
UNIVERSITAT POLITÈCNICA DE CATALUNYA

FINAL MASTER THESIS

MASTER’S DEGREE IN TELECOMMUNICATIONS ENGINEERING

Semi-Supervised Learning for Training
CNNs with Few Data

Author:
Víctor Garcia Satorras

Supervisors:
Joan Bruna Estrach

CILVR Lab
Center for Data Science, NYU

October 13, 2017

http://www.university.com
http://cims.nyu.edu/~bruna/
https://wp.nyu.edu/cilvr/
https://etsetb.upc.edu/es

iii

Universitat Politècnica de Catalunya

Abstract
Courant Intitute of Mathematical Sciences

Center for Data Science, NYU

Semi-Supervised Learning for Training CNNs with Few Data

by Víctor Garcia Satorras

Although Deep Learning has successfully been applied to many fields, it relies on
large amounts of data. In this work we focus on two different research lines within
the context of image classification that try to deal with this problem. a) The first
part of the project is focused on Active Learning (AL), which is an extensive field
within Machine Learning that tries to reduce the amount of labeling work by inter-
actively querying the most informative samples from a large dataset. Most of the AL
literature is based on uncertainty sampling methods which do not perform so well
when applied to neural networks. In this project we present a density estimation
approach for Active Learning that overcomes some of the sampling limitations re-
lated to the uncertainty-based methods. b) The second part of the project is focused
on a very recent field within deep learning called one-shot learning, which aims to
correctly classify samples by just seeing one or few training samples from each class.
In this work we present a simple non-linear learnable metric for one-shot learning
that overcomes most of the state of the art results obtained with simple methods
and is competitive in terms of accuracy to more complex ones. We also present a
meta-learner architecture based on Graph Neural Networks for one-shot learning.

http://www.university.com
http://faculty.university.com
https://etsetb.upc.edu/es

v

Contents

Abstract iii

1 Introduction 1

2 Introduction to Machine Learning 3
2.1 Machine Learning Basics . 3

2.1.1 Types of learning . 3
2.1.2 Supervised Training . 4
2.1.3 The Bias Variance trade-off . 5

2.2 Deep Learning . 5
2.2.1 Historical context of deep learning 6
2.2.2 Multilayer Perceptron . 8
2.2.3 Convolutional Neural Networks 9
2.2.4 Generative Adversarial Networks 10
2.2.5 Graph Neural Networks . 10

3 Active Learning 13
3.1 Problem definition . 13
3.2 Related work . 14
3.3 Active Learning methods . 14

3.3.1 Uncertainty Sampling . 15
3.3.2 Similarity of Distributions . 15
3.3.3 Best Greedy . 17

3.4 Semi-supervised method . 17
3.5 Experiments setup . 18

3.5.1 Datasets . 18
3.5.2 Architectures . 19
3.5.3 Warm/Cold start scenarios . 20

3.6 Experiments . 20
3.6.1 Dummy experiments . 20
3.6.2 MNIST & SVHN experiments . 22

3.7 Active Learning Conclusions . 23

4 One-shot learning 25
4.1 Problem definition . 25
4.2 Method 1 | Non-Linear metrics . 26

4.2.1 Metric Learning . 26
4.2.2 Learning procedure . 28

4.3 Method 2 | GNN for contextual information 29
4.4 Related work . 30
4.5 Experiments . 31

4.5.1 Omniglot . 31
4.5.2 Mini-Imagenet . 32

vi

4.6 One-shot Learning Conclusion . 33

5 Conclusions 35

Bibliography 37

1

Chapter 1

Introduction

Deep Learning has become surprisingly good approximating functions that map
from inputs to outputs, but it usually relies on large amounts of data. The high costs
for labeling such amounts of data, is giving more importance to the unsupervised
and semi-supervised fields. In this project we focus on two important domains re-
lated to semi-supervised learning:

Active Learning

The first part of the project focuses on Active Learning (AL), which is based on the
idea that unlabeled data is easy to get, but labels are expensive. Therefore, AL aims
to find the optimal way to select which samples to label in order to obtain the max-
imum accuracy for a certain task. AL is an extensive field with many years of con-
tributions and a large literature, but regarding to Convolutional Neural Networks
most of the classic algorithms do not perform so well. In this project we propose an
AL criterion that instead of relying on uncertainty measures, it is based on density
estimation measures. The purpose of our algorithm is to wisely choose a subset of
samples from a large dataset that better represents the dataset itself. Our assumption
is that if the chosen subset and the large dataset are as similar as possible, a classifier
trained with the subset will also be similar to the one trained with the whole set.

We are formulating this algorithm and evaluating it with other criteria over different
scenarios.

One-shot Learning

Despite recent advances in deep learning, models lack the ability to generalize on
new conditions not present in the training data. Usually, image classification re-
quires hundreds or even thousands of images per class. One-shot learning intro-
duced by [8] aims to solve this problem by learning a classifier from just one or few
samples.
Learning from one or few samples from scratch and no prior information, is almost
an impossible task. In a typical one-shot learning scenario we can distinguish three
steps. 1) Representation Learning, model of the world, 2) Learning from the shot
(one or few labels) 3) Classifying a given image into its corresponding class from the
shot. One shot learning has gained a lot of popularity during the last year, most of
the methods consist on learning a representation and then classifying using the given
shot at inference time. Our two main contributions of this work are the following:

• The first one is a learnable non-linear metric. Metric learning is an important
topic inside one-shot learning. Building a representation model of the world
before solving a one-shot task is crucial.

2 Chapter 1. Introduction

• The second contribution is the use of Graph Neural Networks. Having a global
scope of the full one-shot subset before making the classification decision im-
proves the accuracy in some experiments.

