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Abstract. Any power index defines a total preorder in a simple game
and, thus, induces a hierarchy among its players. The desirability rela-
tion, which is also a preorder, induces the same hierarchy as the Banzhaf
and the Shapley indices on linear games, i.e., games in which the de-
sirability relation is total. The desirability relation is a sub–preorder of
another preorder, the weak desirability relation, and the class of weakly
linear games, i.e., games for which the weak desirability relation is total,
is larger than the class of linear games. The weak desirability relation
induces the same hierarchy as the Banzhaf and the Shapley indices on
weakly linear games. In this paper, we define a chain of preorders be-
tween the desirability and the weak desirability preorders. From them
we obtain new classes of totally preordered games between linear and
weakly linear games.

Keywords: Simple game, Power index, Preorder, Desirability, Weak de-
sirability, Linear game, Weakly linear game

1 Introduction

Any power index considered in a simple game induces a total preorder on the
set of players, and, thus, a hierarchy among them. Two power indices which
induce the same hierarchy in a simple game are said to be ordinally equivalent
in it. In this paper we refer to three power indices: the Shapley–Shubik index (SS,
henceforth)[14, 15], the Penrose–Banzhaf–Coleman index (PBC, henceforth) [12,
1, 4] and the Johnston index [11]. It is known [5, 13] that the PBC, the SS and
the Johnston power indices are ordinally equivalent in linear games, and that
the common induced hierarchy is the one given by the desirability relation.

In [3] weakly linear games were introduced and it was proved that all regular
semivalues (i.e., semivalues with positive coefficients for the marginal contribu-
tions, see [2, 3]) are ordinally equivalent for this kind of games, and that the
common induced hierarchy is the one given by the weak desirability relation. As
every linear simple games is weakly linear, and both the PBC and the SS power
indices are regular semivalues, this work extends and generalizes the former ones
in relation with these two indices. The ordinal equivalence of the SS, the PBC
and the Johnston indices in a class larger than linear games but smaller than
weakly linear games was proved in [7].
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In this paper, a chain of families of simple games, between linear and weakly
linear games, are defined and some of their properties are studied. In all these
classes of simple games, the Banzhaf and the Shapley–Shubik indices are ordi-
nally equivalent. The smallest family in this chain is the class of linear games
and the largest one is the class of weakly linear games. A somehow similar work
was developed in [16] by defining a chain of classes of simple games between
weighted simple games and linear simple games.

The paper is organized as follows. Basic definitions and preliminary results
are included in Section 2. Section 3 contains new characterizations of the de-
sirability and the weak desirability relations. In Section 4 the m–desirability
relations are defined and some of their properties are studied. Some Conclusions
end the paper in Section 5.

2 Definitions and preliminaries

In the sequel, N = {1, 2, . . . , n} denote a fixed but otherwise arbitrary finite set
of players. Any subset S ⊆ N is a coalition. A simple game v (in N , omitted
hereafter) is a cooperative game, i.e., a function v : 2N → R with v(∅) = 0, such
that: (a) v(S) = 0 or 1 for any coalition S,1 (b) v is monotonic, i.e., v(S) ≤ v(T )
whenever S ⊂ T , and (c) v(N) = 1. Either the family of winning coalitions
W = W(v) = {S ⊆ N : v(S) = 1} or the subfamily of minimal winning
coalitions Wm = Wm(v) = {S ∈ W : T ⊂ S ⇒ T /∈ W} determines a simple
game.

Given a simple game v, let us consider, for each i ∈ N , and for every integer
h with 1 ≤ h ≤ n, some important subsets of N :

Pi = {S ⊆ N : i ∈ S} and Pi(h) = {S ∈ Pi : |S| = h}.

Pi is the set of coalitions S that contain i, while Pi(h) is the subset of such
coalitions having cardinality h.

Wi = {S ∈ W : i ∈ S} and Wi(h) = {S ∈ Wi : |S| = h}.

Wi is the set of winning coalitions S that contain i, while Wi(h) is the subset of
such coalitions having cardinality h.

Ci = {S ∈ Wi : S \ {i} /∈ W} and Ci(h) = {S ∈ Ci : |S| = h}.

Ci is the set of winning coalitions S that are crucial for i, while Ci(h) is the
subset of such coalitions having cardinality h. It is obvious that

Ci(h) ⊆ Wi(h) ⊆ Pi(h).

