GESTIÓ I DISSENY ESTRUCTURAL D’UNA NAU INDUSTRIAL AMB EINES BIM

Grau en Enginyeria Mecànica
Curs 16/17

Autor: Albert López Rubio
Director: Joan Casals Artigas
Data: 9 de Juliol de 2017
Localitat: Manresa, Catalunya
Gràcies per tant, i per tot.

Els projectes els fan i estan fets de persones.

I en aquest procés de graduació culminat en un treball fi de grau, també hi ha hagut un esforç remarcable per part de moltes persones, més enllà de l’autor. Per tant, seria injust considerar aquest projecte com a individual. És per això que m’agradaria reconèixer l’empatia, suport i comprensió incondicional de les següents persones que han estructurat tot el camí.

A l’Eli, companya vital, que ha fet de totes les unions entre pilars i fonaments articulades. Reduint el moment flector carregant de tot el procés gaire bé a zero, permetent el grau de llibertat indispensable per sentir-se segur, fix i amb l’espai necessari per seguir en la direcció escollida.

Als meus pares, Isabel i Antoni, i a la meva germana, Marta, per la resistència demostrada durant tants anys suportant totes les sol·licitacions sense ruptura. Ni fràgil ni dúctil.

A tota la família; en especial al Pineu, Gustau, Padu i Miguis, relativament abandonats només per falta de temps, per la seva espera i comprensió absoluta.

Disculpes, i mil i una gràcies més. Us estimo.
RESUM DEL PROJECTE

El present Treball Final de Grau s’emmarca dins l’àmbit de la construcció industrial. El projecte pretén simular la gestió i direcció tècnica del procés constructiu centrant-se en el càlcul estructural i la metodologia de treball BIM per portar-ho a terme, dins la legalitat vigent i ubicat en un solar del terme municipal d’Esparreguera.

El treball acadèmic ha contemplat tots els elements necessaris –documentació, gestió econòmica, materialitat, plànols constructius, informes de càlcul estructural, normatives – per a executar l’edificació industrial des de la perspectiva Building Information Modeling (BIM). Aquest aspecte clau del projecte ha aportat un treball d’acord amb la nova manera d’entendre la construcció. És per això, que té un component d’innovació, eficiència, precisió i espectacularitat visual interessants dins del sector.

En concret, es recull la informació en tres blocs clarament diferenciats. En primer lloc, una memòria descriptiva de la informació necessària per a la realització del cos del projecte. En segon lloc, la memòria de construcció i càlcul, resultat de la solució constructiva adoptada. I finalment, el conjunt de documentació annexa al procés de construcció industrial: plànols, amidaments i pressupost, i plec de condicions.

La valoració personal és satisfactòria. La motivació en aprofundir en el sistema constructiu BIM ha permès obrir la porta a continuar treballant en aquesta direcció. El contingut elaborat en el present, només és una petita part del potencial de la gestió BIM. A partir d’aquí, queda un interessantíssim camí en el món de les instal·lacions, l’eficiència energètica, l’adequació acústica i el respecte mediambiental, com també del manteniment i l’enderroc de l’edificació per estudiar.

PROJECT ABSTRACT

This Degree Final Paper belongs to the industrial construction field. The project expects to pretend the technical direction and management of the construction process by focusing on the structural calculation and the BIM working methodology in order to carry it out according to the current legislation and located in a plot of the municipality of Esparreguera.

The academic paper has taken into account all the necessary elements –documentation, financial management, materiality, construction plans, structural calculation reports, regulation– to execute the industrial construction from the Building Information Modeling (BIM) point of view. This key aspect of the project has provided the paper an approach according to the new way of conceiving construction; that is why it has innovation, efficiency, precision and visual spectacularity components that become interesting within the sector.

Specifically, information is gathered in three clearly distinct blocks. Firstly, a descriptive report of the necessary information to carry out the main section of the project. Secondly, the construction and calculation report, that results from the adopted construction solution. And, finally, the ensemble of documentation attached to the industrial construction process: plans, measuring and budget, and the solicitation document.

The personal evaluation is satisfactory. The motivation for studying in depth the BIM construction process has allowed opening the door to keep on working in this direction. The content that has just been created is only a small part of the possibilities BIM management has. From now on, there is still an extremely interesting way to go in the facilities field, but also in the energy efficiency, the acoustics adaptation and the environmental friendliness, and the maintenance and the building demolition to be studied.
ÍNDEX

1. INTRODUCCIÓ..5
 1.1. MOTIVACIÓ ...5
 1.2. OBJECTIU ..5
 1.3. ACTIVITATS ...5

2. ANTECEDENTS ...6
 2.1. ENTORN BIM ...6
 2.1.1. Contextualització ...6
 2.1.2. Implantació BIM ...7
 2.1.3. Estandarització ..7
 2.1.4. Gestió BIM ...7
 2.1.5. Cinc motius per a la implementació BIM ...11
 2.2. ESTRUCTURES INDUSTRIALS ...12
 2.2.1. Funcionalitat ...12
 2.2.2. Conveni i inconveni d’una estructura metàl·lica12
 2.2.3. L’acer ..12
 2.2.4. Configuració estructural ...13
 2.2.5. Durabilitat de l’estructura ..15
 2.2.6. Proteccions per a estructures metàl·liques ..15
 2.3. CÀRREGUES ACTUANTS SOBRE ESTRUCTURES ..16
 2.3.1. Classificació de les accions per la seva naturalesa16
 2.3.2. Classificació de les accions per la seva variació en l’espai16
 2.3.3. Classificació de les accions per la seva variació en el temps16
 2.4. ESTUDI GEOTÈCNIC I FONAMENTACIÓ ..17
 2.4.1. Estudi geotècnic ...17
 2.4.2. Fonamentacions superficiales ...17
 2.4.3. Fonamentacions profundes ...18
 2.5. NORMATIVA ...18

3. MEMÒRIA CONSTRUCTIVA ...19
 3.1. OBJECTE DEL PROJECTE ..19
 3.2. TITULAR ..19
 3.3. EMPLAÇAMENT ...19
 3.4. ACTIVITAT ...19
 3.5. FITXA URBANÍSTICA ..19
 3.6. CARACTERÍSTIQUES DE L’EDIFICACIÓ ..20
 3.6.1. Característiques generals ...20
 3.6.2. Característiques de l’edificació ..20
 3.6.3. Seguretat contra incendis de l’edifici ...21
 3.7. NORMATIVA ..21
 3.8. MEMÒRIA DE CÀLCUL ..22
 3.8.1. Accions en l’edificació ...22
 3.8.2. Elements de formigó en massa o armats ..22
 3.8.3. Estructura metàl·lica ..23
 3.8.4. Sistema de càlcul ...23

INDEX DE FIGURES

Il·lustració 1. Metodologia de treball BIM ...6
Il·lustració 2. Dimensions BIM ...6
Il·lustració 4. Informació BIM ...6
Il·lustració 5. Grau d’implantació BIM mundial ...7
Il·lustració 6. Prova pilot d’obra pública ...7
Taula 1. Classificació per tipus de pilars ...13
Taula 2. Classificació per tipus de bigues ..14
Taula 3. Tipus de càrregues genèriques actuants ..16
Taula 4. Fitxa urbanística ...19
Taula 5. Resultat exploració Geotècnica ...22
1. INTRODUCCIÓ

El present projecte ha realitzat el disseny, càlcul i optimització de l’estructura metàl·lica i de la fonamentació d’una nau industrial mitjançant el software Robot Structural Analysis d’acord a la normativa vigent Código Técnico de la Edificación i Instrucción de Hormigón Estructural.

S’ha escollit aquest software de càlcul per la relació directe amb el programa de modelització Revit 2017 d’Autodesk. Aquest software de modelització ha permès centrar el projecte en un entorn BIM (Building Information Modeling).

1.1. Motivació

Els motivs que han impulsat el desenvolupament d’aquest projecte han sigut principalment els següents:

En primer lloc, l’aplicació i ampliació dels coneixements adquirits durant la meva formació acadèmica relacionada amb el càlcul d’estructures (Sistemes Mecànics, Mecànica de Sòlids Deformables, Teoria d’Estructures i Construccions Industrials) i el desenvolupament de projectes (Oficina Tècnica). El grau d’implantació de les naus industrials. La necessitat d’optimitzar les instal·lacions satisfent les necessitats del client imaginari i el compliment de la normativa. I en especial, l’aprenentatge de les tècniques i filosofia en auge de les solucions constructives amb BIM. Tècniques que permeten fer un salt qualitatiu i quantitatiu a l’hora de desenvolupar projectes amb un control quasi del 100% des de la fase prèvia (captació de la necessitat) fins a l’última fase (amortitzacions i manteniment de l’edifici construït).

1.2. Objectius

L’objectiu principal del present ha estat establir una metodologia de treball en l’edificació industrial, acord amb la normativa vigent (CTE i EHE-08), simulant que tots els actors implicats durant tot el procés constructiu – disseny, projectació i construcció – participessin coordinadament i a temps real des del seu àmbit de treball específic en una sola plataforma BIM. Per assolir aquest objectiu principal, s’ha hagut de treballar la següent informació:

- Recopilació de teoria de càlcul estructural.
- Modelització de l’edifici
- Realització del càlcul estructural amb el software Robot Structural Analysis
- Adaptació dels documents tècnics necessaris per a l’execució de la solució projectada.
- Investigació i aprofundiment de la metodologia de treball BIM
- Utilització de diferents aplicacions interconnectades en BIM.

1.3. Activitats

El projecte en qüestió s’estructura en quatre capítols i un annex, a l’objecte de realitzar una organització adequada dels diferents objectiu marcats al llarg del projecte. La informació recollida a cadascun dels capítols és la següent:

- Capítol 1: Recull la informació genèrica que ha motivat la realització del projecte i els objectiu marcats durant la realització del mateix.
- Capítol 2: Enuncia una breu presentació dels coneixements teòrics previs requerits per a desenvolupar el projecte amb garanties i fa referència a la normativa aplicada i als programa de càlcul i modelització utilitzats per a la resolució.
- Capítol 3: S’aporten els documents necessaris per a la descripció de la solució adoptada, de manera que es pugui dur a terme una execució correcta: memòria constructiva, plec de condicions, estudi de seguretat i salut, pressupost i amidaments, i plànols.
- Capítol 4: Recull de manera resumida les conclusions obtingudes durant el desenvolupament del projecte.

Bibliografia: Fa referència a la bibliografia utilitzada durant l’elaboració del present.

Annex: Recopilatori de gràfics i informes extrets del software de càlcul Robot Structural Analysis.
2. ANTECEDENTS

2.1. ENTORN BIM

2.1.1. Contextualització

Building Information Modeling (BIM) és una metodologia de treball col·laborativa per a la creació i gestió d’un projecte de construcció. El seu objectiu es centralitzar tota la informació del projecte en un model d’informació digital creat per tots els agents implicats durant tot el procés constructiu.

El BIM suposa l’evolució dels sistemes de disseny tradicionals en el pla, ja que incorpora informació geomètrica (3D), de temps (4D), de costos (5D), ambiental (6D), de manteniment (7D) i d’enderroc (8D).

L’ús del BIM va més enllà de les fases de disseny, abarcant l’execució del projecte i extenent-se al llarg del cicle de vida de l’edifici, permeten la gestió del mateix i reduint els costos d’operació.
2.1.2. Implantació BIM

Durant l’última dècada, la metodologia BIM s’ha implantat de manera progressiva a diferents països, sent per a algun d’ells objectiu prioritari de les seves Administracions Públiques, les quals han imposat o valorat el seu ús en l’obra pública, seguint la recomanació de la Directiva Europea de Contractació Pública 2014/24/UE.

GRAU D’IMPLANTACIÓ BIM AL MÓN

A Catalunya, el Departament de Territori i Sostenibilitat va crear al maig de 2016 una comissió per implantar aquesta metodologia en projectes d’obra pública. Segons el comunicat de premsa oficial del 30 de maig de 2016 explica: L’adopció del sistema BIM suposa la transformació íntegra del model de treball actual, motiu pel qual la seva implantació ha de ser progressiva. El departament lidera la comissió interdepartamental que guiarà tot el procés de desplegament. Entre les seves funcions hi haurà la d’anàlitzar la viabilitat de desplegar el BIM, avaluar les diferents plataformes i softwares existents en el mercat, proposar un pla d’implantació i determinar les obres en què s’haurà d’aplicar de manera prioritària. Formaran part de la comissió representants dels departaments de Territori i Sostenibilitat, Economia i Hisenda, Salut i Governació, Administracions Públiques i Habitatge. També infraestructures Ferroviàries de Catalunya (Ifercat), Ferrovairis de la Generalitat de Catalunya (FGC), Institut Català del Sòl (INCASÒL), Centrals i Infraestructures per a la Mobilitat i les Activitats Logístiques (CIMALSA) i d’Ingestructures de la Generalitat de Catalunya (Infraestructures.cat). A les reunions de la comissió es podran convidar membres de col·legis professionals i entitats representatives dels sectors empresarials afectats.

Un exemple de prova pilot d’obra pública en BIM és l’institut de Molins de Rei, Lluís Recasens:

2.1.3. Estandardització

Per tal d’afavorir l’intercanvi, la metodologia OpenBIM està basada en l’ús d’estàndards oberts, com l’IFC, que serveix com a format d’intercanvi de dades entre els agents, processos i aplicacions, i que vinguí definit per la Norma ISO 16739:2013. L’Associació buildingSMART Spanish Chapter ha desenvolupat una sèrie de guies BIM denominada uBIM que pretén facilitar la implantació de la metodologia al sector de l’Estat espanyol.

2.1.4. Gestió BIM

2.1.4.1. Introducció

Per “modelat” s’entén l’augment d’informació relacionada amb la construcció a través d’una aplicació de disseny. És possible relacionar els elements constructius amb aquesta informació:

- Característiques tècniques de tipus tèrmic
- Característiques tècniques de resistència al foc
- Característiques acústiques
- Materials que componen els elements.

Per mitjà del modelat d’informació, és possible planificar, analitzar i gestió els costos de la construcció, ús i manteniment, a més a més de, per exemple, examinar la viabilitat de la construcció de l’estructura. Un disseny que es realitza en base a un model de la informació produeix més informació que un altre realitzat en base a un realitzat mitjançant un model tradicional com per exemple en tant a fonaments de control d’objectius i decisions crítiques, cosa que és molt significativa des d’un punt de vista de la gestió de projectes.

L’ús de models BIM requereix un compromís especial de la gestió del projecte des del seu inici. Des de la perspectiva de la gestió de projectes, l’ús del BIM com a mètode de disseny afecta, de manera fonamental, al lideratge al llarg del projecte, per exemple, a l’organització, les fases, la programació i la coordinació del
projecte. El saber fer o know-how d’aquesta tecnologia basada en la informació serà molt important per a totes les parts implicades en el projecte. Serà necessari que existeixi una cooperació avançada, un flux actiu d’informació i mesures interactives entre totes les parts.

A l’inici del projecte, el valor afegit aportat pel BIM ha d’avaluar-se, així com la manera en què aquesta tecnologia facilita la consecució dels objectius generals del projecte. El BIM és un mètode de disseny adequat per a tot tipus de projectes d’edificació. Els beneficis obtinguts per l’ús del modelat d’informació s’accentua especialment en projectes de construcció complicats i que suposen un veritable desafíament.

El modelat d’informació no és un valor intrínsec en si, sinó un mitjà per a sistemàticament aconseguir els objectius establerts en el projecte, així com assegurar el millor resultat possible. Durant l’etapa de preparació del projecte, s’han de prendre decisions referents al temps i diners que s’invertiran en relació als objectius relacionats amb el BIM, l’ús del mateix i l’abast amb el que s’aplica al projecte.

Les tasques dels dissenyadors s’especifiquen acord a les llistes de tasques disposades pels responsables en la licitació. Les tasques del modelat estan connectades amb els deures específics dels dissenyadors. Les especificacions de les tasques bàsiques relacionades amb el BIM, així com la precisió i nivell de qualitat s’han de presentar a les instruccions base de Disseny. El client, no obstant, ha de consultar l’especificació bàsica i el contingut del modelat, a més a més de presentar els canvis que es requereixin a cada projecte. Les avaluacions de costos, gràfics anàlisis i simulacions de les tasques de cada etapa seran sempre mútuament acordades projecte a projecte. També, s’han de plantejar per separat les mesures del control de qualitat.

2.1.4.2. El procés de gestió del projecte basat en el Modelat d’Informació de l’Edificació

El procés de gestió es divideix, normalment, en tres subprocessos: disseny, execució i supervisió. L’èxit de la gestió i la coordinació d’un projecte BIM exigeixen que les tasques d’informació d’edificis basats en models de projectes i procediments es planifiquin amb antelació. Per mitjà d’acords, vinculen a les parts, les tasques i les mesures planificades se sotmeten a la transferència dins del projecte de forma que assenyà del modelat, programació.

Les tasques, com han sigut dissenyades, s’executen i organitzen d’acord amb uns deures específics i un pla establert. L’execució de les tasques és observada i supervisada continuament a mesura que avança el projecte. El mètode de disseny BIM pot augmentar els riscos relacionats amb la gestió del projecte, si els participants no tenen experiència prèvia en el procés.

2.1.4.3. Tenir en compte el modelat BIM en la gestió de projectes

Durant les diverses etapes del projecte, s’hauria d’assegurar que tots els partícips que tenen relacions contractuals amb el client s’adhereixin a totes les tasques de modelat d’informació en projectes, són la seva responsabilitat. En relació amb l’inici del disseny, es garantitzeix que totes les parts coneguin els objectius BIM del projecte, l’envergadura total de l’aplicació del model d’informació, el modelat, la programació, l’intercanvi d’informació i mesures de control de qualitat, juntament amb els requisits dels informes i la documentació.

Durant el projecte de construcció, el resultat de l’etapa anterior funciona com dades ja introduïdes per a l’ús del projecte a partir dels models en les diferents etapes del projecte. A l’aplicar el BIM al projecte que està sent planificat, l’esforç hauria de ser aplicat per a l’assessorament al client orientat a objectius. Ha d’haver-hi un esforç especial en minimitzar les discontinuïtats tals com, problemes d’integració en la transferència de dades entre els diversos programes a través d’acords d’adquisició a temps real, i mitjançant l’aclariment previ dels requisits de la següent etapa dels models d’informació que estan sent desenvolupats.

2.1.4.4. Disseny amb Modelat d’Informació de l’Edificació (BIM)

A l’etapa inicial del projecte, el client estableix les metes per a l’aprofitament del BIM a l’etapa de construcció, així com en el manteniment de l’edifici. Planificar el contingut requerit del modelat d’informació de l’edificació amb antelació reporta els següents resultats:

- Els partícips entenen i estan d’acord amb les metes, objectius i aplicacions pràctiques del projecte basat en BIM relacionades amb l’ús i el manteniment.
- Els partícips entenen els recursos, funcions, deures i responsabilitats requerides pel modelat d’informació de l’edificació.
- A nivell de coneixements tècnics per a tirar endavant el projecte s’actualitzen sobre la base de la planificació.
- L’equip del projecte és capaç de dissenyar el procés BIM per a que suporti aconseguir els objectius.
- Las tasques de coordinació es planifiquen en un a etapa d’hora.
- Els requisits de les interfases del treball de disseny, de la transferència de dades i de gestió de la informació es posen en evidència amb antelació.
- Per als participants que s’adhereixin al projecte més tard, el pla perillament clarament els procediments aplicats.
- El mode d’implementació i les seves repercussions en el funcionament poden ser considerades.
- Els objectius establerts poden ser controlats durant el cicle de vida del projecte.

2.1.4.5. Execució amb BIM

Els objectius per a l’ús del modelat d’informació de l’edificació es concretzen al programa de disseny, que es prepara durant l’etapa de preparació del disseny, com a molt tard, i en el pla de BIM vinculat o inclòs en aquest.

Les tasques, el control, la supervisió i la presa de decisions a implementar a les diverses etapes del projecte es s’enumeren més endavant.
2.1.4.6. **Supervisió BIM**

En la coordinació del disseny, la cooperació entre les diferents parts es garantirà amb respecte als assumptes relacionats amb el modelat d’informació d’edificis, i l’execució de les tasques és supervisada. Les mesures de garantia de qualitat del client son també considerades, i la planificació BIM s’actualitza si fa falta.

2.1.4.7. **Persones a càrrec del BIM**

El coordinador de BIM

Durant l’etapa inicial del projecte, la tasques del promotor és anomenar a una persona suficientment competent i formada per fer-se càrrec de la planificació BIM específica del avantprojecte, així com la coordinació de les diverses funcions del BIM vinculades a les diverses disciplines del disseny.

La tasca de coordinador s’ha de donar a una persona amb experiència en projecte, que tingui coneixements en el modelat d’informació d’edifici i la gestió de projectes. Les responsabilitats del coordinador BIM comprenen:

✓ Gestió del projecte juntament amb el dissenyador BIM
✓ Descripció dels objectius
✓ Els propòsits
✓ Àmbit d’ús del modelat
✓ Assignar responsabilitats i obligacions a cada part implicada.
✓ Elaborar models combinats i assegurar la integració des del punt de vista informàtic.

Persones encarregades de les disciplines afines al disseny

A mesura que s’inicia el treball de disseny, les persones encarregades de les disciplines afines al disseny son anomenades en funció de les tasques del model. Qualsevol dels dissenyadors responsables o especialistes BIM en la disciplina particular del disseny, poden servir com persones encarregades. Les tasques a desenvolupar serien:

✓ Persona de contacte en els assumptes relacionats amb el modelat
✓ Coordinador de tasques BIM segons l’acordat en la seva disciplina
✓ Proporciona directius al seu propi equip sobre les normes del projecte
✓ Participa en l’actualització del pla de modelat de la informació
✓ Comunica efectivament amb altres disciplines del disseny amb les interfacis, la transferència de dades, les normes i la cooperació
✓ Participa a les reunions BIM
✓ Es fa càrrec del control de qualitat, la redacció d’informes sobre BIM i la gestió de dades
✓ Assegura i inspectiona la funcionalitat dels models combinats i la integració dels models de disseny

2.1.4.8. **Recorregut del disseny del projecte**

Durant l’etapa de desenvolupament del disseny s’utilitza el model preliminar arquitectònic, estructural i MEP relacionat amb el model BIM per al pla. Addicionalment, per a cada submodel individual, es presta atenció a la revisió integrada dels models. Per exemple, el model estructural i l’excavació per a la cimentació. Per altra banda, les solucions de disseny i la pressa de decisió del client es guien per assolir els objectius i el resultats dels anàlisis dels models. El models obtinguts com resultat de l’etapa de desenvolupament ja inclouen la major part de les dades necessàries en la fase del projecte:

✓ Visualització i il·lustració de les solucions de disseny
✓ Model preliminar d’elements constructius i estructurals, model de reserves d’espais i sistema de model preliminar.
✓ Model preliminar per als espais MEP
✓ Model d’especificacions per a la informació del model BIM
✓ Informes sobre la garantia de qualitat, les deteccions de possibles incidències i la integració de dissenys
✓ Comparacions d’abast (entre el programa d’espais i disseny, així com comparacions de superfícies netes i brutes)
✓ Millor avaluació de costos bastes en l’espai,
✓ Estimacions de costos basats en elements de construcció preliminars
✓ Anàlisis funcionals
✓ Il·lustracions de solucions de disseny, per exemple models de saltes i superfícies, gràfics de superfícies de serveis, sales de màquines.
✓ Alternatives de terres i fonamentacions
✓ Anàlisis estructurals
✓ Anàlisis de la vida dels serveis
✓ Esquema preliminar 4D
✓ Animacions
✓ Descripció dels entorns virtuals
✓ Materials de màrqueting
✓ Anàlisis d’energia: energètic
✓ Anàlisis d’energia: simulacions
✓ Anàlisis del cost del cicle de vida (LCC)
✓ Anàlisis de l’impacte ambiental i energètic (LCA)
✓ Càlcul i visualitzacions d’il·luminació
✓ Simulacions de fluxes (CFD)
✓ Anàlisis del sistema MEP
✓ Simulacions de foc
✓ Altres simulacions requerides
✓ Comparació d’objectius
✓ Requisits del model de manteniment
✓ Resultat: Decisió d’aprovació del disseny bàsic.
2.1.4.9. Control de disseny detallat (per a l’execució)

I finalment, el disseny detallat dut a terme mitjançant el BIM es complementa en l’etapa de construcció, juntament amb els dissenyadors i/o contractistes en el projecte segons hagi convingut. Les tasques a realitzar s’han de definir en el pla portat a licitació, i les tasques del contractista s’estipulen durant l’etapa de preparació per a la construcció:

- Il·lustracions i visualitzacions de les solucions de disseny
- Models d’elements de l’edifici, models estructurals i models del sistema
- Models de llocs als efectes de càlcul i aplicació
- Especificacions del model BIM
- Plànols acotats
- Informes sobre garantia de qualitat, detecció d’incidències i la integració de disseny.
- Reserves d’introducció per al propòsit d’implementació
- Costos estimats basats en elements de la construcció
- Quantitat en pressupostos basats en el model BIM
- Anàlisis funcional
- Animacions
- Entorns virtuals
- Programació 4D
- Models del sistema per a càlculs
- Avaluació de costos millorada
- Anàlisi energètic (etapa millorada d’implementació
- Anàlisi del cost del cicle de vida (LCC)
- Anàlisi de l’impacte ambiental i energètic (LCA)
- Càlculs de visualització de la il·luminació
- Simulació de flux (CFD)
- Anàlisi dels sistemes MEP
- Càlculs del soroll generat pel MEP
- Comparicions objectives
- Actualització dels requisits dels models
- Actualització de l’anàlisi de riscos
- RESULTAT: Aprovació de plantes de disseny detallat / plànols de detalls per a construir

2.1.4.10. Planificació de la construcció

El models estan a disposició del contractista en una manera tal que la planificació per la construcció sigui possible per a la tasca amb el software comercial disponible:

- Presentació del programa de construcció en el model BIM
- Presentació de la construcció conforma a la situació de l’obra en el model BIM
- Modelat de l’ús de la zona de treball (Pla d’àrees de treball)
- Verificació de les solucions de seguretat i salut a l’etapa de construcció per mitjà del model BIM
- Documentació dels canvis i les instal·lacions en el moment de la construcció, per exemple, per escaneig làser, vídeo o fotografies
- Rendiments MEP en llisos d’equilibri, control d’imatges i llistes de “xequeig”.

2.1.4.11. Control d’obra

El deure del client és facilitat l’entrega dels models d’informació segons el termini i programa acordat:

- Revisió de partida del BIM en fase de construcció
- Cooperació basada en BIM durant la fase de construcció
- Informe de garantia de qualitat, detecció de col·lisions i integració de dissenys, amb els models durant la construcció
- Impressions com una opció dels procediments ordenats per la constructora
- Dades conforme a obra
- Anàlisi energètic: Objectiu de consum d’energia d’ús normal (N1o N2)
- Documentació mentre la construcció està en procés.
- Manual d’informació
- RESULTAT: Decisió d’acceptació

2.1.4.12. Inspecció final, entrega i recepció de la construcció

Durant la inspecció final (posada marxa), les funcions dels sistemes són aprovades i es donen les instruccions per al seu ús:

- Models conforme a obra
- Anàlisi energètic
- Especificacions del model d’informació de l’edifici
- Informes de garantia de qualitat, detecció de col·lisions i integració de dissenys
- Manual de serveis preparat
- RESULTAT: Decisió d’assumir el model
2.1.5. Cinc motius per a la implementació BIM

Tal i com s’ha justificat a l’anterior apartat 2.1.2 implantació BIM, aquesta metodologia no només està en auge i comporta uns beneficis evidents respecte el procés tradicional sinó que el mercat cada vegada més, està exigint contractar un servei constructiu tan complert que només es pot resoldre amb garanties amb la metodologia BIM. Per tant:

1. Tant l’Administració pública com l’empresa privada tendeixen a confeixir en un projecte BIM abans que un projecte constructiu tradicional. I, en especial l’Administració Pública, acabarà restringint les contractacions, per normativa, a empreses que treballin amb filosofia BIM, tal i com apunta el comunicat oficial de la generalitat esmentat anteriorment. A tall d’exemple, a Catalunya hi ha en marxa 36 proves pilots de projectes públics. Els projectes públics fets en BIM eviten corrupcions i malversacions gràcies a la transparència que ofereix el mètode col·laboratiu.