We evaluate the two commented apporaches using Omniglot and Mini-Imagenet
datasets comparing it to the state of the art results.

3

Chapter 2

Introduction to Machine Learning

2.1 Machine Learning Basics

Machine learning is a broad field of computer science that provides systems the
ability to learn from data without being explicitly programmed.

2.1.1 Types of learning

Machine learning algorithms can be categorized in two main categories based on the
nature of the feedback received during the learning process.

• Supervised Learning: The algorithm receives a dataset in the format (input,
output) pairs, for every input experience the desired output is given by a
"teacher", the goal is to learn an algorithm that generalizes for future exam-
ples.

• Unsupervised Learning: The algorithm experiences a dataset and learns use-
ful properties of the structure, for example, hidden patterns in the data. No
labels are provided for this type of learning.

Semi-supervised learning plays an important role in our work, it combines small
amounts of labeled data with large amounts of unlabeled one. This strategy can
produce significant improvements compared to supervised algorithms when few
labeled samples is available.

Role Interchangeability

Roughly speaking, unsupervised learning tries to approximate a distribution of sam-
ples p(x) while supervised methods try to estimate a label y from a sample x 2.1: .

p(y|x) = p(x, y)∑
y′ p(x, y′)

(2.1)

Regarding supervised and unsupervised algorithms, the line between them is blurry
and not formally defined. For example, given an array of features x = {x1, x2, ..., xK},
it can be splitted in K supervised tasks where each feature xi is estimated from the
rest of the features x − {xi}. The core idea is that "fake" supervised tasks can be
created to learn in unsupervised problems. One common example is word2vec, the
dataset can be a large stream of words or sentences, then given a word from the
dataset, the algorithm must predict the probability of the nearby words. This simple
task can extract powerful patterns from the data.

Alternatively, a supervised learning problem p(y|x) can be handled as an unsuper-
vised one p(x,y).

4 Chapter 2. Introduction to Machine Learning

2.1.2 Supervised Training

Given a dataset of N training samples D = {(x1, y1), ..., (xN , yN)} samples from a P
distribution, where each xi is a feature vector and yi its ground truth label, we want
to find a function f(xi) that learns to map samples from the input distribution X to
the output Y, f : X→ Y.
To measure how good the function f fits the training data, it is possible to assign a
Risk value to the function ŷ = f(x). The Risk function is defined as the expectation
of individual Losses through the training set:

R(f) =
1

N

∑
(x,y)∈D

L(y, f(x)) (2.2)

The target function f will be such that minimizes the Risk function:

min
f∈F

R(f) (2.3)

Loss function

The loss function L(y, ŷ) ∈ R is a measure of the error between the ground truth
label y and the prediction from our model ŷ = f(x). This measure must be care-
fully chosen, for example, if our function f(x) is approximating a conditional prob-
ability distribution P (y|x), the negative log-likelihood is commonly used: L(y, ŷ) =
−log(P (y|x)).
Other Loss functions are used for other scenarios, for example, for regression ap-
proximations the Mean Square Error is commonly used.

Learning f: X→ Y

We already explained how to evaluate the fitness of a function f(x) on the training
set. In this section we explain how to fit the function f(x) into the training set, in
other words, how we learn the function f(x). In the section 2.1.3 we will explain the
generalization paradigm of predictive models on new and unseen data.

Different approaches can be used for approximating predictive models: Decision
trees, Rule Learning, Neural Networks, Regression models... In this introduction we
just focus on the differentiable models, i.e. neural networks, that can be trained by
gradient descent optimization.

We parametrize the function y = fθ(x) with parameters θ. The function fθ(x) must
be composed by differentiable operations. Then using Gradient Descent optimiza-
tion we can reduce the loss L(y, fθ(x)) by substracting the gradient of the loss with
respect to the θ parameters.

θt+1 := θt − αt
∑
(x,y)

∇θtL(y, fθt(x)) (2.4)

In the past, gradient descent has been seen as slow or unreliable. Nowadays, we
know that with the enough amount of data, very large non-linear models can be
optimized by gradient descent. Stochastic Gradient Descent has significant benefits,
the computation cost does not increase with the dataset size, although the number
of updates may be larger for large datasets, it also implies a closer convergence to

2.2. Deep Learning 5

FIGURE 2.1: Left image: High bias algorithm is under-fitting the
data. Middle image: Appropiate trade-off between bias-variance.
Right image: High variance algorithm is over-fitting the data. Image

from[10]

the optimum solution. Once reached the best convergence point, increasing the size
of the dataset will not increase the time to achieve the same convergence point.

2.1.3 The Bias Variance trade-off

The core challenge in machine learning is performing well on new and unseen data.
We explained how to optimize a model fθ : X → Y on a training set, but there is a
risk of overfitting or memorizing this training set, and a good training loss does not
guarantee good performance on a test set of unseen examples

The difference between machine learning and just memorizing a training set is the
capacity to generalize on unseen examples. We introduce two key concepts for un-
derstanding this generalization.

• Variance: It is the sensitivity to small fluctuations in the training set. High vari-
ance algorithms can extract more fluctuations from the training set, but it can
also lead to model undesired noise, not present in the test set. Memorizing the
training set with a lack of generalization to new samples is called (Overfitting)

• Bias: High bias algorithms reduce the gap between the training and test losses,
but it can also lead to ignore relevant patterns from the data (Underfitting).

