
  

  

Abstract— The study of engagement is central to improve the 
quality of care and provide people with dementia with 
meaningful activities. Current assessment techniques of 
engagement for people with dementia rely exclusively on 
behavior observation. However, novel unobtrusive sensing 
technologies, capable of tracking psychological states during 
activities, can provide us with a deeper layer of knowledge 
about engagement. We compared the engagement of persons 
with dementia involved in two playful activities, a game-based 
cognitive stimulation and a robot-based free play, using 
observational rating scales and electrodermal activity (EDA). 
Results highlight significant differences in observational rating 
scales and EDA between the two activities and several 
significant correlations between the items of observational 
rating scales of engagement and affect, and EDA features.  

I. INTRODUCTION 

Dementia is a neurodegenerative disorder whose 
prevalence rates are continuously growing and will reach 115 
million people by 2050 [1]. As a disease, dementia affects 
cognition, producing a reduction in thinking, problem solving 
and mnemonic ability, functioning, preventing affected 
people to care for themselves and carry out activities of daily 
living (e.g. self-feeding), and psychological wellbeing, 
causing the appearance of disorders of perception, thought 
content, mood, and behavior called behavioral and 
psychological symptoms of dementia (BPSD; e.g. apathy, 
depression, agitation, anxiety) [2].  

People with dementia living in institutionalized contexts 
spend most of their time inactive [3]. However, several 
studies have demonstrated the importance of participation in 
activities to improve quality of life (QoL) and wellbeing in 
dementia [4][5][6][7][8]. In this respect, social robots are 
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deemed useful to improve positive affect [9] and social 
interactions and to reduce loneliness [10][11].  

A crucial node when discussing about participation in 
activities is their meaningfulness for the person with 
dementia. In this sense, it is decisive to measure, together 
with the long-term impact of activities on health, cognition, 
and psychosocial wellbeing, also the inherent engagement 
state that activities are able to foster in people with dementia. 
We define engagement as the psychological state of 
wellbeing, enjoyment and active involvement that is triggered 
by meaningful activities and causes people to be enraptured 
by the activity (thus more resistant to distraction), more 
energetic (thus more prone to work to achieve their 
objectives and less inclined to feel the effort), and in a more 
positive mood.  

To pursue a comprehensive measurement of engagement 
for dementia, state of the art assessment techniques are 
insufficient. Indeed, most of them rely exclusively on 
behavior observation [12][13], but behavior can be 
misleading in dementia since the display of inner states can 
be impaired (i.e. apathy). New miniaturized sensing 
technologies, able to gauge the psychophysiology of 
engagement can come in handy to enrich the knowledge 
drawn from behavior observation. For instance, electrodermal 
activity (EDA) can be measured in an unobtrusive way with 
wearable sensors and gives a straightforward measure of 
arousal. EDA is a change in the skin conductance that derives 
from the activation of the sympathetic nervous system in 
response to episodes of excitement, attention, anxiety, and 
high cognitive load [14]. 

In this paper we present a study aimed at comparing the 
engagement of persons with dementia involved in two 
activities: a game-based cognitive stimulation and a robot-
based free play. The two proposed activities were assumed to 
elicit different types of engagement, cognitive and affective. 
We examined the underlying arousal states that the activities 
triggered, and studied their relationships with observed 
behavior. As a result, we present clear directions to follow in 
the understanding of the psychophysiology of engagement in 
dementia. 

II. RELATED WORK 

Ideally, related work would include studies that gauged 
EDA to understand and profile the quality of interactions 
with social robots of persons with dementia. However, in 
spite of the great interest of the Human-Robot Interaction 
(HRI) community for the therapeutic effects of social robots 
on dementia patients, studies on the physiology of 
engagement with social robots of people with dementia are 
scarce and involve costly and invasive procedures, such as 
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EEG [15], urinalysis and hormones analysis [16], and fNIRS 
[17]. 

In the context of dementia, we found only two studies 
conducted with EDA, both for purposes beyond our interest 
[18][19]. The only real antecedent of the present study is a 
study carried out with elders with Mild Cognitive Impairment 
(MCI) during interactions with a telepresence robot (Giraff) 
using cardiac measures, heart rate (HR) and heart rate 
variability (HRV) [20]. 

