \(\text{grant} \), there is no other rule that defines the predicate defined by \(r_i \).

 (e) The predicate \(\text{grant} \) does not appear in the body of \(r_i \).

 (f) \(r_m \) defines the predicate \(\text{grant} \).

2. A set \(\cup_{i=1}^m \text{TR}_i \), where there is a set \(\text{TR}_i \) for each derived relationship predicate \(n_{r_i} \), containing the rules:

\[
\begin{align*}
n_{r_i}(X, Y) & \rightarrow t_{\text{tr}}_i(X, Y) \\
n_{r_i}(X, Z), t_{\text{tr}}_i(Z, Y) & \rightarrow t_{\text{tr}}_i(X, Y)
\end{align*}
\]

Condition (1a) is the safety condition for the evaluation of derived predicates discussed in the example (Policy 4). Condition (1b) is also a safety condition. If variables appear in the head of a rule but not in the body then whenever a grounding of the rule body is true, it fixes the value of the variables in the head that appear in the body. The rest of the variables in the head can be bound to any constant independent of the active domain. Condition (1c) limits recursive definitions to the transitive closures. Condition (1d) limits disjunctive definitions to the predicate \(\text{grant} \). Condition (1e) prevents \(\text{grant} \) to be defined recursively on itself and Condition (1f) makes sure the predicate \(\text{grant} \) is defined.

We recall that a Datalog program \(D \) is hierarchical if there exists an assignment of integers to the predicate symbols such that for every rule in \(D \) the integer assigned to the predicate in the head is larger than
It is easy to see that any ReBAC policy assigned to predicates appearing in negative literals is hierarchical. It is a well-known property of stratified Datalog programs that they have a unique model [20]. Hence, for any protection state \(I \) and ReBAC policy \(D \) there is a unique intended model \(M(D \cup I) \).

Definition 2.3 Given a ReBAC policy \(D \) and a protection state \(I \), we say that a permission request \((u, r)\), from a principal \(u \) to access a resource \(r \) is granted if

\[
D \cup I \models_{\text{Datalog}} \text{grant}(u, r)
\]

Effective mechanisms to answer Datalog queries exist and a lot of effort has gone to optimize these methods since Datalog is the core mathematical foundation of the relational database model and the database query language SQL. More about the complexity and implementation of query answering procedures will be discussed later in the paper.

3 EHL ReBAC Policies

The content of this section is mainly from Bruns et al. [4]. In [4] the authors introduced a hybrid logic \(\text{HL} \) for the specification of ReBAC policies. In this logic, from which we have borrowed the terminology for ReBAC Datalog, there are four disjoint sets of symbols, a set \(N \) of nominal symbols, an infinite set \(V \) of variables, a set \(I \) of labels and a set \(P \) of propositional symbols. We denote by \(n, X, i \) and \(p \) generic nominal symbols, variables, labels and propositional symbols respectively. Policies in \(\text{HL} \) represent properties involving a fixed number of arcs in a relationship graphs. Following [8], we extend the logic to also cover a subclass of properties that can refer to a finite but unbounded set of arcs described as simple regular expressions.

Definition 3.1 A formula in the extended hybrid logic \(\text{EHL} \) can be:

1. any nominal symbol \(n \), variable \(X \) or proposition \(p \).
2. any term of one of the following forms: \(\neg \phi \), \(\phi_1 \land \phi_2 \), \(\forall _X \phi \), and \(\downarrow X \phi \), given that \(\phi, \phi_1 \) and \(\phi_2 \) are hybrid formulas and \(\pi \) a path expression having one of the following forms:
 (a) \(\epsilon \) representing the empty path
 (b) \(\langle i \rangle \) or \(\langle -i \rangle \)
 (c) \(\pi_1 \pi_2 \), for any two path expressions \(\pi_1, \pi_2 \)
 (d) \(\pi^+ \), for any path expression \(\pi \)

The definition of \(\text{HL} \) formulas [4] considers only simple path expressions of the form (b) above. Models in \(\text{EHL} \) are triples \((S, \{R_i \subseteq S \times S | i \in I\}, V)\), where \(S \) is a non-empty set of nodes, and \(V : N \cup P \rightarrow 2^S \), a total function with \(V(n) \) being a singleton set for any \(n \in N \). A valuation \(g : V \rightarrow S \), is a total function assigning variables to nodes. Let \(g[X \mapsto s] \) denote the valuation that maps \(X \) to \(s \) and any \(X' \neq X \) to \(g(X') \). A nominal symbol \(n \) will denote the single object in \(V(n) \). The pair \((S, \{R_i | i \in I\})\) can be interpreted as a labeled graph in which its vertexes are the nodes in \(S \) and the labeled arcs between the vertexes are defined by the \(R_i \) relations.

Let us revisit the scenario of policies \(\text{Policy1–Policy5} \) from the point of view of models in \(\text{EHL} \). In Fig. 1, the set of nodes \(S = \{\text{alice, bob, carl, eve, mary, rose, will, pr_a, pr_b}\} \) corresponds to the nominal symbols in \(N \), the relations are \(\text{profile} = \{\text{pr_b, bob}, \text{pr_a, alice}\} \), \(\text{contact} = \{\text{alice, bob}, \text{alice, carl}, \text{bob, mary}, \text{alice, rose}, \text{bob, eve}, \text{rose, rose}, \text{mary, will}\} \) and \(\text{friend} = \{\text{alice, carl}, \text{bob, carl}, \text{eve, will}\} \). We assume that \(V(\text{alice}) = \{\text{alice}\} \), \(V(\text{bob}) = \{\text{bob}\} \), \(V(\text{pr_b}) = \{\text{pr_b}\} \) and \(\text{senior_advisor} \) is a propositional symbol in \(P \). In this example, \(V(\text{senior_advisor}) = \{\text{alice}\} \), however, in general, for a propositional symbol \(p \), \(V(p) \) is not necessarily a singleton set. The pair \((S, \text{profile} \cup \text{contact} \cup \text{friend})\) is called a social graph in [4]. Given an \(\text{EHL} \) model \(M \), a node \(s \in S \) and a
valuation g, a satisfiability relation \models over EHL formulas is defined inductively as follows:

Definition 3.2 1. $M, s, g \models X$ iff $g(X) = s$
2. $M, s, g \models n$ iff $V(n) = \{s\}$
3. $M, s, g \models p$ iff $s \in V(p)$
4. $M, s, g \models \neg \phi$ iff $M, s, g \not\models \phi$
5. $M, s, g \models \phi_1 \land \phi_2$ iff $M, s, g \models \phi_1$ and $M, s, g \models \phi_2$
6. $M, s, g \models \phi_1 \lor \phi_2$ iff $M, s, g \models \phi_1$ or $M, s, g \models \phi_2$
7. $M, s, g \models @n \phi$ iff $M, s, g \models \phi$ and $V(n) = \{s\}$
8. $M, s, g \models @X \phi$ iff $M, g(X), g \models \phi$
9. $M, s, g \models \downarrow X \phi$ iff $M, s, g[X \mapsto s] \models \phi$
10. $M, s, g \models \pi \phi$ iff $M, s', g \models \phi$ for some $(s, s') \in \mathcal{R}_\pi$, where \mathcal{R}_π is inductively defined as follows:

 (a) $\mathcal{R}_e = \emptyset$
 (b) $\mathcal{R}(\cdot) = R_i$
 (c) $\mathcal{R}(\neg \cdot) = R_1^{-1}$
 (d) $\mathcal{R}_{\pi_1 \pi_2} = \mathcal{R}_{\pi_1} \circ \mathcal{R}_{\pi_2}$, where \circ denotes relation composition.
 (e) $\mathcal{R}_\pi^+ = \text{trans}(\mathcal{R}_\pi)$, the transitive closure of \mathcal{R}_π.

Items 1-6, 10b and 10c are standard in modal logics. Items 7-9 are the hybrid operators. Informally speaking, $@t$ jumps to the node named by t, i.e., $@t \phi$ holds if ϕ holds at the node identified by t. In the case of Fig. 1, $@\text{alice} \cdot \text{senior} \cdot \text{advisor}$ holds because after jumping to node alice, it holds that alice $\in V(\text{senior} \cdot \text{advisor})$.

The term $\downarrow X$ binds the variable X to the current node, i.e., $M, s, g \models \downarrow \phi$ holds if ϕ holds at s but with the valuation g now interpreting X as s (g is replaced with $g[X \mapsto s]$). In the case of Fig. 1, $@\text{bob} \cdot \text{friend}$ $\downarrow X \phi$, jumps to node bob, then through the relation friend arrives to node carl, therefore the variable X is bound to carl and, thus, if X occurs in the sub-formula ϕ, it refers to carl. For another example, let us consider under Fig. 1 the formula $@\text{bob} \cdot \text{contact} \downarrow X_1 \cdot \text{contact} \downarrow X_2 \cdot \text{contact} \downarrow X_3 \phi$. The evaluation starts at the node bob and it holds if there exists a chain of contacts of length 3 and the sub-formula ϕ holds with variables X_1, X_2 and X_3 bound to the nodes in the chain: mary, will and rose are examples of such nodes. The usual notions of free and bound variables in a formula are defined based on the bindings produced by \downarrow. Item 3.2.10c corresponds to the notion of closure for regular expressions.

As in ReBAC Datalog, policies are evaluated in the context of a concrete model M (corresponding to a protection state), and a request (u, r).

Definition 3.3 A policy is an EHL formula that may have at most Res and Req as free variables and is a Boolean combination of formulas of the form $@\text{Res} \phi_1$ or $@\text{Req} \phi_2$.

Definition 3.4 Given a policy ϕ, a permission request (u, r) is granted in a model M iff

$$M, s, g[\text{Req} \mapsto u, \text{Res} \mapsto r] \models \phi$$

for some $s \in S$ and valuation g.

Since Res and Req are the only variables that can occur free in ϕ, s and g are irrelevant for granting the permission. Thus, from the rest of the paper we will write $M, [X_1 \mapsto s_1, \ldots, X_m \mapsto s_m] \models \phi$, when the only free variables in ϕ are X_1, \ldots, X_m. In the presentation of the logic in [4], the owner of the resource and not the resource itself is used in the policies since M is presented as a “social graph”, nodes are restricted to be principals, and policies are assumed to be associated to a particular resource for which the owner is known. However, the authors recognize that more general settings can be defined and refer to the general case described here as heterogeneous protection states. Having an action in the request is also common but we will discuss this later in the paper.

Some examples of EHL policies adapted from [4] are:

$$@\text{Res}(\neg \text{profile}) \cdot \text{contact} \cdot \text{Req}$$

(2)

that grants access to any contact of the owner of the resource.

$$@\text{Res}(\neg \text{profile}) \cdot (\text{Req} \lor \langle \text{contact} \rangle \text{Req})$$

(3)
that grants access to a contact or a contact of a contact of the owner of the resource.

\[@_{\text{Res}}\langle -\text{profile}\rangle\langle \text{contact}\rangle(\text{Req} \land \neg \text{Bob}) \]

that grants access to a contact of the owner if he or she is a senior advisor.

\[@_{\text{Res}}\langle -\text{profile}\rangle\langle \text{contact}\rangle(\text{Req} \land \neg \text{Bob}) \]

that grants access to a contact of the owner who can’t be Bob.

\[@_{\text{Res}}\langle -\text{profile}\rangle\langle \text{friend}\rangle\text{Req} \land \neg (\text{friend} \land \neg \text{Req}) \]

that grants access to a friend of the owner if he or she is the only friend.