At figure 2.1 three different cases are represented. From left to right we see a high
bias algorithm which under-fits the data, in the middle we see an appropiate trade-
off between variance and bias, the right image shows a high variance algorithm
over-fitting the data.
At figure 2.2 the curve error vs capacity is plotted. Notice as capacity increases, the
training loss is always reduced, since the algorithm becomes more sensitive to the
data. The generalization error decreases until the optimal capacity point, and then
increases augmenting the generalization gap between training a test set.

2.2 Deep Learning

Many artificial intelligence tasks have been solved by manually extracting specific
set of features for each task, and classifying these features with a simple machine

6 Chapter 2. Introduction to Machine Learning

FIGURE 2.2: Left image: Typical capacity trade-off curve. Image from
[10]

learning algorithm. Manually extracting the right features requires a deep under-
standing of the task, and it can take days, months or even years and a huge commu-
nity of researchers.

In order to recognize pedestrians in a street image, we need to hierarchically go
from the raw pixel description to the abstract concept of a person. Directly apply-
ing a machine learning classification algorithms (i.e. logistic regression) on the raw
pixels would produce extremely poor results. Roughly speaking, our image repre-
sentation should hierarchically go, from pixels → edges → contours → body parts
→ person. For decades these representations have been handcrafted, (i.e Histogram
Of Gradients, Contour algorithms, Deformable Parts Model...). Finding this abstract
representation space where the desired classes are linearly separable is non trivial.

Representations Learning is a subfield of machine learning that not only tries to learn
the mapping from a representation to the desired output, it also tries to learn the
representation itself from the raw data. A computer may need just some minutes
to extract a good representations from the statistics of the data, while handcrafting
descriptors may take a lot of time and work. In spite of it, a lot of variations can be
found in the data (i.e. for images: orientation, illumintation, backgrounds...) which
makes difficult to disentangle good representations.

Deep Learning solves the central problem of representation learning by hierarchically
building higher level feature representations from a combination of lower level ones.
Deep learning uses a cascade of many layers that constitute a deep neural network,
each layer creates a new feature representation from a non-linear combination of the
previous ones. Deep neural networks can be trained end-to-end optimizing the clas-
sification Loss by Gradient Descent, the loss is back-propagated through the layers
by using the back-propagation algorithm which is based on the chain rule. An example
of a hierarchy feature representation is shown at 2.3

2.2.1 Historical context of deep learning

Although Deep Learning is known as a new techonology, it can be traced back to
decades ago. Deep learning was first inspired as a computer model of neural net-
works from the human brain. We list some of the milestones in the development of

2.2. Deep Learning 7

FIGURE 2.3: Hierarchy of features of a Deep Neural Network. Image
from [10]

neural networks though history:

• 1943: Warren McCulloch and Walter Pitts created a mathematical model called
threshold logic to imitate the behaviour of the human brain. The weights of
the model were manually adjusted and non-learnable.

• 1957: Rosenblatt [31] presented the Perceptron, it is a linear combination of
features followed by a non-linearity. In its continuation, the ADALINE varia-
tion [31] was able to train the weights by gradient descent.

• 1969: Since the perceptron is basically a linear combination of features fol-
lowed by a non-linearity, it is unable to learn non-linear functions, even basic
functions as XOR. This limiation was commented by Minsky and Papert [26],
after this, there was a break in this line of research that took place during the
following years.

• 1986: The Multilayer Perceptron was presented by Rumelhart, Hinton, and
Williams [33]. It was overcoming the limiations of the perceptron, being able to
approximate more complex functions by stacking non-linear layers. To update
the parameters of lower layers the backpropagation rule was introduced.

• 1989 The backpropagation lead to some early success which is the case of the
Convolutional Neural Nets presented by LeCun et al.[21]

• 1995: Support Vector Machines SVM were introduced by Cortes and Vapnik
[3], becoming the main trending choice. Neural Networks still required a too
much data and computational resources for that time.

• 2006: Deep Learning rises to fame after Hinton and Salakhutdinov published the
paper [12].

8 Chapter 2. Introduction to Machine Learning

FIGURE 2.4: Multilayer Perceptron. Image extracted from
http://cs231n.github.io/convolutional-networks/

The breakthrough In 2009 Fei-Fei Li’s group from Stanford publihed a 12 mil-
ion images dataset [4] Imagenet. This database was used for the Large Scale Vi-
sual Recognition Challenge in 2012. Geoffrey Hinton and Alex Krizhevsky won the
LSVRC challenge by training a deep neural network on a GPU reducing by almost
half the current state of the art error.

2.2.2 Multilayer Perceptron

The Multilayer Perceptron (MLP) [33], also known as feed-forward neural networks
was the first type of artificial neural network devised. The goal of neural networks
is to approximate any function f∗. MLP consists of several perceptrons stacked in a
layered structure. As we commented before, each a Perceptron is a linear operation
followed by a non-linear activation.

P (x) = σ

(
n∑
i=1

wixi + b

)
(2.5)

Where σ is a non-linear operation, i.e sigmoid operation.
The MLP consists of one Input Layer, one or more Hidden Layers, and an Output
layer 2.4. Each node in one layer connects with a certain weight wij to every node in
the following layer. In case of no hidden layers, the MLP becomes a Perceptron.
MLP are universal function approximators, it has been shown, that a feed-forward
network of one hidden layer with the enough amount of nodes is able to represent
any arbitrary function f(x), although it can fail to learn and generalize.
The weights wij of a neural network are trained via the backpropagation algorithm.

Back-propagation

Back-propagation is a supervised algorithm used to train artificial neural networks.
The algorithm is based in two cycles. a) An input is propagated through the network
storing all intermediate activations, then the error is computed from the output and
the ground truth supervision. b) Partial derivatives of the error are computed and
back-propagated through the network by using the chain rule. Once the gradients
are computed, the network weights are updated by using an optimization algorithm
typically Stochastic Gradient Descent.