As a consequence, the closest reference to our work is 
research with healthy adults and children. In this area, studies 
on EDA could be divided into two typologies: hypothesis-
testing and affect recognition studies. On one hand, 
hypothesis-testing studies are works focusing on statistical 
analyses aimed at identifying differences in EDA between 
experimental conditions and at detecting correlations between 
self-report questionnaires and EDA features. On the other 
hand, affect recognition studies are works where EDA 
features are used to classify diverse affective states with a 
certain degree of accuracy. In HRI, most studies focused on 
affect recognition. For instance, Henriques et al. (2013) [21] 
worked on EDA-based recognition of empathy, expectation, 
positive-surprise, stress, and frustration in two conditions, 
human-to-human and human-to-robot interaction (with 
NAO), and Leite et al. (2013) [22] investigated the benefits 
of measuring EDA to adapt online the behavior of iCat 
according to children’s emotional and cognitive processes. 
However, hypothesis-testing studies are also available. 
Rosenthal-von der Pütten et al. (2012) [23] used EDA and 
self-reported emotions to evaluate affective reactions towards 
videos depicting the dinosaur robot Pleo in two situations, a 
friendly and a torturing interaction. In our case, given the 
lack of literature coverage on EDA in people with dementia, 
we could not yet aim at affect recognition, thus we used EDA 
to differentiate between different types of engagement and 
worked on the identification of trends in the EDA data by 
correlating EDA features with the items of observational 
rating scales of engagement. 

An additional problem to face when measuring EDA in 
vulnerable participants is caused by the reactivity to the 
experimental situation. Indeed, the artificiality of the situation 
might prompt physiological responses not linked with the 
experimental conditions (e.g. anxiety), thus jeopardizing the 
reliability of the data collected. In recent years, the 
development of wearable and unobtrusive devices aimed at 
collecting physiological data in real life settings (e.g. Q 
sensor and E4 wristband1) paved the way for in the field data 
collection. In this regard, Leite and colleagues [22] were 
among the first to seize the opportunity, collecting children’s 
EDA and HR at school with the Q sensor. In the attempt to 
follow this ecologically valid approach, we collected EDA 
directly in nursing homes using the more advanced E4 
wristband. 

The following sections detail the research design of the 
study and the procedures used to collect EDA (Section III), 
the results obtained from analyses of observational rating 
scales and EDA (Section IV), and the main conclusions 
drawn from the results (Section V).  

 
1 https://www.empatica.com/e4-wristband 

III. METHOD 

A.  Aim 

The present study was carried out to: 1) study the 
different engagement and arousal states that the two proposed 
activities brought about in people with dementia using 
observational rating scales and EDA, and 2) uncover 
correlations between participants’ physiological states and 
observed engagement in activities. 

B. Participants 

Fourteen participants aged between 69 and 92 years (M: 
83.93, SD: 7.28) with a diagnosis of dementia ranging from 
mild to moderate were selected from two nursing homes in 
the province of Barcelona. Selection was performed together 
with the psychologists of the two nursing homes. Dementia 
severity was assessed using the Reisberg Global 
Deterioration Scale (GDS) [24]. Subjects included in the 
study had a confirmed dementia diagnosis and a deterioration 
level ranging from mild to moderate (scores 4 and 5 of the 
Reisberg GDS). Exclusion criteria were a diagnosed bipolar 
or schizophrenic disorder, abnormality in the movement of 
face or hands (e.g. Parkinson’s disease), strong hallucinatory 
states, and bedridden condition.  

Selected participants were randomly coupled, and took 
part in the activities in pairs. This was in order to reproduce 
as closely as possible the usual social context of activities in 
nursing homes, which is group-based. 

C. Design 

The study was conducted in nursing homes and followed 
a repeated measurement design with two playful activities as 
experimental conditions: a game-based cognitive stimulation, 
and a robot-based free play. Participants took part in the two 
activities once per week. Each activity was presented three 
times, for a total of six sessions per couple, three of cognitive 
games and three of robot play. The order of presentation of 
activities was alternated: cognitive games and robot play 
were presented every other week starting from cognitive 
games.  

Cognitive games were jigsaw puzzles, shape puzzles, and 
dominoes (Figure 1). The order of presentation of the 
cognitive games was randomized using a Latin squares 
technique, thus it was always different in the three sessions. 