Modelar un projecte signifca conèixer amb absoluta precisió cada element i detall de l’obra, permeten als agents implicats anticipar-se a qualsevol imprevist i seguir la programació de l’obra amb total garanties. Això significa que:

2. Utilitzar el BIM permet reduir qualsevol tipus de desviació ja sigui econòmica i/o de temps. Per exemplificar-ho de manera simple: si en la resolució d’una vidriera en una placa de formigó s’assembleix el dos elements com a models 3D complets s’aconsegueix un sol plànol d’on treure les cotes exactes de manera 100% fiable (0 IMPREVISTOS). El fabricant de la placa de formigó construirà la placa amb les mides exactes sense marges d’error. És a dir, s’haurà minimitzat el risc de perdre una placa de formigó inutilitzable (COST), el temps d’adonar-se que la placa és inutilitzable (TEMPS), el temps i cost per solucionar l’error corresponent a una nova placa, el seu transport i el nou muntatge (SOBRECOST). Com més gran i complex és el projecte més gran és la dimensió d’estalvi i l’eficiència.

En un procés constructiu intervenen varis agents, per això és de vital importància una bona coordinació i planificació per millorar la consecució del projecte:

3. El modelat obliga a destinar més temps del que demana el disseny d’un sistema tradicional. El temps invertit en omplir d’informació el model ofereix una planificació pràcticament infal·lible. Disposar de tota la informació ben endreçada i per fases per tots els agents implicats a temps real permet una coordinació del tot viable i efectiva. En tot moment, els participants estan interconnectats i el temps de reacció és mínim i del tot anticipatiu. Un model col·laboratiu és totalment transparent.

En la primera etapa del projecte es recullen les especificacions del projecte constructiu per tal de dissenyar la solució constructiva el més ajustada possible.

4. El modelat permet, ja en l’etapa de disseny, simulacions de transmissió térmiques, sonores i de risc d’incendi. També, cada element conté informació respecte la seva vida útil i al seu manteniment per garantir-la. Això significa que es dissenya global i integralment el projecte durant tota la seva vida útil. Des de la projecció fins a l’enderroc. La qual cosa ofereix afinar la rendibilitat i amortització de la construcció. Cal tenir especial atenció a que la vida útil de l’edifici representa el 70% de la inversió total. Això vol dir que si es projecta tenint en compte el manteniment, l’eficiència energètica, els fluxos, etc.. Es pot incidir en el concepte de major pes econòmic des de l’inici. I en el cas de projectes de remodelació s’assegura un 20% menys del costos d’operació.

I per últim, un factor cabdal per als projectistes i constructors és la facilitat de negoci.

5. La presentació d’un projecte en 3D, amb el nivell de detall visible, les simulacions de la seqüència constructiva, l’acústic de les instal·lacions, la disposició i elements de les instal·lacions MEP, com la d’enginyeria tèrmica, estructural i luminica, a part de facilitar càlculs i solucions és un enorme atractiu per a inversors i promotors. La presentació impressiona.
2.2. ESTRUCTURES INDUSTRIALS

2.2.1. Funcionalitat

Una estructura industrial és un conjunt d’elements resistentes capaços de mantenir les formes i qualitats al llarg del temps, sota l’acció de càrregues i agents externs als que ha d’estar sotmès.

Per a resoldre amb encert l’estabilitat industrial d’un edifici, és imprescindible la funcionalitat de la seva estructura, conèixer la disposició estructural, les sol·licituds que li arriben i el material utilitzat. Amb la finalitat d’escollir els detalls i disposicions constructives més adequades per a cada situació, així com resoldre els punts singulars de la mateixa.

Els materials utilitzats en la construcció solen ser metall, formigó i fusta i una combinació entre ells.

Les construccions executades amb estructures metàl·liques permeten llums més grans, especialment interessant per a locals comercials, industrial, on es requereixen espais sense pilars intermedis, així com per a edificis de grans alçades, sense pilars excessivament gruixuts, i a lleugerint el cos de l’estructura.

2.2.2. Convenients i inconvenients de l’estructura metàl·lica

La utilització de l’acer a les estructures industrials té una sèrie de avantatges respecte altres materials que fa que les estructures metàl·liques monopolitzin la construcció de naus industrials. A continuació s’enumeren algunes propietats més destacades:

- Les estructures metàl·liques, al prendre grans deformacions, abans de produir-se la fallada avisen
- El material és homogeni i la possibilitat d’errors humans és molt més reduïda que en estructures construïdes amb altres materials. Questió que permet realitzar uns dissenys més ajustats i per tant, més econòmics.
- Ocupen poc espai. Els suports molesten poc a efectes d’una distribució interior. Pel que s’obté una bona rendibilitat a tota la superfície construïda. També pesen poc i tenen una resistència elevada.
- Excepte deformacions tèrmiques, no pateixen fenòmens reològics. Conserven indefinitament les seves propietats
- Admeten reformes amb relativa facilitat. Si varia les necessitats de l’edifici o l’ús, es pot adaptar l’estructura de manera senzilla. Reforçar una estructura metàl·lica és poc costós.
- Són elements prefabricats que es fabriquen de manera ràpida i es poden muntar/preparar al taller.
- L’enderroc es pot considerar una altra amortització, ja que el metall conserva el valor residual i és recuperable.

Si bé, també presenta alguns inconvenients que obliguen a tenir en compte certes precaucions com:

- Necessiten d’elements addicionals per tal d’aconseguir rigidesa (diagonals, pletines d’unió, pantalles, etc...)

Per tant, un cop analitzat, es decideix centrar l’estudi i projecte en aquest tipus de construccions.

2.2.3. L’acer

El metalls que s’utilitzen en estructures metàl·liques són principalment d’acer ordinari, l’acer autopatinable, l’acer inoxidable i l’alumini. L’acer ordinari és el més empleat i existeixen els següents tipus (segons la norma EN 10027):

La primera sigla ‘S’ prové d’Steel, acer en llengua angles. Les últimes sigles indiquen la sensibilitat a la ruptura fràgil i a la soldabilitat.

L’acer ordinari és el més empleat i existeixen els següents tipus (segons la norma EN 10027):

- JR → per a construccions ordinàries
- J0 → per a altres soldabilitats i resistències a la ruptura fràgil.
- J2 → molt altes exigències de resiliència, a la ruptura fràgil i la soldabilitat.

A l’estat espanyol, excepte el S275JR, tots es subministren sota comanda.
2.2.3.1. Característiques mecàniques de l’acer

Els valors fonamentals per al disseny de peces d’acer són:

a) El límit elàstic: càrrega unitària per a la que s’inicia el graó de ces. És a dir, a partir del qual les deformacions ja no són recuperables.

b) El límit de ruptura: càrrega unitària màxima suportada per l’acer durant l’assaig a tracció.

Els límits elàstics i de ruptures depenen del tipus d’acer, però hi ha caràcterístiques comunes per a tots els tipus d’acer:

- Mòdul Elàstic \[E \] 210 GPa
- Mòdul de Rigidesa \[G \] 81 GPa
- Coeficient de Poisson \[v \] 0.3
- Coeficient de dilatació tèrmica \[\alpha \] \(1.2 \times 10^{-5} \) \(^\circ \text{C} \)^{-1}
- Densitat \[\rho \] 7850 kg/m^3

2.2.3.2. Característiques tecnològiques de l’acer

La soldabilitat és l’aptitud d’un acer per ser soldat mitjançant procediments habituals sense que aparegui fissuració en fred.

La resistència a l’esquençament laminar es defineix com la resistència a l’aparició de defectes en peces soldades sotmeses a tensions de tracció en direcció perpendicular a la superfície.

L’aptitud de blegat és un índex de la ductilitat del material i es defineix per l’absència o presència de fissures a l’assaig de blegat.

2.2.4. Configuració estructural

2.2.4.1. Elements estructurals

Uns dels elements resistentes que constitueixen les estructures industrials són els següients:

Plaques d’ancoratge

Les plaques d’ancoratge són elements estructurals que s’utilitzen per unir els suports metàl·lics a la fomentació i que tenen la funció de fer la transició de l’acer al formigó sense que en cap punt es sobrepassin les tensions admissibles del material.

El material que forma el foment (normalment formigó) és menys resistent que l’acer, pel què la base ha d’ampliar la secció del suport de l’acer fins aconseguir una superfície adequada de contacte amb el formigó, per a que la transmissió d’esforços d’un material a l’altre sigui el més uniform possible.

La placa d’ancoratge ha d’estar subjecte als fonaments mitjançant un perns d’ancoratge que quedin endinsats el formigó. I un cop curat i endurat el formigó, aquests treballin per adherència.

Els elements que constitueixen una base del tipus generalment utilitzats són:

- Placa de base o de repartiment
- Cartelles de rigidesa
- Perns d’ancoratge

Excepte en el particular que el peu del suport sigui articulat, els suports es consideren encastat a la cimentació. Cas que fa que la placa d’ancoratge hagi de preparar-se per resistir els següents esforços: axial, moment flector, tallant i moment torsor.

Suports o pilars

Els suports són elements verticals sotmesos principalment a compressió a petita o nul·la flexió. Són elements que transmeten càrregues verticals al terreny a traves dels fonaments i les bases.

Per a dimensionar un suport s’ha de tenir en compte: el tipus d’acer, el tipus de càrrega que rep el perfil, la longitud del suport (pel vinclament) i la càrrega axial a compressió.

En estructures industrials es troben els següents tipus de suports o pilars.

<table>
<thead>
<tr>
<th>Suports simples</th>
<th>Formats per un solo perfil</th>
<th>Dos o más perfiles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Formats por varios perfis</td>
<td>Perfiles y chapas yuxtapuestas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chapas yuxtapuestas</td>
</tr>
</tbody>
</table>

Taula 1. Classificació per tipus de pilars

Els suports simples més utilitzats són HEB, HEA, IPN, IPE. Amb ells s’obté un gran aprofitament i son molt aptes per a formar pilars en pòrtics rígids.

Els suports simples de varis perfils més utilitzats són els formats per 2 UPN.

Els suports compostos s’obtenen assemblant perfils separats enllaçats per mitjans d’elements transversals discontinous. Poden estar units mitjançant presoneres o mitjançant gelosies (xarxa triangular formada per muntats i diagonals).

També es poden trobar suports mixtes, formats per un pilar metàl·lic i un pilar de formigó armat.
Bigues

Les jàsseres o bigues són elements lineals en les que una dimensió predomina sobre les altres. La seva forma de treballar es quasi exclusivament a flexió, per això solen adoptar forma de I, per tal d’obtenir la màxima inèrcia i el millor mòdul resistent amb el material disponible, intentant millorar el rendiment.

Les bigues són elements sustentant horitzontals, o lleugerament inclinats, que reben càrregues verticals i les transmeten als pilars, treballant a flexió.

Les càrregues que reben les bigues produeixen els següents esforços a les seves seccions: moment flector, esforç tallant i torsions (no sempre).

Les bigues d’acer es classifiquen atenent a la seva constituïció.

- **Bigues simples**

 Els perfils utilitzats són IPN, IPE, o HE. Els perfils IPE resulten més econòmics en general, ja que aporten un rendiment mecànic major i per la simplificació en unions gràcies a l’espessor uniforme de les seves ales.

 Els perfils simples laminats tenen l’avantatge sobre la biga armada que per igual resistència el seu cost és menor.

- **Bigues múltiples**

 Són les constituïdes per dos o més perfils I adossats. Units a través d’elements d’unió com presoneres, cargols, passadors, etc..., que solidaritzin eficaçment els perfils components.

- **Bigues reforçades**

 Els reforços, ja sigui xapa o pletina, és de gran eficàcia per aconseguir estalvi de material. Que un reforç sigui econòmic depèn de valors relatius com la xapa, el perfil i el cordó de soldadura.

Les corretges són les bigues a les que es recolza la coberta o xapa, fet que fa que hagin de suportar el pes d’aquestes i les possibles càrregues de neu, vent o ús de les mateixes.

Es troben en la vegada recolzades sobre els pòrtics, normalment en un pla inclinat, que fa tendir a flectar també en el sentit de la inclinació. La separació entre elles és variable i depèn del material de la coberta, etc...
El recolzament de les corregues sobre els pòrtics, s’assegurarà bé mitjançant unions soldades pel cada costat de la corretja o mitjançant unions reblonades posant un casquet en angular.

Les corregues es calcularan com a bigues recolzades amb càrregues uniformement distribuïdes.

Solen utilitzar-se perfilis IPN, simple T, perfilis Z, o bigues de gelosia.

Riostraments

Tenen la funció de transmetre els esforços produïts pel vent frontal sobre els pòrtics extrems de paret lateral i que a la vegada el transmeten al terra.

La riostrament bàsica és la Creu de Sant Andreu, en forma d’aspa, que es col·loca entre dos pòrtics i pot abastir vàries corregues per evitar angles petits i repartir bé els esforços.

Aquest tipus de configuració presenta l’inconvenient de ser estàticament indeterminat, amb el qual s’ha de fer hipòtesis per arribar a una que sigui determinada. Aquesta hipòtesis es fan respecte a les diagonals creuades, observant que, quan una diagonal està en tensió, la contra diagonal està a compressió.

Mitjans d’unió

- **Unions cargolades:**

 Unions constitúides per cargols, femelles i volanderes normalitzats i amb els mateixos graus que el material que uneixen. Limit elàstic i residència a la tracció.

- **Unions soldades:**

 Un acer es considera soldable segons un grau, un procediment, i per a una aplicació específica. Quan mitjançant la tècnica apropiada es pugui aconseguir continuïtat metàl·lica de la unió i aquesta compleixi les exigències requerides.

 El material d’aportació utilitzable per a la realització de soldadures (elèctrodes) deurà ser apropriat per al procés de soldar (manual de recobriment, semiautomàtica amb protecció gasosa, semiautomàtica amb fil tubular replè de flux o soldadura automàtica amb arc submergit) tenint en compte el material i el procediment. A més a més haurà de tenir unes característiques mecàniques, en termes de límit elàstic, resistència a la tracció, deformació sota càrrega màxima, etc., no inferiors als corresponents dels material de base que constitueix el perfil i/o xapa a soldar.

2.2.5. *Durabilitat de l’estructura*

La durabilitat d’una estructura d’acer és la seva capacitat per suportar, durant la vida útil projectada, les condicions físiques i químiques a les que està exposada, que podrien provocar una degradació important com a conseqüència d’efectes diversos a les càrregues i sol·licitacions considerades a l’anàlisi estructural.

Per aconseguir una durabilitat adequada és necessari seguir una estratègia que contemple tots els possibles casos de degradació, adoptant mesures concretes en funció de l’agressivitat a la que es trobi sotmesa cada element.

Com a mínim seran considerats els següents aspectes:

- Selecció de la forma estructural, definint al projecte els esquemes estructural, la geometria i els detalls que siguin compatibles amb la consecució d’una adequada durabilitat. Es facilitarà la preparació de superfícies, el pintat, les inspeccions i el manteniment de l’estructura.
- Es procurarà evitar els disseny estructurals que conduixin a un susceptible elevada corrosió, escolint formes dels elements senzilles.
- Es reduirà al mínim el contacte directe entre superfície d’acer i l’aigua.
- S’evitarà el contacte de l’acer amb altres metalls (l’alumini dels tancaments, murs cortina, etc.,).
- Les àrees tancades de l’estructura o els elements foradats, s’hauran de protegir de manera efectiva contra la corrosió mitjançant soldadura continu.

En casos d’alta agressivitat, es recorrerà a la disposició de sistemes especials com el recobriment en pols, tractaments químics superficials, etc..

2.2.6. *Proteccions per a estructures metàl·liques*

Un cop finalitzada la construcció de l’estructura metàl·lica poden aparèixer problemes per alguna d’aquestes causes:

- Efectes de la calor, com a conseqüència d’altes insolacions o incendis.
- Oxidació excessiva i la consegüent corrosió.

2.2.6.1. *Protecció contra incendis o altes temperatures*

Encara que el ferro no és combustible, no es pot considerar resistent al foc. No només perquè disminueixi la seva resistència quan sobrepassa els 300°C, sinó perquè per efecte de la dilatació pateix grans deformacions.

Els material de protecció de l’acer són: granit, marbre, formigó, fàbrica de totxana ceràmica amb morter de ciment, plaques de guix laminat, pintures intumescents, etc.
2.2.6.2. Protecció contra la corrosió

L’oxidació constitueix el pitjor enemic de les construccions metàl·liques. Per evitar-ho es cobreix amb un revestiment protector i és indispensable que la superfície a tractar estigui neta de brutícies i òxid.

S’ha de considerar conjuntament el tractament de protecció contra l’incendi, ja que els requisits del mateix poden determinar un grau de defensa davant la corrosió molt superior a l’estrictament necessari, especialment en el cas de pintures intumescents i morters projectats.

2.3. CÀRREGUES ACTUANTS SOBRE ESTRUCTURES

El disseny d’una estructura comença per aquells elements que estan sotmesos a les càrregues principals que ha de suportar l’estructura i procedeix en seqüència amb varis elements de suport fins arribar a la cimentació.

Una vegada concebuda l’estructura, el pas previ a la resolució és establir sota quines càrregues se suposa que treballarà al llarg de la seva vida útil projectada.

En termes generals, l’establiment de les càrregues a considerar ve regulat per Normes, Instruccions o Reglaments Oficials, quedant només en comptades ocasions la fixació del valor de dites accions en mans del projectista. En tot cas, s’ha de tenir en compte aquestes normes són per a una guia, pel què la responsabilitat final del disseny recau sobre l’enginyer industrial.

Per tant, per a dissenyar una estructura és necessari especificar primer les càrregues que actuen sobre ella. Generalment una estructura està sotmesa a varis tipus de càrregues, que per la seva naturalesa, varien en l’espai o romanen en el temps es classifiquen en diferents grups.

2.3.1. Classificació de les accions per la seva naturalesa

Les accions es poden classificar en diferents grups en funció de la seva naturalesa

- **Accions directes.** Són aquelles que s’apliquen directament sobre l’estructura. En aquest grup s’inclouen el pes propi de l’estructura, les càrregues permanentes, les sobrecàrregues d’ús, etc..

- **Accions indirectes.** Són aquelles deformacions o acceleracions imposades capaces de donar, de manera indirecta, a forces. En aquest grup s’inclouen els efectes deguts a la temperatura, assentaments de la fonamentació, accions reològiques, accions sísmiques, etc..

2.3.2. Classificació de les accions per la seva variació en l’espai

Les accions es poden classificar, també, segons la seva variació en l’espai:

- **Accions fixes.** Són aquelles que s’apliquen sempre a la mateixa posició. Dins d’aquest grup s’inclouen bàsicament les accions degudes al pes propi dels elements estructurals i funcionals.

- **Accions lliures.** Són aquelles que la seva posició pot ser variable a l’estructura. S’inclouen fonamentalment les sobrecàrregues d’ús.

2.3.3. Classificació de les accions per la seva variació en el temps

Un altre tipus de classificació per a les accions és en funció de la variació en el temps:

- **Accions permanentes.** Són aquelles que actuen en tot moment i són constants en magnitud i posició. S’inclouen el pes propi de l’estructura, dels elements embeguts, accessors i l’equipament fix.

- **Accions permanentes de valor no constant.** Són aquelles que actuen en tot moment però magnitud de la qual no és constant. Dins d’aquest grup s’inclouen aquelles accions variació de la qual és funció del temps transcorregut i es produixen en un únic sentit. Tenen un valor límit tal com les accions reològiques, etc.. El pre-tensat \(P \) pot considerar-se d’aquest tipus.

- **Accions variables.** Són aquelles que poden actuar o no sobre l’estructura. S’inclouen en aquest grup les sobrecàrregues d’ús, les accions climàtiques, les accions degudes al procés constructiu, de manteniment, etc..

- **Accions accidentals.** Són aquelles en que la possibilitat d’actuació és petita però de gran rellevància. En aquest es troben les accions degudes a impactes, explosions, etc. Els efectes sísmics poden considerar-se d’aquest tipus.

La taula resum que recull l’esmentada classificació:

<table>
<thead>
<tr>
<th>Clases de cargas</th>
<th>Directas</th>
<th>Indirectas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temporalidad</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Permanentes</td>
<td>Concargas</td>
<td>Reológicas estabilizadoras</td>
</tr>
<tr>
<td>De pretensado</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variables</td>
<td>Sobrecarga de uso</td>
<td>Térmicas</td>
</tr>
<tr>
<td></td>
<td>Sobrecargas de ejecución</td>
<td>Reológicas no estabilizadores</td>
</tr>
<tr>
<td></td>
<td>Sobrecarga de nieve</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Empujes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sobrecargas de viento</td>
<td></td>
</tr>
<tr>
<td>Accidentales</td>
<td>Sísmicas</td>
<td>Inoindio</td>
</tr>
<tr>
<td>Fortuitas</td>
<td>Dinámicas de impacto</td>
<td></td>
</tr>
</tbody>
</table>

Taula 3. Tipus de càrregues genèriques actuants
2.4. ESTUDI GEOTÈCNIC I FONAMENTACIÓ

2.4.1. Estudi geotècnic

Abans d’iniciar qualsevol projecte o obra d’edificació és necessari conèixer les característiques del terreny corresponent. Amb aquesta finalitat s’ha de realitzar un reconeixement geotècnic del terreny, objectiu del qual és:

- Definir la tipologia i les dimensions de l’obra, de manera que les càrregues generades per les fonamentacions, excavacions, i replens, o les càrregues suportades per estructures de contenció, no produeixin situacions d’inestabilitat o moviments excessius de les pròpies estructures o del terreny, que facin perillar l’obra estructural o funcionalment.

- Determinació del colom, localització i tipus de materials que han de ser excavats, així com la forma i maquinària adequada per a dur a terme dita excavació.

- Definició dels elements de fonamentació, tant el superficial o profunda com a dimensions en planta i profunditat.

- Previsió de problemes relacionats amb l’aigua: profunditat de nivell freàtic, riscos deguts a filtracions, arrossegaments, erosions internes, sifonament, accions de les gelades, etc.; influència de l’aigua a l’estabilitat i l’assentament de l’estructura.

Encara que no sigui l’habitual, en ocasions la naturalesa del projecte pot fer modificar alguns paràmetres de la solució prèvia de l’edifici.

L’informe geotècnic plasma els resultats obtinguts durant l’estudi. La seva interpretació i les conclusions que se’n deriven del seu anàlisi, generalment en forma de recomanacions per al projecte i construcció de l’obra que han sigut objecte de l’estudi.

2.4.2. Fonamentacions superficiales

S’entén com a fonamentació superficial aquella que transmet les càrregues de l’estructura a les capes més superficials del terreny sobre un pla de recolzament generalment horizontal.

Aquestes, s’utilitzen per transmetre càrregues d’un o varis pilars de l’estructura o dels murs de càrrega o de contenció de terres als subterrans.

Les principals fonamentacions superficials són:

✓ Sabates aïllades. Sabates individuals que reben la càrrega d’un pilar.

✓ Sabates combinades. Sabates que recullen 2 o més pilars contigus.

✓ Sabates corregudes. Sabates per a alineaments de 3 o més pilars o murs.

✓ Pous de cimentació. Recullen pilars aïllats.

✓ Engraellats. Fonamentacions corregudes o continues que s’entrecreuen.

✓ Lloses de fonamentació. Recullen tots els pilars de l’estructura, cobrint tot l’àrea disponible del solar. S’utilitzen per reduir assentament diferencials en terrenys heterogenis, o quan existeix variabilitat importants de càrregues entre recolzament propers.

El disseny d’una fonamentació superficial requereix la comprovació de varis aspectes relacionats tant amb la seguretat a la ruptura (Estats Límit Últims), com l’adequat funcionament al llarg de la seva vida útil (Estats Límit de Servei).

Els estats límits últims (ELU) que sempre es verificaran per a les fonamentacions, són:

- **Enfonsament:** es produeix quan la capacitat de suport del terreny és inferior a la transmesa pel fonament.

- **Lliscament:** es produeix quan les tensions tallants en el pla de contacte sabata-terreny igualen o superen la resistència a tallant de dit contacte.

- **Bolicada:** pot produir-se en casos de càrregues excènciques respecto del centre de gravetat de l’àrea del fonament, quan el punt de pas de la resultant de les accions s’aproxima a la cantonada del fonament.

- **Estabilitat general:** tracta l’estabilitat del conjunt de l’estructura sense que es produeixin fallades locals.

- **Capacitat estructural del fonament:** contempla la possibilitat que els esforços sobre les sabates o lloses superin la capacitat resistent del fonament.

En tant als Estats límits de servei (ELS) s’ha d’assegurar que:

- **El moviments del terreny siguin admissibles per a l’estructura a construir.**

- **El moviments inclosos en l’entorn no afectin les estructures colindants.**
A més a més dels ELU i ELS, existeixen altres modes de fallada que han de tenir-se en compte com l’estabilitat de les excavacions durant l’execució, problemes de filtracions, possibles efectes nocius de les gelades, problemes d’atacs químic als formigons, neteja del fons de l’excavació, esquerdes o aixecaments associats a les argiles expansives, problemes de dissolució càrstica, etc...

2.4.3. Fonamentacions profundes

En els casos en què l’execució d’una solució amb superficial no sigui viable tècnica o econòmicament s’ha de contemplar la solució de fonamentació profunda.

Es considera que una fonamentació és profunda si el seu extrem inferior, en el terreny, està a un profunditat vuit vegades superior al seu diàmetre o ample.

Es poden classificar en els següents tipus:

✓ **Pilot aïllat**: aquell que està a una distància prou allunyada d’altres pilots com per que no tingui interacció geotècnica.

✓ **Grup de pilots**: aquells que per la seva proximitat interaccionen entre sí o estan units mitjançant elements estructurals prou rígids com per que treballin conjuntament.

✓ **Micropilots**: són aquells compostos per una armadura metàl·lica formada per tubs, barres o perfiles introduïts dins d’un taladre de petit diàmetre, podent estar o no injectats amb morter a pressió.

Els pilots també poden classificar-se atenent a diferents criteris:

- Segons la manera de treballa poden ser pilots per fuste o pilots per punta
- Segons el mètode constructiu poden ser prefabricats o formigonats “in situ”.

Les formes de fallada poden ser de divers origen. Les més comunes són:

- Per incapacitat estructural del pilot
- Per enfonsament
- Per ruptura per arrencat
- Per ruptura horitzontal del terreny sota càrregues del pilot

Els ELS en fonamentacions profundes estan relacionats amb els moviments. Tant en el projecte de pilots aïllats com en el de grup de pilots s’ha de realitzar comprovacions respecte l’assentament i desplaçaments transversals. Ja que influix no només la resistència del terreny sinó la seva deformabilitat.

I de la mateixa manera que la superficial, les comprovacions sobre ELU i ELS, poden ser necessàries altres comprovacions addicionals, com: pèrdua de capacitat portant degut a cursos fluvials, danys d’estructures properes, corrosió dels pilots metàl·lics, expansió del terreny, protecció contra les gelades, atacs químic, etc...