2.2. Deep Learning 9

FIGURE 2.5: Convolutional Neural Network. Image extracted from
http://www.wildml.com/2015/11/understanding-convolutional-neural-

networks-for-nlp/

2.2.3 Convolutional Neural Networks

Convolutional Neural Networks (CNN) are a sub-class of feed-forward neural net-
works. They also consist of nodes/neurons that receive an input, perform a dot pod-
uct and apply a non-linearity. The main difference of CNNs, is that they explicitly
assume some spatial stationarity on the data, typically on images. This assumption
allows to add some restrictions on the architecture on the network.
CNN are simply neural networks that instead of using fully-connected layers they
use convolutional layers. Based on [10] we distinguish two main features of CNN:

1. Sparse connectivity: When dealing with data like images, it is impractical to
connect all the output nodes of a layer to all the input nodes. Instead we con-
nect each output neuron, to only a small region of the input, this is accom-
plished by making a kernel, in the dimensions weight×heigth, smaller than
the input dimensions of the image.

2. Parameter sharing: As a consequence of the sparse connectivity, and the spa-
tial stationarity of images, we don’t need to learn new filter values for every
location on the image, instead of that, we can use the same filter parameters
for every location along the width×height axis of the image. This naturally
introduce the concept of 2-dimensional convolutions where at every layer the
local weights are convolved though both axis of the image.

Architecture example

An example of a CNN is shown at image 2.5. We highlight the following parts:

• Input: The input is an image of dimensionalitywidth×height×num_channels.
The number of channels is 3 for RGB images.

• The Output Predictions is a vector P (y|x) ∈ RC that represent the class proba-
bility distribution over C classes.

• The Fully connected layer is the already commented layer from MLP where each
output node is densely connected to all the inputs.

• The Convolution layer is the locally connected layer where each output node is
connected to a sub-region of the inputs. 2.5.

• Pooling is a downsampling operation along the dimensions width× height.

• Although it is not represented at Figure 2.5, every fully-connected or convolu-
tion layer is followed by a non-linear activation.

10 Chapter 2. Introduction to Machine Learning

2.2.4 Generative Adversarial Networks

Generative Adversarial Networks (GANs) are a class of unsupervised machine learn-
ing algorithms introduced by Goodfellow et al. [11] where two neural networks com-
pete with each other in a zero sum-up game.The framework is composed by a gen-
erative network G and a discriminator network D. D tries to discriminate whether
a given sample comes from the training data distribution or from G. G will try to
fool the discriminator generating samples that are similar to the training data distri-
bution.

Formalization: A prior noise distribution pz(z) is defined and it is mapped by a
function G(z, θg) to the data space, where G is a differentiable neural network. The
discriminator network D(x, θd) predicts the probability that a sample x comes from
the real world. The discriminator is trained to maximize the probability of real x
samples and minimize the probability of fake G(z) samples that come from the gen-
erator. Simultaneously, the generator is trained in order to fool the discriminator
minimizing log(1−D(G(z))). The final equation of the minimax game is:

min
G

max
D

V (G,D) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (2.6)

GANs can build powerful representations of the data in a completely unsupervised
way by just discriminating fake vs real samples, therefore they are a powerful un-
supervised learning tool. GANs can also parametrize the complicated surface of the
data distribution and generate very realistic samples from it, therefore they are also
very powerful generative model.

FIGURE 2.6: Generative Adversarial Network. Image extracted from
https://sthalles.github.io/intro-to-gans/

2.2.5 Graph Neural Networks

Graph Neural Networks (GNN) introduced in [35] and further simplified by [5][24][42]
extend the domain of neural networks on graph structured data. The aim of GNN is
to approximate a function which input is a graph G = (V,E):

• V (Nodes): is a vector of features for every node of the graph. It is represented
in a matrix shape V ∈ RN×d. N is the number of nodes, d is the number of
features per node.

• E (Adjacent Matrix): It is a representation of the graph structure in a matrix
form E ∈ RN×N .

2.2. Deep Learning 11

Given the input graph G = (V,E) we consider different intrinsic local operators
generated from E that act locally on the signal V . For example, a CNN 2.2.3 can
be interpreted as a particularization of a Graph Neural Network were the adjacent
matrix E is a binary matrix that defines the adjacent pixels of the image, and the
operators are the kernel convolutions along the image dimensions.

In common Graph Neural Network architectures we consider two operators:

• Degree operatorD = (dij) ∈ RN×N is a diagonal matrix that contains information
about the number of edges attached to each vertex. The operation is a matrix
multiplication D : V → DV where (DV)i := deg(i) · Vi

di,j :=

{
deg(vi) if i = j

0 otherwise
(2.7)

• Adjacency operator A = (aij) ∈ RN×N contains information about the edges of
each node. The operation is A : V → A(V) where (AF)i :=

∑
j∼i Fj with i ∼ j

iff (i, j) ∈ E. It is possible to aggregate local information at different scales by
adding 2J powers of A, A = {A,A1, ..., AJ} or different local operators.

ai,j :=

{
1 if i 6= j and i, j connected
0 otherwise

(2.8)

Similarly to CNN, a layer is composed by a local linear operation on each node/vertex
Vi, and a non-linear activation is applied after each operation. Layers can be stacked
giving rise to a Graph Neural Network. Same as in common NN, a loss is computed
and the output is optimized by SGD.