Notice that for h = 1 the set Pi(1) only contains the singleton {i}, Wi(1) =
Ci(1) and {i} ∈ Ci(1) ⇔ {i} ∈ W. On the other extreme, for h = n the set Pi(n)
only contains the total set N , Wi(n) = Pi(n) and N ∈ Ci(n) ⇔ N \ {i} /∈ W.

1 For a detailed discussion of some issues raised by allowing abstentions, see Felsenthal
and Machover [6] and for several levels of approval in input and output, see Freixas
and Zwicker [9].
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Definition 1. The desirability relation ([10])
Let v be a simple game and i, j ∈ N . Then

i %D j ⇔ {S ∪ {j} ∈ W ⇒ S ∪ {i} ∈ W } for any S ⊆ N\{i, j},
i ≻D j ⇔ i %D j and j %/ D i,
i ≈D j ⇔ i %D j and j %D i.

It is well known that %D is a preordering. The relation %D (resp., ≻D) is called
the desirability (resp., strict desirability) relation, and ≈D is the equi–desirability
relation.

Definition 2. Linear game2

A simple game v is linear whenever the desirability relation %D is complete.

Definition 3. The weak desirability relation ([3])
Let v be a simple game and i, j ∈ N . Then

i %d j ⇔ |Ci(h)| ≥ |Cj(h)| for any h with 1 ≤ h ≤ n,
i ≻d j ⇔ i %d j and j %/ d i,
i ≈d j ⇔ i %d j and j %d i.

Then %d is a preordering called the weak desirability relation. The relation ≻d is
the strict weak desirability relation and ≈d is the weak equi–desirability relation.

In [5] it is proved that the desirability relation is a sub–preordering of the
weak desirability relation, that is to say, for any i, j ∈ N , i %D j implies i %d j
and i ≻D j implies i ≻d j.

Definition 4. Weakly linear game ([3])
A simple game v is weakly linear whenever the weak desirability relation %d is
complete.

As stated in [3], the completeness of the desirability relation %D implies the
completeness of the weak desirability relation %d so that all linear games are
also weakly linear.

Moreover, if v is a linear simple game then v is weakly linear and the desir-
ability relation %D and the weak desirability relation %d coincide.

3 Other characterizations of the desirability and the
weak desirability relations

Given two different elements i, j ∈ N we can establish a function

φji : Pj → Pi

2 linear games are also called complete, ordered or directed games in the literature,
see Taylor and Zwicker [16] for references on these names.
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defined by:

φji(S) =

{
S if i ∈ S
(S \ {j}) ∪ {i} if i /∈ S

It is not difficult to see that φji is bijective and its inverse is φij . Notice that,
for any S ∈ Pj its image φji(S) always contain S \ {j}.

In the following subsections we study the restrictions of φji to Wj(h) and to
Cj(h). We will see that we can characterize the relations i %D j and i %d j by
using these restrictions.

3.1 The restriction of φji to Wj(h)

It is clear that, for any S ∈ Wj(h), φji(S) ∈ Pi(h), but it is not always true
(except for h = n) that φji(S) ∈ Wi(h). The following proposition gives a
characterization of this fact.

Proposition 1. Let v be a simple game, i and j be different elements in N and
h be an integer with 1 ≤ h < n. Then,

φji(Wj(h)) ⊆ Wi(h) ⇔

{
S ∪ {j} ∈ W ⇒ S ∪ {i} ∈ W

for any S ⊆ N\{i, j} with |S| = h− 1.

Proof:
Assume that φji(Wj(h)) ⊆ Wi(h), and let S ⊆ N\{i, j} be such that S∪{j} ∈ W
and |S| = h− 1. Taking T = S ∪ {j} it is T ∈ Wj(h) and, thus, φji(T ) ∈ W by
hypothesis. But, since i /∈ T , it is φji(T ) = (T\{j})∪ {i} = S ∪ {i}. This proves
that S ∪ {i} ∈ W.
Conversely, assume the hypothesis and let S ∈ Wj(h). To prove that φji(S) ∈
Wi(h) we only need to see that φji(S) ∈ W. There are two possibilities: a) If
i ∈ S then φji(S) = S and, obviously, φji(S) ∈ W. b) If i /∈ S then φji(S) =
(S \ {j}) ∪ {i}. Now, taking T = S \ {j} it is T ⊆ N\{i, j}, |T | = h − 1 and
T ∪ {j} = S ∈ W, thus, T ∪ {i} = φji(S) ∈ W. �

Proposition 2. Let v be a simple game, i and j be different elements in N .
Then,

i %D j ⇔ φji(Wj(h)) ⊆ Wi(h) for any integer h with 1 ≤ h ≤ n

i ≈D j ⇔ φji(Wj(h)) = Wi(h) for any integer h with 1 ≤ h ≤ n.