2.5. NORMATIVA

La normativa a tenir en compte pels càlculs d’estructura i fonamentació és la següent:

- CTE-DB-SE. Seguretat estructural
- CTE-DB-AE. Accions a l’edificació
- CTE-DB-C. Fonamentacions
- CTE-DB-A. Acer
- EHE-08. Instrucció del formigó estructural
- EFHE-02. Instrucció pel projecte i execució de forjats unidireccionals de formigó estructural realitzats amb elements prefabricats.
- NCSE-02. Norma de construcció Sismoresistent
- CTE-DB-SI. Seguretat en cas d’incendi

Altres normatives a contemplar en projectes de construcció de naus industrials són:

- CTE-DB-HR. Protecció davant del soroll
- CTE-DB-HE. Estalvi energetic
- CTE-DB-HS. Salubritat
- CTE-DB-SU. Seguretat d’utilització
- Normes particulars dels Excms. Ajuntaments (POUM – RPUC – PGOU)
- Reglament electrotècnic de baixa tensió.
- D 462/71 (BOE: 24/3/71). Normes per a la redacció de projectes i direcció d’obres d’edificació
3. MEMÒRIA CONSTRUCTIVA

3.1. OBJECTE DEL PROJECTE

La instal·lació objecte d’aquest projecte acadèmic és una nau industrial sense ús definit, inspirat en un centre logístic. Pretén simular la projecció d’una construcció industrial obeint el propòsit del titular del projecte.

3.2. TITULAR

La titularitat del projecte rau en l’empresa imaginària UPC SA, amb CIF Q-08.18003F, amb domicili social a Jordi Girona, 31. El CP 08034 Barcelona – Catalunya. El representant legal del projecte és Joan Casals Artigas.

3.3. EMPLAÇAMENT

La construcció estarà ubicada a la parcel·la delimitada pel Carrer Ceràmica i el carrer Polígon industrial del Sud d’Esparraguera (Barcelona) i per l’Autovia del Nord-Est A-2. Detallat al plànol de situació i emplaçament.

Actualment, a la parcel·la on es pretén construir no existeix cap construcció i compta amb els serveis d’aigua procedents de la xarxa municipal, telèfon i electricitat de baixa tensió.

3.4. ACTIVITAT

A la nau industrial se li donarà un ús de magatzem logístic. Amb la conseqüent llicència d’activitats atorgada per l’ajuntament abans d’iniciar l’activitat empresarial.

3.5. FITXA URBANÍSTICA

La següent taula resumeix les condicions de parcel·lació i de l’edificació del solar objecte del projecte:

<table>
<thead>
<tr>
<th>POU</th>
<th>PROJECTAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipus d’edificació</td>
<td>Industria aïllada</td>
</tr>
<tr>
<td>Qualificació</td>
<td>7b</td>
</tr>
<tr>
<td>Parcel·la mínima</td>
<td>600m²</td>
</tr>
<tr>
<td>Alçada reguladora màxima</td>
<td>10m</td>
</tr>
<tr>
<td>Ocupació màxima</td>
<td>70%</td>
</tr>
<tr>
<td>Edificabilitat màxima</td>
<td>1.1 m²/m²</td>
</tr>
<tr>
<td>Superficie a construir</td>
<td></td>
</tr>
<tr>
<td>Façana mínima</td>
<td>14m</td>
</tr>
<tr>
<td>Separacions mínimes:</td>
<td></td>
</tr>
<tr>
<td>• A llindars</td>
<td>1.5m</td>
</tr>
<tr>
<td>• A carrer</td>
<td>3m</td>
</tr>
</tbody>
</table>

Grau d’Urbanització:

- Accés viari: Sí
- Cavegueres: Sí
- Enllumenat públic: Sí
- Serveis: Telèfon, Aigua, Llum BT

Il·lustració 7. Emplaçament nau industrial

Taula 4. Fitxa urbanística
3.6. CARACTERÍSTIQUES DE L’EDIFICACIÓ

Les dimensions de l’edifici a construir queden detallades als plànols, igual com la seva geometria, que formaran una superfície construïda de 3633,87 m². La nau queda dividida en un planta completa semisoterrània i un altell o planta primera que ocupa tota la part central de la nau amb una superfície útil de 1835,32 m².

La construcció serà d’estructura metàl·lica i un forjat de llosa alveolar, dotada de pilars HEB i bigues IPN i HEB metàl·lics i de plaques de formigó armat alveolades PP35CA-W120. Els tancaments estaran constituïts de panell sandvix ISOPARETE PLUS-PE 60 a la planta semisoterrània i de Panell de Sistema de vidre a la planta primera.

La coberta estarà formada de panell sandvix Ondatherm-H19-A60-FAB13.

3.6.1. Característiques generals

3.6.1.1. Espais lliures

Els espais lliures compresos dins el perímetre límit de la parcel·la i l’ocupació industrial es destinaran a vials d’accés, pati urbanitzat per al trànsit de mercaderies i un moll de càrrega.

3.6.1.2. Aparcaments

La superfície útil màxima prevista és menor a 4000,00 m², contemplant un mínim de 40 places repartides per tot l’espai lliure, anteriorment descrit. Seran equivalents a una plaça per a cada 100m² edificats.

3.6.1.3. Enjardinaments

El projecte no contempla zones enjardinades.

3.6.2. Característiques de l’obra civil

3.6.2.1. Moviment de terres

S’inicuarà l’obra amb una excavació per al rebaix en terreny de trànsit (SPT>50), i es finalitzarà amb un terraplenament i compactació per a fonament de terraplè amb material de la pròpia excavació. Durant tot el procés es portarà un control del transport de terres i deposició a dipòsit autoritzat de residus.

3.6.2.2. Fonamentació

Es realitzaran els fonaments a base de pous omplerts de formigó armat.

3.6.2.3. Estructura

La nau s’ha projectat amb una estructura metàl·lica galvanitzada, formant pòrtics amb pilars entremitjos i de 8,25 m de separació, amb correges tipus Z galvanitzades

3.6.2.4. Coberta

La coberta serà tipus sandvix “in situ” formada per una planxa exterior de perfil nervat d’acer galvanizat i lacat, un aïllament i una capa interna de fusta d’avet.

3.6.2.5. Pavimentació

El paviment es formarà per una capa de compressió de 6cm i un capa de revestiment Epoxy 100% d’1cm per tal de formar un paviment industrial continu de gran resistència mecànica, químicà i antilliscant.

3.6.2.6. Sanejament

El sistema de recollida d’aigües pluvials constarà de tubs verticals que es connectaran a la canal i a un tub soterrat de PVC de diàmetre mínim 250mm i amb un pendent de l’1%. Aquest tub, soterrat en una rassa reemplerta amb formigó es connectarà amb el corresponent clavegueró de l’extrem de la nau i es conduirà a la xarxa de pluvials del pati.

El sistema de recollida d’aigües negres estarà completament separat de les pluvials. Utilitzarà el mateix dimensionat que les pluvials encara que siguin separatives ambdues. Desembocarà a la xarxa existent del la zona (no es detalla en aquest projecte).

3.6.2.7. Tancaments

Es projecten varis tipus de tancament de façana. A la planta semisoterrània i mitja planta primera trobem el panell sandvix PE 60 detallat a la fitxa de component. La mitja planta primera superior estarà tancada per una vidriera de vidre 2.5m x 4.0m amb muntats de 80mm x 40mm d’alumini units al panell sandvix a la cobert i als pilars extrems dels pòrtics a través d’un perfil PFC canal d’ala paral-lela de 380x100x54.

Gestió constructiva i disseny estructural d’una nau industrial en BIM
3.6.2.8. Fusteria exterior

A la nau s’instalaran les següents portes:

- 1 Porta principal practicable d’entrada: 2 fulles 1400x2100mm
- 6 Portes d’emergència: ASSA ABLOY BE-Doorset-HardwareSet 3D 1070x2200 mm
- 1 Porta seccional vertical: 3110 Lifting fabric door Single Window

3.6.2.9. Acabats interiors

L’acabat interior de la nau es deixarà vist.

3.6.2.10. Gestió runes

Totes les runes i residus de la construcció, com retalls de l’estructura, panells o restes de formigó seran gestionat a través d’un gestor autoritzat i d’acord amb el que s’especifica al Decret 89/2010 que regula la gestió de residus de la construcció de Catalunya.

3.6.3. Seguretat contra incendis de l’edifici industrial

3.6.3.1. Activitat

L’edifici industrial projectat mantindrà l’activitat de magatzem logístic. Les mesures de protecció adoptades en la construcció es corresponen a una Risc Baix. L’edifici és de tipus C.

3.6.3.2. Classificació

Segons la Llei 3/10, de prevenció i seguretat en matèria d’incendis en establiments, activitats, infraestructures i edificis, l’establiment d’ús industrial no es troba sotmès a cap control preventiu de l’Administració de la Generalitat atès que no supera els límits establert en l’esmentada llei:

TIPUS C Risc Baix, En cap cas

3.6.3.3. Situació de l’activitat respecte els veïns

La nau projectada es troba a més de tres metres de la nau més propera. Segon el RD 2267/2004 al punt 2.1 aquest establiment queda classificat com un establiment amb una configuració Tipus ‘C’.

3.6.3.4. Propagació exterior

La nau ocuparà un edifici aïllat i no hi haurà paret mitgera. Atès que el risc d’incendi de l’activitat industrial és molt baix no s’ha projectat sectorització interior.

3.6.3.5. Sectorització interior

L’establiment forma un únic sector d’incendis. No aplica.

3.6.3.6. Locals i zones de risc especial

No s’ha previst cap zona que s’hagi de classificar com a risc especial.

3.6.3.7. Condicions d’estabilitat i resistència al foc

Les condicions d’estabilitat i resistència al foc en un edifici tipus C i de risc d’incendi Baix pel cas que ens ocupa són les següents:

Estabilitat al foc

- Estructura principal de coberta: no s’exigeix

Resistència al foc

- Delimitadors de sectors: No n’hi ha
- Paret mitgera/delimitadora de l’establiment: No n’hi ha

Condicions exigibles als productes de construcció

- Revestiment terres \(C_r - s_1 \) (M2)
- Revestiments paret i sostres \(C - s_3 d_0 \) (M2)
- Lluernaris no continus \(D-s_2 d_0 \) (M3)
- Revestiments exterior de façanes \(C - s_3 d_0 \) (M2)
- Interiors fals sostre, aïllaments,... \(C - s_3 d_0 \) (M1)

3.6.4. Sectorització interior

L’establiment forma un únic sector d’incendis. No aplica.

3.7. NORMATIVA

La normativa a tenir en compte pels càlculs d’estructura i fonamentació és la següent:

- CTE-DB-SE. Seguretat estructural
- CTE-DB-AE. Accions a l’edificació
- CTE-DB-C. Fonamentacions
- CTE-DB-A. Acer
- EHE-08. Instrucció del formigó estructural
- EFHE-02. Instrucció pel projecte i execució de forjats unidireccionals de formigó estructural realitzats amb elements prefabricats.
- NCSE-02. Norma de construcció Sismorresistent
- CTE-DB-SI. Seguretat en cas d’incendi
Altres normatives a contemplar en projectes de construcció de naus industrials són:

- CTE-DB-HR. Protecció davant del soroll
- CTE-DB-HE. Estalvi energètic
- CTE-DB-HS. Salubritat
- CTE-DB-SU. Seguretat d'utilització
- Normes particulars dels Excms. Ajuntaments (POUM – RPUC – PGOU)
- Reglament electrotècnic de baixa tensió.
- D 462/71 (BOE: 24/3/71). Normes per a la redacció de projectes i direcció d'obres d'edificació

3.8. MEMÒRIA DE CÀLCUL

3.8.1. Accions en l'edificació

Les accions contemplades en el càlcul compleixen el que especifica el Codi Tècnic de l'Edificació en el document de Seguretat Estructural Accions en l'edificació (CTE-SE-AE).

3.8.1.1. Accions gravitatòries

Accions en l'eix Z

- Sobrecàrrega de neu: 4.95 kN/m
- Pes propi Coberta: 0.99 kN/m
- Pes propi estructura: Pes x Coef=1.00
- Sobrecàrrega d'ús Coberta: 3.30 kN/m
- Pes propi forjat: 42.08 kN/m
- Sobrecàrrega d'ús forjat: 28.88 kN/m

Acció del vent

- Situació topogràfica regió C: 104.4 km/h (retorn 50 anys)
- Pressió dinàmica màxima: 0.52 kN/m²
- Coeficient d’exposició: 1.9
- Coeficient de forma coberta: -0.6
- Coeficient de forma tancaments: 0.8
- Pressió estàtica del vent coberta: -0.59 kN/m²
- Pressió estàtica del vent tancaments: 0.79 kN/m²

Accions sísmiques, tèrmiques i reològiques

No són perceptives d’aplicació.

3.8.2. Elements de formigó en massa o armats

Classificació

- Tipus de ciment: I-35
- Dimensió màxima àrid: 20 mm
- Classe de l’àrid: Rodat

Formigó

- Ciment: 390 kg/m³
- Aigua: 180 kg/m³
- Sorra: 635 kg/m³
- Grava: 1275 kg/m³

No es permeten additius sense l’autorització expressa de la Direcció Facultativa.

- Consistència: plàstica
- Compactació: Vibrat normal
- Assentament amb Con Abrams: 3-5 i 6-9
- Resistència característica
 - Als 7 dies: 30*0.65 = 19500 kN/m²
 - Als 28 dies: 30000 kN/m²

Armadures

- Acer: B500S
- Límit elàstic: 50000 kN/m²
- Coeficient de seguretat al límit elàstic: 1.15

Pressions en el terreny de fonamentació

L’estudi geotècnic realitzat del solar ha obtingut aquests resultats:

<table>
<thead>
<tr>
<th>CAPA</th>
<th>SÒL</th>
<th>Valor N</th>
<th>Sabata Quadrada</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Choeiu</td>
<td>13-27</td>
<td>1.50 kg/cm²</td>
</tr>
<tr>
<td>B</td>
<td>Roca tova amb característiques de roca dura</td>
<td>N>100</td>
<td>3.5 kg/cm²</td>
</tr>
</tbody>
</table>

Taula 5. Resultat exploració Geotècnica
3.8.3. **Estructura metàl·lica**

El càlcul s’ha realitzat considerant les especificacions del CTE -SE-A

Característiques del perfil

- **Acer:** S-275
- **Límit elàstic:** 275 N/mm²
- **Coef de seguretat:** 1.5
- **Massa:** 1733 kg/cm²

Característiques de les soldadures:

Compliran les prescripcions per soldadures especificades en el plec de condicions.

- **Fletxa màxima:** 1/250 elements lleugers
- **Fletxa màxima:** 1/500 forjats

3.8.4. **Sistema de càlcul**

L’execució dels càlcul tant per a l’estructura metàl·lica com per a la fonamentació i forjats, s’ha dut a terme amb el programa ROBOT STRUCTURAL ANALYSIS versió PRO 2017 amb llicència d’estudiant.
Treball Final de Grau

PLEC DE CONDICIONS

Grau en Enginyeria Mecànica
Curs 16/17

Autor: Albert López Rubio
Director: Joan Casals Artigas
Data: 9 de Juliol de 2017
Localitat: Manresa, Catalunya
1.1. Plec de condicions

1.1.1. Disposicions generals. Plec general

1.1.1.1. Naturalesa i objecte del plec general

El present Plec General de Condicions té caràcter supletori del Plec de Condicions particulars del Projecte.

Ambdós, com a part del projecte arquitectònic, tenen per finalitat regular l’execució de les obres fixant els nivells tècnics i de qualitat exigibles. Aquest precisarà les intervencions que corresponen al Promotor de l’obra, al Contractista o constructor de la mateixa, a la Direcció Facultativa i d’Execució i als laboratoris o entitats de Control de Qualitat. De la mateixa manera regularà les relacions entre tots ells i les seves corresponents obligacions amb vista al compliment del contracte d’obra.

1.1.1.2. Documentació del contracte d’obra

Integren el contracte els següents documents relacionats per orde de prelació en quant al valor de les seves especificacions en cas d’omissió o aparent contradicció:

1. Les condicions fixades en el propi document de contracte d’empresa o arrendament d’obra.
 El Plec de Condicions particulars.
 El Plec General de Condicions.
 4. La resta de la documentació de Projecte (memòria, plànols, amidaments i pressupost). En cada document les especificacions literals prevalen sobre les gràfiques, i en els plànols la cota preval sobre la mesura a escala.

1.1.2. Disposicions facultatives. Plec General

1.1.2.1. Delimitació general de funcions tècniques

2.1.1. Delimitació dels agents intervinguts. Àmbit d’aplicació de la LOE

La Llei d’Ordenació de l’Edificació és d’aplicació al procés de l’edificació, entenent per tal l’acció i el resultat de construir un edifici de caràcter permanent, públic o privat, l’ús principal del qual estigui comprès en els següents grups:

a) Administratiu, sanitari, religiós, residencial en totes les seves formes, docent i cultural.

b) Aeronàutic; agropecuari; de l’energia; de la hidràulica; miner; de telecomunicacions (referit a l’enginyeria de les telecomunicacions); del transport terrestre, marítim, fluvial i aeri; forestal; industrial; naval; de l’enginyeria de sanejament i higiene, i accessoris a les obres d’enginyeria i la seva explotació.

c) Totes les altres edificacions els usos de les quals no estiguin expressament relacionats en els grups anteriors.

Quan el projecte a realitzar tingui per objecte la construcció de edificis per als usos indicats en el grup
a) la titulació acadèmica i professional habilitant serà la d’arquitecte.

Quan el projecte a realitzar tingui per objecte la construcció de edificis per als usos indicats en el grup
b) la titulació acadèmica i professional habilitant, amb caràcter general, serà la d’enginyer, enginyer tècnic o arquitecte i vindrà determinada per les disposicions legals vigents per a cada professió, d’acord amb les seves respectives especialitzacions i competències específiques.

Quan el projecte a realitzar tingui per objecte la construcció d’edificis per als usos indicats en el grup
c) la titulació acadèmica i professional habilitant serà la d’arquitecte, arquitecte tècnic, enginyer o enginyer tècnic i vindrà determinada per les disposicions legals vigents per a cada professió, d’acord amb les seves especialitats i competències específiques.

2.1.2. El promotor

Serà Promotor qualsevol persona, física o jurídica, pública o privada, que individual o col·lectivament decideix, impulsa, programa o finança, amb recursos propis o aliens, les obres d’edificació per a si o per la seua posterior alienació, lliurament o cessió a tercers. Són obligacions del promotor:

• Ostentar sobre el solar la titularitat d’un dret que li faculti per a construir en ell.

• Facilitar la documentació e informació prèvia necessària per a la redacció del projecte, així com autoritzar al director d’obra les posteriors modificacions del mateix.

• Gestionar i obtenir les preceptives llicències i autoritzacions administratives, així com subscriure l’acta de recepció de l’obra.

• Designar al Coordinador de Seguretat i Salut per al projecte i l’execució de l’obra.

• Subscriure les assegurances previstes en la Llei d’Ordenació de la Edificació.

• Lliurar a l’adquirent, si escau, la documentació d’obra executada, o qualsevol altre document exigible per les Administracions competents.

2.1.3. El projectista

Són obligacions del projectista (art. 10 de la L.O.E.):

• Estar en possessió de la titulació acadèmica i professional habilitant d’enginyer, enginyer tècnic, arquitecte o arquitecte tècnic segons correspongui, i complir les condicions exigibles per a l’exercici de la professió. En cas de persones jurídiques, ha de designar al tècnic redactor del projecte que tingui la titulació professional habilitant.

• Redactar el projecte amb subjecció a la normativa vigent i a que s’hagi establert en el contracte i lliurar-lo, amb els visats que si escau fossin preceptius.

• Acordar, si escau, amb el promotor la contractació de col·laboracions parcials.

2.1.4. El constructor

Són obligacions del constructor (art. 11 de la L.O.E.):
• Verificar el replanteig i l’adequació de la fonamentació i de les estructures projectades a les característiques geotècniques del terreny.

• Dirigir l’obra coordinant-la amb el Projecte d’Execució, facilitant la seva interpretació tècnica, econòmica i estètica.

• Assistir a les obres quantes vegades ho requereixi la seva naturalesa i complexitat, a fi de resoldre les contingüitats que es produxin a l’obra i consignar en el Llibre d’Ordres i Assistències les instruccions precisas per la bona interpretació del projecte.

• Elaborar, a requeriment del promotor o amb la seva conformitat, eventuals modificacions del projecte que vinguin exigides per la marxa de l’obra sempre que s’adaptin a les disposicions normatives contemplades en la redacció del projecte.

• Coordinar, al costat de l’Aparellador o Arquitecte Tècnic, el programa de desenvolupament de l’obra i el Projecte de Control de Qualitat amb subjeció al Codi Tècnic de l’Edificació i a les específicacions del Projecte.

• Comprovar, al costat de l’Aparellador o Arquitecte Tècnic, els resultats de les analitzis i informes realitzats per Laboratoris i/o Entitats de Control de Qualitat.

• Coordinar la intervenció en obra d’altres tècnics que, en el seu cas, concorrin a l’adreça amb funció pròpia en aspectes de la seva especialitat.

• Donar conformitat a les certificacions parcials d’obra i la liquidació final.

• Subscriure amb el Promotor les actes de recepció provisional i definitiva.

• Subscriure les garanties per danys materiaus ocasionats per vicis i defectes de la construcció previstes en l’Art. 19 de la L.O.E.

2.1.5. El director d’obra

Correspon al Director d’Obra:
• Estar en possessió de la titulació d’enginyer, enginyer tècnic, arquitecte o arquitecte tècnic segons correspongui i complir les condicions exigibles pel seu exercici. En persones jurídiques, designar al director d’obra que tingui la titulació habilitant.

• Verificar el replanteig i l’adequació de la fonamentació i de les estructures projectades a les característiques geotècniques del terreny.

• Dirigir l’obra coordinant-la amb el Projecte d’Execució, facilitant la seva interpretació tècnica, econòmica i estètica.

• Assistir a les obres quantes vegades ho requereixi la seva naturalesa i complexitat, a fi de resoldre les contingüitats que es produxin a l’obra i consignar en el Llibre d’Ordres i Assistències les instruccions precisas per la bona interpretació del projecte.

• Elaborar, a requeriment del promotor o amb la seva conformitat, eventuals modificacions del projecte que vinguin exigides per la marxa de l’obra sempre que s’adaptin a les disposicions normatives contemplades en la redacció del projecte.

• Coordinar, al costat de l’Aparellador o Arquitecte Tècnic, el programa de desenvolupament de l’obra i el Projecte de Control de Qualitat amb subjeció al Codi Tècnic de l’Edificació i a les específicacions del Projecte.

• Comprovar, al costat de l’Aparellador o Arquitecte Tècnic, els resultats de les analitzis i informes realitzats per Laboratoris i/o Entitats de Control de Qualitat.

• Coordinar la intervenció en obra d’altres tècnics que, en el seu cas, concorrin a l’adreça amb funció pròpia en aspectes de la seva especialitat.

• Donar conformitat a les certificacions parcials d’obra i la liquidació final.

• Subscriure amb el Promotor les actes de recepció provisional i definitiva.

• Subscriure les garanties per danys materiaus ocasionats per vicis i defectes de la construcció previstes en l’Art. 19 de la L.O.E.

2.1.6. El director d’execució de l’obra

A aquesta documentació s’adjuntarà l’acta de recepció, la relació dels agents que han intervingut durant el procés d’edificació, així com la relativa a les instruccions d’ús i manteniment de l’edifici i les seves instal·lacions. Aquesta documentació constituirà el Llibre de l’Edifici, i serà lliurada als usuaris finals de l’edifici.
Correspon al Director d'Obra:

- Estar en possessió de la titulació d'enginyer, enginyer tècnic, arquitecte o arquitecte tècnic segons correspongui i complir les condicions exigibles pel seu exercici. En persones jurídiques, designar al director d’obra que tingui la titulació habilitant.

- Verificar el replanteig i l’adequació de la fonamentació i de les estructures projectades a les característiques geotècniques del terreny.

- Dirigir l’obra coordinant-la amb el Projecte d’Execució, facilitant la seva interpretació tècnica, econòmica i estètica.

- Assistir a les obres quantes vegades ho requereixi la seva naturalesa i complexitat, a fi de resoldre les contingències que es produeixin a l’obra i consignar en el Llibre d’Ordes i Assistències les instruccions precises per la bona interpretació del projecte.

- Elaborar, a requeriment del promotor o amb la seva conformitat, eventuais modificacions del projecte que vinguin exigides per la marxa de l’obra sempre que s’adaptin a les disposicions normatives contemplades en la redacció del projecte.

- Coordinar, al costat de l’Aparellador o Arquitecte Tècnic, el programa de desenvolupament de l’obra i el Projecte de Control de Qualitat amb subjecció al Codi Tècnic de l’Edificació i a les especificacions del Projecte.

- Comprovar, al costat de l’Aparellador o Arquitecte Tècnic, els resultats de les anàlisis i informes realitzats per Laboratoris i/o Entitats de Control de Qualitat.

- Coordinar la intervenció en obra d’altres tècnics que, en el seu cas, concorrin a l’adreça amb funció pròpia en aspectes de la seva especialitat.

- Donar conformitat a les certificacions parcials d’obra i la liquidació final.

- Subscriure l’acta de replanteig o de començament d’obra i el certificat final d’obra, així com conformar les certificacions parcials i la liquidació final de les unitats d’obra executades, amb els visats que si escau fossin preceptius.

- Assessorar al Promotor durant el procés de construcció i en l’acte de la recepció.

- Preparar amb el Contractista la documentació gràfica i escrita del projecte definitivament executat per a lliurar-lo al Promotor.

Aquesta documentació s’adjuntarà l’acta de recepció, la relació dels agents que han intervingut durant el procés d’edificació, així com la relativa a les instruccions d’ús i manteniment de l’edifici i les seves instal·lacions. Aquesta documentació constituirà el Llibre de l’Edifici, i serà lliurada als usuaris finals de l’edifici.

- Subscriure l’acta de replanteig o de començament d’obra i el certificat final d’obra, així com elaborar i subscriure les certificacions parcials i la liquidació final de les unitats d’obra executades.

- Col·laborar amb els restants agents en l’elaboració de la documentació de l’obra executada, aportant els resultats del control realitzat.

2.1.7. El coordinador de Seguretat i Salut

El coordinador en matèria de Seguretat i Salut durant l’execució de l’obra haurà de desenvolupar les següents funcions:

- Coordinar l’aplicació dels principis generals de prevenció i de seguretat.

- Coordinar les activitats de l’obra per a garantir que els contractistes, i si escau, els subcontractistes i els treballadors autònoms apliquin de manera coherent i responsable els principis de l’acció preventiva que es recullen en l’article 15 de la Llei de Prevenció de Riscos Laborals durant l’execució de l’obra.

- Aprovar el pla de seguretat i salut elaborat pel contractista i, si escau, les modificacions introduïdes en el mateix.

- Coordinar les accions i funcions de control de la bona aplicació dels mètodes de treball.

- Adoptar les mesures necessàries perquè només les persones autoritzades puguin accedir a l’obra. La direcció facultativa assumirà aquesta funció quan no fos necessària la designació de coordinador.

2.1.8. Les entitats i els laboratoris de control de qualitat de l’edificació

Les entitats de control de qualitat de l’edificació presten assistència tècnica en la verificació de la qualitat del projecte, dels materials i de l’execució de l’obra i les seves instal·lacions d’acord amb el projecte i la normativa aplicable.

Els laboratoris d’assaigs per al control de qualitat de l’edificació presten assistència tècnica mitjançant la realització d’assaigs o proves de servei dels materials, sistemes o instal·lacions d’una obra de edificació.

Són obligacions de les entitats i dels laboratoris de control de qualitat (art. 14 de la L.O.E.):

- Proveure assistència tècnica i lliurar els resultats de la seva activitat a l’agent autor de l’encàrrec i, en tot cas, al director de la execució de les obres.

- Justificar la capacitat suficient de mitjans materials i humans necessaris per a realitzar adequadament els treballs contractats, si escau, a través de la corresponent acreditació oficial atorgada per les Comunitats Autònomes amb competències.
1.1.2.2. Obligacions i drets generals del constructor o contractista

2.2.1. Verificació dels documents del projecte

Abans de donar començament a les obres, el Constructor consignarà per escrit que la documentació aportada li resulta suficient per a la comprensió de la totalitat de l’obra contractada, o en cas contrari, sol·licitarà els aclariments pertinents.