13

Chapter 3

Active Learning

Active learning is the procedure in which an algorithm is able to interactively query
a user/oracle for information in order to maximally perform on a task. This tech-
nique is commonly used in contexts where unlabeled data is abundant and asking
for labels is expensive, then the algorithm must wisely choose which queries should
be asked in order to maximize the accuracy of the target task.
In this project we are focusing in active learning for image classification. Given a
large amount of unlabeled images, and the ability to query for the labels of a small
subset of them, our algorithm must learn the best classification algorithm by wisely
selecting this subset of images to label. In other words, instead of asking a human to
label the full dataset of images, we will ask to label just a subset of the dataset, and
we want to choose this subset such that we get the best possible classifier.

3.1 Problem definition

We formalize the problem with the following notation:
Given a large set of unlabeled samples TU = {xi}i=1..N , a classification network
P (ŷi|xi, θ) = fθ(xi), an oracle that returns the ground truth label for any sample
yi = φ(xi). We want to find a subset TΓ ∈ TU that maximizes the accuracy of the
classifier fθ(·) when trained with {TΓ, φ(TΓ)}.
The common setup of an iterative Active Learning algorithm for image classification
is the following [16]:

1. The algorithm starts with an empty or small subset of labeled samples TΓt=0

2. A classifier fθt(·) is trained using the current data {TΓt , φ(TΓt)}. (The training
can also be semi-supervised if we include the unlabeled set {TΓt , φ(TΓt), TU}).

3. A query selection methodM chooses a new sample(s) x to be labeled where
x ∈ {TU\TΓt}

4. The chosen sample is added to the subset TΓt+1 = {TΓt ∪ x}

5. Repeat from point 2 to 5 until we reach the desired amount of samples or ac-
curacy.

Analyzing the commented procedure, the Active Learning algorithm is reduced to
the query selection methodM from point 3. The procedure now is unfolded, and it
can be interpreted as a Plug and Play algorithm, where we can add different classifier
strategies point 2 (i.e supervised, semi-supervised classification) and different active
learning methodsM point 3 (i.e Uncertainty sampling, expected error reduction...)
In this work we compare four different methodsM:

14 Chapter 3. Active Learning

1. Uncertainty Sample: At each iteration we select the most uncertain sample.

2. Similarity of Distributions: At each iteration we select a sample that maximizes a
similarity metric between TΓt+1 and TU distributions. This method is providing
the strongest results.

3. Best-Greedy: The sample that maximally reduces the loss is chosen. We show
that even the ground truth best-greedy sample performs worse than the Simi-
larity of Distributions method.

4. Random: A random sample is chosen at each iteration.

3.2 Related work

Active learning has been extensively studied in the last years and different sampling
strategies have been developed. Despite of the wide literature, some of these meth-
ods are not performing so well when working with high dimensional data and deep
CNN.
Uncertainty Sample is a simple method and has demonstrated to properly work on
a wide variety of tasks [43] [13] [37] [22], but applied to image classification with
large datasets it is pronce to ask for outliers which are not very informative and
in some cases it can perform even worse than random. In [23] they combine this
method with a information density measure to overcome that limitation.
Information density framework focuses on the input space rather than individual
samples, then it is less prone to ask for outliers. It is based on the idea that infor-
mative samples should not only be uncertain, but also representative [46] [1] [36].
This concept was introduced by [38] and it is highly related to the method we are
presenting in this work.
Expected Error reduction, this decision aims to predict how much the generalization
error is expected to reduce when adding new samples to the labeled subset {TΓ ∪ x}
[14] [37] [32].
Learning Active Learning: Some recent work is focusing on how to learn active
learning, using Reinforcement Learning [7] or training a regressor to predict the Ex-
pected Loss Reduction [16]. These methods must learn over some data and general-
ize on new datasets.
Although active learning encompasses a lot of works, to the best of our knowledge,
we only found three papers related to active learning for image classification using
CNN. Wang et al.[45] whose method queries low confidence labels, Stanitsas et al.[41]
presents a comparison over active learning methods for a medical dataset, and Sener
and Savarese[36] concurrently to our work, proposed a similar geometrical approach
to the Similarity of Distributions method that we are presenting.

3.3 Active Learning methods

In this section we introduce the different Active Learning criteria that we are ana-
lyzing in our experiments.

3.3. Active Learning methods 15

3.3.1 Uncertainty Sampling

This is probably the most simple and one of the most famous Active Learning cri-
terion. It consists in querying for the labels which the algorithm is most uncer-
tain of. For example, given an unlabeled dataset TU and a classification probabil-
ity P (y|x, θ) which we approximate with our classification network y = fθ(x) s.t.
y ∈ Rnum_classes, we would query the label from the most uncertain x ∈ TU :

x̂ = argmax
x∈TU

[H(P (y|x, θ))] (3.1)

The functionH(·) from equation 3.1 represents the concept of entropy introduced by
Shannon [39]. Other uncertainty measures may be used instead of the entropy, for ex-
ample, given the class label with the highest probability for each x, ŷ = argmax

y
[P (y|x, θ)].

We would query for the least confident x:

x̂ = argmax
x∈TU

[1− P (ŷ|x, θ)] (3.2)

In our experiments we are using the Shannon’s entorpy sampling strategy 3.1 since
it is the most popular regarding to uncertainty estimation.

3.3.2 Similarity of Distributions

Uncertainty based methods have their own limitations. They are only based on the
individual uncertainty of samples and not in how representative are they in the dis-
tribution. It can lead to query very uncertain outliers that are not representative and
do not improve the generalization error.

In this section we present an active learning framework for image classification
based on finding a subset TΓ that maximally represents the full dataset distribu-
tion TU . We empirically demonstrate that this strategy gives strongly better results
than Uncertainty Sampling when applied to CNN and image classification. The al-
gorithm is based in the following assumption: We want to find a subset TΓ∗ from TU
such that minimizes a certain metric distance between both distributions.