A salient feature of the original HL language (and thus, of EHL and ReBAC Datalog) is the ability to express graded modalities. Given a positive integer \(k \), one can write \((i)_k\phi \) as a shorthand for:

\[
\downarrow X(i) \downarrow Y_1(\phi \land \downarrow X(i)) \downarrow Y_2(\neg Y_1 \land \phi \land \\
\cdots \downarrow X(i) \downarrow Y_k(\neg Y_1 \land \neg Y_{k-1} \land \phi) \ldots
\]

which informally says that the formula holds in a node \(s \) if there are at least \(k \) \(R_j \)-successors of \(s \) at which \(\phi \) holds. For example, a formula granting access to a requester that has at least three contacts in common with the profile’s owner is:

\[@_{\text{Res}}\langle -\text{profile}\rangle\langle \text{contact}\rangle_3(\langle \text{contact}\rangle\text{Req}) \]

This essentially the same encoding of counting through inequalities done in Policy3.

The following policy is adapted from [8]:

\[@_{\text{Res}}\langle -\text{profile}\rangle\langle \text{member_of}\rangle\langle -\text{supervise}\rangle^+\text{Req} \]

that grants permission to any supervisor in the management chain to access profiles owned by members of the groups under her management line.

4 From EHL to ReBAC Datalog

Given an EHL policy defined over sets \(\mathcal{N} \), \(\mathcal{V} \), \(\mathcal{I} \) and \(\mathcal{P} \), an EHL model \(M = (S, \{R_i \subseteq S \times S|i \in \mathcal{I}\}, \mathcal{V}) \), and a policy \(\phi \), we want to find an equivalent ReBAC Datalog policy \([\phi]\) and protection state \([M]\).

Without loss of generality, we assume that all bound variables in \(\phi \) are named differently. We also assume that the model has been fixed. Hence, when we refer to \(S \), \(R_i \) or \(\mathcal{V} \) in any of the definitions we are referring to the nodes, relations and the function \(\mathcal{V} \) of this model. The following equivalences of HL formulas are easy to verify:

1. \(\@t_1 \@t_2 \phi \equiv \@t_2 \phi; \)
2. \(\neg @i \phi \equiv @i \neg \phi; \)
3. \(@i(\phi_1 \lor \phi_2) \equiv (@i \phi_1 \lor @i \phi_2); \) and
4. \(\neg \downarrow X \phi \equiv \downarrow X \neg \phi, \)

for any \(t \), \(t_1 \) and \(t_2 \) nominal symbols or variables. Using these equivalences and De Morgan’s laws we can normalize EHL formulas by pushing all negations to be in front of nominal symbols, variables, propositional symbols or non-empty path expressions, as well as removing multiple occurrences of \(@ \) in front of any formula. A formula is called normal conjunctive if it does not contain disjunctions, all the negations appear in front of nominal symbols, variables or non-empty path expressions and there are no redundant \(@ \)-operators. A formula is in disjunctive form if it is a disjunction of normal conjunctive formulas. It easy to see that every formula has an equivalent formula in disjunctive form. For the rest of the presentation we assume that all EHL formulas are in disjunctive form. Let the sets \(\mathcal{C} = \mathcal{C}_n \cup \mathcal{C}_p \cup \mathcal{C}_r \), \(\mathcal{V} \), \(\mathcal{P} \) of constant symbols, variables and predicate symbols be such that \(\mathcal{N} \subseteq \mathcal{C}_n \), \(\mathcal{I} \subseteq \mathcal{C}_r \), \(\mathcal{P} \subseteq \mathcal{C}_p \) and \(\mathcal{V} \subseteq \mathcal{Var} \). Without loss of generality, we assume that for any nominal symbol \(n \), \(V(n) = \{n\}.^3 \) In what follows, for the sake of readability, we will use italics in EHL formulas and continue using math serif font for Datalog. Intuitively, each normal conjunctive sub-formula occurring in a disjunctive formula representing a policy, can be seen as a partial definition of the policy. This intuition gives us insights about how to proceed in order to translate an EHL policy into a ReBAC program. Given an EHL formula \(\phi \), we define the program

\[^3 \text{This is, the syntax of the constant in the language is the same as value in the model (Herbrand-like).} \]
Given a variable $X \in \text{Var}$, for any conjunctive normal EHL formula ϕ, $[\phi]^X$ defines inductively a set B of constraints and literals, and a set R of Datalog rules in a pair (B, R) as follows:

1. $[X']^X = ((X' = X), \emptyset)$
2. $[n]^X = ((n = X), \emptyset)$
3. $[p]^X = ([\text{prop}(X, p)], \emptyset) \text{ if and only if } p \in P$
4. $[-\phi]^X = ([X' \neq X], \emptyset), \text { if and only if } \phi \equiv X'$; $[-\phi]^X = ((\neg \phi), \emptyset), \text { if and only if } \phi \equiv n \text{ and } V(n) = \{n\}; \text { otherwise}$ $[-\phi]^X = (\neg \phi, \emptyset) \setminus \varphi,$ $[\varphi]^X = (B, R') \text{ if and only if } \varphi$ is a new global property predicate symbol of arity equal to the cardinality of φ plus 1.
5. $[\phi_1 \land \phi_2]^X = ([B_1 \cup B_2, R_1 \cup R_2]) \text{ if and only if } [\phi_1]^X = (B_1, R_1)$ and $[\phi_2]^X = (B_2, R_2)$
6. $[@_n\phi]^X = ([n = Y] \cup B, R) \text{ if and only if } [\phi]^Y = (B, R),$ Y is a new fresh variable from Var
7. $[@_X\phi]^X = (B \cup [X' = Z], R),$ Z is a new fresh variable from $\text{Var},$ and $[\phi]^Z = (B, R)$
8. $[\downarrow X'\phi]^X = ([X' = X] \cup B, R) \text{ if and only if } [\phi]^X = (B, R)$
9. For $[\pi\phi]^X$, when