2.2.2. Pla de seguretat i salut

El Constructor, a la vista del Projecte d'Execució i l'Estudi de Seguretat i Salut, presentarà el Pla de Seguretat i Salut de l’obra a l’aprovació de l'Aparellador o Arquitecte Tècnic de la direcció facultativa.

2.2.3. Projecte de control de qualitat

El Constructor tindrà a la seva disposició el Projecte de Control de Qualitat, en el qual s’especificaran les característiques i requisits que haurien de complir els materials d'obra i els criteris per a la recepció dels materials, segons estiguin avalats o no per segells marques i qualitat. També s’especificaran els assaigs, anàlisis i proves a realitzar, determinació de lots i altres paràmetres definits en el Projecte.

2.2.4. Oficina a l’obra

El Constructor habilitarà a l’obra una oficina en la qual existirà una taula en la que puguin estendre’s i consultar-se els plànols. En aquesta oficina tindrà sempre el Contractista a la disposició de la Direcció facultativa:

- El Projecte d'Execució complet, inclosos els complements que escaiguin.
- La Llicència d'obres.
- El Pla de Seguretat i Salut i el seu Llibre d'Incidències, si hi ha per a l’obra.
- El Projecte de Control de Qualitat i el seu Llibre de registre, si n’hi ha per l’obra.
- El Reglament i Ordenança de Seguretat i Salut en el Treball.
- La documentació de les assegurances subscrites pel constructor.

Disposarà a més el Constructor d’una oficina per a la Direcció facultativa, convenientment condicionada perquè en ella es puguin treballar amb normalitat a qualsevol hora de la jornada.

2.2.5. Representació del contractista cap d’obra

El Constructor està obligat a comunicar a la propietat la persona designada com delegat seu en l’obra, que tindrà el caràcter de Cap d'Obra de la mateixa, amb dedicació plena i amb facultats per a representar-li i adoptar en tot moment quantes decisions li competeixin.

Les seves funcions seran les que s’especifiquen a 2.1.4.

Quan la importància de les obres ho requereixi i així es consigni en el Plec de "Condicions particulars d’índole facultativa", el Delegat del Contractista serà un facultatiu de grau superior o grau mig, segons els casos.

El Plec de Condicions particulars determinarà el personal facultatiu o especialista que el Constructor s’obligui a mantenir en l’obra com a mínim, i el temps de dedicació compromès. L’incompliment d’aquesta obligació o, en general, la falta de qualificació suficient per part del personal segons la naturalesa dels treballs, facultarà a l'Enginyer o Arquitecte per a ordenar la paralització de les obres sense dret a reclamació alguna, fins que es resolgui la deficiència.

2.2.6. Presència del constructor en l’obra

El Cap d'Obra, per si o per mitjà dels seus tècnics, estarà present durant la jornada legal de treball i acompanyarà al l'Enginyer o Arquitecte a les visites que facin a les obres, posant-se a la seva disposició per a la pràctica dels reconeixements que es considerin necessaris i subministrant-los les dades precisas per a la comprovació d’amidaments i liquidacions.

2.2.7. Treballs no estipulats expressament

És obligació del contractista executar el necessari per a la bona construcció i aspecte de les obres, tot i que no es trobi expressament determinat en els Documents de Projecte. Això serà així sempre que, sense separar-se del seu esperit i recta interpretació, ho disposi l'Enginyer o Arquitecte dintre dels límits que els pressupostos habilitin per a cada unitat d’obra i d’execució.

En defecte d’especificació en el Plec de Condicions Particulares, s’entendrà que requereix una reforma de projecte amb consentiment exprés de la propietat tota variació que suposi un increment de preus d’algun unitat d’obra en més del 20% o del total del pressupost en més d’un 10 per 100.

2.2.8. Interpretacions i modificacions dels documents del projecte

El Constructor podrà requerir de l’Enginyer o Arquitecte o de l’Aparellador o Arquitecte Tècnic, segons les seves respectives corresmes, les instruccions o aclariments que es precisin per a la correcta interpretació i execució del projectat.

Quan es tracci d’actualitzar, interpretar o modificar preceptes dels Plecs de Condicionts o indicacions dels plànols o croquis, les ordres i instruccions corresponents es comunicaran per escrit al Constructor, estant aquest obligat al seu torn a retornar els originals o les còpies subscriuient amb la seva signatura l'assabent, que figurarà al peu de totes les ordres, avisos o instruccions que rebi tant de l'Aparellador o Arquitecte Tècnic com de l'Enginyer o Arquitecte.
2.2.9. Reclamacions contra les ordres de la direcció facultativa

Les reclamacions que el Contractista vulgui fer contra les ordres o instruccions demanades de la Direcció facultativa, només podrà presentar-les a través de l’Enginyer o Arquitecte davant la propietat si són d’ordre econòmic i d’acord amb les condicions estipulades als Plecs.

Contra disposicions d’ordre tècnic de l’Enginyer o Arquitecte o de l’Aparellador o Arquitecte Tècnic no s’admetrà reclamació alguna, podent el Contractista salvar la seva responsabilitat mitjançant exposició raonada dirigida a l’Enginyer o Arquitecte, el qual podrà limitar la seva contestació al justificant de recepció, que serà obligatori per a aquest tipus de reclamacions.

2.2.10. Recusació pel contractista del personal nomenat per l’arquitecte

El Constructor no podrà recusar als Arquitectes, Aparelladors o personal encarregat per aquests de la vigilància de les obres, ni demanar que per part de la propietat es designin altres facultatius per als reconeixements i amidaments.

Quan es cregui perjudicat per la labor d’aquests procedirà d’acord amb l’estipulat en el punt precedent, però sense que per aquesta causa puguin interrompre’s ni els treballs.

2.2.11. Faltes del personal

L’Enginyer o Arquitecte, en supòsits de desobediència a les seves instruccions, manifesta incompetència o negligència greu que comprometin o perturbin la marxa dels treballs, podrà requerir al Contractista prendre accions contra els operaris causants de la pertorbació.

2.2.12. Subcontractació

El Contractista podrà subcontractar capítols o unitats d’obra a altres contractistes i industrials, amb subjecció si escau, a l’estipulat en el Plec de Condicions Particulars i sense prejudici de les seves obligacions com Contractista general de l’obra.

1.1.2.3. Responsabilitats dels agents que intervenen en el procés de l’edificació

2.3.1. Danys materials

Les persones físiques o jurídiques que intervenen en el procés de l’edificació respondran enfront dels propietaris i els tercers adquiridors dels edificis o parts dels mateixos, dels següents danys materials ocasionats en l’edifici dintre dels terminis indicats:

- Durant deu anys, dels danys materials causats en l’edifici per vicis o defectes que afectin a la fonamentació, els suports, les bigues, els forjats, els murs de càrrega o altres elements que comprometin la resistència mecànica i estabilitat de l’edifici.
- Durant tres anys, dels danys materials causats en l’edifici respondrà dels danys materials per vicis o defectes d’execució que afectin a elements de terminació o acabat de les obres dintre del termini d’un any.

2.3.2. Responsabilitat civil

La responsabilitat civil serà exigible en forma personal i individualitzada, tant per actes o omissions propis com per actes o omissions de persones per les quals s’hiagi de respondre. No obstant això, quan pugués individualitzar-se la causa dels danys materials o quedés degudament provada la concurrencia de culpes sense que pugués precisar-ne el grau d’intervenció de cada agent en el dany produït, la responsabilitat s’exigirà solidàriament. En tot cas, el promotor respondrà solidàriament amb els altres agents que hi intervenen davant els possibles adquirents dels danys materials en l’edifici ocasionats per defectes de construcció.

Sense prejudici de les mesures d’intervenció administratives que procedeixin, la responsabilitat del promotor que s’estableix en la Llei d’Ordenació de l’Edificació s’estendrà a les persones físiques o jurídiques que, a tenor del contracte, actuïn com a tals promotor o gestor de cooperatives o de comunitats de propietaris o altres figures anàlogues.

Quan el projecte hagi estat contractat conjuntament amb més d’un projectista, els mateixos respondran solidàriament.

Els projectistes que contractin els càlculs, estudis o informes d’altres professionals seran directament responsables dels danys que puguin derivar-se de la seva insuficiència, o incorrecció sense prejudici de la repetició que puguessin exercir contra els seus autors.

El constructor respondrà directament dels danys materials causats en l’edifici per vicis o defectes derivats de la imperícia, falta de capacitat professional o tècnica, negligència o incompliment de les obligacions atribuïdes al cap d’obra o altres persones que d’ell depenguin.

Quan el constructor subcontracti amb altres persones l’execució de determinades parts o instal·lacions de l’obra, serà directament responsable dels danys materials per vicis o defectes de la seva execució, sense prejudici de la repetició que tinguessin lloc.

El director d’obra i el director de l’execució de l’obra que supervisin el certificat final d’obra seran responsables de la veracitat i exactitud d’aquest document.

Qui accepti la direcció d’una obra el projecte de la qual no hagi elaborat ell mateix, assumirà les responsabilitats derivades de les omissions, deficiències o imperfeccions del projecte, sense prejudici de la repetició que pugués corresponder-li enfront del projectista.

Quan la direcció d’obra es contracti de manera conjunta a més d’un tècnic, els mateixos respondran solidàriament sense prejudici de la distribució que entre ells correspongui. Les responsabilitats per danys no seran exigibles als agents que intervinguin en el procés de l’edificació si es prova que aquells van ser ocasionats per cas fortuit, força major, acte de tercer o pel propi prejudicat pel dany.
1.1.2.4. Prescripcions generals relatives a treballs, materials i mitjans auxiliars

2.4.1. Camins i accessos

El Constructor disposarà pel seu compte els accessos a l’obra, el tancament d’aquesta i el seu manteniment durant la execució. L’Aparellador o Arquitecte Tècnic podrà exigir la seva modificació o millora.

2.4.2. Replanteig

El Constructor iniciarà les obres amb el replanteig de les mateixes en el terreny, assenyalant les referències principals que mantindrà com base d’ulteriors replantejos parciais. Aquests treballs es consideraran a càrrec del Contractista i inclosos en la seva oferta.

El Constructor sotmetrà el replanteig a l’aprovació de l’Aparellador o Arquitecte Tècnic i una vegada hagi donat la seva conformitat prepararà un acta acompanyada d’un plànol que haurà de ser aprovada per l’Enginyer o Arquitecte, essent responsabilitat del Constructor l’omissió d’aquest tràmit.

2.4.3. Inici de l’obra. Ritme d’execució dels treballs

El Constructor donarà començament a les obres en el termini estipulat en el Plec de Condicions Particulars, desenvolupant-les en la forma necessària perquè dintre dels períodes parciais en aquell hagi donat la seva conformitat prepararà un acta acompanyada d’un plànol que haurà de ser aprovada per l’Enginyer o Arquitecte, essent responsabilitat del Constructor l’omissió d’aquest tràmit.

2.4.4. Ordre dels treballs

En general, la determinació de l’ordre dels treballs és facultat de la contracta, excepte aquells que, per requeriments d’ordre tècnic, estiguin convenient la seva variació la Direcció facultativa.

2.4.5. Facultats per a altres contractistes

D’acord amb el que requereixi la Direcció facultativa, el Contractista General haurà de donar totes les facilitats raonables per a la realització dels treballs que li siguin encomanats a tots els altres Contractistes que intervinguin en l’obra. En cas de litigi, ambdós Contractistes estaran al que resolgui la Direcció Facultativa.

2.4.6. Ampliació del projecte per causes imprevistes o de força major

Quan calgui ampliar el Projecte per motiu imprevist o per qualsevol accident, no s’interrompren els treballs, continuant-se segons les instruccions donades per l’Enginyer o Arquitecte mentre es formula o es tramita el Projecte reformat.

El Constructor està obligat a realitzar amb el seu personal i els seus materials el que la direcció de les obres disposi per a fitacions, apuntalaments, enderrocaments, recolzaments o qualsevol altra obra de caràcter urgent, anticipat de moment aquest servei, l’import del qual li serà consignat en un pressupost addicional o abonat directament.

2.4.7. Pròrroga per causa de força major

Si per causa de força major el Constructor no pogués començar les obres, hagués de suspendre les o no li fos possible acabar-les en els terminis prefixats, se li atorgarà una prorrogà amb la que s’originaria en els terminis acordats, raonant degudament la pròrroga que per aquesta causa sol·licita. 2.4.8. Responsabilitat de la direcció facultativa en el retard de l’obra

El Contractista no podrà excusar-se de no haver complert els terminis d’obres estipulats, al·legant com causa la manca de plànols o ordres de la Direcció facultativa, a excepció del cas que havent-lo sol·licitat per escrit no se li haguessin proporcionat.

2.4.9. Condicions generals d’execució dels treballs

Tots els treballs s’executaràn amb estricta subordinació a l’obra, a les modificacions que prèviament hagin estat aprovades i a les ordres i instruccions que sota la seva responsabilitat i per escrit lliurin l’Enginyer o Arquitecte o l’Aparellador o Arquitecte Tècnic al Constructor, dintre de les limitacions pressupostàries i de conformitat amb l’especifica’t a 2.2.7.

2.4.10. Documentació d’obres ocultes

De tots els treballs i unitats d’obra que hagin de quedar ocults a la terminació de l’edifici, s’aixecaran els plànols precisos perquè quedin perfectament definits. Aquests documents s’estendran en triple versió, lliurant-se’n un a l’Enginyer o Arquitecte, un a l’Aparellador i el tercer al Contractista, signats tots ells pels tres. Dits plànols, que hauran d’anar suficientment fitats, es consideraran documents indispensables per a efectuar els amidaments.

2.4.11. Treballs defectuosos

El Constructor ha d’emprar els materials que compleixin les condicions exigides en les “Condicions generals i particulars d’índole Tècnica” del Plec de Condicions i realitzarà tots i cadascun dels treballs contractats d’acord amb l’especificat també en aquest document.

Per això, i fins que tingui lloc la recepció definitiva de l’edifici, és responsable de l’execució dels treballs que ha contractat i de les faltes i defectes que en aquests puguin existir per la seva mala execució o per la deficient qualitat dels materials empleats o aparells col·locats. Això no l’exonerarà de responsabilitat el control que competeix a l’Aparellador o Arquitecte Tècnic, ni tampoc el fet que aquests treballs hagin estat valorats en
les certificacions parcials d’obra, que sempre es tindran esteses i abonades a bon compte.

Com a conseqüència de l’expressat, quan l’Aparellador o Arquitecte Tècnic adverteixi vicis o defectes en els treballs executats abans de verificar-ne la recepció definitiva de l’obra, podrà disposar que les parts defectuoses siguin demolides i reconstruïdes d’acord amb el contractat, i tot això a costa de la contracta. Si aquesta no estigui d’acord la decisió es plantejarà la qüestió davant l’Enginyer o Arquitecte de l’obra, qui resoldrà.

2.4.12. Vicis ocults

Si l’Aparellador o Arquitecte Tècnic tingués fundades raons per a creure en l’existència de vicis ocults de construcció en les obres executades, ordenarà efectuar en qualsevol temps, i abans de la recepció definitiva, els assaigs, destructius o no, que cregui necessaris per a reconèixer els treballs que suposi defectuosos, adonant de la circumstància a l’Enginyer o Arquitecte.

Les despeses que s’occasionin seran a compte del Constructor sempre que els vicis existeixin realment. En cas contrari seran a càrrec de la Propietat.

2.4.13. Dels materials i dels aparells. La seva procedència

El Constructor té llibertat de proveir-se dels materials i aparells de totes classes en els punts que li sembi convenent, excepte en els casos que el Plec Particular de Condicions Tècniques preceptui una procedència determinada.

Obligatòriament, i abans de procedir a la seva ocupació o apilament, el Constructor haurà de presentar a l’Aparellador o Arquitecte Tècnic una llista completa dels materials i aparells que vagi a utilitzar en la qual es especifiquen totes les indicacions sobre marques, qualitats i procedència de cadascun d’ells. 2.4.14. Presentació de mostres

A petició de l’Enginyer o Arquitecte, el Constructor li presentarà les mostres dels materials sempre amb l’antelació prevista en el Calendari de l’Obra.

2.4.15. Materials no utilitzables

El Constructor, a la seva costa, transportarà i col·locarà, agrupant-los ordenadament i en el lloc adequad, els materials procedents de les excavacions, enderrocaments, etc., que no siguin utilitzables a l’obra.

Es retiraran d’aquesta o es portaran a l’abocador quan així estiguin establert en el Plec de Condicions Particulares vigent en l’obra.

Si no s’hagués preceptuat res sobre el peculiar, es retiraran d’ella quan així ho ordeni l’Aparellador o Arquitecte Tècnic, però acordant prèviament amb el Constructor la seva justa taxació, tenint en compte el valor de dites materials i les despeses del seu transport.

2.4.16. Materials i aparells defectuosos

Quan els materials, elements d’instal·lacions o aparells no comptin amb la qualitat prescrita en aquest Plec, o es demostres que no son adequats per a el seu objecte, l’Enginyer o Arquitecte donarà ordre al Constructor de substituir-los per uns altres que satisfacin dites condicions.

Si als quinze (15) dies de rebre el Constructor l’ordre de retirar els materials no ha estat complerta, podrà fer-ho la Propietat carregant les despeses a la contracta.

Si els materials, elements d’instal·lacions o aparells fossin defectuosos però acceptables segons el parer de l’Enginyer o Arquitecte, es rebran però amb la rebaixa del preu que aquell determini, tret que el Constructor prefereixi substituir-los per uns altres en condicions. 2.4.17. Despeses ocasionades per proves i assaigs

Totes les despeses originades per les proves i assaigs de materials o elements que intervinguin en l’execució de les obres seran de compte de la contracta.

Tot assaig que no hagi resultat satisfactori o que no ofereixi les suficients garanties podrà començar-se de nou a càrrec del mateix.

2.4.18. Neteja de les obres

És obligació del Constructor mantenir netes les obres i els seus voltants tant d’enderrocs com de materials sobrants, fer desaparèixer les instal·lacions provisionals que no siguin necessàries, així com adoptar les amídades i executar tots els treballs que siguin necessaris perquè l’obra ofereixi un bon aspecte.

2.4.19. Obres sense prescripcions

En l’execució de treballs que entren en la construcció de les obres i per als quals no existeixin prescripcions consignades explícitament en aquest Plec ni en la restant documentació del Projecte, el Constructor s’atindrà, en primer terme, a les instruccions que dicti la Direcció facultativa de les obres i, en segon lloc, a les regles i pràctiques de la bona construcció.

1.1.2.5. Recepcions d’edificis i obres annexes

2.5.1. Acta de recepció

La recepció de l’obra és l’acte pel qual el constructor, una vegada conclosa, fa lliurament de l’obra al promotor i és acceptada per aquest. Podrà realitzar-se amb o sense reserves i abastarà la seva totalitat o fases completes i acabades de la mateixa quan així s’acordi.

La recepció haurà de consignar-se en un acta signada, almenys, pel promotor i el constructor, i en la mateixa es farà constar:

• Les parts que intervenen.
• La data del certificat final de la totalitat de l’obra o de la fase completa i acabada.
• El cost final de l’execució material de l’obra.
• La declaració de la recepció de l’obra amb o sense reserves, especificant, si escau, aquestes de
manera objectiva, i el termini en què haurien de quedar resolts els defectes observats. Una vegada resolts els mateixos es farà constar en un acta a part subcrita pels signants de la recepció.

- Les garanties que s’exigeixen al constructor per a assegurar les seves responsabilitats.
- S’adjuntarà el certificat final d’obra subscrit pel director d’obra (enginyer o arquitecte) i el director de l’execució de l’obra (aparellador) i la documentació justificativa del control de qualitat realitzat.
- El promotor podrà rebutjar la recepció de l’obra per considerar que la mateixa no està acabada o que no s’adequa a les condicions contractuals. En tot cas, el rebuig haurà de ser motivat per escrit en l’acta, en la qual es fixarà el nou termini per la recepció.

Excepcions expres en contra, la recepció de l’obra tindrà lloc dintre dels trenta dies següents a la data de la seva terminació acreditada en el certificat final d’obra, termini que es contará a partir de la notificació efectuada per escrit al promotor. La recepció s’entendrà tàcitament produïda si transcorreguts trenta dies des de la data indicada el promotor no hagués posat de manifest reserves o rebuig motivat per escrit.

2.5.2. Recepcions provisionals

- Aquestes es realitzaran amb la intervenció de la Propietat, del Constructor, de l'Enginyer o Arquitecte i de l'Apellarador o Arquitecte Tècnic. Es convocarà també als restants tècnics que haguessin intervuit amb funció pròpia en aspectes parcials o unitats especialitzades.

- Practicar un detingut reconeixement de les obres, s’estendrà un acta amb punts exemplars signats per tots ells. Des d’aquesta data començarà a còrrer el termini de garantia si les obres es trobessin en estat de ser admeses. Seguidament, els Tècnics de la Direcció facultativa estendran el corresponent Certificat de final d’obra.

Quan les obres no es trobin en estat de ser rebudes, es farà constar en l’acta i es donaran al Constructor les instruccions per a remeiar els defectes observats, fixant un termini per a resoldre’ls. Si el Constructor no hagués complert, podrà declarar-se resolt el contracte amb pèrdua de la fiança.

2.5.3. Documentació final

L'Enginyer o Arquitecte, assistit pel contractista i els tècnics que haguessin intervingut en l’obra, redactarà la documentació final de les obres que es facilitarà a la Propietat. Aquesta documentació s’adjuntarà a l’acta de recepció amb la relació identificativa dels agents que han intervingut durant el procés d’edificació, així com la relativa a les instruccions d’ús i manteniment de l’edifici i les seves instal·lacions de conformitat amb la normativa que li sigui d'aplicació. Aquesta documentació constituirà el Llibre de l’edifici, que ha ésser encarregada pel promotor i serà llurada als usuaris finals de l’edifici.

Al seu torn aquesta documentació es divideix en:

2.5.3.1. Documentació de seguiment d’obra

Aquesta documentació, segons el Codi Tècnic de l’Edificació, es compon de:

- Llibre d’ordres i assistències d’acord amb el previst en el Decret 461/1971 de l’11 de març.
- Llibre d’incidències en matèria de seguretat i salut, segons el Reial decret 1627/1997 de 24 d’octubre.
- Projecte amb els seus annexos i modificacions autoritzades pel director de l’obra.
- Llicència d’obres, d’obertura del centre de treball i, si escua, altres autoritzacions administratives.
- La documentació de seguiment serà dipositada pel director de l’obra al Col·legi d’Enginyers.

2.5.3.2. Documentació de control d’obra

- El seu contingut, la recopilació del qual és responsabilitat del director d’execució d’obra, es compon de: Documentació de control, que ha de corresponder a l’establert en el projecte, més els seus annexos i modificacions.
- Documentació, instruccions d’ús i manteniment, així com garanties dels materials i subministraments que ha de ser proporcionada pel constructor.
- Si escua, documentació de qualitat de les unitats d’obra, preparada pel constructor i autoritzada pel director d’execució en el seu col·legi professional.

2.5.3.3. Certificat final d’obra

Aquest s’ajustarà al model publicat en el Decret 462/1971 de 11 de març, en el director de l’execució de l’obra certificarà haver dirigit l’execució material de les obres i controlat quantitativa i qualitativament la construcció i la qualitat de l’edificat d’acord amb el projecte, la documentació tècnica que ho desenvolupa i les normes de bona construcció.

El director de l’obra certificarà que l’edificació ha estat realitzada sota la seva direcció, la conformitat amb el projecte objecte de la llicència i la documentació tècnica que ho complementa, essent apte per a la seva adequada utilització conformement a les instruccions d’ús i manteniment.

Al certificat final d’obra se li uniran com annexos els següents documents:

- Descripció de les modificacions que, amb la conformitat del promotor, s’haguessin introduït durant l’obra fent constar la seva compatibilitat amb les condicions de la llicència.
- Relació dels controls realitzats.

2.5.4. Amidament definitiu dels treballs i liquidació provisional de l’obra

Rebudes provisionalment les obres, es procedirà immediatament per part de l'Enginyer, Arquitecte, Apellarador o Arquitecte Tècnic al seu amidament definitiu, amb precisa assistència del Constructor o del seu representant. S’estendrà l’oportuna certificació en triple versió que, aprovada per l'Enginyer o Arquitecte amb la seva signatura, servirà per a l’abonament per la Propietat del saldo resultant excepte la quantitat retinguda en concepte de fiança (segons l’estipulat en l’Art. 6 de la L.O.E.).

2.5.5. Termini de garantia

El termini de garantia haurà d'estipular-se en el Plec de Condicions Particulars i en qualsevol cas més haurà de ser inferior a nou mesos (un any amb Contractes de les Administracions Públiques).
2.5.6. Conservació de les obres rebudes provisionalment

Les despeses de conservació durant el termini de garantia comprèn entre les recepcions provisional i definitiva, correran a càrrec del Contractista.

Si l’edifici fos ocupat o utilitzat abans de la recepció definitiva, la guarderia, neteja i reparacions causades per l'ús correran a càrrec del propietari i les reparacions per vicis d’obra o per defectes en les instal·lacions seran a càrrec del Contractista.

2.5.7. La recepció definitiva

La recepció definitiva es verificarà després de transcorregut el termini de garantia en igual forma i amb les mateixes formalitats que la provisional, a partir de la data de la qual cessarà l’obligació del Constructor de reparar al seu càrrec aquells desperfectes inherents a la normal conservació dels edificis i quedaran només subsistents totes les responsabilitats que poguessin arribar-li a per vicis de la construcció.

2.5.8. Pròrroga del termini de garantia

Si a la conducta al reconeixement per la recepció definitiva de l’obra no es trobés aquesta en les condicions degudes, es retardarà aquesta recepció definitiva i el Director marcarà al Constructor els terminis i formes que haurien de realitzar-se les obres necessàries i, de no efectuar-se dintre d’aquells, podrà resoldre’s el contracte amb pèrdua de la fiança.

2.5.9. Recepcions de treballs del contracte dels quals hagi estat rescindit

En el cas de resolució del contracte, el Contractista estarà obligat a retirar, en el termini que es fixi en el Plec de Condicions Particulars, la maquinària, mitjans auxiliars, instal·lacions, etc., a resoldre els subcontractes que tingués concertats i a deixar l’obra en condicions de ser represa per altra empresa.

Les obres i treballs acabats per complet es rebran provisionalment amb els tràmits establerts en aquest Plec de Condicions. Transcorregut el termini de garantia es rebran definitivament segons el que es disposa en aquest Plec.

Per a les obres i treballs no determinats però acceptables segons el parer de l'Enginyer o Arquitecte Director, s’efectuarà una sola i definitiva recepció.

1.1.3. Disposicions econòmiques. Plec general

1.1.3.1. Principi general

Tots els que intervenen en el procés de construcció tenen dret a percebre puntualment les quantitats reportades per la seva correcta actuació conformement a les condicions contractualment establertes. La propietat, el contractista i, si escau, els tècnics poden exigir-se recíprocament les garanties adequades al compliment de les seves obligacions de pagament.

1.1.3.2. Fiança

El contractista prestarà fiança conformement a algun dels següents procediments segons s’estipuli:

- Dipòsit previ, en metàl·lic, valors o aval bancari per import entre el 4% i el 10% del preu total de contracte.
- Mitjançant retenció en les certificacions parciales o pagaments a compte en igual proporció.

El percentatge d'aplicació per al dipòsit o retenció es fixarà al Plec de Condicions Particulars.