Proof:
From Definition 1 it is i %D j if and only if S ∪ {j} ∈ W ⇒ S ∪ {i} ∈ W for
any S ⊆ N\{i, j}. Since |S| ≤ n − 2, from Proposition 1 this last assertion is
satisfied if and only if φji(Wj(h)) ⊆ Wi(h) for any h with 1 ≤ h ≤ n − 1. But
it is always true that φji(Wj(n)) ⊆ Wi(n) and this proves the first part. The
second part is an obvious consequence of the first one. �
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3.2 The restriction of φji to Cj(h)

Proposition 3. Let v be a simple game, i and j be different elements in N and
h be an integer with 1 < h ≤ n. Then,

φji(Cj(h)) ⊆ Ci(h) ⇔

{
φji(Wj(h)) ⊆ Wi(h)

φji(Wj(h− 1)) ⊆ Wi(h− 1).

Proof:
i) Assume that φji(Cj(h)) ⊆ Ci(h). To prove that φji(Wj(h)) ⊆ Wi(h) consider
S ∈ Wj(h). If S \ {j} /∈ W then S ∈ Cj(h) and, by the hypothesis, φji(S) ∈
Ci(h) ⊆ Wi(h). Otherwise, if S \ {j} ∈ W then φji(S) ∈ W because of the
monotonicity of v taking into account that φji(S) ⊇ S \ {j}. Thus, in either
case, φji(S) ∈ Wi(h).
To prove that φji(Wj(h−1)) ⊆ Wi(h−1) consider S ∈ Wj(h−1). If i ∈ S then,
obviously, φji(S) = S ∈ W. Otherwise, if i /∈ S then φji(S) = (S \ {j}) ∪ {i}.
If φji(S) /∈ W it would be S ∪ {i} ∈ Cj(h) because |S ∪ {i}| = h− 1, S ∪ {i} ∈
W, by monotonicity, and (S ∪ {i})\{j} = φji(S) /∈ W. Thus, by hypothesis,
φji(S∪{i}) ∈ Ci(h). But, since φji(S∪{i}) = (S∪{i}), by monotonicity it would
be S /∈ W which is a contradiction. Thus, in either case, φji(S) ∈ Wi(h− 1).
ii) Conversely, assume that φji(Wj(h)) ⊆ Wi(h) and φji(Wj(h−1)) ⊆ Wi(h−1),
and consider S ∈ Cj(h). To prove that φji(S) ∈ Ci(h) we only need to prove that
φji(S) \ {i} /∈ W, because by the hypothesis φji(S) ∈ Wi(h). If i /∈ S then
φji(S) = (S \{j})∪{i} and, thus, φji(S)\{i} = S \{j} /∈ W by the hypothesis.
Otherwise, if i ∈ S then φji(S) = S. In this case, if φji(S) \ {i} ∈ W it would
be φji(S) \ {i} ∈ Wj(h− 1) because φji(S)\{i, j} /∈ W (by monotonicity, since
(φji(S)\{j} /∈ W). Thus, by the hypothesis, φji(S)(φji(S) \ {i}) ∈ Wi(h − 1).
But φji(S)(φji(S) \ {i}) = φji(S) \ {i} /∈ W, which is a contradiction. �

Proposition 4. Let v be a simple game, i and j be different elements in N and
h be an integer with 1 < h < n. Then,

S ∪ {j} ∈ W ⇒ S ∪ {i} ∈ W

for any S ⊆ N\{i, j} with h− 2 ≤ |S| ≤ h− 1

}
⇔ φji(Cj(h)) ⊆ Ci(h).

Proof:
The property ”S ∪ {j} ∈ W ⇒ S ∪ {i} ∈ W for any S ⊆ N\{i, j} with h− 2 ≤
|S| ≤ h − 1” is equivalent to ”φji(Wj(h)) ⊆ Wi(h) and φji(Wj(h − 1)) ⊆
Wi(h − 1)” from Proposition 1, and, from Proposition 3, this is equivalent to
φji(Cj(h)) ⊆ Ci(h). �

Corollary 1. Let v be a simple game, i and j be different elements in N and h
be an integer with 1 < h < n. Then,

S ∪ {j} ∈ W ⇒ S ∪ {i} ∈ W

for any S ⊆ N\{i, j} with h− 2 ≤ |S| ≤ h− 1

}
⇒ |Cj(h)| ≤ |Ci(h)|.
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Corollary 2. Let v be a simple game, i and j be different elements in N and h
be an integer with 1 < h < n. Then,

φji(Cj(h− 1)) ⊆ Ci(h− 1)

φji(Cj(h+ 1)) ⊆ Ci(h+ 1)

}
⇒ φji(Cj(h)) ⊆ Ci(h).