(a) $\pi \equiv \epsilon$, then $[\pi\phi]^X = [\phi]^X$
(b) $\pi \equiv i$, then $[\pi\phi]^X = ([\text{rel}(X, i, Y)] \cup B, R)$ \text{ if and only if } $[\phi]^Y = (B, R)$ and Y is a new fresh variable from Var
(c) $\pi \equiv (\neg i)$, then $[\pi\phi]^X = ([\text{rel}(Y, i, X)] \cup B, R)$ \text{ if and only if } $[\phi]^Y = (B, R)$ and Y is a new fresh variable from Var
(d) $\pi \equiv \pi_1 \pi_2$, then $[\pi\phi]^X = (B_{\pi_1} \cup B_{\pi_2}, R_{\pi_1} \cup R_{\pi_2})$, where $[\pi_1\phi]^X = (B_{\pi_1}Y, R_{\pi_1}Y)$ and $[\pi_2\phi]^Y = (B_{\pi_2}R, R_{\pi_2})$
(e) $\pi \equiv \pi_1^+, \text{ then } [\pi\phi]^X = ([\text{pi}_+(X, Y)] \cup B, R', \cup R_{\pi_1}Y \cup R_{\text{tc}})$ \text{ if and only if }$
 \text{i. } [\phi]^Y = (B, R'), [\pi_1\phi]^X = (B_{\pi_1}Y, R_{\pi_1}Y) \text{ and } Y \text{ is a new fresh variable from } \text{Var}$
 \text{ii. } \text{pi is a new derived relationship predicate symbol and } \text{pi}_+, \text{ its corresponding transitive closure predicate, and}$
 \text{Rtc} = (B_{\pi_1}Y \rightarrow \text{pi}(X, Y), \text{pi}(X, Y) \rightarrow \text{pi}_+(X, Y), \text{pi}(X, Z), \text{pi}_+(Z, Y) \rightarrow \text{pi}_+(X, Y))$
Consequently, by Def. 4.1 and Def. 4.2 the ReBAC Datalog program associated to ϕ, $[\phi]$, is

$$\{ rel(Y, \text{profile}, \text{Res}), \pi(Y, \text{Req}) \to \text{grant}(\text{Req}, \text{Res}),$$

$$\text{rel}(Y, \text{contact}, Y_2), \to \pi(Y, Y_2)$$

$$\pi(Y, Y_2) \to \pi_+(Y, Y_2)$$

$$\pi(Y, Y_3), \pi(Y, Y_2) \to \pi_+(Y, Y_2) \}$$

Given a protection state, a policy and a permission request, the next theorem establishes the relationship between granting permissions in EHL and query answering in ReBAC Datalog programs.

Theorem 4.1 Given an EHL policy ϕ in disjunctive form, an EHL model M and a permission request (u, r)

$$M, [\text{Req} \mapsto u, \text{Res} \mapsto r] \models \phi \text{ iff } [M] \cup [\phi] \models_{\text{Datalog}} \text{grant}(u, r)$$

Proof sketch: The proof is based on the following lemma:

Lemma 4.1 Let ϕ be a normal conjunctive EHL formula, $M = (S, \{R_i \subseteq S \times S | i \in I \}, V)$ a model, s a node in S and $g : V \rightarrow S$ an assignment such that $M, s, g \models \phi$. Let $X \in \text{Var}$ be a fresh variable not appearing in ϕ. Then,

$$[M] \cup \{ X = s, B \to q(\overline{V}, X) \} \models_{\text{Datalog}} q(\overline{X}, X),$$

where \overline{V} is the set of free variables in ϕ, \overline{X} is the assignment of \overline{V} in g, q is a fresh predicate and $[\phi]^X = (B, R)$

This lemma works over general normal conjunctive formulas without the restriction imposed in policies by EHL over free variables. Hence we are able to do an inductive proof based on the structure of ϕ. The case in which $\phi \equiv \pi^+ \phi'$ requires a second induction to cover the transitive closure.

5 From ReBAC Datalog to EHL

There are two types of ReBAC Datalog policies that cannot be expressed within EHL. An example of the
first type of policies is the following:

\[
\begin{align*}
\text{rel}(X, i, Y) & \rightarrow \text{grant}(X, Y) \\
\text{r}(X, Y) & \rightarrow \text{tr}(X, Y) \\
\text{r}(X, Z), \text{tr}(Z, Y) & \rightarrow \text{tr}(X, Y) \\
\text{tr}(\text{Req}, \text{Res}) & \rightarrow \text{grant}(\text{Req}, \text{Res})
\end{align*}
\]

In this policy, a property is checked on every object in the path between Res and Req. Such conditions cannot be imposed in a path expression. To limit the expressibility of ReBAC Datalog to path expressions and avoid this type of policies, we need simple definitions of derived relationships. We need to limit the literals that can appear in the body of a derived relationship definition to be either positive rel literals or transitive closure relationship literals – no negation and no basic or global property literals.

An example of the second type of policies is the following:

\[
\text{rel}(X, i, Y) \rightarrow \text{grant}(\text{Req}, \text{Res}) \quad (14)
\]

This says that access is granted if \(R_i \) in the protection state is not empty. To exclude this type of policies we need to limit the variables that appear in any ReBAC Datalog rule as follows:

Definition 5.1 For a Datalog rule of the form (1) we say that:

1. A variable that appears in a literal \(L_k \), \(k \leq m \), is seeded iff it also appears either in A or in a literal \(L_i \), \(i < k \).
2. A negative literal is well-seeded iff all its variables are seeded.
3. A positive literal is well-seeded iff at least one of its variables is seeded.