Earth Mover’s Distance (EMD)

Earth Mover’s Distance (EMD) is a measure of distance between two probability
distributions over a given metric space. It is also known as the Wasserstein metric by
the mathematic community. Our objective is then to minimize the distance between
the two distributions:

T ∗Γ = argmin
TΓ

[EMD(TU , TΓ)] (3.3)

The EMD depends on a metric space, then we need to define a pair-wise distance
between points of both distributions. For this we will take the last hidden layer of
the classifier neural network fθ(·) as the metric space. From now on, we decompose
the notation of the classifier fθ(·) in two functions fθ(x) = c(e(x)), where e(x) ∈ Rh
is the embedding space from which we will compute the pairwise distances between
samples: di,j,θ = euclidean(eθ(xi), eθ(xj)).

16 Chapter 3. Active Learning

The Earth mover’s distance between both sampled distribution will be:

EMD(TU , TΓ) =
∑
xi∈TU

∑
xj∈TΓ

fi,jdi,j (3.4)

Where fi,j is the defined flow {0, 1} between two samples xi ∈ TU , xj ∈ TΓ. For each
sample xi we define the flow fi,j = 1 for the closest sample xj and fi,j = 0 for the
others, the resulting EMD is:

EMD2(TU , TΓ) =
∑
xi∈TU

min
xj∈TΓ

di,j (3.5)

Finally, we just have to choose the TΓ that minimizes EMD2:

T ∗Γ = argmin
TΓ

[EMD2(TU , TΓ)] (3.6)

Being TΓ = {x1, ..., xk} a subset of k samples from TU = {x1, ..., xN}, the optimal
solution for 3.7 is a combinatorial problem

(
N
k

)
which becomes computationally im-

possible for large N datasets. We use a greedy approximation where given TΓt we
sweep which sample x∗ ∈ {TU − TΓt}will maximally reduce the Earth Mover’s Dis-
tance equation, then TΓt is updated adding the selected sample TΓt+1 = {TΓt ∪ x∗}.

Algorithm

The high-level code for the algorithm is the following:
Data: {TU , K}
Result: TΓ∗
Initialize: TΓt=0, fθt=0(·) ;
while num_samples(TΓt) < K do

fθt(x) is trained from {TU , TΓt, fθt(·)};
for i ∈ TU and j ∈ TU do

Distances are computed ;
di,j,θ = euclidean(eθt(xi), eθt(xj))

end
x∗ = argmin

x∈{TU−TΓt}
[EMD2(TU , TΓt ∪ x)];

TΓt+1 = TΓt ∪ x∗ ;
end

Algorithm 1: EMD algorithm for Active Learning
Finding a TΓ that reduces the EMD(TΓ, TU) is a density estimation criteria that re-
duces the average distance between points from TU to the closest points of TΓ. This
is equivalent to algorithms like k-medoids, but k-medoids is more likely to fall in
local minimums than our presented method where at each iteration we are trying all
possible x ∈ TU − TΓ.
Computing all the pair-wise distances D = (dij) between elements is of the order
O(n2). At every iteration the embedding parameters θt are recomputed so the ma-
trix of distancesD must be also recomputed. It can be slow for large datasets, for that
reason we are taking a sub-partition of the dataset at every iteration and selecting x∗

from it.

3.4. Semi-supervised method 17

3.3.3 Best Greedy

We’ve presented two heuristic methods both minimizing a value which is not di-
rectly related to the Loss. The Uncertainty Sampling criteria minimizes the entropy
of individual samples and the Similarity of Distributions criteria minimizes the met-
ric distance EMD between two distributions.

At this section we introduce a new method to check how well we can perform when
at every iteration we choose the sample x∗ ∈ {TU − TΓ} that maximally reduces the
classification loss L(θt) of the classifier fθt when it is trained with {TΓ ∪ x∗}. When
computing the loss Lθ we use the training data TU as a validation set. Notice that
we need all the labels from TU to compute the loss L(θt), hence it is not an Active
Learning criteria but it can be used as a harder baseline than random. It could also
be used to train an algorithm that chooses the best sample at every time step, which
can be defined as Learning to do Active Learning. The Best-Greedy criterion is the
following:

x∗ = argmax
x∈{TU−TΓt}

(L(θt)− L(θ′t)) (3.7)

Where θ′t are the parameters of the classifier fθ′t trained with {TΓt ∪ x}
In the experiments we will show that, the EMD criteria performs even better than
this greedy algorithm.

3.4 Semi-supervised method

Each time a new sample is added to TΓt , the parameters θt are updated, leading to
a new embedding function eθt . In order to build a better embedding function for
the EMD algorithm, the classifier fθt(·) = cθt(eθt(·)) is trained by semi-supervised
learning. It means we are also training with the unlabeled data TU together with the
labeled samples TΓt and their respective labels φ(TΓt). We do semi-supervised by
using the method from Salimans et al.[34], which makes use of Generative Adversar-
ial Networks that we explained at section 2.2.4.