Figure 1.  Cognitive Games 

For what regards the robot play, we left participants free 
to interact with the robot, Pleo (Figure 2), and gave 
facilitators a script with a list of activities to be introduced in 
case the interaction faded (call Pleo, make Pleo sleep, feed 
Pleo, dress Pleo, stroke Pleo, heal Pleo).  

Pleo is an animatronic pet robot commercialized by 
UGOBE, which has the appearance of a baby dinosaur. It is 
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equipped with touch sensors, microphones, ground foot 
sensors, force-feedback sensors, orientation tilt sensors, 
infrared mouth sensors, a camera-based vision system, and a 
beat detection system.  

Figure 2.  The dinosaur robot, Pleo 

Pleo is not only able to display a wide range of behaviors 
(e.g. walk, howl), but also to express its internal drives (e.g. 
hunger or sleep) and moods (e.g. happy, scared, curious). We 
selected this robot, instead of other available ones, because, 
being designed for children, it provides a very prompt 
interaction, and this is very important when working with 
people with mild to moderate dementia who are still able to 
sustain dynamic exchanges. 

The two experimental conditions we chose are not 
canonical. Usually, interactions with social robots are 
compared to interactions with stuffed animals or dolls. We 
chose the present experimental conditions for three reasons: 
a) a stuffed animal/doll condition is risky with people with 
mild dementia who are still able to make sense of the world 
and might feel infantilized; b) reviews on the use of social 
HRI for people with dementia deplore the fact that most 
studies use experimental and control conditions that are likely 
to produce the same effects (e.g. dolls and social robots) [25]; 
c) the chosen experimental conditions hinge upon different 
skills: cognition the cognitive games, and affect the 
interactions with the social robot, which both elicit arousal, 
but of a different type. 

During sessions, four facilitators followed the participants 
(the psychologist or the social educator of each nursing 
home). Facilitators were coupled randomly with participants, 
and followed the same couple/s across all sessions.  

D. Measures 

In total, we carried out forty-two play sessions of around 
half an hour each. During sessions, we collected three types 
of data: video footage, physiological data, and observational 
rating scales.  

Video footage of all the sessions was collected with two 
hand held cameras positioned on mini-tripods. Videos were 
used to label the physiological signals. 

Physiological data were collected using the E4 wristband 
[26]. The E4 wristband has four sensors integrated in its case: 
a photoplethysmography sensor (to measure heart rate, heart 
rate variability, and inter-beat interval), a triaxial 
accelerometer (to measure acceleration, but also to detect 
movement patterns), an infrared thermometer (to gauge 
peripheral skin temperature), and an electrodermal response 
sensor (to assess arousal). We recorded data from all the 
sensors of the E4 wristband. However, in this paper, we 

analyze those coming from the electrodermal response 
sensor.  

The EDA signal was synchronized with video footage to 
establish the beginning and end of baseline collection, and 
the beginning and end of activities. Subsequently, it was 
normalized and denoised with a 2nd order Butterworth low-
pass filter with a cut-off frequency of 0.05Hz. Regarding the 
extracted features, we used differential features in order to 
take into account the baseline state of the person with 
dementia in the calculation of EDA.  

The feature notation in Table 1 is constructed in the 
following way. The set of samples 𝑆𝑆𝑊𝑊 = 𝑠𝑠1𝑊𝑊, … 𝑠𝑠𝑁𝑁𝑊𝑊 is 
recorded in a window of time 𝑊𝑊defined by the beginning and 
the end of an activity (cognitive games or robot play). The 
Short Fast Fourier Transform of this sample set was formed 
by 𝑆𝑆1𝑊𝑊, …𝑆𝑆𝑁𝑁𝑊𝑊 through (1): 

𝑆𝑆ℎ𝑊𝑊 =∑ 𝑠𝑠𝑛𝑛𝑒𝑒
−𝑖𝑖2𝜋𝜋ℎ𝑛𝑛𝑁𝑁𝑁𝑁

𝑛𝑛=1   (1) 

where   ℎ = 1, … ,𝑁𝑁. 𝑆𝑆ℎ𝑊𝑊is a set of N complex numbers 
that represents the amplitude and phase of a harmonic. In 
regards to Npeaks, we denoted it as the number of significant 
local maxima found in 𝑆𝑆𝑊𝑊. Then, 𝑁𝑁𝑁𝑁𝑁𝑁𝑊𝑊 is defined as 
Npeaks(𝑆𝑆𝑊𝑊) divided by the length of 𝑆𝑆𝑊𝑊. 