The rule is well-seeded iff the literals in its body can be re-arrange so that all of them become well-seeded and the variables appearing in the constraints are seeded.

The rule in Eq.(14) is not well-seeded since neither of the variables, \(X \) or \(Y \), appears in the head or in a predicate in the body together with another well-seeded variable (or constant). Now we have the following proposition.

Proposition 5.1 A ReBAC Datalog policy that only uses simple derived relationship definitions and all its rules are well-seeded can be translated to an EHL formula. Furthermore, if the policy does not use transitive closure relationships it can be translated into an HL formula.

Proof sketch: the transformation starts from the grant rules and is more or less straightforward if it is done using a well-seeded order traversal of the literals in the rule by binding a variable with \(\downarrow \) the first time the variable is encountered in the rule.

We skip the transformation due to space limitations. In addition, there is no equivalent EHL policies for most of the extensions discussed in the following section.

6 Extensions

Permissions are usually granted not to simply access a resource but to do something with it. For example, Alice may want access to a file to read and modify it. Hence the granularity of the permissions should be at the level of the operation. We can represent requests as a triple \((u, r, a)\), where \(u \) is the principal requesting access to the resource \(r \) and \(a \) is the action the principal wants to apply to the resource. If the set of actions is part of \(S \) in the protection state, there could be an “implements” relations over resources and actions and we can allow three free variables in an EHL policy \(\phi \): \(\text{Req}, \text{Res}, A \). A request \((u, r, a)\) is granted under the policy \(\phi \) iff

\[
M, [\text{Req} \rightarrow u, \text{Res} \rightarrow r, A \rightarrow a] \models \phi
\]

and the grant Datalog rules will be of the form

\[
\text{B} \rightarrow \text{grant}(\text{Req}, \text{Res}, A)
\]

For example, the policy that let any friend of the owner of a resource Res to copy Res is written as follows:

\[
\begin{align*}
\text{rel}(\text{Res}, \text{implements}, \text{copy}), \\
\text{rel}(O, \text{owns}, \text{Res}), \text{rel}(O, \text{friend}, \text{Req}) & \rightarrow \text{grant}(\text{Req}, \text{Res}, \text{copy})
\end{align*}
\]
Similar to permission granting rules, negative authorizations can be defined by a formula ϕ' such that access is denied when:

$$M, [\text{Req} \mapsto u, \text{Res} \mapsto r, A \mapsto a] \models \phi'$$

The Datalog rule of a negative authorization will be of the form

$$B \rightarrow \text{deny}(\text{Req}, \text{Res}, A)$$

Having negative authorizations introduces two problems. One is what to do if a request is neither granted nor denied. The second is what to do with conflicting decisions. The first issue of policy coverage is a semantic issue. We could have a meta-rule to cover the missing cases but this meta-rule may hide the gaps of what it could be an incomplete policy otherwise. In addition, if meta-rules are used one needs to re-examine the need of complicating the policy specification with negative and positive authorizations since one could, in principle, specify one type of policy and let the meta-rule cover the other type (like in any request that is not granted is denied). A more practical problem is to discover policy gaps. So far, we have used Datalog programs to answer ground queries (e.g., $\text{grant}(u, r, a)$). By typing the objects in a protection state and adding them as part of the input, we can also ask existentially quantified queries and do gap analysis with the rule:

$$\text{prop}(\text{Req, principal}), \text{prop}(\text{Res, resource}),$$

$$\text{prop}(A, \text{action}),
\neg \text{grant}(\text{Req, Res, A}), \neg \text{deny}(\text{Req, Res, A}) \rightarrow \text{gap}(\text{Req, Res, A})$$

and the query:

$$D \models_{\text{Datalog}} \exists \text{Req} \exists \text{Res} \exists A (\text{gap}(\text{Req, Res, A}))$$

For analysis, we are assuming that propositions exist in D typing the constants in the active domain.

There are three complexity characterizations for query evaluation in Datalog and logic programs. In one characterization, called data complexity, the complexity is characterized in terms of the input size (in our case, the protection state) while the Datalog program (in our case the ReBAC policies) and the query are fixed. If, on the other hand, the input is fixed and the program and the query size is what matters, the complexity of query evaluation is called program complexity. If both the program and the input are considered part of the problem size the characterization is called program+data complexity. Most of the time in database applications data complexity is considered sufficient since the size of the data represented by the input is much larger than the size of the program. We will show in the next section why this is also a reasonable assumption for ReBAC policies.

Efficient procedures (PTIME data complexity) exist not only to decide if the answer is yes or no, but also to obtain values for the existentially quantified variables in a query like the one to check for gaps.

Conflicts can be an indication of policy errors. However, including policy conflict resolution rules in the semantics of policy evaluation is a common practice since many times it facilitates policy specification. A typical policy conflict resolution rule is $\text{denies-override-allows}$. This can be easily incorporated into Datalog policies by rewriting each granting access rule as follows:

$$B, \neg \text{deny}(\text{Req, Res, A}) \rightarrow \text{grant}(\text{Req, Res, A})$$

There are many conflict resolution strategies that can be borrowed from other Datalog models – the interested reader can find in [18] an extensive study of authorizations overrides meta-policies and how to express them in terms of logic programs.

History-based Policies It is common to find examples of access control policies that depend on the occurrence of past events. In the context of ReBAC, motivated by access control policies found in community-based collaborations, Fong et al [13] has extended HL with linear past temporal operators. Two examples from [13] are:

- A user who has been reported for using inappropriate language twice is suspended for further editing.
- A user who has already created two distinct objects that have since remained untouched by any
member of the community (including herself) is not allowed to further create new objects.