Proof:
From Proposition 4, φji(Cj(h − 1)) ⊆ Ci(h − 1) implies that S ∪ {j} ∈ W ⇒
S ∪ {i} ∈ W for any S ⊆ N\{i, j} with |S| = h− 2. Similarly, φji(Cj(h+ 1)) ⊆
Ci(h + 1) implies that S ∪ {j} ∈ W ⇒ S ∪ {i} ∈ W for any S ⊆ N\{i, j} with
|S| = h−1. And the two conditions together are equivalent to φji(Cj(h)) ⊆ Ci(h),
again from Proposition 4. �

Proposition 5. Let v be a simple game, i and j be different elements in N .
Then,

i %D j ⇔ φji(Cj(h)) ⊆ Ci(h) for any integer h with 1 ≤ h ≤ n

i ≈D j ⇔ φji(Cj(h)) = Ci(h) for any integer h with 1 ≤ h ≤ n.

Proof:
From Proposition 2 it is i %D j if and only if φji(Wj(h)) ⊆ Wi(h) for any h with
1 ≤ h ≤ n. From Proposition 3, this is satisfied if and only if φji(Cj(h)) ⊆ Ci(h)
for any h with 1 < h ≤ n. And, taking into account that Wk(1) = Ck(1) for any
k ∈ N , the first part is proved. The second part is an obvious consequence of
the first one. �

Proposition 6. Let v be a simple game, i and j be different elements in N .Then
the following assertions are equivalent:

(i) φji(Cj(n)) ⊆ Ci(n)
(ii) |Cj(n)| ≤ |Ci(n)|
(iii) φji(Wj(n− 1)) ⊆ Wi(n− 1)

(iv) N \ {i} ∈ W ⇒ N \ {j} ∈ W

Proposition 7. Let v be a simple game, i and j be different elements in N .Then
the following assertions are equivalent:

(i) φji(Cj(1)) ⊆ Ci(1)
(ii) |Cj(1))| ≤ |Ci(1)|
(iii) {j} ∈ W ⇒ {i} ∈ W

4 The m–desirability relations

We are going to introduce a collection of new preorders in N .
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Definition 5. Let v be a simple game and i, j ∈ N .
For any integer m with 1 ≤ m ≤ n we define:

i %m j ⇔

{
|Cj(h)| ≤ |Ci(h)| for any h with m ≤ h ≤ n, and

φji(Cj(h)) ⊆ Ci(h) for any h with 1 ≤ h < m.

i ≻m j ⇔ i %m j and j %/ m i,

i ≈m j ⇔ i %m j and j %m i.

Then %m is called the m–desirability relation. The relation ≻m is the strict m–
desirability relation and ≈m is the m–equi–desirability relation.

Notice that, using Proposition 4, the second part of the definition of the
m–desirability relation can be reformulated in the following way:

Remark 1. For any m with 1 < m ≤ n it is

{
φji(Cj(h)) ⊆ Ci(h)

for any h with 1 ≤ h < m

}
⇔

{
S ∪ {j} ∈ W ⇒ S ∪ {i} ∈ W

for any S ⊆ N\{i, j} with |S| ≤ m− 2

}

The following proposition states that the desirability relation and the weak
desirability relation are particular cases of m-desirability relations, and that
different values of m can give the same m–desirability relation.

Proposition 8. Let v be a simple game and i, j ∈ N . Then,

i %d j ⇔ i %2 j ⇔ i %1 j.

i %D j ⇔ i %n j ⇔ i %n−1 j.

Proof:
From Definition 5, it is clear that i %1 j if and only if |Cj(h)| ≤ |Ci(h)| for

any h with 1 ≤ h ≤ n and, from Definition 5, this is equivalent to i %d j . On
the other hand, i %2 j if and only if |Cj(h)| ≤ |Ci(h)| for any h with 2 ≤ h ≤ n
and φji(Cj(1)) ⊆ Ci(1). But this last condition is equivalent to |Cj(1)| ≤ |Ci(1)|
and, thus, i %2 j ⇔ i %d j .