TABLE 1. Feature set 

Feature name Equation 

diffSMAa ∫ 𝑠𝑠𝑖𝑖𝑊𝑊𝑑𝑑𝑑𝑑 
𝑇𝑇
𝑖𝑖=0 -∫ 𝑠𝑠𝑖𝑖𝑊𝑊−1𝑑𝑑𝑑𝑑 𝑇𝑇

𝑖𝑖=0  

diffMb 𝑠𝑠𝑊𝑊 − 𝑠̅𝑠𝑊𝑊−1,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑠̅𝑠𝑊𝑊 =
1
𝑁𝑁
� 𝑠𝑠𝑖𝑖𝑤𝑤

𝑁𝑁

𝑖𝑖=1
 

diffSDc 𝜎𝜎𝜎𝜎𝑊𝑊 − 𝜎𝜎𝜎𝜎𝑊𝑊−1,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝜎𝜎𝜎𝜎𝑊𝑊=�1
𝑁𝑁
∑ (𝑠𝑠𝑖𝑖𝑊𝑊 − 𝑠̅𝑠𝑊𝑊)2𝑁𝑁
𝑖𝑖=1  

diffRNGd 𝑅𝑅𝑅𝑅𝑅𝑅(𝑠𝑠𝑊𝑊) − 𝑅𝑅𝑅𝑅𝑅𝑅(𝑠𝑠𝑊𝑊−1), 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑅𝑅𝑅𝑅𝑅𝑅(𝑠𝑠𝑊𝑊)
= 𝑚𝑚𝑚𝑚𝑚𝑚(𝑠𝑠𝑊𝑊) − 𝑚𝑚𝑚𝑚𝑚𝑚(𝑠𝑠𝑊𝑊) 

diffSHe � 𝑆𝑆1,N
𝑊𝑊

𝑁𝑁

𝑖𝑖=1
 

diffNPRf 𝑁𝑁𝑁𝑁𝑁𝑁𝑊𝑊 − 𝑁𝑁𝑁𝑁𝑁𝑁𝑊𝑊−1 

diffKURTg 𝛿𝛿𝑠𝑠𝑊𝑊 − 𝛿𝛿𝑠𝑠𝑊𝑊−1, 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝛿𝛿𝑧𝑧𝑊𝑊 =
Ε ���𝑆𝑆1,𝑁𝑁

𝑊𝑊 �𝑖𝑖 − �𝑆𝑆1̅,𝑁𝑁
𝑊𝑊 ��

4
�

�Ε ���𝑆𝑆1,𝑁𝑁
𝑊𝑊 �

𝑖𝑖
− �𝑆𝑆1̅,𝑁𝑁

𝑊𝑊 ��
3
��
2 

diffSKEWh 𝛾𝛾𝑠𝑠𝑊𝑊 − 𝛾𝛾𝑠𝑠𝑊𝑊−1, 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝛾𝛾𝑠𝑠𝑊𝑊 = Ε ��
�𝑆𝑆1,𝑁𝑁

𝑊𝑊 �
𝑖𝑖
− �𝑆𝑆1̅,𝑁𝑁

𝑊𝑊 �

𝜎𝜎��𝑆𝑆1,N
𝑊𝑊 ��

�
3

� 

a. diffSMA= differential signal magnitude area; b. diffM= differential mean; c. diffSD= 
differential standard deviation; d. diffRNG= differential range; e. diffSH= differential 
summation of harmonics; f. diffNPR= differential number of peaks ratio; g. diffKURT= 
differential kurtosis; h. diffSKEW= differential skewness 

As observational rating scales, we used the Observational 
Measurement of Engagement (OME) [12], and enriched it 
with the Observed Emotion Rating Scale (OERS) [13]. The 
OME rates engagement across four dimensions: duration of 
interaction (in seconds), attention towards the stimulus (e.g. 
manipulating/holding the stimulus, 4-point Likert scale), 
attitude towards the stimulus (e.g. smiling/frowning; 7-point 
Likert scale), and refusal of the stimulus. In our study, we 
used the items attention (4-points Likert scale) and attitude 
(7-point Likert scale) of the OME, using the latter to obtain 
scores of the attitude of participants towards the game, and 
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towards the partner. Moreover, we added a further item, 
cognitive difficulty (5-point Likert scale), which is present in 
further versions of the OME. The OERS was used in its 
original version to rate (on a 5-point Likert) the intensity of 
five affective states: pleasure (e.g. laughing, smiling, 
kissing), anger (e.g. yelling, cursing, berating), anxiety/fear 
(e.g. shrieking, repetitive calling out), sadness (e.g. crying, 
frowning), and alertness (e.g. participating in a task, 
maintaining eye contact). Both the OME and the OERS were 
developed for psychogeriatric purposes, and are validated 
observational scales. They were completed after sessions by 
facilitators. For what concerns cognitive games, we asked 
facilitators to fill out one OME and one OERS for each of the 
games that were played. As for robot play, we obtained one 
OME and one OERS for the entire session.  