Handling history-based policies in the context of Datalog has been discussed in [22]. This is achieved by adding a time argument to all the predicates and allowing a limited class of time constraints over time variables. To illustrate how it works we will encode the second example above:

\[\begin{align*}
T_1 \leq T, \quad T_2 \leq T, \\
\text{rel}(U, \text{own}, O_1, T_1), \text{rel}(U, \text{own}, O_2, T_2), \\
-\text{twoEd}(O_1, O_2, T), O_1 \neq O_2 \rightarrow \text{deny}(U, O, \text{create}, T) \\
T_1 \leq T, \quad T_2 \leq T, \quad \text{rel}(O_1, \text{edited}, U_1, T_1), \\
\text{rel}(O_2, \text{edited}, U_2, T_2) \rightarrow \text{twoEd}(O_1, O_2, T).
\end{align*} \]

The intuition behind the rules is that the \(T_i \) variables will be instantiated with time values, and events like creation of objects, or modifications of objects will be incorporated into the protection state (these events can be captured each time a request to execute these operations is granted/denied) and the state will evolve over time. Hence, given two objects \(O_1 \) and \(O_2 \), and a fixed time \(t \), \(\text{twoEd}(O_1, O_2, t) \) will hold if there are time points \(t_1 \) and \(t_2 \) before (or equals to) \(t \) for which \(\text{rel}(u, \text{edited}, O_1, t_1) \) and \(\text{rel}(u, \text{edited}, O_2, t_2) \) are part of the corresponding states.

A time constraint \(C \) is any expression of the form \(T_1 \oplus T_2 \pm c \), where \(T_1 \) and \(T_2 \) are different time variables, \(c \) is a non-negative real number and \(\oplus \) is one of \(\{=, \leq, <\} \). These binary relations are interpreted under the standard order of time. Several constraints can appear in a rule but all the time variables in the constraints must also appear either in the head of the rule or in a literal in the body. In addition, if \(T \) is the time variable appearing in the head, and \(C_1, \ldots, C_n \) all the constraints appearing in the body, then for any variable \(T_i \) that appears in the constraints, it must be the case that \(C_1, \ldots, C_n \models_{\text{Datalog}} T_i \leq T \). This ensures that policy evaluations do not depend on “future” states. In the non-temporal case, policies were evaluated in a protection state. In the case of temporal policies, all the ground atoms belonging to the same temporal protection state will be extended with an extra-argument which will be a time constant - the same constant in all the atoms. Note that there is no way to specify absolute values for the \(T_i \)'s in the rules, all times are relative to \(T \) which is also a variable. Similar to [13], policy compliance is defined in terms of traces. A trace \(T \), is a (possibly infinite) sequence of temporal states \(\langle S_0, S_1, \ldots \rangle \), such that constants \(t_i, t_j \) associated to the atoms in states \(S_i, S_j \) are such that \(t_i \leq t_j \) if \(i \leq j \). Intuitively, \(T \) represents the history of the protection state evolution over time. How the evolution happens over time is not relevant for our discussion. Given a set of temporal policy rules \(P \) and a trace \(T \), a permission request \((\text{req}, \text{res}, a) \) is granted at time \(t \) iff

\[P \cup T \models_{\text{Datalog}} \text{grant}(\text{req}, \text{res}, a, t) \]

The crucial point here is that conditions in any rule refer to properties that must be true either at the same state where the head of the rule is true or in an earlier state, and when a permission is requested it is assumed that the request is to grant the permission at the current time, i.e., the time when the request is made. The results in [22] also show how effective monitors that only keep the historical data required to evaluate the rules can be implemented instead of having copies of multiple states. Each update step executed by the monitor takes time proportional to the size of the update made to the protection state. This is in contrast to the results in [13] in which the steps take time proportional to the size of the state. The same monitors from [22] can be used for historical ReBAC if the only time variable that can appear in the rules representing path expressions is the variable that appears in the head (and thus there are not temporal constraints in the recursive rules). In other words path expressions refers to paths in a single protection state.

7 Datalog as an implementation

In contrast to policy analysis where time is not so much an issue, the complexity of access control decisions must consider the effect of the policy, i.e., the Datalog rules. Program complexity in Datalog is \textbf{EXPTIME}-complete [11]. In terms of ReBAC Datalog that would mean that fixing a protection state,
there is a policy that takes exponential time to evaluate with respect to the size of the the policy itself + the fixed size of the protection state. This result applies even if the Datalog rules are well-seeded and no transitive closure relationships are used. Therefore, the result also applies to

Proposition 7.1 ReBAC Datalog programs with all predicates with arity \(\leq k \) and rules with constraints that used \(\leq k \) variables is program+data complete for \(P \).

This follows directly from the facts that (1) Datalog programs that are limited to use \(\leq k \) variables per rule is data+program complete for \(P \) [28], and (2) that using the result that Stratified Datalog with negation is data complete for \(P \) and program complete for \(\text{EXPTIME} \) [1] together with the same techniques from [28], one can show that stratified Datalog programs with negation that are limited to use \(\leq k \) variables per rule are also data+program complete for \(P \). These proofs rest on the fact that any intermediate result needed to evaluate the rules is no more than polynomially larger than the input size. In ReBAC Datalog programs, the size of any derived relation is a polynomial function on the size of the protection state. More precisely, if the number of constants in the protection state is \(m \), the size of a derived relation can be bound to \(O(m^k) \), assuming \(k \) to be the maximal predicate arity. Take, for example, \(\text{grant}(X, Y) \). The maximum number of different values that \(X \) or \(Y \) can take is \(m \). Hence, the number of ground atoms is bound by \(m^2 \). The number of relations defined by policies (i.e., the number of different predicate names appearing in the head of at least one rule is limited by the number \(l \) of program rules, therefore, an evaluation of the ReBAC program can be done in \(O(lm^k) \).