3.2.1. Fiança en subhasta pública

En el cas que l’obra s’adjudiqui per subhasta pública, el dipòsit provisional per a prendre part en ella s’especificarà en l’anunci de la mateixa i la seva quantia serà d’ordinari, i excepte estipulació diferent en el Plec de Condicions particulars vigent en l’obra, d’un 4% com a mínim del total del Pressupost de contracta El Contractista a qui s’hagi adjudicat l’execució d’una obra hauria de dipositar en el punt i termini fixats en l’anunci de la subasta la fiança definitiva que s’assenyala i, en defecte d’això, el seu import serà del 10% de la quantitat per la qual es faci l’adjudicació de les formes especificades en l’apartat anterior.

El termini assenyalat en el paràgraf anterior, i excepte condició expressa establerta en el Plec de Condicions particulars, no excedirà de trenta dies naturals a partir de la data que se li comuniqui l’adjudicació, i dintre d’ell haurà de presentar l’adjudicatari la carta de pagament o rebut que acrediti la constitució de la fiança.

La falta de compliment d’aquest requisit donarà lloc a que es declari nul·la l’adjudicació, i l’adjudicatari perderà el dipòsit provisional que hagués fet per a prendre part en la subhasta.

3.2.2. Execució de treballs a càrrec de la fiança (Article 54)

Si el Contractista es negués a fer pel seu compte els treballs precisos per a ultimar l’obra en les condicions contractades, l’Enginyer o Arquitecte Director, en nom i representació del propietari, els ordenarà executar a un tercer o podrà realitzar-los directament per administració, abonant el seu import amb la fiança dipositada.

3.2.3. Devolució de fiances

La fiança retinguda serà retornada al Contractista en un termini que no excedirà de trenta (30) dies una vegada signada l’Acta de Recepció Definitiva de l’obra. La propietat podrà exigir que el Contractista li acredití la liquidació dels seus deutes causats per l’execució de l’obra tals com salaris, subministraments, subcontractes, etc.
3.2.4. Devolució de la fiança en cas d’efectuar-se recepcions parcials

Si la propietat, amb la conformitat de l’Enginyer o Arquitect Director, accedís a fer recepcions parcials, el Contractista tindrà dret a que se li retorni la part proporcional de la fiança.

1.1.3.3. Preus

3.3.1. Composició dels preus unitaris

El càlcul dels preus de les diferents unitats d’obra és el resultat de sumar els costos directes, els indirectes, les despeses generals i el benefici industrial. Es consideraran costos directes:

- La mà d’obra, amb les seus plusos i càrregues i assegurances socials, que intervé directament en l’execució de la unitat d’obra.
- Els materials, als preus resultants a peu d’obra, que quedin integrats en la unitat que es tracti o que sigui necessaris per a la seva execució.
- Els equips i sistemes tècnics de seguretat i higiene per a la prevenció i protecció d’accidents i malalties professionals.
- Les despeses de personal, combustible, energia, etc., que tinguin lloc per l’accionament o funcionament de la maquinària i instal·lacions utilitzades en l’execució de la unitat d’obra.
- Les despeses d’amortització i conservació de la maquinària i instal·lacions citats. Es consideraran costos indirectes les despeses d’instal·lació d’oficines a peu d’obra, comunicacions edificació de magatzems, tallers, pavellons temporals per a obrers, laboratoris, segurs, etc., els del personal tècnic i administratiu adscrit exclusivament a l’obra i els imprevists. Tots aquestes despeses es xifraran en un percentatge dels costos directes.

Es consideraran despeses generals les despeses generals d’empresa, despeses financeres, càrregues fiscals i taxes de l’Administració legalment establertes. Es xifraran com un percentatge de la suma dels costos directes i indirectes (en els contractes d’obres de l’Administració pública aquest percentatge s’estableix entre un 13% i un 17%).

3.3.1.1. Benefici industrial

El benefici industrial del Contractista s’estableix en el 6 per 100 sobre la suma de les anteriors partides en obres per a l’Administració.

3.3.1.2. Preu d’execució material

Es denominarà Preu d’Execució material el resultat obtingut per la suma dels anteriors conceptes a excepció del Benefici Industrial.

3.3.1.3. Preu de Contracte

El preu de Contracte és la suma dels costos directes, els Indirectes, les Despeses Generals i el Benefici Industrial. L’IVA s’aplica sobre aquesta suma però no integra el preu.

3.3.2. Preus de contracte

En el cas que els treballs a realitzar en un edifici o obra annexa qualsevol es contractessin a risc i ventura, s’entén per Preu de contracte el qual importa el cost total de la unitat d’obra, és a dir, el preu d’Execució material, més el tant per cent (%) sobre aquest últim preu en concepte de Benefici Industrial del Contractista. El benefici s’estima normalment, en 6 per 100, tret que en les Condicions particulars s’estableixi altre distint.

3.3.3. Preus contradictoris

Es produiran preus contradictoris només quan la Propietat, per mitjà de l’Enginyer o Arquitecte, decideixi introduir unitats o canvis de qualitat en alguna de les previstes. El Contractista estarà obligat a efectuar dits canvis.

Mancant acord, el preu es resoldrà contradictòriament entre l’Enginyer o Arquitecte i el Contractista abans de començar l’execució dels treballs i en el termini que determini el Plec de Condicions particulars. Si subsisteix la diferència s’acudirà, en primer lloc, al concepte més anàleg dintre del quadre de preus del projecte, i en segon lloc al banc de preus d’ús més freqüent en la localitat. Els contradictoris que hi hagués es referiran sempre als preus unitaris de la data del contracte.

3.3.4. Reclamació d’augment de preus

Si el Contractista, abans de la signatura del contracte, no hagués fet la reclamació oportuna, no podrà sota cap pretext d’error o omissió reclamar augment dels preus fixats en el quadre corresponent del pressupost que serveixi de base per a l’execució de les obres.

3.3.5. Formes tradicionals d’aplicar o d’amidar els preus

En cap cas podrà al·legar el Contractista els usos i costums del país respecte de l’aplicació dels preus o de la forma d’amidar les unitats d’obres executades, sinó que s’acollirà en primer lloc al Plec General de Condicions Tècniques i en segon lloc al Plec de Condicions particulars Tècniques.

3.3.6. Revisió dels preus contractats

Contractant-se les obres a risc i ventura, no s’admetrà la revisió dels preus mentre que l’increment no abasti, en la suma de les unitats que faltin per realitzar d’acord amb el calendari, un muntant superior al 3% de l’import total del Contracte.

En cas de produir-se variacions en alça superiors a aquest percentatge s’efectuarà la corresponent revisió d’acord amb la fórmula establerta al Plec de Condicions particulars, percebent el Contractista la diferència en més que resulti per la variació de l’IPC superior al 3%. No hi haurà revisió de preus de les unitats que puguin quedar fora dels terminis fixats en el Calendari de l’oferta.

3.3.7. Apilament de materials
El Contractista queda obligat a executar els apilaments de materials o aparells d’obra que la Propietat ordeni per escrit. Els materials apilats, una vegada abonats pel propietari seran de l’exclusiva propietat d’aquest, i de la seva guarda i conservació en serà responsable el Contractista.

1.1.3.4. Obres per l’administració

3.4.1. Administració

Es denominen Obres per Administració aquelles en les quals les gestions que es precisen per a la seva realització les duu directament el propietari, bé per si o per un representant seu o bé per mediació d’un constructor.

Les obres per administració es classifiquen en les dues modalitats següents:

- Obres per administració directa.
- Obres per administració delegada o indirecta.

3.4.2. Obres per l’administració directa

Es denominen “Obres per Administració directa” aquelles en les quals el Propietari per si o per mediació d’un representant seu, que pot ser el propi Director expressament autoritzat a aquests efectes, digui directament les gestions precises per a l’execució de l’obra, adquirint els materials, contractant el seu transport a l’obra i intervenint directament en totes les operacions precises perquè el personal i els obrers contractats per ell puguin realitzar-la. En aquestes obres el constructor depèn del propietari, ja sigui com empleat seu o com autònom contractat per ell, que és qui reuneix en si la doble personalitat de propietari i Contractista.

3.4.3. Obres per a l’administració delegada o indirecta

S’entén per “Obra per Administració delegada o indirecta” la qual convenen un Propietari i un Constructor perquè aquest, per compte d’aquell i com delegat seu, realitzi les gestions i els treballs que es precisin i es convinguin.

Són característiques de les “Obres per Administració delegada o indirecta” les següents:

- Per part del Propietari, l’obligació d’abonar directament o per mediació del Constructor totes les despeses inherents a la realització dels treballs convinguts, reservant-se la facultat de poder ordenar, bé per si o per mitjà del Director, l’ordre i la marxa dels treballs, la elecció dels materials i aparells que han d'emprar-se.
- Per part del Constructor, l’obligació d’assumir la portació de les obligacions contractuals en el contracte així com a la gestió dels treballs que es realitzin a l’obra, i en especial, els mitjans auxiliars precisos i, en suma, tot el que es requereixi per a l’execució dels treballs, percebent per això del Propietari una tasa per cent (%) prefixat sobre l’import total de les despeses efectuades i abonats pel constructor.

3.4.4. Liquidació d’obres per l’administració (Article 67)

Per a la liquidació dels treballs que s’executin per administració delegada o indirecta, regiran les normes que a tals fins s’estableixin en les “Condicions particulars d’índole econòmica” vigents en l’obra. Si aquestes manquen, els comptes d’administració els presentarà el Constructor al Propietari en relació

- treballs i el document adequat que justifiqui el dipòsit o l’ocupació de dites materials en l’obra.
- Les nòmines dels jornals abonats, ajustades a l’establert en la legislació vigent, especificant el nombre d’hores treballades en les obres pels operaris de cada ofici i la seva categoria, acompanyant a aquestes nòmines una relació numèrica dels encarregats, capaçs d’equip, oficials i ajudants d’ofici, peons especialitzats i solts, llisters, guardes, etc., que hagin treballat en l’obra durant el termini de temps que corresponguin les nòmines que es presenten.
- Les factures originals dels transports de materials posats o retirats de l’obra.
- Els rebuts de licències, impostos i altres càrregues inherents a l’obra que hagi pagat o en la gestió de la qual hagi intervint el Constructor, ja que el seu abonament és sempre de compte del Propietari.

A la suma de totes les despeses inherents a la pròpia obra en la que en la gestió o pagament hagi intervenut el Constructor se li aplicarà, mancant conveni especial, un 15%, entenent-se que en aquest percentatge estan inclosos els mitjans auxiliars i els de seguretat preventius d’accidents, les Despeses Generals que al Constructor originin els treballs per administració que realitzi el Benefici Industrial del mateix.

3.4.5. Abonament al constructor dels descomptes d’administració delegada

Excepte l’existència d’un pacte diferent, els abonaments al Constructor dels comptes d’Administració delegada els realitzarà el Propietari mensualment segons les parts de treballs realitzats aprovats pel propietari o pel seu delegat representant.

Independentment, l’Aparellador o Arquitecte Tècnic redactarà, amb igual periodicitat, l’amidament de l’obra realitzada, valorant-la conformement al pressupost aprovat. Aquestes valoracions no tindran efectes per als abonaments al Constructor tret que s’hagués pactat el contrari contractualment.

3.4.6. Normes per a l’adquisició dels materials i aparells

Tot i les facultats que es reserva el Propietari per a l’adquisició dels materials i aparells, si al Constructor se li autoritza per a gestionar-los i adquirir-los haurà de presentar al Propietari, o a en la seva representació al Director, els preus i les mostres dels materials i aparells oferts, necessitant la seva prèvia aprovació abans d’adquirir-los.

3.4.7. Baix rendiment de les obres

Si dels parts mensuals d’obra executada que preceptivament ha de presentar el Constructor al Director, aquest advertís que els rendiments de la mà d’obra, en totes o en algunes de les unitats d’obra executada fossin notoriament inferiors als rendiments normals generalment admesos per a unitats d’obra iguals o similars, li notificarà per escrit al Constructor amb la finalitat de que aquest faci les gestions precises per a augmentar la
En cadascuna de les èpoques o dates que es fixin en el contracte en els “Plecs de Condicions Particulars” que regeixin en l’obra, formarà el Contractista una relació producció en la quantia assenyalada per l’Enginyer o Arquitecte Direct or.

Si feta aquesta notificació al Constructor, en els mesos successius els rendiments no arribessin als normals, el Propietari quedarà facultat per a rescabalar-se de la diferència, rebaixant el seu import del 15% que pels conceptes abans expressats correspondría abonar-li al Constructor en les liquidacions quinzenals que preceptivament han d’effectuar-se-li. En cas de no arribar ambdues parts a un acord en quant als rendiments de la mà d’obra, se sotmetri el cas a arbitratge.

3.4.8. Responsabilitats del constructor

En els treballs d’"Obres per Administració delegada", el Constructor serà responsable dels efectes constructius que poguessin tenir els treballs o unitats per ell executades i també dels accidents o perjudicis que poguessin sobrevenir als obrers o a terceres persones per no haver pres les mesures precisas que en les disposicions legals vigents s’estableixin. En canvi, i excepte l’expressat en 3.4.7, no serà responsable del mal resultat que poguessin donar els materials i aparells triats conformament a les normes establertes en aquest article.

En virtut del que s’ha consignat anteriorment, el Constructor està obligat a reparar pel seu compte els treballs defectuosos i a respondre també dels accidents o perjudicis expressats en el paràgraf anterior.

1.1.3.5. Valoració i abonament dels treballs

3.5.1. Formes d’abonament de les obres

Segons la modalitat triada per a la contractació de les obres i tret que en el Plec Particular de Condicions econòmiques es preceptui altra cosa, l’abonament dels treballs s’ejectuarà així:

- Tipus fix o tant alçat total. S’abonarà la xifra prèviament fixada com base de l’adjudicació, disminuïda si escau en l’import de la baixa efectuada per l’adjudicatari.
- Tipus fix o tant alçat per unitat d’obra. Aquest preu per unitat d’obra és invariable i s’hagi fixat per endavant, podent variar solament el nombre d’unitats executades.
- Previ amidament i aplicant al total de les diverses unitats d’obra executades el preu invariable estipulat per endavant per a cadascuna d’elles, s’abonarà al Contractista l’import de les compreses en els treballs executats i ultimats amb arranjament i subjecció als documents que constitueixen el Projecte, els quals serviran de base per l’amidament i valoració de les unitats.
- Tant variable per unitat d’obra. Segons les condicions que es realitzi i els materials diferents emploïts en la seva execució d’acord amb les Ordres del Director.
- S’abonarà al Contractista en idèntiques condicions al cas anterior.
- Per llistes de jornals i rebuts de materials autoritzats en la forma que el present "Plec General de Condicions econòmiques" determina.
- Per hores de treball, executat en les condicions determinades en el contracte.

3.5.2. Relacions valorades i certificacions

- En cadascuna de les èpoques o dates que es fixin en el contracte
- en els “Plecs de Condicions Particulars” que regeixin en l’obra, formarà el Contractista una relació valorada de les obres executades durant els terminis previstos segons l’amidament que haurà practicat l’Aparellador.
- El que ha estat executat pel contractista en les condicions preestablertes es valorarà aplicant al resultat de l’amidament general els preus assenyalats en el pressupost per a cadascuna d’elles, tenint present l’establert en el present “Plec General de Condicions econòmiques” respecte a millores o substitucions de material i a les obres accessòries i especials, etc.
- A l’Aparellador, que podrà prescriure els amidaments necessaris per a estendre aquesta relació, se li facilitaran les dades corresponents de la relació valorada acompanyant-los d’una nota d’enviament, a fi de que, dins del termini de deu (10) dies a partir de la data del rebut, pugui el Contractista examinar-los i retornar-los firmats amb la seva conformitat o fer, en cas contrari, les observacions o reclamacions que consideri oportunes.
- Dins dels deu (10) dies següents al seu rebut, l’Enginyer o Arquitecte acceptarà o rebutjarà les reclamacions del Contractista si les hagués, adonant al mateix de la seva resolució, podent aquest acudir davant el Propietari contra la resolució del Director en la forma referida en els “Plecs Generals de Condicions Facultatives i Legals”.
- Arooms com base la relació valorada indicada en el paràgraf anterior l’Enginyer o Arquitecte expedirà la certificació de les obres executades. Del seu import es deduirà el tant per cent que per a la construcció de la fachada s’hagi preestablert.

Les certificacions es remetran al Propietari dins del mes següent al període que es refereixen, i estaran subjectes a les rectificacions i variacions que es derivin de la liquidació final, no suposant aquestes certificacions aprovació ni recepció de les obres que comprenen.

Les relacions valorades contindràn només l’obra executada en el termini que la valoració es refereix. En el cas que l’Enginyer o Arquitecte ho exigís, les certificacions s’estendran a origen.

3.5.3. Millores d’obres lliurement executades

Quan el Contractista, fins i tot amb autorització de l’Enginyer o Arquitecte, empra materials de més acurada preparació o de major grandària que l’assenyalat en el Projecte o substitui una classe de fàbrica amb una altra que tingui assingut major seu o, en general, introduïu a l’obra sense demanar-se-la, qualsevol altra modificació que sigui beneficiosa segons el parer de l’Enginyer o
Arquitecte, no tindrà dret més que a l’abonament del que pogués corresponder en el cas que hagués construït l’obra amb estricta subjeqció al projectat o adjudicat.

3.5.4. Abonament de treballs pressupostats amb partida alçada

 Excepte el preceptuat en el “Plec de Condicions Particulars d’índole econòmica”, l’abonament dels treballs pressupostats en partida alçada se’rrealitzarà d’acord amb el procediment que correspongui entre els quals a continuació s’expressen:

• Si existeixen preus contractats per a unids d’obres iguals, les pressupostades mitjançant partida alçada, s’abonaran prèvia medició i aplicació del preu establert.
• Si existeixen preus contractats per a unids d’obra similars, s’establiran preus contradictoris per a les unids amb partida alçada, deduïts dels similars contractats.
• Si no existeixen preus contractats per a unids d’obra iguals similars, la partida alçada s’abonarà íntegrament al Contractista, excepte el cas que al Pressupost de l’obra s’expressi que l’import d’aquesta partida ha de justificar-se. En aquest cas el Director indicarà al Contractista amb anterioritat a la seva execució el procediment que ha de seguir-se, valorant-ne els materials i jornals als preus que figurin en el Pressupost aprovat o, en defecte, als quals amb anterioritat a l’execució convinguin les dues parts, incrementant-ne el seu import total amb el percentage que es fixi en concepte de Despeses Generals i Benefici Industrial del Contractista.

3.5.5. Abonament d’esgotaments i altres treballs especials no contractats

Quan calgui efectuar esgotaments o altra classe de treballs de qualsevol índole especial i ordinària que no estiguin contractats a compte del Contractista, aquest tindrà l’obligació de realitzar-los i de satisfacer les despeses de tota classe que ocasionin, els quals li seran abonats pel propietari per separat de la Contracta.

A més de reintegrar mensualment aquestes despeses al Contractista, se li abonarà el tant per cent de l’import total que, si escau, s’especifiqui en el Plec de Condicions Particulars.

3.5.6. Pagaments

Els pagaments s’efectuaran pel propietari en els terminis prèviament establerts, i el seu import corresponderà precisament al de les certificacions d’obra conformades per l’Enginyer o Arquitecte, en virtut de les quals es verifiquin aquells.

3.5.7. Abonament de treballs executats durant el termini de garantia

Efectuada la recepció provisional i si durant el termini de garantia s’haguessin executat treballs qualsevol, per al seu abonament es procedirà així:

Si els treballs que es realitzen estiguessin especificats en el Projecte, i sense causa justificada no s’haguessin realitzat pel Contractista al seu degut temps i el Director exigís la seva realització durant el termini de garantia, seran valorats als preus que figurin en el Pressupost i abonats d’acord amb l’establert als “Plecs Particulars” o en defecte d’això en els Generals, en el cas que aquests preus fossin inferiors als quals regeixin en l’època de la seva realització; en cas contrari, s’aplicaran aquests últims.

Si s’han executat treballs precisos per a la reparació de desperfectes ocasionats per l’ús de l’edifici, per haver estat aquest utilitzat durant aquest termini pel propietari, es valoraran i abonaran als preus del dia, prèviament acordats.

Si s’han executat treballs per a la reparació de desperfectes ocasionats per deficiència de la construcció o de la qualitat dels materials, no se li abonaran al Contractista.

1.1.3.6. Indemnitzacions mútuues

3.6.1. Indemnització per retard del termini d’acabament de les obres

La indemnització per retard en la finalització s’establirà en un tant per mil de l’import total dels treballs contractats per cada dia natural de retard, contats a partir del dia de terminació fixat en el Calendari d’obra, exceptuant el que està disposat en el Plec Particular del present projecte.

3.6.2. Demora dels pagaments per part del propietari

Si el propietari no efectués el pagament de les obres executades dintre del mes següent al que correspon el termini convingut, el Contractista tindrà a més el dret de percebre l’abonament d’un 5% anual (o el qual es defineixi en el Plec Particular) en concepte d’interessos de demora durant l’espai de temps del retard i sobre l’import de dita certificació.

Si encara transcorreguessin dos mesos a partir del terme d’aquest termini d’un mes sense realitzar-se aquest pagament, el Contractista tindrà dret a la resolució del contracte procedint-se a la liquidació corresponent de les obres executades i dels materials apilats, sempre que aquests reuneixin les condicions preestablertes i que la seva quantitat no excedeixi de la necessària per a la terminació de l’obra contractada o adjudicada.

1.1.3.7. Varis

3.7.1. Millores, augmentes i/o reduccions d’obra

No s’admetran millores d’obra més que en el cas que l’Enginyer o Arquitecte ordeni per escrit l’execució de nous treballs que millorin la qualitat dels contractats. Tampoc s’admetran augmentes d’obra en les unitats contractades excepte cas d’error en els amidaments del Projecte, tret que el Director ordeni, també per escrit, l’ampliació de les contractades.

En tots aquests casos serà condició indispensable que ambdues parts contractants, abans de la seva execució o ocupació, convinguin per escrit els imports tots de les unitats millorades, els preus dels nous materials o aparells ordenats emprar i els augmentes que totes aquestes millores o augmentes d’obra suposin sobre l’import de les unitats contractades.
3.7.2. Unitats d’obra defectuoses però acceptables

Quan per qualsevol causa calgués valorar una obra defectuosa però acceptable segons el parer del Director de les obres, aquest determinarà el preu o partida d’abonament després d’escoltar al Contractista, el qual haurà de conformar-se amb aquesta resolució excepte el que prefereixi demoler l’obra i refer-la en condicions sense excedir del termini.

3.7.3. Assegurança de les obres

El Contractista està obligat a assegurar l’obra contractada durant tot el temps que duri la seva execució fins a la recepció definitiva. La quantia de l’assegurança coincidirà a cada moment amb el valor que tinguin per contracta els objectes assegurats.

L’import abonat per la Societat Asseguradora en el cas de sinistre s’ingressarà en compte a nom del Propietari, perquè a càrrec d’ella s’aboni l’obra que es construeixi a mesura que aquesta es vagi realitzant.

El reintegrat d’aquesta quantitat al Contractista s’efectuarà per certificacions com la resta dels treballs. En cap cas, excepte consonaritat expressa del Contractista, el Propietari podrà disposar d’aquest import per a menestres diferents dels de reconstrucció de la part sinistrada.

La infracció del que s’ha exposat anteriorment serà motiu suficient perquè el Contractista pugui resoldre el contracte amb devolució de fiança, abonament complet de despeses, materials apilats, etc., i una indemnització equivalent a l’import dels danys causats al pel sinistre que no se li hagués abonat. Això serà només en proporció equivalent al que suposi la indemnització abonada per la Companyia Asseguradora respecte a l’import dels danys causats pel sinistre, que seran taxats a aquests efectes per el Director.

Els riscos assegurats i les condicions que figurin a la pòlissa d’Assegurances els posarà el Contractista amb consonaritat del Propietari.

A més s’han d’establir garanties per danys materials ocasionats per vicis i defectes de la construcció segons es descriu a 3.7.1, sobre la base de l’art. 19 de la L.O.E.

3.7.4. Conservació de l’obra

Si el Contractista no atén a la conservació de l’obra durant el termini de garantia, en el cas que l’edifici no hagi estat ocupat pel propietari abans de la recepció definitiva, l’Enginyer o Arquitecte podrà disposar tot el que calgui perquè s’atenguí a la guarda, neteja i tot el que fes falta per a la seva bona conservació, abonant-se tot això per compte del Contractista.

A abandonar el Contractista l’edifici, tant per bona terminació de les obres, com en el cas de resolució del contracte, està obligat a deixar-lo desocupat i net en el termini que el Director fixi.

Després de la recepció provisional de l’edifici i en el cas que la conservació de l’edifici corri a càrrec del Contractista, no hi haurà d’haver en ell més eines, útils, materials, mobles, etc., que els indispensables per a la seva guarda i neteja i per als treballs que calgués executar. En tot cas, ocupat o no l’edifici, el Contractista està obligat a revisar i reparar l’obra durant el termini expressat, procedint en la forma prevista en el present “Plecs de Condicions Econòmiques”.

3.7.5. Ús pel contractista d’edifici o béns del propietari

Quan durant l’execució de les obres el Contractista ocugi edificis o faci ús de materials o útils pertanyents al mateix, tindrà obligació de reparar-los i conservar-los per a fer lliurament d’ells a l’acabament del contracte en perfecte estat de conservació, reposant els quals s’haguessin inutilitzat i sense dret a indemnització per aquesta reposició ni per les millores fetes en els edificis, propietats o materials que hagi utilitzat.

En el cas d’acabar el contracte i fer lliurament del material, propietats o edificacions no hagués complert l’estrut, el Contractista amb el previst en el paràgraf anterior, ho realitzarà el Propietari a costa d’aquell a càrrec de la fiança.

3.7.6. Pagament d’impostos

El pagament d’impostos sobre tanques, enllumenat, etc., l’abonament del qual ha de fer-se durant el temps d’execució de les obres i per conceptes inherents als propis treballs que es realitzen, correran a càrrec de la contracta, sempre que en les condicions particulars del Projecte no s’estipulí el contrari.

3.7.7. Garanties per danys materials ocasionats per vicis i defectes constructius

El règim de garanties exigibles per a les obres d’edificació es farà efectiu d’acord amb l’obligatorietat que s’estableix en la L.O.E. (l’apartat c), tenint com referent a les següents:

• Assegurança de danys materials o de caució per a garantir, durant un any, el rescabalament dels danys causats per vicis o defectes d’execució que afectin a elements de terminació o acabat de les obres, que podrà ser substituït per la retenció pel promotor d’un 5% de l’import de l’execució material de l’obra.

• Assegurança de danys materials o segur de caució, per a garantir, durant tres anys, el rescabalament dels danys causats per vicis o defectes dels elements constructius o de les instal·lacions que ocasionin l’incompliment dels requisits de habitabilitat especificats en l’art. 3 de la L.O.E.

Assegurança de danys materials o segur de caució, per a garantir, durant deu anys, el rescabalament dels danys materials causats per vicis o defectes que tinguin el seu origen o afectin a la fonamentació, els suports, les bigues, els forjats, els murs de càrrega o altres elements estructurals, i que comprometin directament la resistència mecànica i estabilitat de l’edifici.
1.1.4. Prescripcions sobre materials. Plec particular.

1.1.4.1. Condicions generals

4.1.1. Qualitat dels materials

Tots els materials a emprar en la present obra seran de primera qualitat i reuniran les condicions exigides vigents referents a materials i prototips de construcció.

4.1.2. Proves i assaigs de materials

Tots els materials als quals aquest capítol es refereix podran ser sotmesos a les anàlisis o proves, per compte de la contracta, que es creguin necessaris per a acreditar la seva qualitat.

Qualsevol altre que hagi estat especificat i sigui necessari emprar haurà de ser aprovat per la Direcció de les obres, bé entès que serà rebutjat el que no reunixi les condicions exigides per la bona pràctica de la construcció.

4.1.3. Materials no consignats en el projecte

Els materials no consignats en projecte que donessin lloc a preus contradictoris reuniran les condicions de bondat necessàries segons el parer de la Direcció facultativa, no tenint el contractista dret a reclamació alguna per aquestes condicions exigides.