E. Setting 
Data were collected directly in the nursing homes, in 

rooms normally allocated to activities. The rooms in the two 
nursing homes were adapted to resemble each other. A 
rectangular table was placed on one side of the room, and on 
the opposite side we positioned two hand-held cameras on 
top of portable tripods (Figure 3). One camera was positioned 
on the side, and the other in front of the participants. 

Figure 3.  The room layout 

During the data collection participants were sitting on the 
same side of the table facing the cameras. The facilitator 
conducted the activity in the presence of the experimenter. 
The experimenter was present during data collection to 
supervise the correct functioning of the equipment (cameras 
and wristbands), to control that playful activities were 
correctly executed, and to collect the OME and OERS at the 
end of the sessions. However, to avoid its presence to be 
disruptive for participants, before the study started, the 
experimenter was introduced to participants and clients of the 
nursing homes, and took part in the activities promoted in the 
two institutions for few weeks. 

F. Procedure 

During the sessions, data collection was performed in six 
phases: 1) preparation phase: the experimenter set up the 
room, while the facilitator helped participants to reach it, 

once participants reached the room, cameras were switched 
on; 2) habituation phase: the experimenter conversed shortly 
with participants, while they sat to recover from the effort of 
walking to reach the room, afterwards the experimenter 
helped participants to wear the sensor (Figure 4a); 3) 
synchronization: the experimenter switched on the 
wristbands, and pushed the tag buttons on top of the watches 
simultaneously in front of the switched on cameras; 4) 
baseline collection: the facilitator read a fairytale (5 minutes) 
to participants (Figure 4b); 5) data collection: the participants 
played the three cognitive games (20-25 minutes, Figure 4c 
and 4d) or interacted with Pleo (20-25 minutes, Figure 4e and 
4f); 6) end of activity: the experimenter switched off the 
wristbands in front of the cameras, removed them, and 
switched off the cameras. At this point, participants were 
guided back to their units, and, when facilitators headed back 
to the activity room, they filled out the OME and OERS.  

Figure 4.  Excerpts of data collection 

G. Research Questions and Hypotheses 
The research questions we investigated with this study 

were the following: 1) Are there differences in engagement 
between the two activities as measured with OME and 
OERS? 2) Are there differences in arousal between the two 
activities as measured with EDA? and 3) Are there 
significant correlations between the items of OME and 
OERS and EDA features? 

With regard to the first question, we expected that the 
different engagement states that the two activities elicited 
would have been mirrored by differences in the item 
cognitive difficulty of the OME and pleasure of the OERS. 
In detail, we hypothesized that cognitive difficulty would 
have been higher during cognitive games, while pleasure 
would have been higher during robot play. 
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For what concerns EDA, we hypothesized that there 
would have been differences in EDA features due to the fact 
that the two activities both elicited arousal, but of a different 
type. Indeed, Cannon [27] identified three types of arousal: 
1) cognitive arousal related to thinking and attention 
allocation, 2) affective arousal related to feeling and 
emotions (both positive and negative), and 3) physical 
arousal related to physical exertion. Following Cannon, 
cognitive games should have elicited cognitive arousal, 
while interactions with Pleo affective arousal. 

Concerning the last research question, we expected that 
EDA features would have been correlated with the items of 
OME and OERS more characteristic of the two activities 
attention and cognitive difficulty in the cognitive games, and 
pleasure and attitude towards the game during robot play. 