The square is added as an upper bound of rule evaluation in case there are recursive rules. In practice, this number is much smaller, and for a given request \(\text{grant}(u, r, a) \), \(l \) will be determined by how well we can index the rules based on \(u, r, \) and \(a \), to pull out the subset of rules that apply to the specific request. One could use the principal matching rules concept from [8] or the user-to-user relationship-based access control model of [7] to organize policies and create an indexing.

There is a syntactic characteristic of the program rules that is used to ensure that intermediate results are kept small: we have already observed how the propagation of information through variable bindings happens in the rules. Take, for example, the rule:

\[
\begin{align*}
\text{rel}(\text{Res}, \text{profile}, \text{O}), \text{rel}(\text{Req}, \text{contact}, \text{Z}), \\
\text{rel}(\text{Z}, \text{contact}, \text{O}) \rightarrow \text{grant}(\text{Req}, \text{Res})
\end{align*}
\]

In terms of database operations, the evaluation of the rule requires two joins. We know that at the moment of evaluation, values for the variables \(\text{Req} \) and \(\text{Res} \) will be fixed. Therefore, the evaluation of \(\text{rel}(\text{Res}, \text{profile}, \text{O}) \) will produce a single value for \(\text{O} \). The expected number of values for \(\text{Z} \) returned by the evaluation of \(\text{rel}(\text{Req}, \text{contact}, \text{Z}) \) can be estimated by the typical values of contact list sizes given that \(\text{Req} \) is fixed. Similarly, the expected number of values for \(\text{Z} \) in the evaluation \(\text{rel}(\text{Z}, \text{contact}, \text{O}) \) can be estimated. This is called the selectivity of the evaluation, the smaller the expected number of values, the higher the selectivity. Given that the selection operations in databases can be done much faster than the joins, modern database systems do query planning before query evaluation to find the right order to evaluate the joins. If, for example, the order is first to do
the join \(\text{rel}(\text{Req}, \text{contact}, Z) \), \(\text{rel}(Z, \text{contact}, O) \), before doing the second join with \(\text{rel}(\text{Res}, \text{profile}, O) \) a projection over \(O \) is done in the relation obtained from the join \(\text{rel}(\text{Req}, \text{contact}, Z) \), \(\text{rel}(Z, \text{contact}, O) \) and the joint relation can be discarded before doing the (semi) join with \(\text{rel}(\text{Res}, \text{profile}, O) \). In this case there can never be a relation with more than \(m^2 \) tuples during the computation. In contrast, creating the \((\text{Res}, O, \text{Req}, Z)\) joint table could in principal generate a relation with \(m^4 \) tuples. This dependency of shared variables is known as a Sideway Information Passing (SIP) optimization and it is fundamental for the Magic Sets optimization technique applied to recursive Datalog rules. Given that the evaluation of an access control decision in the Datalog program is always answering a ground query this optimization will be very effective, essentially transforming the query answering into a goal oriented procedure. This means that the search space will be very likely limited to nodes in the graph that are reachable from the constants passed as arguments in the query which, in many cases, will be much smaller than \(m \). Furthermore, SIPs are useful for implementing and maintaining view materialization - this is a pre-computation of rule evaluations that generalizes the concept of catching suggested in [9].

There are several Datalog systems available to test implementations. Nevertheless, we are not presenting experimental evaluations since [21] already reports an evaluation and comparison of a few systems that includes experiments with rule sets with exactly the characteristics of ReBAC Datalog policies. Instead what we will do is present the relevant results and put them in context with the experimental evaluation of a Java implementation of a subset of EHL policy evaluator reported in [25].

Since the publication of [21] there have been several new releases of the systems and the results of the experiments have been updated twice using the newer versions. The discussion below is based on the 2011 report [12]. The machine where all the experiments were conducted was a dual core 3GHz Dell Optiplex 755 with 4 gigabytes of main memory. It was running Ubuntu 7.10 with kernel 2.6.22. Although the experiments were ran using four different Datalog systems and no a single one outperformed the others in all the evaluations, we will only report the results obtained using Ontobroker [21] since it is the system that better performed in the majority of the tests. Ontobroker is also written in Java. We start reviewing the results of evaluating the following set of rules:

\[
\begin{align*}
\text{b1}(X, Z), b2(Z, Y) & \rightarrow a(X, Y) \\
\text{c1}(X, Z), c2(Z, Y) & \rightarrow b1(X, Y) \\
\text{c3}(X, Z), c4(Z, Y) & \rightarrow b2(X, Y) \\
\text{d1}(X, Z), d2(Z, Y) & \rightarrow c1(X, Y)
\end{align*}
\]

The base relations that would correspond to the protection state were \(c2, c3, c4, d1 \) and \(d2 \), representing atoms of the form \(\text{rel}(X, c2, Y) \), \(\text{rel}(X, c3, Y) \), \(\text{rel}(X, c4, Y) \), \(\text{rel}(X, d1, Y) \), \(\text{rel}(X, d2, Y) \). We will discuss the results for experiments that were conducted using \(50K \) and \(250K \) randomly generated arcs from a fixed set of 1000 nodes. For the query \(a(X, Y) \), in which both variables were free, with \(50K \) arcs the time to evaluate the query was 8.807sec. With \(250K \) the evaluation took 59.259sec. At first glance, these times do not look encouraging. Nevertheless, if in the query we bind the first argument (e.g., \(a(1, Y) \)) the time to answer the query with \(50K \) arcs reduces to 7msec. With \(250K \) arcs the time reduces to 21msec. Tests with the second argument bound (e.g., \(a(x, 2) \)) resulted in similar performance of \(50K \) arcs, but only 5msec for \(250K \). This difference is explained by the fact that Ontobroker does query analysis and builds a cost model to decide what optimizations to use including the order to do the joint operators, the algorithm to use for the execution of each of the join operations as well as selectivity analysis. This improvement of at least three orders of magnitude shows the effect of limiting the search to reachable objects. For ReBAC, we can take the best of the times since queries \(\text{grant}(u, r) \), will have both arguments bound.