4.1.4. Condicions generals d’execució

Tots els treballs inclosos en el present projecte s’executaràn conformement a les bones pràctiques de la construcció, i complint estrictament les instruccions rebudes per la Direcció facultativa, no podent per tant servir de pretext al contractista la baixa subhasta per a variar aquesta acurada execució ni a la primera qualitat de les instal·lacions projectades en quant als seus materials i mà d’obra, ni pretendre projectes additionals.

4.1.4.2. Condicions que han de complir els materials

4.2.1. Materials per a formigons i morters

4.2.1.1. Àrids.

La naturalesa dels àrids i la seva preparació seran tals que permetin garantir l'adequada resistència i durabilitat del formigó, així com les restants característiques que s’exigeixen a aquest en el Plec de Prescripcions Tècniques Particulars.

Com a àrids per a la fabricació de formigons poden emprar-se àrids i graves existents en jaciments naturals, picats o altres productes l’ocupació dels quals es trobi sancionat per la pràctica o resulti aconsellable com a conseqüència d’estudis realitzats en un laboratori oficial.

En qualsevol cas complirà les condicions de la EHE.

Quan no es tingui antecedents sobre la utilització dels àrids disponibles es realitzaran assaigs d’identificació mitjançant anàlisis mineralògics, petrogràfics, físics o químics, segons convingui.

En el cas d’utilitzar escories siderúrgiques com a àrid, es comprovarà prèviament que són estables, és a dir, que no contenen silicats inestables ni compostos ferrosos. Aquesta comprovació s’efectuarà conformment al mètode d’assaig UNE 7.243. Es prohibeix l’ocupació d’àrids que contingui sulfurs oxidables.

S’entén per “sorra” o “àrid fi” l’àrid o fracció del mateix que passa per un tamís de 5 mm de llum de malla (tamís 5 UNE 7050); per “grava” o “àrid gruixut” el qual resulta detingut per aquest tamís; i per “àrid total” (o simplement “àrid” quan no hi ha lloc a confusions), aquell que, de per si o per barreja, posseeix les proporcions de sorra i grava adequades per a fabricar el formigó necessari en el cas particular que es consideri.

La seva grandària complirà les condicions assenyalades en la instrucció EHE.

4.2.1.2. Aigua per al pastat

Haurà de complir les següents prescripcions:

- Acidesa tal que el pH sigui major de 5. (UNE 7234:71).
- Substàncies solubles, menys de 15 g/I, segons UNE 7130:58.
- Sulfats expressats en SO4, menys d’1 g/I segons assaig de UNE 7131:58.
- Clor per a formigó amb armadures, menys de 6 g/I, segons UNE 7178:60.
- Greixos o olis de qualsevol classe, menys de 15 g/I. (UNE 7235).
- Manca absoluta de sucres o carbohidrats segons assaig de UNE 7132:58.
- Altres prescripcions de la EHE.

4.2.1.3. Additius

Es defineixen com additius a emprar en formigons i morters aquells productes sòlids o líquids, excepte ciment, àrids o aigua que mesclats durant el pastat modifiquen o milloren les característiques del morter o formigó especialment en l’enduriment, plasticitat, etc. S’estableixen els següents límits:

- Si s’empra clorur càlcic com accelerador, el seu dosatge serà igual o menor del 2% en pes del ciment i si es tracta de formigoner amb temperatures molt baixes, del 3.5% del pes del cement.
- Si s’usen airejants per a formigons normals la seva proporció serà tal que la disminució de resistències a compressió produïda per la inclusió del airejant sigui inferior al 20%. En cap cas la proporció d’airejant serà major del 4% del pes en ciment.
- En cas d’ocupació de colorants la proporció serà inferior 10% del pes del ciment. No s’empraran colorants orgànics.

- Qualsevol altre que es derive de l’aplicació de la EHE.

4.2.1.4. Ciment
S’entén com a tal un aglomerant hidràulic que respongui a alguna de les definicions del plec de prescripcions tècniques generals per a la recepció de ciments R.C. 03. B.O.I. 16.01.04.

• Podrà emmagatzemar-se en sacs o a orri. En el primer cas, el magatzem protegirà contra la intempèrie i la humitat, tant del sòl com de les parets. Si s’emmagatzemem a orri, no podran barrejar-se en el mateix lloc ciments de diferents qualitats i procedències.

• S’exigirà al contractista la realització d’assajis que demostri n de manera satisfactòria que els ciments compleixen les condicions exigides. Les partides de ciment defectuós seran els detallats en el citat “Plec General de Condicions per a la Recepció de Conglomerants Hidràulics.” Es realitzaran en laboratoris homologats.

• Es tindran en compte prioritàriament les determinacions de la Instrucció EHE.

4.2.2. Acer

4.2.2.1. Acer d’alta adherència en rodons per a armadures

S’acceptaran acers d’alta adherència que portin el segell de conformitat CIETSID. Aquests acers vindran marcats de fàbrica amb senyals indelebles per a evitar confusions en la seva ocupació. No presentaran ovalacions, esquerdes, bufadures ni minvaments de secció superiors al cinc per cent (5%).

El mòdul d’elasticitat serà igual o major de 2.100.000 kg/cm². Entenent per límit elàstic la mínima tensió capaç de produir una deformació permanent del 0,2%, es preveu l’acer de límit elàstic 4.200 kg/cm², la càrrega de trecament del qual no serà inferior a 5.250 kg/cm².

Aquesta tensió de trecament és el valor de l’ordenada màxima del diagrama tensió deformació. Es tindrá en compte prioritàriament les determinacions de l’Instrucció EHE.

4.2.2.2. Acer laminat

L’acer emprat en els perfils d’acer laminat serà dels tipus establerts en la norma UNE EN 10025 (Productes laminats en calent d’acer no aleuat, per a construccions metàl·liques d’ús general), també es podran utilitzar els acers establerts per les normes UNE EN 102101:1994 relativa a perfils buits per a la construcció acabats en calent d’acer no aleuat de gra i, i en la UNE EN 10219-1:1998, relativa a seccions buides d’acer estructural conformades en fred.

En qualsevol cas es tindran en compte les especificacions de l’article 4.2 del DB SE-A (Seguretat Estructural, Acer) del CTE.

4.2.3. Materials auxiliars per formigons

4.2.3.1. Productes per a guarit de formigons.

Es defineixen com productes per a guarit de formigons hidràulics els quals, aplicats en forma de pintura polvoritzada, dipositen una pel·lícula impermeable sobre la superfície del formigó per a impedir la pèrdua d’aigua per vaporització.

El color de la capa protectora resultant serà clar, preferiblement blanc, per a evitar l’absorció de la calor solar. Aquesta capa haurà de ser capaç de romandre intacta durant al mens set dies després d’una aplicació.

4.2.3.2. Desencofrants

Es defineixen com a tal els productes que, aplicats en forma de pintura als encofrats, disminueixen l’adherència entre aquests i el formigó facilitant la labor de desemmotllament. L’utilització d’aquests productes haurà de ser expressament autoritzada.

4.2.4. Encofrats i cintres

4.2.4.1. Encofrats en murs

Podran ser de fusta o metàl·lics però tindran la suﬁcient rígidesa, fuets i puntals perquè la deformació màxima deguda a l’embranzida del formigó fresc sigui inferior a un centímetre respecte a la superfície teòrica d’acabat. Per a amidar aquestes deformacions s’aplicarà sobre la superfície desençoferada una regla metàl·lica de 2 m, recta si es tracta d’una superfície plana, o corba si aquesta és reglada. Els encofrats per a formigó vist necessàriament hauran d’ésser de fusta.

4.2.4.2. Encofrat de pilars, bigues i arcs

Podran ser de fusta o metàl·lics, però compliran la condició que la deformació màxima d’una aresta encoferada respecte a la teòrica sigui menor o igual d’un centímetre. Igualment haurà de tenir el confrontat prou rígid per a suportar els efectes dinàmics del vibrat del formigó de manera que el màxim moviment local produït per aquesta causa sigui de cinc mil·límeters.

4.2.5. Aglomerants (exclus ciment)

4.2.5.1. Calç hidràulica

Complirà les següents condicions:

• Pes específic comprès entre 2,5 kg/dm³ i 2,8 kg/dm³.
• Densitat aparent superior a 0,8 kg/dm³.
• Pèrdua de pes per calcinació roent blanc menor del 12%.
• Enduriment entre 9 i 30 h.
• Resistència a la tracció del morter normal als set dies superior a quatre 4 kg/cm².
• Resistència a la tracció de pasta pura als vint-i-vuit dies superior a 8 kg/cm² i també superior en 2 g/cm² a l’arribada a al setè dia.

4.2.5.2. Guix negre
Haurà de complir les següents condicions:

- El contingut en sulfat càlcic semihidratat (SO4Ca/2H2O) serà al menys del 50% en pes.
- El fraguat no començarà abans de 2 min i no acabarà després de 30 min.
- En tants 0,2 UNE 7050 no serà major del 20%.
- En tants 0,08 UNE 7050 no serà major del 50%.
- Les provetes prismàtiques 4×4×16 cm de pasta normal assajades a flexió amb una separació entre suports de 10,67 cm resistiran una càrrega central provocada per una massa de 120 kg com a mínim.
- La resistència a compressió determinada sobre mitges provetes procedents de l’assaig a flexió serà com a mínim 75 kg/cm². La presa de mostres s’efectuarà com a mínim en un 3% dels casos barrejant el guix fins a obtenir per quarteig una mostra de 10 kg com a mínim. Els assaigs s’efectuaran segons les normes UNE 7065 i 7066.

4.2.6. Aïllaments

Els productes aïllants tèrmics o acústics s’acolliran a les disposicions dels documents bàsics DB HE i DB HR. Segons l’Art. 4.3 del DB HR s’ha de comprovar que els materials aïllants acústics rebuts:

- Corresponguin als especificats en projecte.
- Disposin de la documentació exigida.
- Estiguin caracteritzats per les propietats exigides (densitat apparent i el coeficient de absorció α per a les freqüències preferents i coeficient mig d’absorció αm del material).
- Hagi estat assajats, quan així s’estableix en projecte o ho determini el director d’execució de l’obra.

En compliment de l’Art. 4.1 del DB HE-1 del CTE, el fabricant garantirà els valors de les característiques higrotèrmiques que a continuació s’assenyalen pels aïllants tèrmics:

- Conductivitat tèrmica: Definida amb el procediment o mètode d’assaig que en cada cas estableixi la Comissió de Normes UNEIX corresponent.
- Densitat apparent: S’indicarà la densitat apparent de cadascun dels tipus de productes.
- Permeabilitat al vapor d’aigua: Haurà de donar-se per a cada tipus de material amb indicació del mètode d’assaig que estableixi la Comissió de Normes UNE específica.
- Absorció d’aigua per volum: Per a cadascun dels tipus de productes fabricats.
- Altres propietats: En cada cas concret segons criteri de la Direcció facultativa, en funció de l’ocupació i condicions que es vagi a col·locar el material aïllant, podrà a més exigir-se:
 - Resistència i deformació sota la compressió i flexió.
 - Enveliment davant la humitat, la calor i les radiacions.
 - Comportament enfront de paràsits.
 - Comportament enfront d’agents químics.

Comportament enfront del foc.

4.2.7. Materials de coberta

4.2.7.1. Aïllament tèrmic

Es seguran les mateixes disposicions detallades a 4.2.6.

4.2.7.2. Impermeabilitzants

Les làmines impermeabilitzants podran ser bituminoses, plàstiques o de cauç. Haurien de dur una etiqueta identificativa indicant la classe de producte, el fabricant, les dimensions i el pes per metre quadrat. Disposaran de Segell INCE-ENOR i d’homologació MICT, o d’un segell o certificació de conformitat inclosa en el registre del CTE del Ministeri de l’Habitatge.

Podran ser bituminoses ajustant-se a un dels sistemes acceptats pel DB-HS del CTE, les condicions del qual complirà tenint concedit Document d’Idoneïtat Tècnica d’E.I.T.C.C.

4.2.8. Materials per a fabricació de forjats i parets

4.2.8.1. Plaques alveolars pretensades de formigó

El forjat i els seus elements constituïts, així com el procés constructiu, compliran el prescrit a la Instrucció per al Projecte i l’Execució de Forjats Unidireccionals de Formigó Estructural realizats amb Elements Prefabricats (EFHE). Els nivells de control de qualitat del formigó i de l’acer col·locats en obra, seran els fixats en el Pla de Control de Qualitat, en correspondència amb els coeficients de ponderació establerts.

Les plaques utilitzades per a l’execució dels forjats tindran les següents característiques:

- Les provetes prismàtiques 4×4×16 cm de pasta normal assajades a flexió amb una separació entre suports de 10,67 cm resistiran una càrrega central provocada per una massa de 120 kg com a mínim.
- La resistència a compressió determinada sobre mitges provetes procedents de l’assaig a flexió serà com a mínim 75 kg/cm². La presa de mostres s’efectuarà com a mínim en un 3% dels casos barrejant el guix fins a obtenir per quarteig una mostra de 10 kg com a mínim. Els assaigs s’efectuaran segons les normes UNE 7065 i 7066.
- Els amidaments es realitzaran com segueix: -Ambplària: Es prèn el major dels amplats amidats en ambiòs extrems. -Longitud: Samindrà la longitud prop de cada vora lateral i es prendrà la menor. - Cantell total: En un dels dos extrems es faran tres amidaments en els alvéols (un cap al mig i els altres dos prop de cada lateral), i tres als centres de les ànimes (un cap al mig i els altres dos prop de cada lateral). Es prendrà el valor mig dels sis amidaments.
- Com la plaça durà una marca que permi.te la identificació del fabricant i del tipus d’element. Aquests tipus coincidiran amb els definitis en el projecte per als diferents vànols de forjat. Els materials col·locats en obra sobre les plaques compliran amb les següents condicions:
 - La resistència del formigó de la capa de compressió col·locada in situ serà la indicada en el projecte i no inferior a l’especificada en l’Autorització d’Uús del forjat.
 - La grandària màxima de l’àrid no serà major de 20 mm.
 - Les armadures passives de reforç superior (armadures de negatius), quan s’hagin de disposar, satisfaran les característiques mecàniques que corresponguin a la seva designació d’acord amb la Instrucció EHE.
 - ELS diàmetres i les longitudinals de les barres s’atindràn a l’establert en el projecte.
 - El farciment de les juntes entre plaques es farà amb formigó de fck=25 N/mm².
 - La relació aigua / ciment no serà superior a 0,50.
 - S’utilitzaran els mitjans de compactació adequats per a garantir que aquestes juntes quedin totalment
farcides L’apilament i transport de les plaques es realitzarà segons els següents punts:

• Durant l’apilament en l’obra, les plaques alveolars es mantindran netes i s’agruparan en la seva posició de treball sobre piles que coincideixin en vertical, no permetent-se vols majors de 50 cm ni altura de pila superiors a 1,50 m, tret que el fabricant indiqui altre valor. En cap cas ha de carregar-se la zona volada. Durant el transport, se seguiran normes d’apilat semblants.

• En el moviment i elevació de les plaques s’empraran útils adequats que eliminin el risc de caigudes i no deixin vols excessius. Si durant les operacions prèvies a la seva col·locació resultés malmesa alguna plaça de manera que pogués afectar a la seva capacitat resistent o a alguna altra particularitat important per a la seguretat.

4.2.8.2. Fàbrica de maó i bloc

Les peces utilitzades en la construcció de fàbriques de maó o bloc s’ajustaran a l’estipulat en l’article 4 del DB SE-F Seguretat Estructural Fàbrica, del CTE. La resistència normalitzada a compressió mínima de les peces serà de 5 N/mm2.

Els maons seran de primera qualitat segons queda definit en la norma NBE-RL /88, i les dimensions dels maons s’ambiden d’acord amb la Norma UNE 7267. La resistència a compressió dels maons serà com a mínim:

- Maons massissos: 100 kg/cm2
- Maons perforats: 100 kg/cm2
- Maons buits: 50 kg/cm2

4.2.9. Materials per terres i enrajolats

4.2.9.1. Rajoles i lloses de terratzo

Es compondran com a mínim d’una capa de formigó o morter de ciment, triturats de pedra o marbre, i, en general, colorants i d’una capa base de morter menys ric i àrid més graixut. Els àrids estaran nets i desproveïts d’argila i matèria orgànica. Els colorants no seran orgànics i s’ajustaran a la Norma UNE 41060.

L’apilament i transport de les plaques amb rajola o llosa es realitzarà segons els següents punts:

• Durant l’apilament, les plaques s’apilaran per cap i amb cara vista al costat on s’emplaquen. No se’n derroten en tres capes superiors. La càrrega màxim no es podrà superar.

• En el transport, se seguiran normes d’apilat semblants.

• Quan les plaques s’empitan, els útils grans podran ser utilitzats per a la col·locació correcta.

4.2.9.2. Entornpeus de terratzo

Les peces per a entornpeus estaran fetes dels mateixos materials que els dels terres. Seran de primera qualitat i les seves dimensions seran de 40 x 10 cm. Les exigències tècniques seran anàlogues a les del material de terra.

4.2.10. Fusteria de taller

Les portes de fusta que s’empren en l’obra haurien de tenir l’aprovació del Ministeri d’Indústria, l’autorització d’ús del M.O.P.U. o document d’idoneïtat tècnica expedit per l’I.E.T.C.C. Els cèrcols dels marcs seran de primera qualitat amb una esquadra mínima de 7 x 5 cm.

4.2.11. Fusteria metàl·lica

Els perfils emprats en la confecció de finestres i portes metàl·liques seran especials de doble junta i compliran totes les prescripcions legals. No s’admetran rebaves ni curvatures, rebutjant-ne els elements en els quals s’observi algun defecte de fabricació.

4.2.13. Fontaneria

4.2.13.1. Canonada de ferro galvanitzat

La designació de pesos, espessors de paret, toleràncies, etc. s’ajustaran a les corresponents normes DIN. Els mànecs d’unió seran de ferro mal·leable galvanitzat amb junta esmerillada.

4.2.13.2. Canonada de ciment centrífugat

El sèriejunament horitzontal es realitzarà en canonada de ciment polí estat el diàmetre mínim a utilitzar de 30 cm. Els canvis de secció es realitzaran mitjançant les arquetes corresponents.
4.2.13.3. Baixants

Els baixants tant d’aigües pluvials com fecals seran de materials plàstics que disposin autorització d’ús. No s’admetran baixants de diàmetre inferior a 12 cm.

4.2.13.4. Canonada de coure

La xarxa de distribució d’aigua i gas butà es realitzarà en canonada de coure, sotmetent la citada canonada a la pressió de prova exigida per l’empresa responsable del gas, operació que s’efectuarà una vegada acabat el muntatge. Les designacions, pesos, espessors de paret i toleràncies s’ajustaran a les normes corresponents de la citada empresa. Les vàlvules, a les quals se sotmetrà a una pressió de prova superior en un 50% a la pressió de treball, seran de marca acceptada per l’empresa responsable del gas i amb les característiques que aquesta li indiqui.

4.3.1. Condicions tècniques exigibles als materials

Els materials a emprar en la construcció de l’edifici de Cerb S.A. es classifiquen a l’efecte de la seva reacció davant el foc d’acord amb el Reial Decret 312/2005 (Classificació dels Productes de la Construcció i dels Elements Constructius en Funció de les seves Propietats de Reacció i de Resistència al Foc).

Els fabricants de materials que s’emprin vistos o com revestiment o acabats superficials, en el cas de no figurar inclosos en el capítol 1.2 del Reial decret 312/2005, haurien d’acreditar el seu grau de combustibilitat mitjançant els oportuns certificats d’assaig, realitzats en laboratoris oficialment homologats per a poder ser emprats.

Aquells materials amb tractament adequat per a millorar el seu comportament davant el foc (materials ignifugats), seran classificats per un laboratori oficialment homologat, fixant d’un certificat el període de validesa de la ignifugació.

Passat el temps de validesa de la ignifugació, el material haurà de ser substituït per un altre de la mateixa classe obtinguda inicialment mitjançant la ignifugació, o sotmès a nou tractament que restitueixi les condicions iniciaus de ignifugació.

Els materials que siguin de difícil substitució i aquells que vagin situats a l’exterior es consideren amb classe que correspongui al material sense ignifugació. Si aquesta ignifugació fos permanent, podrà ser tinguda en compte.

4.3.2. Condicions tècniques exigibles als elements constructius

La resistència davant el foc dels elements i productes de la construcció queda fixat per un temps “t”, durant el qual aquest element és capaç de mantenir les característiques de resistència al foc. La comprovació d’aquestes condicions per a cada element constructiu, es verificarà mitjançant els assaigs descrits en les normes UNE que figuren en les taules de l’Annex III del Reial decret 312/2005.

En l’annex C del DB SI del CTE s’estableixen els mètodes simplificats que permeten determinar la resistència dels elements de formigó davant l’acció representada per la corba normalitzada temps – temperatura. En l’annex D del DB SI del CTE s’estableix un mètode simplificat per a determinar la resistència dels elements d’acer davant l’acció representada per una corba normalitzada temps – temperatura.

En l’annex E es troben tabulades les resistències al foc d’elements de fàbrica de mas d’èrmat o silício – calcari i dels blocs de formigó, davant l’exposició tèrines, segons la corba normalitzada temps-temperatura. Els fabricants de materials específicament destinats a protegir o augmentar la resistència davant el foc dels elements constructius, haurien de demostrar mitjançant certificats d’assaig les propietats de comportament davant el foc que figurin en la seva documentació. Els fabricants d’altres elements constructius que facin constar en la documentació tècnica dels mateixos la seva classificació a l’efecte de resistència davant el foc haurien de justificar-ho mitjançant els certificats d’assaig que es basen.

1.1.5. Prescripcions en quant a l’execució i verificacions en l’obra acabada. Manteniment. Plec particular

1.1.5.1. Precaucions en termes de seguretat i salut

Les precaucions a adoptar durant la construcció de l’obra serà les previstes per l’Ordenança de Seguretat i Higiene en el treball de 9 de març de 1971 i el RD 1627/97 de 24 d’octubre, així com les disposicions detallades a l’Estudi de Seguretat i Salut inclos a l’Annex F.

1.1.5.2. Moviment de terres

5.2.1. Explanació i préstecs

Consisteix en el conjunt d’operacions per a excavar, evacuar, emplenar i anivellar el terreny, així com les zones de préstecs que puguin necessitar el consegüent transport dels roductes remoguts a dipòsit o lloc d’ocupació.

5.2.2. Execució de les obres

Una vegada acabades les anteriors operacions s’iniciaran les obres d’excavació ajustant-se a les alienacions, pendents, dimensions i altra informació continguda als plans. La terra vegetal que no s’hagués extret en el desbrossament s’acceptarà per a la seva utilització posterior en protecció de superfícies erosionables. En qualsevol cas, la terra vegetal extreta es mantindrà separada dels productes excavats.

Tots els materials que s’obtinguin de l’excavació, excepteu feta de la terra vegetal, es podran utilitzar en la formació de farciments i altres usos fixats en aquest Plec i es transportaran directament a les zones
previstes o abocador si no tinguessin aplicació dintre de l’obra. En qualsevol cas no es rebutjarà cap material excavat sense prèvia autorització.

Tots els buits causats per l’extracció de socs i arrels s’emplenaran amb material anàleg a l’existent, compactant-se fins que la seva superfície s’ajusti al nivell demanat. L’execució d’aquests treballs es realitzarà produint les menors molèsties possibles a les zones habitades pròximes al terreny esbrossat.

5.2.3. Amidament i abonament.

L’excavació de l’explicació s’abonarà per metres cúbics realment excavats amidats per diferència entre les dades inicials presos immediatament abans d’iniciar els treballs i les dades finals. L’amidament es farà sobre els perfils obtinguts.

1.1.5.3. Excavació de rases i pous

Consisteix en el conjunt d’operacions necessàries per a aconseguir emplaçament adequat per a les obres de fàbrica, estructures i les seves cimentacions. La seva execució inclou les operacions d’excavació, anivellació, evacuació del terreny i el consequent transport dels productes remoguts a dipòsit o lloc d’ocupació.

5.3.1. Execució de les obres

El contractista de les obres notificarà amb l’antelació suficient el començament de qualsevol excavació, a fi que es puguin

L’excavació continuarà fins a arribar a la profunditat desitjada, obtenint una superfície neta i ferma, a nivell o escalonada segons s’ordeni. No obstant això, la Direcció facultativa podrà modificar la profunditat si la vista de les condicions del terreny ho estimés necessari a fi d’aconseguir una fonamentació satisfactoria.

El replanteig es realitzarà de tal forma que existiran punts fiques de referència, tant de cotes com de nivell, sempre fora de l’àrea d’excavació. El començament de l’excavació de rases es realitzarà quan existin tots els elements necessaris per a la seva excavació, inclosos la fusta per a una possible entibació.

La Contracta haurà d’assegurar l’estabilitat dels talussos de totes les excavacions que realitzi, aplicant els mitjans de entibació, apuntalament, fitació i protecció superficial del terreny que consideri necessari, a fi d’impedir despremènents que poguessin causar dany a persones o a les obres, encara que tals mitjans no estiguessin definits en el Projecte o no haguessin estat ordenats per la Direcció facultativa.

S’adoptaran per la Contracta totes les mesures necessàries per a evitar l’entrada de l’aigua, mantenint lliure del mateix la zona d’excavació, col·locant-se ataguies, drenatges, proteccions, cunetes, canaleres i els conductes de desguàs que siguin necessaris. Les aigües superficiales hauran de ser desviades per la Contracta i canalitzades abans que arribin a els talussos i el fons de l’excavació de la rasa.

El fons de la rasa haurà de quedar lliure de terra, fragments de roca, roca alterada, capes de terreny inadequat o qualsevol element estrany que pogués afebrir la seva resistència. És netejar les esquerdes, reomplint-se amb material compactat o formigó. En el cas de terrenys meteoritzables o erosibles per vent o pluja, les rases mai romandràn obertes més de 8 dies, sense que siguin protegides o finalitzats els treballs.

5.3.2. Preparació de fonamentacions

L’excavació de pilots i enceps s’aprofundirà fins al límit indicat en el projecte. Els corrents o aigües pluvials o subterrànies que poguessin presentar-se, s’llegaran o desviaran en la forma i emprant els mitjans convenients.

Abans l’abocament del formigó i la col·locació de les armadures dels enceps, es disposarà d’una capa de formigó pobre de deu centímetres d’espesor degudament anivellada. L’import d’aquesta capa de formigó es considera inclos en els preus unitaris de fonamentació.

5.3.3. Amidament i abonament

L’excavació en rases o pous s’abonarà per metres cúbics realment excavats amidats per diferència entre les dades inicials preses immediatament abans d’iniciar els treballs i les dades finals preses immediatament després de finalitzats els mateixos.

1.1.5.4. Farciments

Consisteix en l’extensió o compactació de materials terrosos procedents de préstecs o excavacions anteriors.

5.4.1. Extensió i compactació

Els materials de farciment s’estendran en tongades successives d’espesor uniforme i sensiblement horitzontals. L’espesor d’aquestes tongades serà l’adequat als mitjans disponibles perquè s’obtingui en tot el mateix grau de compactació exigits.

La superfície de les tongades serà horitzontal o convexa amb pendent transversal màxim del 2%. Una vegada estesa la tongada, es procedirà a la seva humidificació si és necessari.

El contingut òptim d’humitat es determinarà en obra a la vista de la maquinària disponible i dels resultats que s’obtinguin dels assaigs realitzats. En els casos especials que la humitat natural del material sigui excessiva per a aconseguir la compactació prevista, es prendran les mesures adequades procedint fins i tot a la dessecació per oreig, o per adició de barreja de materials secs o substàncies apropiades (calç viva, etc.).
Aconseguida l'humidificació més convenient, es procedirà a la compactació mecànica de la tongada.