IV. RESULTS 

 We performed a pairwise t-test using SPSS (version 
22.0) on the items of OME and OERS obtained during the 
two activities to check for significant differences. As a first 
step before analysis, we computed the median of OME and 
OERS scores obtained across the three sessions of cognitive 
games, and play with the robot. Results (see Table 2) 
revealed that cognitive games were perceived as significantly 
more difficult at a cognitive level (M=2.07, SD=.730) with 
respect to interactions with Pleo (M=1.00, SD=.000, 
t(13)=5.491, p<.001). Moreover, they outlined that 
participants felt considerably more pleasure during social 
robot interactions (M=3.93, SD=1.141) compared to 
cognitive games (M=1.93, SD=1.141, t(13)=-5.508, p<.001), 
but were also less alert during interactions with Pleo 
(M=4.64, SD=.497) with respect to cognitive games (M=5.00, 
SD=.00, t(13)=2.687, p<.05). 

As second analysis, we ran a pairwise t-test on the mean 
differential features of EDA. First, we extracted the 

differential features of EDA from each session (diffSMA, 
diffM, diffSD, diffRNG, diffSH, diffNPR, diffKURT, and 
diffSKEW). Subsequently, we computed the mean 
differential features of EDA in the three sessions of cognitive 
games and in the three sessions of robot play 
(MeanDiffSMA, MeanDiffM, MeanDiffSD, MeanDiffRNG, 
MeanDiffSH, MeanDiffNPR, MeanDiffKURT, and 
MeanDiffSKEW). We performed the pairwise t-test using the 
mean differential features of each condition (cognitive games 
and robot play).  

Results (see Table 2) disclose significant differences 
between activities in MeanDiffKURT and MeanDiffSKEW. 
Indeed, MeanDiffKURT was lower during cognitive games 
(M=247.299, SD=117.856) with respect to robot play 
(M=360.041, SD=128.376, t(13)=-2.718, p=.018), and 
similarly MeanDiffSKEW was lower during cognitive games 
(M=5.875, SD=2.949) compared to robot play (M=9.326, 
SD=2.678, t(13)=- 3.764, p=.002).  

Subsequently, we performed a Pearson product moment 
correlation (one-tailed) between the items of the OME and 
OERS and the features of EDA. In the context of cognitive 
games, results disclose a significant negative correlation 
between the item attitude towards the partner and the 
MeanDiffKURT of EDA (r(12)= -.497; p=.035), a significant 
negative correlation between the item attitude towards the 
partner and the MeanDiffSKEW of EDA (r(12)=-.502; 
p=.034), and a significant positive correlation between the 
item pleasure and the MeanDiffRNG of EDA (r(12)=.539; 
p= .023). On the other side, in the sessions of robot play, 
results highlighted a significant negative correlation between 
the item attention and the MeanDiffSKEW of EDA (r(12)=-
.517; p=.029), a significant negative correlation between the 
item attitude towards the game and MeanDiffKURT of EDA 
(r(12)=-.513; p= .030), a significant negative correlation 
between the item attitude towards the game and the 

TABLE 2. Results of the Pairwise t-test on OME and OERS items and EDA features 

  Cognitive games Pleo Paired Differences 
OME M SD M SD M SD t-value p-value 
Attention 3.64 .497 3.36 .929 .29 .914 1.170 >.05 
Attitude game 5.71 1.069 5.79 1.251 -.07 1.141 -.234 >.05 
Attitude partner 5.43 1.222 5.29 1.267 .14 .949 .563 >.05 
Cognitive difficulty 2.07 .730 1.00 .000 1.07 .730 5.491 ***<.001 
OERS M SD M SD M SD t-value p-value 
Pleasure  1.93 1.141 3.93 1.141 -2.00 1.359 -5.508 ***<.001 
Anger 1.00 .000 1.29 .726 -.29 .726 -1.472 >.05 
Anxiety/Fear 1.00 .000 1.00 .000 / / / / 
Sadness 1.00 .000 1.14 .535 -.14 .535 -1.000 >.05 
Alertness 5.00 .000 4.64 .497 .36 .497 2.687 *<.05 
EDA features M SD M SD M SD t-value p-value 
DiffSMA .0006 .0003 .0006 .0004 .0001 .0003 .585 >.05 
DiffM .2304 .1202 .2159 .1775 .0145 .0886 .613 >.05 
DiffSD .1032 .0611 .1103 .0671 -.0071 .0371 -.720 >.05 
DiffRNG .4532 .2102 .4561 .2162 -.0029 .1196 -.092 >.05 
DiffSH .6038 .3610 .6189 .3560 -.0151 .2443 -.231 >.05 
DiffNPR 2.9295 .8956 2.5086 1.2462 .4209 .9387 1.678 >.05 
DiffKURT 247.2991 117.8564 360.0415 128.3763 -112.7423 155.1860 -2.718 *<.05 
DiffSKEW 5.8753 2.9486 9.3260 2.6778 -3.4507 3.4299 -3.764 **<.005 
*,** and *** refer to the level of significance of the t-values 
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MeanDiffSKEW of EDA (r(12)=-.590; p=.013), a significant 
negative correlation between attitude towards the partner and 
MeanDiffM (r(12)=-.561; p=.018), a significant positive 
correlation between pleasure and MeanDiffSMA 
(r(12)=.483; p=.040), a significant positive correlation 
between pleasure and MeanDiffNPR (r(12)=.577; p=.015), a 
significant negative correlation between pleasure and 
MeanDiffKURT (r(12)=-.577; p=.015), and a significant 
negative correlation between pleasure and MeanDiffSKEW 
(r(12)=-.604; p=.011). 