It is difficult to make a direct comparison to the results reported in [25] for several reasons. One is that the number of arcs used in [25] is 2 orders of magnitude larger (30000K) than for the experiments in [12]. Furthermore, in [25] the arcs were not randomly generated, and the machine was more powerful: it had 8 cores of faster CPUs and 4 times more memory. They report having averages of 37msec for the policies most similar to the program above. These 37msec are an
average over policy evaluations that could require the executions of no joints at all and up to a maximum of three joints. This is in contrast to the query \(a()\) that has four joins. Evaluations with larger data sets can be done but it is worth noting that database sizes do not correlate directly with time to execute queries - not only the second argument bound query evaluation ran faster for the 250\(K\) set than the 50\(K\), but the time that took to run queries of the form \(b2(X, Y)\) and \(b1(X, Y)\) with one of the arguments bound using the 50\(K\) set and the 250\(K\) set took about the same time in each case, less than 4msec for \(b1\) and less than 20msec for \(b2\).

[12] also reports experiments over the evaluation of transitive closure rules:

\[
\begin{align*}
\text{par}(X, Y) &\rightarrow \text{tc}(X, Y) \\
\text{par}(X, Z), \text{tc}(Z, Y) &\rightarrow \text{tc}(X, Y)
\end{align*}
\]

The results here are also remarkable. The largest input size consisted of 2000 nodes and 1M \(\text{par}\) arcs randomly generated. Two types of input were generated, for graphs with and without cycles. For queries with no bindings (\(\text{tc}(X, Y)\)) the times for evaluation were 87.3sec for data with no cycles and 200.9sec for data with cycles. Binding the first argument made very little difference, 86.5sec and 197.17sec respectively. But if the second argument was bound the results were 25msec for no cycles and 16msec for data with cycles. This demonstrates the effects of the Magic set optimization that re-writes the programs to take advantage of the bound arguments and the SIP derived from the rules syntax.

[25] does not have implementation for path expressions. The observation to make is that despite of the fact that the system in [25] was specially developed for \(\text{EHL}\) its performance is not particularly better than using an off-the-shelf Datalog system that also includes regular path evaluations, giving evidence of the excellent performance of Datalog systems contrary to the belief that they are not suitable for high throughput access control implementations.

A final observation about implementations: there is a result in parallel complexity that may explain some of the experimental results for the transitive closure above. A Datalog program is called linear if and only if each rule has at most one occurrence of the predicate in the head appearing in the body. Recall that a decision problem is in the \(\text{NC}\) complexity class if it can be solved in polylogarithmic time on a parallel computer with a polynomial number of processors. It is known that the data complexity of linear Datalog is in \(\text{NC}\) [26] and amenable to parallelization. Note that except for negation, ReBAC programs are linear. Among the optimization considered by Ontobroker is the use multiple cores and threading to parallelize query evaluation.

8 Final remarks

Research on access control policy languages has been extensive and logic programming has been a popular modeling choice [18, 2, 19, 16, 3]. But writing correct policies and developing correct and intuitive implementations of policy management systems are not easy tasks [10]. The attention ReBAC has received in the access control research community comes from the fact that it provides an expressive yet tractable model to intuitively capture the meaning of the “subjective” policies people may have in mind. The goal of this paper has been to show the benefits of using Datalog as a developing framework. Modeling ReBAC in Datalog is natural since Datalog is a good language to describe and talk about properties of graphs which is the essence of ReBAC. From a practical point of view there are two good reasons for choosing Datalog: Datalog specifications are easier to implement, and implementation techniques have been around for many years. These are complemented by extensive results in computational complexity which we were able to use almost directly to establish the expressibility and complexity results of ReBAC Datalog policies (and by Propositions 5.1 & 7.1, the complexity of \(\text{HL}\) and \(\text{EHL}\) policy evaluation). This does not mean that Datalog must be the syntax the policy author uses to write policies. ReBAC Datalog can be thought as target compilation language of a more user-friendly language for authoring.

There is a striking similarity between the definitions of properties and relationships in \(\text{HL}\) and the definitions of concepts and roles in Description
Logics (DL). This has been our motivation for the “meta-relation” rel, as in rel(O, friend,R), instead of friend(O,R). This is a typical domain-independent representation of DL roles in Datalog. Since hash indexes can be built in relation columns, accessing the related items of a particular object can be done very efficiently. There is a lot of research in the DL community to develop fast deduction algorithms for very large data sets (see, for example, [27]). Developing a ReBAC model based on one of the tractable DLs is an avenue of research worth exploring. But what is more important to note is that many advances for high throughput Datalog systems have been driven by the interest of the Semantic Web community of using Datalog-like languages for Ontology reasoning. Even if a specialized ReBAC policy evaluator is developed all the experience gained developing high throughput Datalog systems cannot be ignored and will be of tremendous impact.

Acknowledgments Edelmira Pasarella was partially supported by the Spanish Ministry for Economy and Competitiveness (MINECO) and the European Union (FEDER funds) under Grant Ref.: TIN2013-46181-C2-1-R (COMMAS). Jorge Lobo was partially supported by the Secretaria d’Universitats i Recerca de la Generalitat de Catalunya, the Maria de Maeztu Units of Excellence Programme and the Spanish Ministry for Economy and Competitiveness (MINECO) under Grant Ref.: TIN2016-81032-P.

References