Considering our classification network fθ(x) = P (y|x, θ) where x is the input im-
age and y is a softmax probability distribution over K classes. We can do semi-
supervised by simply adding en extra class for the fake samples, increasing the
dimension of our classifier from K to K + 1. The classification cases will be the
following:

• Labeled TΓ will be classified among one of the K classes y ∈ {1, ...,K}
Lsup = −Ex,y∼TΓ,φ(TΓ)log[p(y|x, y < K + 1)]

• Unlabeled Real TU will maximize y ∈ {1, ...,K} and minimize y = K + 1

Luns_real = −Ex∼TU log[1− p(y = K + 1|x)]

• Unlabeled Fake TFakewill maximize y = K + 1 and minimize y ∈ {1, ...,K}
Luns_real = −Ex∼TFake

log[p(y = K + 1|x)]

The loss of the discriminator is then:

LDiscriminator = Lsup + Luns_real + Luns_real (3.8)

18 Chapter 3. Active Learning

Since the generator is trying to fool the discriminator with the fake data, the Gener-
ator Loss is the following:

LGenerator = −Ex∼TFake
log[1− p(y = K + 1|x)] (3.9)

Our implementation differs in some details from the original one [34]:

1. In the original paper, instead of training the Generator to maximize the Dis-
criminator Loss, they use the technique (feature matching) where the objective
of the Generator is to minimize the MSE distance between Fake and Real data
in an intermediate layer of the discriminator. In our case, we are using the
common min, max game of GANs.

2. To avoid instability when training by semi-supervised, we added some noise
to the True/Fake labels, it improved the stability considerably when training
with few samples.

3. We didn’t reduce the number of outputs K+1 to K. In the original paper the
last neuron (Fake class) is removed and the value of the K aggregated classes
is maximized/minimized for True/Fake images respectively.

3.5 Experiments setup

We present Active Learning benchmarks among {Uncertainty Sampling, Similarity
Distribution, Random criteria and Best-Greedy} on MNIST, SVHN and two Dummy
datasets.

3.5.1 Datasets

MNIST The MNIST dataset is formed by 10 classes of handwritten digits, it is
splitted in 60.000 training examples and 10.000 test examples. Image resolution is
28x28 and there is only one black&white channel. [20]. In our experiments we are
using permutation invariant MNIST, which ignores the image structure that CNN
exploit and considers every image as a 784-dimensional vector.

SVHN SVHN is a real-world image dataset, it can be seen similar to MNIST (e.g
images are also digit numbers) but it is a significantly harder real world problem.
The dataset is formed by 10 different classes, 73.257 training samples and 26.032 test
samples, images are RGB of 32x32 resolution.

DUMMY-Gaussians

We created an artificial DUMMY dataset for fast testing and prototyping of Active
Learning algorithms. It is formed by a set of 9 2-dimensional Gaussians, with di-
agonal covariance matrix, located in a 3 × 3 grid, the distance between gaussians is
4σ. We assigned one class to each Gaussian, and the dataset contains 400 training
samples and 400 test samples per class.

DUMMY-Uniform

In the same line as DUMMY-Gaussians, this dataset is divided into 9 classes, in a 3×3
grid. In this case the data distribution is uniform, the uniform data distributions

3.5. Experiments setup 19

are adjcanet and they never overlap (In the Guassians dataset, since the distance
between them is 4σ, samples can overlap with a small probability).

FIGURE 3.1: MNIST FIGURE 3.2: SVHN

3.5.2 Architectures

In order to compare our results with the semi-supervised state of the art methods
we inspired our architectures on the ones from [34].

SVHN architectures For the experiments related to this dataset, we are using very
similar architectures to [34]. The discriminator network is formed by 9 blocks {2D_Convolution→
BatchNormalization→ LeakyRelu(0.1)}. The architecture is described in more de-
tail at table 3.3. The generator is a 4 layers CNN, same than the Generator from
[29].

Block Output Size kernel stride padding
1 32× 32× nf 3 1 1
2 32× 32× nf 3 1 1
3 16× 16× nf 3 2 1
4 16× 16× 2nf 3 1 1
5 16× 16× 2nf 3 1 1
6 8× 8× 2nf 3 2 1
7 6× 6× 2nf 3 1 0
8 6× 6× 2nf 1 1 0
9 6× 6× 2nf 1 1 0

Global Average Pooling

FIGURE 3.3: SVHN architecture. Each block is formed by
{2D_Convolution → BatchNormalization → LeakyRelu(0.1)} nf

takes values 64 or 96 for SVHN and CIFAR-10 respectively

MNIST architecture For permutation invariant MNIST, the discriminator archi-
tecture consists of 5 fully connected layers with {1000, 500, 500, 250, 250} neurons
each layer followed by Relu activation. The generator consists of 3 layers of {500,
500, 28×28} followed by Batch Normalization and Relu activation. Gaussian noise
N (0, 0.52) was added at the output of each discriminator layer.

20 Chapter 3. Active Learning

DUMMY architecture Architectures are very simple for this dataset. The discrim-
inator consists of 4 fully connected layers with 24 neurons per layer and tanh acti-
vation. The generator consists of two fully connected layers of {64, 2} neurons and
tanh activation.

3.5.3 Warm/Cold start scenarios

Depending on the number of labeled samples used to initialize classifier fθt=0 at
t = 0 we can identify two main settings:

Warm Start In the Warm Start scenario TΓt=0 is initialized with few labels and the
classifier fθ is pre-trained with this initialization, in our Warm Start experiments we
initialize TΓt=0 with 1 label per class for the DUMMY and MNIST datasets, and two
labels per class for SVHN.
In most of the real world active learning scenarios a small amount of data is available
before querying for new data.

Cold start In the cold start scenario no labels are provided at t = 0 and the algo-
rithm starts querying from scratch. Notice the error can be much higher since the
Cold start scenario does not guarantee a minimum amount of labels per class.

3.6 Experiments

We compare the {Uncertainty Sampling method, Random querying, and Our Dis-
tribution Similarity method}, for all the datasets. We also present a comparison of
these methods with the Best-Greedy approach for the Dummy and MNIST datasets.
All experiments have been averaged over 5 runs.