V. DISCUSSION 

Results from OME and OERS show differences in 
engagement and affect between the two different activities. 
Cognitive games elicit significantly higher cognitive 
exertion (i.e. cognitive difficulty), whereas robot play elicits 
significantly higher positive affect (i.e. pleasure). These 
findings are in line with our hypotheses. However, in 
addition to the hypothesized effects, we found a significantly 
higher alertness of participants during cognitive games with 
respect to robot play. This might be due to the fact that 
cognitive games have a very precise flow and rules to attain 
at each step of the activity and consequently require 
participants to be always present and attentive. 

 Differences in EDA between activities regard mainly the 
frequency distribution of the signal. The analyses show that 
the interactions with Pleo are characterized by lower 
harmonics with respect to cognitive games (skewness) and 
by a more defined peak of the frequency distribution curve 
compared to cognitive games (kurtosis). This is in line with 
our expectations and can be explained with the fact that the 
two proposed activities both elicit arousal, but of a different 
type, cognitive and affective.  

 From the results of the Pearson product moment 
correlation, it is also evident that MeanDiffKURT and 
MeanDiffSKEW entertain significant negative correlations 
with the items of OME and OERS in both conditions: 
attitude towards the partner in cognitive games, and 
attention, attitude towards the game and pleasure in robot 
play. Pleasure is also positively correlated with MeanDiffM 
in the robot condition, and with EDA features delineating 
the phasic component of the EDA signal (brisk increases in 
EDA related to short-term events): MeanDiffRNG in 
cognitive games, and MeanDiffSMA, and MeanDiffNPR in 
robot play. In this case, results are not in line with our 
hypotheses. Indeed, they underline that EDA features 
correlate with items of OME and OERS more related to 
attitudes and affective states in both types of activities and 
not just in robot play. 

To summarize, by triangulating the analyses of the data 
from the different measurement instruments, we found that 
the engagement with the robot was more pleasurable for the 
participants and less difficult at a cognitive level. However, 
it also implied less alertness. Related to EDA patterns, we 
unveiled that the most positive engagement in both activities 
was likely to be characterized by an EDA with a higher 
frequency (lower skewness), a less defined peak of the 
frequency distribution (lower kurtosis), and a higher phasic 
activity (high range, SMA and number of peaks ratio). 

The present study was mainly limited by the sample size 

and by its geographical homogeneity (i.e. all participants are 
from Spain). Ideally, a higher number of participants and a 
more heterogeneous sample would have made the results 
more generalizable. However, the collection of quality data 
in the dementia population is extremely time-consuming due 
to the amount of work and structuring that it entails. In order 
to strike a balance between the need for bigger sample sizes 
and the time expenditure that the collection of field data in 
people with dementia imply, research teams should work in 
network and collect data using common procedures. 

To conclude, the results of this study open up promising 
possibilities for research in the field of dementia care. 
Indeed, they reveal that psychophysiological measures can 
be used to enrich the measurement of engagement in 
dementia given that behavior observation is not enough. This 
is especially beneficial in order to study the psychological 
and affective states of people with dementia associated 
apathy who show blunted emotional expressivity on a 
behavioral level, but also for people with very severe 
dementia whose behaviors are hard to understand and whose 
language got lost.  
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