Sobre les capes en execució ha de prohibir-se l'acció de tot tipus de tràfic fins que s'hagi completat la seva composició. Si això no és factible el tràfic que necessàriament hagi de passar sobre elles es distribuirà de manera que es concentrin rodades en superfície.

Quan el farciment s’assenti sobre un terreny que té presència d’aigües superficials o subterrànies, es desviaran les primeres i es captaran i conduiran les segones, abans de començar l’execució. Si els terrenys fossin inestables o aparegués torba o argiles toves, s’assegurarà l’eliminació d’aquest material o la seva consolidació.

Després d’haver plogut no s’estendrà una nova tongada de farciment o terraplè fins que l’última s’hagi assecat, o es escarificarà afeinant la següent tongada més seca fins a aconseguir que la humitat final sigui l’adequada.

Es pararan els treballs de terraplenat quan la temperatura descediixi de 2º C.

5.4.2. Amidament i abonament

Les diferents zones dels farciments s’abonaran per metres cúbics realment executats amidats per diferència entre les dades inicials preses immediatament abans d’iniciar-se els treballs i les dades finals, preses immediatament després de compactar el terreny.

1.1.5.5. Formigons

5.5.1. Dosatge de formigons

Correspon al contractista efectuar l’estudi granulomètric dels àrids, dosatge d’aigua i consistència del formigó d’acord amb els mitjans i posada en obra que empri en cada cas, i sempre complint el prescrit en la EHE.

5.5.2. Fabricació de formigons

En la confecció i posada en obra dels formigons es compliran les prescripcions generals de la Instrucció Del Formigó Estructural (EHE), RD 2661/1998 del Ministeri de Foment. Les toleràncies admissibles en el dosatge seran 2% per a l’aigua i el ciment, 5% per a les diferents grandàries d’àrids i 2% per a l’àrid total. En la consistència del formigó admetrà una tolerancia de 20 mm amidada amb el con d’Abrams.

La instal·lació de formigoneria serà capaç de realitzar una barreja regular i íntima dels components proporcionant un formigó de color i consistència uniforme. En la formigoneria haurà de col·locar-se una placa en la qual es faci constar la capacitat i la velocitat en revolucions per minut recomanades pel fabricant, les quals mai haurien de sobrepasar-se.

Abans d’introduir el ciment i els àrids al mesclador, aquest s’haurà carregat per una banda de la quantitat d’aigua requerida per la massa completant-se el dosatge d’aquest element en un període de temps que no haurà de ser inferior a cinc segons ni superior a la tercera part del temps de barrejat, contats a partir del moment que el ciment i els àrids s’han introduït al mesclador. Abans de tornar a carregar la formigoneria es buidarà totalment el seu contingut. No es permetrà tornar a pastar en cap cas formigons que hagin fraguat parcialment encara que s’afegeixin noves quantitats de ciment, àrids i aigua.

5.5.3. Transport de formigó

El transport des de la formigoneria es realitzarà tan ràpidament com sigui possible. En cap cas es tolerarà la col·locació en obra de formigons que acusin un principi d’enduriment o presentin qualsevol altra alteració. Al carregar els elements de transport no s’ha de formar munts cànics amb les masses, que afavoririen la segregació. Quan la fabricació de la barreja s’hagi realitzat en una instal·lació central, el seu transport a obra haurà de realitzar-se emprant camions proveïts d’agitadors.

5.5.4. Posada en obra del formigó

Com norma general no haurà de transcorrer més d’una hora entre la fabricació del formigó, la seva posada en obra i la seva compactació. Tampoc es permetrà l’abocament lliure del formigó des d’altures superiors a un metre, quedant prohibit el llançar-lo amb pales a gran distància, distribuir-lo amb rastrell o fer-lo avançar més de mig metre dels encofrats.

A l’abocar el formigó es remourà enèrgica i eficaçment per què les armadures quedin perfectament embolicades, cuidant especialment els llocs que es reuneix gran quantitat d’acer i procurant que es mantinguin els recobriments i la separació entre les armadures.

5.5.5. Compactació del formigó

La compactació de formigons haurà de realitzar-se per vibració. Els vibradors s’aplicaran sempre de manera que el seu efecte s’estenguï a tota la massa sense que es produinix segregacions.

Si es empren vibradors interns hauran de submergir-se longitudinalment en la tongada subjacent i retirar-se també longitudinalment sense desplaçar-los transversalment mentre estiguin submergits en el formigó.

L’agulla s’introduirà i retirarà lentament, i a velocitat constant, recomanant-se a aquest efecte que no se superin els 10 cm/s, amb cura que l’agulla no toqui les armadures. La distancia entre els punts successius d’immersió no serà superior a 75 cm, i serà l’adequada per a produir en tota la superfície de la massa vibrada una humidificació brillant, sent preferible vibrar en pocs punts prolongadament. No s’introduirà el vibrador a menys de 10 cm de la paret de l’encofrat.

5.5.6. Guarit del formigó

Durant el primer període d’enduriment se sotmetrà al formigó a un procés guarit segons el tipus de ciment utilitzat i les condicions climatològiques del lloc.
En qualsevol cas haurà de mantenir-se la humitat del formigó i evitar-se totes les causes externes, com sobrecàrregues o vibracions, que puguin provocar la fissura de l’element formigonat. Una vegada humitejat el formigó es mantindran humides les seves superfícies mitjançant arpilleres, esteriIles de palla o altres teixits anàlegs durant tres dies si el conglomerant empleat fos ciment Portland I-35, augmentant-se aquest termini en el cas que el ciment utilitzat fos d’enduriment més lent.

5.5.7. Juntes en el formigonat

Les juntes podran ser de formigonat, contracció o dilatació, havent de complir l’especificat en els plànols. Es cuidarà que les juntes creades per les interrupcions en el formigonejat quedin normals a l’adreça dels màxims esforços de compressió, o en els seus efectes siguin menys perjudiciais.

Quan s’hagin de tèmer efectes deguts a la retracció es deixaran juntes obertes durant algun temps perquè les masses contigües puguin deformar-se lliurement. L’ample de tals juntes haurà de ser el necessari perquè, en el seu moment, puguin formigonar-se correctament.

En reprendre els treballs es netejarà la junta de tota brutícia, lletada o àrid que hagi quedat solt, i s’humitejarà la seva superfície sense excés d’aigua, aplicant en tota la seva superfície lletada de ciment abans d’abocar el nou formigó. Es procurarà allunyar les juntes de formigonat de les zones que l’armadura estigui sotmessa a fortes traccions.

5.5.8. Acabat dels paraments vistos

Si no es prescriu altra cosa, la màxima fletxa o irregularitat que presentin els paraments plans ambada respecte a una regla de 2 m aplicada en qualsevol direcció serà la següent:

- Superfícies vistes: 6 mm
- Superfícies ocultes: 25 mm

5.5.9. Limitacions d’execució

El formigonat se suspendrà, com norma general, en cas de pluge adoptant-se les mesures necessàries per a impedir l’entrada de la pluja a les masses de formigó fresc o rentat de superfícies. Si això arribés a ocurrir, s’haurà de picar la superfície rentada, regar-la i continuar el formigonat després d’aplicar lletada de ciment.

Abans de formigonar caldrà realitzar les següents accions:

- Replantieg d’eixos i cotes d’acabat.
- Col·locació d’armadures.
- Neteja i humitejat dels encofrats.

De la mateixa manera, durant el formigonat caldrà seguir les següents disposicions:

- L’abocament es realitzarà des d’una alçada màxima d’1 m tret que s’utilitzin mètodes de bombament a distància que impedeixin la segregació dels components del formigó. Es realitzarà per tongades de 30 cm.

- Es vibrarà sense que les armadures ni els encofrats experimentin moviments bruscs o sacejades, cuidant que no quedin coqueres i es mantingui el recobriment adequat.

- Es suspèndrà el formigonat quan la temperatura baixi de 0ºC o ho vagi a fer en les pròximes 48 h. Es podran utilitzar mitjans especials per a aquesta circumstància, però sota l’autorització de la Direcció facultativa.

- No es deixaran juntes horitzontals, però si es produïssin es procedirà a la neteja de les superfícies de contacte abocant a continuació morter ric en ciment i formigonant tot seguit. Si haguessin transcorregut més de 48 h es tractarà la junta amb resines epoxi.

- No es barrejaran formigons de diferents tipus de ciment. Després del formigonat caldrà teni en compte el següent:

 - El guarit es realitzarà mantenint humides les superfícies de les peces fins que s’arribi a un 70% de la seva resistència.
 - Es procedirà al desencofrat en les superfícies verticals passats 7 dies, i de les horitzontals no abans dels 21 dies. Tot això seguint les indicacions de la Direcció Facultativa.

5.5.10. Amidament i abonament

El formigó s’amidarà i abonarà per metre cúbic realmente abocat en obra, amiant entre cares interiors d’encofrat de superfícies vistes. En les obres de fonamentació que no necessitin encofrat s’amidarà entre cares de terreny excavat.

En el cas que en el Quadre de Preus la unitat de formigó s’expressi per metre quadrat com és el cas de soleres, forjat, etc., sempre es considerarà el mateix amidament del formigó per metre cúbic o per metre quadrat. En el preu van inclosos sempre els serveis i costos de guarit del formigó.

1.1.5.6. Morters

5.6.1. Dosatge de morters

Es fabricaran els tipus de morters especificats en les unitats d’obra, indicant-se com ha d’emprar-se en cada cas per a l’execució de d’aquestes.

5.6.2. Fabricació de morters

Els morters es fabricaran en sec, continuant-se el batut després d’abocar l’aigua en la forma i quantitat fixada, fins a obtenir una massa homogènia de color i consistència uniforme sense bombolles ni grums.

5.6.3. Amidament i abonament

El morter sol ser una unitat auxiliar i, per tant, el seu amidament va inclòs en les unitats a les quals serveix: fàbrica de maons, esquerdejats, paviments, etc. En algun cas excepcional s’amidarà i abonarà per metre
cúbic, obtént-se el seu preu del Quadre de Preus si n’hi ha o obtenint un nou preu contradictori.

1.1.5.7. Encofrats

5.7.1. Construcció i muntatge

En l’execució i preparació dels encofrats es tendran en compte els següents punts:

- Tant les unions com les peces que constitueixen els encofrats hauran de posseir la resistència i rigidesa necessària perquè amb la marxa prevista de formigonat, i especialment sota els efectes dinàmics produïts pel sistema de compactació exigits, no s’originin esforços anormals en el formigó ni durant la seva posada en obra ni durant el seu període d’enduriment, així com tampoc moviments en els encofrats superiors als 5 mm.
- Els enllaços dels diferents elements o plans dels motlles seran sòlis i senzills, de manera que el seu muntatge es verifiqui amb facilitat.
- Els encofrats dels elements rectes o plans de més de 6 m de llum es disposaran amb la contrafletxa necessària perquè, una vegada encofrat i carregat l’element, aquest conservi una lleugera cavitat a d’intrados.
- Els motlles ja usats que s’hagin de reutilitzar seran cuadrament rectificats i netejats.
- Els encofrats de fusta s’humitejaran abans del formigonat a fi d’evitar l’absorció de l’aigua continguda en el formigó, i es netejaran especialment els fons deixant-se obertures provisionals per a facilitar aquesta labor.
- • Les juntes entre les diferents taules haurien de permetre l’entumiment de les mateixes per d’humitat del reg i del formigó, sense que deixin escapar la massa durant el formigó. Amb aquesta finalitat es podrà realitzar un adequat segellat.
- No es deixaran elements separadors o tants en el formigó després de desencofrar, sobretot en ambients agressius.
- • S’anotarà la data de formigonat de cada peça amb la finalitat de controlar la seva desencofrat.
- El suport sobre el terreny es realitzarà mitjançant taulons/dormiments o excessos d’encofrat així com els elements auxiliars necessaris per a mantenir l’encofrat en una posició correcta i segura contra esforços de vent, etc. En aquest preu s’inclouen, a més, els desencofrants i les operacions de desencofrat i retirada del material. En el cas que en el quadre de preus estiguin inclosos l’encofrat, s’entén que tant l’encofrat com els elements auxiliars i el desencofrant van inclosos en l’amidament del formigó.

5.7.2. Fitacions i cimbres. Construcció i muntatge.

Les cimbres i fitacions haurien de ser capaces de resistir el pes propi total i el de l’element complet sustentat, així com altres sobrecàrregues accidentals que puguin actuar sobre elles (operaris, maquinària, vent, etc.).

Les cimbres i fitacions tendran la resistència i disposició necessària perquè en cap moment els moviments locals sobrepassin els 5 mm, ni els de conjunt la mil·lèsima de la llum (1/1.000).

5.7.3. Desencofrat i descimbrat del formigó

El desencofrat dels costaners verticals d’elements de poc cantell podrà efectuar-se a un dia de formigonada la peça, tret que durant aquest interval s’hagin produït baixes temperatures i altres accions capaces d’alterar el procés normal d’enduriment del formigó. Els costaners verticals d’elements de gran cantell no haurien de retirar-se abans dels dos dies amb les mateixes excepcions apuntades anteriorment, tret que s’emprí guatir a vapor.

El descimbrat podrà realitzar-se quan, a la vista de les circumstàncies i temperatura del resultat, les proves de resistència de l’element de construcció sustentat hagi adquirit el doble de la resistència necessària per a suportar els esforços que apareguin al descimbrat. El descimbrat es farà de manera suau i uniforme, recomanant-se l’ocupació de bressols, gats, caixes de sorra i altres dispositius quan l’element a descimbrar sigui de certa importància.

No es procedirà al desencofrat fins a transcorreguts un mínim de 7 dies per als suports i tres dies per als altres casos, sempre amb l’aprovació de la Direcció facultativa. Els taulers de fons i els plans de fitació es desencofraran seguint les indicacions de la NTEEH, i la EHE, amb la prèvia aprovació de la Direcció facultativa.

Per precaució, s’haurà de procedir a l’afluixat dels tanscos deixant l’element separat uns tres centímetres durant dotze hores, realitzant llavors la comprovació de la fletxa per a veure si és admissible. Quan el desencofrat sigui dificultós es regarà abundantment o s’aplicarà desencofrant superficial.

5.7.4. Amidament i abonament.

Els encofrats s’amidaran sempre per metres quadrats de superfície en contacte amb el formigó, no essent d’abonament les obres o excessos d’encofrat així com els elements auxiliars de subjecció necessaris per a mantenir l’encofrat en una posició correcta i segura contra esforços de vent, etc. En aquest preu s’inclouen, a més, els desencofrants i les operacions de desencofrat i retirada del material. En el cas que en el quadre de preus estiguin inclosos l’encofrat, s’entén que tant l’encofrat com els elements auxiliars i el desencofrant van inclosos en l’amidament del formigó.

1.1.5.8. Armadures

5.8.1. Col·locació, recobriment i entroncament d’armadures

Totes aquestes operacions s’efectuaran d’acord amb els articles de la Instrucció Del Formigó Estructural {EHE}, RD 2661/1998 del Ministeri de Foment.

5.8.2. Amidament i abonament

De les armadures d’acer emprades en el formigó armat s’abonaran els quilograms realment emprats deduits dels plànols d’execució afegint la longitud de les solapes d’entroncament, amidats en obra i aplicant els pesos unitaris corresponents als diferents diàmetres emprats. En cap cas s’abonarà amb solapes un pes major
del 5% del pes total del rodó resultant de l’amidament efectuat en el plànol sense solapes.

El preu comprendrà l’adquisició, els transports de qualsevol classe fins al punt d’ocupació, el pesat, la neteja d’armadures, el doblegat de les mateixes, l’hisat, sustentació i col·locació en obra, el filferro per a lligaments i separadors, la pèrdua per retallades i totes quantes operacions i mitjans auxiliars siguin necessaris.

1.1.5.9. Pilotatge

5.9.1. Execució

Per a l’execució i control de pilots formigonats “in situ” es consideren adequades les especificacions constructives recollides a la norma UNE-EN 1536:2000. Quan aquests pilots s’executen amb instrumentació, es controlaran en temps reals els paràmetres de operació i de formigonat, permetent conèixer i corregir instantàniament les possibles anomalies detectades.

En el procés de formigonat s’ha d’assegurar que la docilitat i fluidesa del formigó es manté de manera contínua, per així garantir que no es produeixin fenòmens d’embussos en el tub central o bosses de formigó segregat. El ciment en el formigó dels pilots s’ajustarà als tipus definits en la instrucció vigent per a la recepció de ciment.

En els pilots barrinats la entibació del terreny la produeix el propi element d’excavació (barrina o hèlix contínua). Una vegada arribat al fons, el formigó es col·locarà sense invertir el sentit de la barrina. L’armadura del pilotatge s’introduirà a posteriori, clavant-la en el formigó encara fresc fins a arribar a la profunditat de projecte, que serà com a mínim de 6 m o 9D.

5.9.2. Toleràncies

Per a pilots formigonats “in situ” s’han de complir les següents toleràncies:
- Posició de les pilones a nivell de la plataforma de treball: \(i < \text{imax} = 0,1 \cdot \text{Deq} \) per a pilots amb Deq \(\leq 1,5 \text{ m} \), \(i < \text{imax} = 0,15 \text{ m} \) per a pilots amb Deq \(> 1,5 \text{ m} \) essent Deq el diàmetre equivalent del pilot:
- Inclinació \(i < \text{imax} = 0,02\text{m/m.pera} \) per a \(\theta \leq 4^{\circ} \) i \(i < \text{imax} = 0,04\text{m/m.pera} \) per \(\theta > 4^{\circ} \) l’angle que forma l’eix del pilot amb la vertical.

5.9.3. Amidament i abonament

Els pilots s’amidaran segons la seva longitud i diàmetre. En aquest concepte s’inclourà el transport, bombeig i vibrat del formigó, la manipulació i introducció de les armadures així com l’escapçat del pilot i el tall d’armadures previs a l’execució de l’encep.

1.1.5.10. Estructures d’acer

5.10.1. Descripció

Es tracta del sistema estructural portant realitzat amb elements d’acer laminat.

5.10.2. Condicions prèvies

- Previ a l’execució dels treballs caldrà atendre’ns als següents requeriments:
- Es disposarà de zones d’apilament i manipulació adequades. Les peces seran de les característiques descrites en el projecte d’execució.
- Es comprovarà el treball de soldadura de les peces compostes realitzades en taller.
- Les peces estaran protegides contra la corrosió i l’incendi amb pintures adequades:

\[\frac{1}{2} \text{ segons ISO} 8501-1 \] per eliminar simultàniament el rovell i calamina.
- Capa d’imprimació anticorrosiva bicomponent d’epoxi-poliamida de classificació M1 aplicat amb un espessor de 35-40 \(\mu \text{m} \).
- Capa de revestiment d’intumescència progressiva classificat M1, amb els espessors necessaris per acomplir amb les resistències al foc estipulades a l’Annex B del present projecte.
- Capa de revestiment el astomèric de poliuretà amb un gruix de 300 \(\mu \text{m} \).
- Capa d’acabat d’esmalt de poliuretà amb gran estabilitat de brillantor i color a la intempèrie, classificat M 1.

5.10.3. Execució

Durant el muntatge i fixació de les estructures s’hauran de realitzar els següents treballs:
- Neteja de restes de formigó etc. de les superfícies on es procedi a traçat de replantejos i soldadura.
- Traçat d’eixos de replanteig.
- Posició de les pilones a nivell de la plataforma de treball -i < imax = 0,1·Deq; per a pilots amb Deq \(\leq 1,5 \text{ m} \) i \(\leq 0,15 \text{ m} \) per a pilots amb Deq \(> 1,5 \text{ m} \).
- Les peces es tallaran amb oxitall o amb serra radial, permetent-se l’ús de cisalles per al tall de xapes.
- Els talls no presentaran irregularitats ni rebabes.
- No es realitzaran les unions definitives fins haver comprovat la posició de les peces.
- Els eixos de totes les peces estaran en el mateix plànol.
- Totes les peces tindran un diàmetre 2 mm major que el nominal del cargol.
- Es col·locarà una arandela, amb bisell cònic, sota el cap i sota la rosca.
- La part roscada de l’espiga sobresortirà de la rosca almenys un filet.
- Els cargols s’estrenyeran un 80% en la primera volta, començant pels del centre.
- Els cargols s’estrenyeran un 80% en la primera volta, començant pels del centre.
- Les cargols s’estrenyeran un 80% en la primera volta, començant pels del centre.
- Unions mitjançant cargols d’alta resistència:

- Es col·locarà una arandela, amb bisell cònic, sota el cap i sota la rosca.
- La part roscada de l’espiça sobresortirà de la rosca almenys un filet.
- Els cargols s’estrenyeran un 80% en la primera volta, començant pels del centre.
- Es preparam les superfícies a soldar realitzant exactament els espessors de gola, les longituds de soldat i la separació entre els eixos de soldadura en unions discontinuës.
• Els cordons es realitzaran uniformement, sense mossegades ni interrupcions; després de cada cordó s’eliminarà l’escòria amb piqueta i raspall.

• Es prohibeix tot refredament anormal per excessivament ràpid de les sol·datures.

• Els elements soldats per a la fixació provisional de les peces s’eliminaran curosament amb bufador, mai a cops. Les restes de soldatures s’eliminaran amb radial o llima.

• Una vegada inspeccionada i acceptada l’estructura es procedirà a la seva neteja i protecció antioxidant, per a realitzar finalment el pintat.

5.10.4. Control

• Es controlarà que les peces rebudes es corresponen amb les especificades.

• Es controlarà l’homologació de les peces quan sigui necessari.

• Es controlarà la correcta disposició dels nusos i dels nivells de plaques d’ancoratge.

5.10.5. Amidament

S’amidarà per quilogram d’açer elaborat i muntat en obra, inclosos despunts. En qualsevol cas es seguiran els criteris establerts en els amidaments.

5.10.6. Manteniment

Cada tres anys es realitzarà una inspecció de l’estructura per a comprovar el seu estat de conservació i la seva protecció antioxidant i contra el foc.

1.1.5.11. Ofici de paleta

5.11.1. Fàbrica de maó

Les parets o construccions que es realitzin amb maó compliran amb les següents disposicions:

• Els maons es col·locaran segons els enllaços presentats en el projecte. Abans de col·locar-los s’humitejaran en aigua, havent d’estar submergits en aigua al menys 10 minuts. Excepcions específiques en contra, la llança ha de tenir un espessor de 10 mm.

• Totes les filades han de quedar perfectament horitzontals i amb la cara bona perfectament plana, vertical i a plànol amb els altres elements amb que hagi de coincidir. Per a això es farà ús de les mires necessàries, col·locant la corda en les divisions o marques fetes a les mires. Els maons es col·locaran sempre a “trencajunta”.

• Excepte contraindicació s’emprarà morter de 250 kg de ciment I-35 per m3 de pasta.

• Al reprentar un treball interromput es regarà la fàbrica antiga, netejant-la de pols i repicant el morter.

• Les unidats en angle es faran de manera que s’intervinca maó d’un mur contigu, alternant-se les fileres.

• L’amidaràm es farà per m2 segons s’expressa en el Quadre de Preus. S’amidaràn les unidats realment executades descomptant-se els buits.

• Tots els buits practicats en els murs aniran proveïts del seu corresponent carregador.

• Els tancaments de mes de 3,5 m d’alçada estaran ancorats en les seves quatre cares, estant a més rematats per un cèrcol de formigó armat

5.11.2. Envà de maó buit doble

Per a la construcció d’envans s’emplenaran tabicons petits buits col·locant-los de costat amb els seus costats majors formant els paraments de l’envà. Aquests es mullaran immediatament abans del seu ús i es prendran amb morter de ciment.

La seva construcció es farà amb auxili de mires i cordons i s’emplenaran les filades perfectament horitzontals. Quan en l’envà hi hagi buits, es col·locaran prèviament els cèrcols que quedaran perfectament aplomats i anivellats. El seu amidament de farà per metre quadrat d’envà realment executat.

5.11.4. Envans de maó buit senzill

Es prendran amb morter de ciment i amb condicions d’execució i amidament anàlogues en el paràgraf 5.11.2.

1.1.5.12. Cobertes planes

5.12.1. Descripció

Coberta o sostre exterior el pendent del qual està compresa entre el 1% i el 15% que, segons l’ús, poden ser transitables o no transitables. Poden disposar de protecció mitjançant barana, balustrada o ampir de fàbrica.

5.12.2. Condicions prèviies

• Plànols fitats d’obra amb definició de la solació constructiva adoptada.

• Execució de l’últim forjat o suport, baixants, petos perimetral...

• Neteja del forjat per al replanteig dels faldons i elements singulars.

• Apilament de materials i disponibilitat d’equip de treball.

5.12.3. Components
Els materials emprats en la composició d’aquestes cobertes, naturals o elaborats, abasten una gamma molt àmplia a causa de les diverses variants que poden adaptar-se tant per a la formació de pendents, com per a l’execució de la membrana impermeabilitzant, l’aplicació d’aïllament, els terres o acabats superficials, els elements singulars, etc.

5.12.4. Execució

Sempre que es trenqui la continuïtat de la membrana d’impermeabilització es disposaran reforços. Si les juntes de dilatació no estiguessin definides en projecte, es disposaran aquestes d’acord amb les estructurals. Els baixants i gàrgoles de recollida d’aigua pluvial tindràn la secció necessària per a evacuar-la sobradament, calculada segons l’Exigència Bàsica HS 5 del CTE DB HS en funció de la superfície que recullin i la zona pluviomètrica d’enclavament de l’edifici. Els baixants pluvials no distaran més de 20 metres entre si.

Les làmines impermeabilitzants es col·locaran començant pel nivell més baix, solapant-se com a mínim 8 cm entre elles. En el carener la solapa de làmina serà de 50 cm, i de 10 cm en les trobades amb albellons. En aquest cas, es reforçarà la membrana impermeabilitzant amb altra làmina col·locada sota ella que ha d’arribar fins a la baixant i ha de solapar 10 cm sobre la part superiors de l’albelló.

El vidre cel·lular es col·locarà amb les plaques a trenca junta i ben adherides a la xapa mitjançant el pertinent enfangat per evitar les filtracions i actuar convenientment de barrera de vapor. Es seguiran les disposicions de 5.13.

5.12.5. Control

El control d’execució es portarà a terme mitjançant inspeccions periòdiques en les quals es comprovaran espessors de capes, disposicions constructives, col·locació de juntes, dimensions dels solapes, humitat del suport, humitat de l’aïllament, etc.

Per comprovar l’impermeabilitat de la coberta acabada, es regarà contínuament la seva superfície durant 48 hores sense que hagin d’aparèixer humitats en la cara inferior de la coberta. Executada la prova es procedirà a evacuar l’aigua, operació en la qual es prendran precaucions a fi que no arribin a produir-se danyos en els baixants. En qualsevol cas, una vegada evacuada l’aigua no s’admetrà l’existència de recessos o estancaments.

5.12.6. Amidament

L’amidament i valoració s’efectuarà per m² de coberta amidada en la seva projecció horitzontal, incloent cadascuna de les seves parts constitutives (xapa grecada, aïllament, impermeabilitzant, etc.) així com els elements auxiliars necessaris.

Es tendran en compte, no obstant això, els enunciats assenyalats per a cada partida de l’amidament o pressupost en els quals es defineixen els diversos factors que condicionen el preu descompost resultant.

5.12.7. Manteniment

Les reparacions a efectuar sobre la coberta seran executades per personal especialitzat amb materials i solució constructiva anàlegs als de la construcció original. No es rebran sobre el terrat elements que puguin perforar la membrana impermeabilitzant com antenes, passatubs, etc., o dificultin la circulació de les aigües i el seu lligament cap als elements d’evacuació. Si ha d’ésser així, s’assegurarà el correcte tractament de la perforació en termes d’aïllament i impermeabilitat realitzant, per exemple, proves de regat.