Similarly, from Definition 5, i %n j if and only if |Cj(n)| ≤ |Ci(n)| and
φji(Cj(h)) ⊆ Ci(h) for any h with 1 ≤ h < n. But it is clear that |Cj(n)| ≤ |Ci(n)|
if and only if φji(Cj(n)) ⊆ Ci(n) and, using Proposition 5, i %n j ⇔ i %D j .
Finally, i %n−1 j if and only if |Cj(n)| ≤ |Ci(n)|, |Cj(n − 1)| ≤ |Ci(n − 1)| and
φji(Cj(h)) ⊆ Ci(h) for any h with 1 ≤ h < n−1. From Proposition 5 it is obvious
that i %D j ⇒ i %n−1 j . Conversely, if i %n−1 j , since |Cj(n)| ≤ |Ci(n)| is
equivalent to φji(Cj(n)) ⊆ Ci(n), applying Corollary 2 for h = n − 1 we get
φji(Cj(n− 1)) ⊆ Ci(n− 1) and, thus, i %n−1 j ⇒ i %D j . �

Proposition 9. Let v be a simple game. Then, for any m with 1 ≤ m ≤ n, the
m–desirability relation is a preorder in N .
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Proof:
It is already known that the desirability relation and the weak desirability re-
lation are preorders, so that we can assume 2 < m < n − 1. To prove that the
m–desirability relation is transitive, let i, j, k be different elements in N such
that i %m j %m k. It is clear that |Ci(h)| ≥ |Cj(h)| ≥ |Ck(h)| for any h with
m ≤ h ≤ n, and thus |Ci(h)| ≥ |Ck(h)| for any h with m ≤ h ≤ n. To prove that
φki(Ck(h)) ⊆ Ci(h) for any h with 1 ≤ h < m we will see, using Remark 1, that
S ∪ {k} ∈ W ⇒ S ∪ {i} ∈ W, for any S ⊆ N\{i, k} with |S| ≤ m − 2 . Thus,
suppose that S ⊆ N \ {i, k} is such that |S| ≤ m − 2 and S ∪ {k} ∈ W. There
are two possibilities:

If j ̸∈ S it is S ⊆ N \{j, k} and, since j %m k, |S| ≤ m−2 and S ∪{k} ∈ W,
we have S ∪ {j} ∈ W. But it is also true that S ⊆ N \ {i, j} and, since i %m j,
we have S ∪ {i} ∈ W.

If j ∈ S, let S
′
= S \ {j}. Then S

′ ∪ {k} ⊆ N \ {i, j} and S
′ ∪ {k} ∪ {j} =

S∪{k} ∈ W. Since i %m j and |S′ ∪{k}| = |S| ≤ m−2, it is S
′ ∪{k}∪{i} ∈ W.

But S
′ ∪ {i} ⊆ N \ {j, k} and, since j %m k and |S′ ∪ {i}| = |S| ≤ m − 2, we

have S
′ ∪ {i} ∪ {j} = S ∪ {i} ∈ W. �

Proposition 10. Let v be a simple game and i, j ∈ N . Let m, p be two integers
with 1 < m < p < n. Then,

i %p j ⇒ i %m j
i ≻p j ⇒ i ≻m j

Proof:
Assume that i %p j. To prove that i %m j, we only need to see that |Ci(h)| ≥
|Cj(h)| when m ≤ h < p, because the other cases are immediate consequence
of the hypothesis. But, since φji(Cj(h)) ⊆ Ci(h) for any h with 1 ≤ h < p, in
particular it is |Ci(h)| ≥ |Cj(h)| when m ≤ h < p.
Assume now that i ≻p j, that is to say, i %p j and j %/ p i, and we will prove
that j %/ m i. The fact that i ≻p j includes two possibilities:
(a) There is some h with p ≤ h ≤ n such that |Ci(h)| > |Cj(h)|. Since h ≥ p
implies h ≥ m, it is clear in this case that j %/ m i.
(b) There is some h with 1 ≤ h < p such that φij(Ci(h)) * Cj(h). This fact
directly proves that j %/ m i if h < m. If m ≤ h < p we will see that |Cj(h)| <
|Ci(h)| and this also proves that j %/ m i. In effect, notice that φji(Cj(h))  Ci(h),
because i %p j implies φji(Cj(h)) ⊆ Ci(h) and if φji(Cj(h)) = Ci(h) it would
be φij(φji(Cj(h))) = Cj(h) = φij(Ci(h)) in contradiction with the hypothesis.
Thus, |φji(Cj(h))| = |Cj(h)| < |Ci(h)|. �

The former proposition shows that the m–desirability relations form a chain
of preorders on the set N of players. Taking into account Propositions 8 and 10
we can write, for any two elements i, j ∈ N :

i %D j ⇔ i %n j ⇔ i %n−1 j ⇒ i %n−2 j ⇒ · · · ⇒ i %3 j ⇒ i %2 j ⇔ i %1 j ⇔ i %d j
i ≻D j ⇔ i ≻n j ⇔ i ≻n−1 j ⇒ i ≻n−2 j ⇒ · · · ⇒ i ≻3 j ⇒ i ≻2 j ⇔ i ≻1 j ⇔ i ≻d j

Notice, in particular, that all m–desirability relations coincide for n ≤ 3,
and that for n = 4 they coincide either with the desirability or with the weak–
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desirability relation. As a consequence of this fact the m–desirability relations
only appear as new preorders for n ≥ 5.

In the following example all the m-desirability relations are shown.

Example 1. LetN = {1, 2, 3, 4, 5, 6, 7, 8, 9} and Wm = {{1, 2}, {3, 4, 5}, {6, 7, 8, 9}}

1 ≈D 2 3 ≈D 4 ≈D 5 6 ≈D 7 ≈D 8 ≈D 9

1 ≈7 2 3 ≈7 4 ≈7 5 6 ≈7 7 ≈7 8 ≈7 9

1 ≈6 2 3 ≈6 4 ≈6 5 6 ≈6 7 ≈6 8 ≈6 9

1 ≈5 2 3 ≈5 4 ≈5 5 6 ≈5 7 ≈5 8 ≈5 9

1 ≈4 2 3 ≈4 4 ≈4 5 ≻4 6 ≈4 7 ≈4 8 ≈4 9

1 ≈3 2 ≻3 3 ≈3 4 ≈3 5 ≻3 6 ≈3 7 ≈3 8 ≈3 9

1 ≈d 2 ≻d 3 ≈d 4 ≈d 5 ≻d 6 ≈d 7 ≈d 8 ≈d 9

For any integer m with 1 ≤ m ≤ n we can define the concept of m–linear
game:

Definition 6. m–linear game
A simple game v is m–linear whenever the m–desirability relation %m is com-
plete. The set of m–linear simple games will be denoted by L(m).

From the above results it is clear that L(n) = L(n − 1) coincides with the
set of linear games, L(1) = L(2) is the set of weakly linear games, and

L(n) = L(n− 1) ⊆ L(n− 2) ⊆ · · · ⊆ L(3) ⊆ L(2) = L(1).

Thus, a linear game belongs to L(m) for all m (1 ≤ m ≤ n), and for any weakly
linear (but not linear) game v there exist some m0 (2 ≤ m0 < n− 1) such that
v /∈ L(m) for any m > m0 and v ∈ L(m) for any m ≤ m0. In the game of
Example 1 it is n = 9 and m0 = 3. In the next example we show a weakly linear
game which does not belong to any other class of m–linear games (in this case
it is n = 5 and m0 = 4).

Example 2. Let N = {1, 2, 3, 4, 5} and let v be the game defined by

Wm = {{1, 2}, {1, 3}, {2, 4}}.

This game is not linear (does not belong to L(5) = L(4)) because the desirability
relation only gives:

1 ≻D 3 and 2 ≻D 4 ≻D 5.

Clearly, v is weakly linear (it belongs to L(1) = L(2)) with

1 ≈d 2 ≻d 3 ≈d 4 ≻d 5.

But this game it is not 3–linear (it does not belong to L(3)) because {1, 3} ∈ W
and {2, 3} /∈ W implies 2 %/ 3 1, and, similarly, {2, 4} ∈ W and {1, 4} /∈ W
implies 1 %/ 3 2.
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5 Conclusions

In this paper, a chain of classes of simple games is defined. In all of them, the
PBC and the SS indices rank players in the same way, i.e., they are ordinally
equivalent. The smallest class in the chain is the class of linear games and the
largest one is the class of weakly linear games. We think that these classes will
have an interesting role in future works. We can mention two open questions:
a) For n ≥ 6 it is known that all possible hierarchies are achievable in weakly
linear games [8] but not all of them are achievable in linear games. Which is the
smallest class L(m) such that all hierarchies are already achievable in this class?
b) It is known that the Johnston index is ordinally equivalent to PBC and SS
indices in linear games but not in weakly linear games. Which is the largest class
L(m) in which Johnston index is ordinally equivalent to PBC and SS indices?
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