El personal que tingui assignada la inspecció, conservació o reparació haurà d’anar proveït de calçat amb sola tova. Els treballs de manteniment acompliran les mateixes disposicions de seguretat que els de construcció.

1.1.5.13. Aïllaments

5.13.1. Descripció

Són sistemes constructius i materials que, a causa de les seves qualitats, s’utilitzen en les obres d’edificació per a aconseguir aïllament tèrmic, correcció acústica, absorció de radiacions o esmorzament de vibracions en cobertes, forjats, bancaments verticals, càmeres d’aire, falsos sostres o conduccions, i fins i tot substituint càmeres d’aire i envans interiors.

Els següents subapartats recullen els principals requeriments que imposa el CTE DB HE, el CTE DB HR, així com també el Reglament sobre Protecció contra la Contaminació Acústica (Decret 320/2002) i la Llei del Soroll (Llei 37/2003).

5.13.2. Condicions prèvies

• Execució o col·locació del suport o base que sostindrà a l’aïllant.
• La superfície del suport haurà de trobar-se neta, seca i lliure de pols, grasses o òxids. Haurà d’estar correctament sanejada i preparada si així procedís amb l’adequada imprimció que asseguri una adherència òptima.
• Els sortints i cossos estranyos del suport han d’eliminar-se, i els buits importants han de ser emplenats amb un material adequat.
• En cas d’aïllament per projecció, la humitat del suport no superarà a la indicada pel fabricant com màxima per a la correcta adherència del producte projectat.
• En rehabilitació de cobertes s’han de retirar prèviament els aïllaments danyats, doncs poden dificultar o perjudicar l’execució del nou aïllament.

5.13.3. Execució
Les obres de construcció de l’edifici s’executaràn amb subjecció al projecte, al Document Bàsic de Protecció contra el Soroll (DB HR), al Document Bàsic d’Estalvi d’Energia (DB HE), a les normes de bona pràctica constructiva, a les instruccions del director d’obra i director d’execució i a la demés normativa que els sigui d’aplicació.

5.13.3.5. Acabats superficials

Els acabats superficials, especialment les pintures, aplicats sobre els elements constructius dissenyats per l’aïllament acústic no hauran de modificar les propietats absorbents o aïllants d’aquests.

Quan s’alli per projecció, el material es projectarà en passades successives de 10 a 15 mm, permetent la total escumació de cada capa abans d’aplicar la següent.

5.13.4. Control

Durant l’execució dels treballs haurien de comprovar-se, mitjançant inspecció general, els següents apartats:

- Estat previ del suport, el qual haurà d’estar net, ésser uniforme i mancar de fissures o cossos sortints.
- Homologació oficial AENOR en els productes que el requereixin.
- Fixació del producte mitjançant un sistema garantit pel fabricant que asseguri una subjecció uniforme i sense defectes.
- Correcta col·locació de les plaques solapades de goma a goma o a trecajunta, segons els casos.
- Ventilació de la càmera d’aire si n’hi hagué.

En compliment de l’Art. 4.3 del CTE DB HE-1 també hauran de complir-se les següents condicions pel que fa a la recepció:

- El subministrament dels productes serà objecte de conveni entre el consumidor i el fabricant, ajustat a les condicions particulars que figuren en el present projecte.
- El fabricador garantirà les característiques mínimes exigibles als materials, i per a això realitzarà els assaigs i controls que asseguren l’autocontrol de la seva producció.
- Tots els materials aïllants vindran avalats per Segell o marca de qualitat, pel que podrà realitzar-se la seva recepció sense necessitat d’efectuar comprovacions o assaigs.
- La Direcció facultativa de les obres comprovarà que els materials rebuts reuneixen les característiques exigibles, així com que l’execució de l’Obra es realitza d’acord amb les especificacions del present projecte en compliment dels articles 4.3 i 5.2 del DB HE

5.13.5. Amidament

En general, s’amidarà i valorarà el m² de superfície executada en vertadera magnitud. En casos especials, podrà realitzar-se l’amidament per unitat d’actuació. Sempre estaran inclosos els elements auxiliars i rematades necessàries per al correcte acabat, com adhesius de fixació, corts, unions i col·locació.

5.13.6. Manteniment

S’han de realitzar controls periòdics de conservació i manteniment cada 5 anys o abans si es descobрис alguna anomalia, comprovant l’estat de l’aïllament i, particularment, si s’apreciessin discontinuïtats, despreniments o danys. les 48 hores.

1.1.5.14. Sòls

El sòl ha de formar una superfície totalment plana i horizontal, amb perfecta alineació de les seves juntes en totes direccions. Col·locant una regla de 2 m sobre el terra en qualsevol direcció no haurien d’apareixer buits majors a 5 mm. S’impedirà el trànsit pel sòl fins a transcorreguts quatre dies com a mínim, i en cas de ser aquest indispensable, es prendran les mesures precises perquè no es perdjudqui el sòl.

Els paviments s’amidaràn i abonaran per metre quadrat de superfície de terra realment executada. Els entornpeus i esglaons d’escala s’amidaràn i abonaran per metre lineal. El preu comprèn tots els materials, mà d’obra, operacions i mitjans auxiliars necessaris per a acabar completament cada unitat d’obra conformment a les prescripcions d’aquest Plec.

1.1.5.15. Fusteria de taller

La fusteria de taller es realitzarà en conforme a les disposicions del projecte i la Direcció facultativa. Totes les fustes estaran perfectament rectes, raspallades, escatades i ben muntades a plànol i esquadra, ajustant perfectament les superfícies vistes.

La fusteria de taller s’amidarà per metres quadrats de fusteria entre costats exteriors de cèrcols, i del sòl al costat superior del cèrcol en cas de portes. Això inclourà l’amidament de la porta o finestra i dels cèrcols corresponents més els tapajuntes i ferratges.

5.15.1. Condicions tècniques

Les fulles haurien de complir les característiques següents segons els assaigs que figuren en l’annex III de la Instrucció de la marca de qualitat per a portes planes de fusta (Ordre 16-2-72 del Ministeri d’indústria).

- Resistència a l’acció de la humitat.
- Comprovació del plànol de la porta.
- Comportament en la exposició de les dues caretes a atmosfera d’humitat diferent.
 - Resistència a la penetració dinàmica.
 - Resistència al fluïd per càrrega concentrada en un angle.
 - Resistència del test exterior a la immersió.
 - Resistència a l’arrencada de cargol en els travesser en un ample no menor a 28 mm. Quan l’anima de les fulles resisteixi l’arrencada de cargol no necessitarà peces de reforç. Si no, els reforços mínims necessaris els determinarà la Direcció facultativa.
 - En fulles cantellejades la zona inferior serà sense cantellar i permetrà un ajustament de 20 mm. Les fulles sense cantellar permetran un ajustament de 20 mm repartit per igual la zona inferior i la capçalera.
En les portes entaulades a l’exterior, les seves taules aniran superposades o encadellades de manera que no permetin el pas de l’aigua.

Les unions en les fulles entaulades seran per ensamblatge i hauran d’anar encolades. Es podran fer entroncaments longitudinals en les peces quan aquestes compleixin les condicions descrites en la NTE-FCM.

Quan la fusta sigui envernissada estarà exempta d’impureses o blaujeat per fongs. Si ha d’esser pintada, s’admetrà blaujeat en un 15% de la superfície. Els cèrcols de fusta i tapajuntes s’acolliran als següents punts:

- Els cèrcols vindran de taller muntats amb les unions ajustades, encaixades i amb els orificis per al posterior cargolat en obra de les plantilles d’ ancoratge. La separació entre elles serà no major de 50 cm i dels extrems dels travessers 20 cm havent de ser d’hacer protegit contra l’oxidació.

- Els cèrcols arribaran a obra ar impres a rastrells per a mantenir l’esquadra, i amb una protecció per a la seva conservació durant l’ emmagatzematge i posada en obra.

- Les dimensions mínimes dels tapajuntes de fusta seran de 10 x 40 mm.

1.1.5.16. Fusteria metà-llica

Per a la construcció i muntatge d’elements de fusteria metà-llica s’observaran rigorosament les indicacions dels plànols del projecte o les indicacions de la Direcció facultativa.

Totes les peces de fusteria metà-llica haurien de ser muntades, necessàriament, per la casa fabricadora o personal autoritzat per la mateixa, essent el subministrador el responsable del perfecte funcionament de totes i cadascuna de les peces col·locades en obra. Tots els elements es muntaran en locals tancats i desproveïts d’humitat. S’assentaràn les peces sobre rastrells de fusta, procurant que quedin ben anivellades.

L’amidament es farà per metre quadrat de fusteria, amidant-se entre costats exteriors. En el preu s’inclouen els ferratges, remats, etc., però queden exceptuades els vidres, pintura i col·locació de premars.

1.1.5.17. Pintura

5.17.1. Condicions generals de preparació del suport

La superfície a pintar ha d’estar seca, desgreixada, sense òxid ni pols; per a això s’empraran rasplans, bufadors de sorra, àcids, etc.

Els porus o esquerdes s’ompliran amb empastos per a deixar les superfícies llises i uniformes.

Es faran amb un pigment mineral i oli de llinosa o vernís i un cos de farciment per a les fustes.

En els panells s’emprarà guix pastat amb aigua de cola, i sobre els metalls s’utilitzaran empastaments compostos de 60-70% de pigment, ocre, òxid de ferro, litopó, etc. i cossos de farciment (creta, caolí, guix, etc.), 30-40% de vernís copal o àmbar i oli de fustes.

Abans de la seva execució s’efectuaran les següents comprovacions:

- Es comprovarà que la temperatura ambient no sigui major de 28 °C ni menor de 6 °C
- El sol no incidirà directament sobre el plànol d’aplicació.
- La superfície d’aplicació estarà anivellada i llisa.
- En temps plujós se suspenderà l’aplicació quan el parament no estigui protegit.
- Al finalitzar la jornada de treball es protegiran els envasos i es netejaran els utensilis.

5.17.2. Aplicació de la pintura

Les pintures es podran aplicar amb pinzells i brotxa, amb aerògraf, amb pistola, (polvoritzant amb aire comprimit) o amb rodet.

Les brotxes i pinzells seran de pèl de diversos animals, essent els més corrents el porc o senglar, marta, teixó i esquiro. Podran ser rodons o plans, classificant-se per nombres o pels grams de pèl que contenen. Els aerògrafs o pistoles consten d’un recipient que conté la pintura amb aire a pressió (1-6 atmosferes), el compressor i el pulveritzador, amb orifici que varia des de 0,2 mm fins a 7 mm, formant un con de 2 cm al metre de diàmetre.

Depenent del tipus de suport es realitzaran una sèrie de treballs previs amb l’objectiu d’aconseguir un acabat de gran qualitat. En funció del suport es tindran diferents sistemes:

- Guixos i ciments així com els seus derivats: Es realitzarà un escatat de les petites adherències i imperfeccions. A continuació s’aplicarà una mà de fons impregnant el sòporus de la superfície del suport. Posteriorment es realitzarà un plastificat de faltes, repassant les mateixes amb una mà de fons. S’aplicarà seguidament l’ acabat final amb un rendiment no menor de l’especificat pel fabricant.

- Fusta: Es procedirà a una neteja general del suport seguida d’un escatat fi de la fusta. A continuació es farà una mà de fons amb vernís diluït, aplicat de manera que quedin impregnats els porus. Passat el temps d’assecat de la mà de fons es realitzarà un escatat fi del suport, aplicant-se a continuació el vernís amb un temps d’assecat entre ambdues mans i un rendiment no menor dels especificats pel fabricant.

- Metalls: Es realitzarà un gratat d’àcids mitjançant ras pall, seguit immediatament d’una neteja manual acurada de la superfície. A continuació s’aplicarà una mà de impriminació anticorrosiva, amb un rendiment no inferior a l’especificat pel fabricant. Passat el temps d’assecat s’aplicaran dues mans d’acabat d’esmalt, amb un rendiment no menor a l’especificat pel fabricant.

- Guixos: S’aplicarà una mà de fons copal, seguit immediatament d’un escatat fi del suport, aplicant-se a continuació el vernís amb un temps d’assecat d’uns 45-60 min i un rendiment no menor a l’especificat pel fabricant.

- L’amidament es farà per metre quadrat de fusteria, amidant-se entre costats exteriors.

1.1.5.17. Pintura

5.17.3. Amidament i abonament

La pintura s’amidarà a abonarà, en general, per metre quadrat de superfície pintada, efectuant-se l’amidament en la següent forma:

- Pintura sobre façanes, envans i sostres: S’amidarà descomptant els buits. Les motllures s’amidaràn per superfície desenvolupada.

- Pintura sobre fusteria: S’amidarà per les dues cares, incloent-se els tapajuntes.

- Pintura sobre finestral metà-lícs: S’amidarà a una cara.
1.1.5.18. **Fontaneria**

Tota canonada s’instal·larà d’una forma que presenti un aspecte net i ordenat. La canonada es col·locarà en el seu lloc sense necessitat de forçar-la ni fletxar-la, i anirà instal·lada de manera que es contregui i dilatïï·r lentament sense deteriorar-se. Si la canonada és de ciment centrifugat es realitzarà el muntatge enterrat, rematant els punts d’unió amb ciment. Tots els canvis de secció, adreça i escomesa, s’efectuaran per mitjà d’arquetes de registre. En la citada xarxa se situaran pous de registre amb potes per a facilitar l’accés. El pendent mínim serà de l’1% en aigües pluvials, i superior.

1.1.5.19. **Instal·lació elèctrica**

L’execució de les instal·lacions s’ajustarà a l’especificat en els reglaments vigents i a les disposicions complementàries que puguin haver dictat la Delegació d’Indústria en l’àmbit de la seva competència. Així mateix, en l’àmbit de les instal·lacions que sigui necessari, se seguiràn les normes de la Companyia Subministradora d’Energia. Al no quedar la instal·lació elèctrica dins l’abast del present projecte, aquesta s’haurà d’atendre a les disposicions del pertinent projecte d’instal·lacions requerit per a l’execució del conjunt de l’edifici.

1.1.5.20. **5.20. Instal·lacions de protecció contra incendis**

Les instal·lacions dels sectors de l’edifici que s’acullen al DB-SI han de complir amb l’establert a l’Exigència SI 4 del DB. Per contra, les instal·lacions dels sectors que s’acullen al Reglament de Seguretat Contra Incendis als Establiments Industrials (RD 2267/2004) es regiran pels seus annexos III i IV.
Construcció d'un edifici industrial

Promotora TFGs

3D Pl. BAIXA

Número de proyecto: 0001
Fecha: 07/07/2017
Dibujado por: ALBERT LÓPEZ
Comprobado por: JOAN CASALS
Escala: 07
AMIDAMENTS I PRESSUPOST

0 MOVIMENT DE TERRES

<table>
<thead>
<tr>
<th>Codi</th>
<th>UA</th>
<th>Descripció</th>
<th>Quantitat</th>
<th>Preu</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADE002</td>
<td>m3</td>
<td>Excavació mecànica a cel obert</td>
<td>6833,42</td>
<td>5,69</td>
<td>38882,16</td>
</tr>
<tr>
<td>GTA020</td>
<td>m3</td>
<td>Transport de terres amb camió</td>
<td>1084,94</td>
<td>4,35</td>
<td>4719,29</td>
</tr>
<tr>
<td>GTB020</td>
<td>m3</td>
<td>Cànon abocament per lliureament de terres a gestor</td>
<td>1084,984</td>
<td>2,05</td>
<td>2224,22</td>
</tr>
<tr>
<td>ADP010</td>
<td>m3</td>
<td>Terraplenament</td>
<td>5748,571</td>
<td>9,56</td>
<td>54956,34</td>
</tr>
</tbody>
</table>

1 FONAMENTS I CONTENCIÓ DE TERRES

<table>
<thead>
<tr>
<th>Codi</th>
<th>UA</th>
<th>Descripció</th>
<th>Quantitat</th>
<th>Preu</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADE011</td>
<td>m3</td>
<td>Excavació per muret guia de mur pantalla</td>
<td>373,12</td>
<td>18.44</td>
<td>6880,33</td>
</tr>
<tr>
<td>CCS010</td>
<td>m3</td>
<td>Mur de soterrani</td>
<td>869,894</td>
<td>484,266</td>
<td>385,628</td>
</tr>
<tr>
<td>CCS020</td>
<td>m2</td>
<td>Sistema d'encofrat per a mur de soterrani</td>
<td>1739,788</td>
<td>156,35</td>
<td>272015,85</td>
</tr>
<tr>
<td>Code</td>
<td>Type</td>
<td>Description</td>
<td>Volume</td>
<td>Weight</td>
<td>Cost</td>
</tr>
<tr>
<td>--------</td>
<td>---------------------------</td>
<td>---</td>
<td>--------</td>
<td>--------</td>
<td>-----------</td>
</tr>
<tr>
<td>CRL010</td>
<td>m2</td>
<td>Capa de neteja per a fonamentació</td>
<td>971,59</td>
<td>29,97</td>
<td>29118,55</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Capa de neteja i anivellat de 10cm de gruix de formigó HL-150/P/20 de consistència plàstica i grandària màxima de granulat 20mm, abocat des de camió</td>
<td>584,164</td>
<td>6,82</td>
<td>3984,00</td>
</tr>
<tr>
<td>ADE010</td>
<td>m3</td>
<td>Excavació de rases i pous</td>
<td>338,34</td>
<td>23,05</td>
<td>7798,74</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Excavació en pous per fonamentacions en terra d'argila semidura, amb mitjans mecànics, retirada dels materials excavats i càrrega a camió.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSZ010</td>
<td>m3</td>
<td>Sabata de fonamentació de formigó armat</td>
<td>338,34</td>
<td>108,43</td>
<td>36686,21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sabata de fonamentació de formigó armat, realitzada amb formigó HA-30/B/20/IIa fabricat en central, i abocament amb bomba, i acer UNE-EN 10080 B 500 S, quantia 50 kg/m³, sense incloure encofrat.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHH005</td>
<td>m3</td>
<td>Formigó de neteja</td>
<td>338,34</td>
<td>79,98</td>
<td>2490,82</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Formigó HL-150/B/20, fabricat en central i abocament amb bomba, per a formació de capa de formigó de neteja i anivellament de fons de fonamentació.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSZ020</td>
<td>m2</td>
<td>Sistema d'encofrat per a sabata de fonamentació</td>
<td>676,67</td>
<td>20,92</td>
<td>14155,94</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Muntatge i desmuntatge de sistema d'encofrat recuperable, realitzat amb panells metàl·lics, amortitzables en 200 usos, per a sabate de fonamentació</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANS010</td>
<td>m2</td>
<td>Solera de formigó</td>
<td>9580,2</td>
<td>17,81</td>
<td>170623,36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Solera de formigó armat de 10 cm d'esessor, realitzada amb formigó HA-25/B/20/IIa fabricat en central, i abocament amb bomba, estès i vibrat manual, i malla electrosoldada ME 20x20 Ø 5-5 B 500 T 6x2,20 UNE-EN 10080 sobre separadors homologats, amb junts de retracció.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RSI060</td>
<td>m2</td>
<td>Revestiment de protecció de paviment industrial</td>
<td>3633,87</td>
<td>46,25</td>
<td>168066,49</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Revestiment de protecció de paviment industrial en magatzems, sistema Compohard Plus "COMPOSAN INDUSTRIAL Y TECNOLOGÍA", de 5 a 6 mm d'esessor total aproximat</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EHM010</td>
<td>m3</td>
<td>Muret perimetral</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Muret de formigó</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Mur de formigó armat 2C, de fins a 3 m d'altura, gruix 30 cm, superfície plana, realitzat amb formigó HA-25/B/20/Ia fabricat en central, i abocament amb cubilot, i acer UNE-EN 10080 B 500 S, 50 kg/m³; muntatge i desmontatge de sistema d'encofrat amb acabat tipus industrial per reestir, realitzat amb panells metàl·l·ics modulars, amortitzables en 150 usos

Partida 1

<table>
<thead>
<tr>
<th>Codi UA</th>
<th>Descripció</th>
<th>Quantitat</th>
<th>Preu Unitari</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>EAS010</td>
<td>kg</td>
<td>Acer en pilars</td>
<td>109547</td>
<td>1,60</td>
</tr>
<tr>
<td>EAV010</td>
<td>kg</td>
<td>Acer en bigues</td>
<td>116325</td>
<td>1,60</td>
</tr>
<tr>
<td>EAT030</td>
<td>kg</td>
<td>Acer en corretges metàl·liques</td>
<td>16243</td>
<td>1,80</td>
</tr>
</tbody>
</table>

ESTRUCTURA

<table>
<thead>
<tr>
<th>Codi UA</th>
<th>Descripció</th>
<th>Quantitat</th>
<th>Preu Unitari</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>EAS006</td>
<td>ml</td>
<td>Plaques d'ancoratge amb perns cargolats</td>
<td>570,35</td>
<td>75,00</td>
</tr>
<tr>
<td>EAC020</td>
<td>kg</td>
<td>Acer en pilars</td>
<td>116252</td>
<td>1,60</td>
</tr>
<tr>
<td>EAC020</td>
<td>kg</td>
<td>Acer S235JRC segons UNE-EN 10025, per a corretja formada per peça simple, en perfils conformats en fred de les sèries C o Z, galvanitzat, inclús accessoris, cargolam i elements d'ancoratge</td>
<td>16243</td>
<td>1,80</td>
</tr>
</tbody>
</table>

Jàssera

<table>
<thead>
<tr>
<th>Codi UA</th>
<th>Descripció</th>
<th>Quantitat</th>
<th>Preu Unitari</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>EAC020</td>
<td>kg</td>
<td>Acer S275JR segons UNE-EN 10025-2, per a elements d'ancoratge formats per peça simple, en perfils laminats en calent sèrie IPN, IPE, HEB, HEM i UPN, treballat a taller i amb una capa d'imprimació antioxidant, col·locat a l'obra amb cargols</td>
<td>109547</td>
<td>1,60</td>
</tr>
<tr>
<td>EAC020</td>
<td>kg</td>
<td>Acer S275JR segons UNE-EN 10025-2, per a elements d'ancoratge formats per peça simple, en perfils laminats en calent sèrie IPN, IPE, HEB, HEM i UPN, treballat a taller i amb una capa d'imprimació antioxidant, col·locat a l'obra amb soldadura</td>
<td>116252</td>
<td>1,60</td>
</tr>
</tbody>
</table>

Creu de Sant Andreu

<table>
<thead>
<tr>
<th>Codi UA</th>
<th>Descripció</th>
<th>Quantitat</th>
<th>Preu Unitari</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>EAC020</td>
<td>kg</td>
<td>Acer S275JR segons UNE-EN 10025-2, per a elements d'ancoratge formats per peça simple, en perfils laminats en calent sèrie IPN, IPE, HEB, HEM i UPN, treballat a taller i amb una capa d'imprimació antioxidant, col·locat a l'obra amb cargols</td>
<td>109547</td>
<td>1,60</td>
</tr>
</tbody>
</table>

Corretges

<table>
<thead>
<tr>
<th>Codi UA</th>
<th>Descripció</th>
<th>Quantitat</th>
<th>Preu Unitari</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>EAT030</td>
<td>kg</td>
<td>Acer S235JRC segons UNE-EN 10025, per a corretja formada per peça simple, en perfils conformats en fred de les sèries C o Z, galvanitzat, inclús accessoris, cargolam i elements d'ancoratge</td>
<td>16243</td>
<td>1,80</td>
</tr>
</tbody>
</table>

Riostres Perímetrals

<table>
<thead>
<tr>
<th>Codi UA</th>
<th>Descripció</th>
<th>Quantitat</th>
<th>Preu Unitari</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>EAC020</td>
<td>kg</td>
<td>Acer S275JR segons UNE-EN 10025-2, per a elements d'ancoratge formats per peça simple, en perfils laminats en calent sèrie IPN, IPE, HEB, HEM i UPN, treballat a taller i amb una capa d'imprimació antioxidant, col·locat a l'obra amb soldadura</td>
<td>116252</td>
<td>1,60</td>
</tr>
</tbody>
</table>
Acer S275JR segons UNE-EN 10025-2, per a elements d' ancoratge formats per peça simple, en perfils laminats en calent sèrie L, LD, T, rodó, quadrant, rectangular i planxa, treballat a taller i amb una capa d'imprimació antioxidant, col·locat a l'obra amb soldadura

<table>
<thead>
<tr>
<th>Codi UA</th>
<th>Descripció</th>
<th>Quantitat</th>
<th>Preu</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPF010</td>
<td>Llosa de plaques alveolars prefabricades</td>
<td>16693</td>
<td>1,62</td>
<td>27042,66</td>
</tr>
<tr>
<td>FMY010</td>
<td>Sistema cortizo de mur cortina d' alumini</td>
<td>1823,25</td>
<td>85,95</td>
<td>156708,34</td>
</tr>
</tbody>
</table>

3 SISTEMES D'ENVOLVENT I D'ACABATS EXTERIORS

<table>
<thead>
<tr>
<th>Codí</th>
<th>UA</th>
<th>Descripció</th>
<th>Quantitat</th>
<th>Preu</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLM015</td>
<td>m2</td>
<td>Tancament de façana panells sandvitx aïllants</td>
<td>2280,12</td>
<td>41,55</td>
<td>94738,99</td>
</tr>
</tbody>
</table>

Façanes PB

<table>
<thead>
<tr>
<th>Codí</th>
<th>UA</th>
<th>Descripció</th>
<th>Quantitat</th>
<th>Preu</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>FMY010</td>
<td>m2</td>
<td>Sistema cortizo de mur cortina d' alumini</td>
<td>1029,73</td>
<td>427,28</td>
<td>439983,03</td>
</tr>
</tbody>
</table>

Façana intercalaria

<table>
<thead>
<tr>
<th>Codí</th>
<th>UA</th>
<th>Descripció</th>
<th>Quantitat</th>
<th>Preu</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>FMY010</td>
<td>m2</td>
<td>Sistema cortizo de mur cortina d' alumini</td>
<td>1823,25</td>
<td>85,95</td>
<td>156708,34</td>
</tr>
</tbody>
</table>

Partida 2 742,466,69 €
Façana Intercalaria, de "CORTIZO", amb estructura portant calculada per a una sobrecàrrega màxima deguda a l'acció del vent de 60 kg/m², composada per una retícula amb una separació entre muntants de 150 cm i una distància entre eixos del forjat o punts d'ancoratge de 300 cm; tancament compost d'un 40% de superfície opaca (ampits, cantells de forjat i falsos sostres) i un 60% de superfície transparent fixa realitzada amb doble envlidriament trempat de control solar, color blau, 6/6/6

<table>
<thead>
<tr>
<th>Codi UA</th>
<th>Descripció</th>
<th>Quantitat</th>
<th>Preu</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIC010</td>
<td>Porta seccional automàtica industrial</td>
<td>1</td>
<td>4611,61</td>
<td>4611,61</td>
</tr>
<tr>
<td>LFA010</td>
<td>Porta tallafocs d'acer galvanitzat.</td>
<td>6</td>
<td>536,20</td>
<td>3217,20</td>
</tr>
<tr>
<td>LEA010</td>
<td>Porta metà-líca d'entrada a habitatge</td>
<td>1</td>
<td>1143,69</td>
<td>1143,69</td>
</tr>
</tbody>
</table>

Partida 3 923.960,26 €

4 FUSSTERIA

<table>
<thead>
<tr>
<th>Codi UA</th>
<th>Descripció</th>
<th>Quantitat</th>
<th>Preu</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>QTM010</td>
<td>Coberta inclinada de panells sandvitx, d'acer</td>
<td>1</td>
<td>4611,61</td>
<td>4611,61</td>
</tr>
<tr>
<td>LEA010</td>
<td>Porta metà-líca d'entrada a habitatge</td>
<td>1</td>
<td>1143,69</td>
<td>1143,69</td>
</tr>
</tbody>
</table>

Partida 4 8.972,50 €

TOTAL 2.667.232,59 €