3.6.1 Dummy experiments

Dummy-Uniform

The results for the Dummy-Uniform dataset are presented at Figure 3.4 (Warm Start)
and at Figure 3.5 (Cold Start). A visual example of the chosen samples is shown at
the (4 × 4)-grid from figure 3.10. For this dataset, Our Method performs better than
the Random case, and even better than the Best-Greedy criterion. We want to remem-
ber than the Best-Greedy criterion is not actually an Active Learning method since all
the labels are needed to compute it, but it is a good reference to check how good are
we doing with respect to choosing the sample that most improves the accuracy of
the dataset on the current iteration.

The Uncertainty Sampling is performing even worse than Random for both Warm Start
and Cold Start. At first sight it may seem incoherent and we can raise two questions.
1) Is the US a bad criterion for this dataset? 2) Is the uncertainty estimation wrong?
Looking at the selected points from images B) and C) from Figure 3.10 we can try
to guess the answer. At image B) Warm Start, we see that the algorithm is query-
ing samples from regions of maximum uncertainty of the distribution, which are the
four points where the four classes intersect. Because of the low dimensionality of
the dataset, it can be hard for the classifier to overfit and reduce the uncertainty of
this regions even asking a lot of them.

3.6. Experiments 21

Looking at the Cold Start image C) from Figure 3.10, the US is only querying samples
from two of the four regions of maximum uncertainty, this is because the classifier
didn’t had the chance to explore some of the classes, so it is querying samples from
the only regions it ’knows’.

Method 18 27 36 50 100 150
Random 74.2% 78.3% 81.5% 85.8% 90.6% 91.3%
US 73.1% 76.2% 79.9% 80.0% 84.2% 86.5%
Best-Greedy 79.5% 81.9% 87.1% 88.4% 90.6% 91.9%
Our Method 80.5% 85.8% 88.7% 91.5% 93.9% 95.2%

FIGURE 3.4: Dummy-Uniform Warm Start results

Method 9 18 27 36 50 100 150
Random 51.3% 69.1% 76.1% 80.7% 85.1% 87.0% 91.6%
US 46.5% 58.5% 63.6% 64.7% 67.2% 67.8% 69.3%
Our Method 70.9% 81.0% 84.9% 86.1% 89.0% 93.1% 93.2%

FIGURE 3.5: Dummy-Uniform Cold Start results

Dummy-Gaussian

The behavior for the Dummy-Gaussian dataset represented at Figures 3.6, 3.7 is sim-
ilar to the Dummy-Uniform. Our Method performs better than Random and even
better than Best-Greedy too. The US in the Warm Start scenario is still worse than
Random in most iterations, although the accuracy at the beginning and at the end is
much better than with the Dummy-Uniform.

In the Cold Start scenario the algorithm also collapses asking for labels from some of
the maximum uncertainty regions and ignoring the unexplored space. This behavior
can be visualized at Figure 3.11.

Method 18 27 36 50 100 150
Random 82.5% 85.4% 87.2% 89.7% 91.5% 91.7%
US 85.1% 85.6% 83.2% 81.4% 87.4% 91.2%
Best-Greedy 88.9% 89.6% 89.8% 90.1% 91.6% 91.9%
Our method 90.0% 90.2% 90.8% 91.3% 91.9% 92.6%

FIGURE 3.6: Dummy-Gaussian Warm Start results

22 Chapter 3. Active Learning

Method 9 18 27 36 50 100 150
Random 55.7% 81.0% 81.9% 83.3% 87.2% 87.5% 91.8%
US 49.7% 58.7% 60.9% 64.1% 63.8% 63.9% 69.6%
Our Method 84.8% 89.8% 89.9% 90.4% 90.8% 92.0% 92.4%

FIGURE 3.7: Dummy-Gaussian Cold Start results

3.6.2 MNIST & SVHN experiments

Although dummy datasets are useful to visualize and prototype algorithms, the be-
havior of Active Learning methods can vary a lot from low dimensional dummy dis-
tributions to high dimensional images. In this section we comment the AL results for
MNIST and SVHN datasets, we present a comparison among the methods: {Random,
US, Best-Greedy (only MNIST), Our Method}. See Figure 3.8 for the MNIST compari-
son and Figure 3.9 for the SVHN. Uncertainty Sampling criteria in large datasets are
prompt to ask for outliers, even though, in our experiments, the US results are sat-
isfactory for both MNIST and SVHN datasets, providing greater accuracy than the
Random strategies. In spite of it, Our Method is getting better results than US.

Method 20 50 100 200 500
Random 44.9% 63.2% 74.5% 82.7% 89.8%
US 49.8% 64.2% 75.5% 85.6% 92.8%
Best-Greedy 52.1% 69.0% 77.8% 84.0% 90.4%
Our Method 52.2% 67.3% 77.9% 86.8% 93.1%

FIGURE 3.8: MNIST results

Method 100 250 500 1000
Random 25.6% 59.8% 77.5% 87.7%
US 26.3% 61.2% 78.5% 87.8%
Our Method 26.2% 64.4% 80.7% 88.8%

FIGURE 3.9: SVHN results

3.7. Active Learning Conclusions 23

(A) Our Method, Warm start (B) US method, Warm start

(C) Our method, Cold-start (D) US method, Cold start

FIGURE 3.10: Sampled labels for DUMMY-Uniform using our
method (Left column) and Uncertainty Sampling method (Right col-
umn). Warm start setting (First row) and Cold start setting (Second

row).

3.7 Active Learning Conclusions

In this work we introduced an Active Learning criterion which intends to find a
subset of samples from a large dataset that best approximates the dataset itself. To
measure this similarity between the dataset and its subset we have used the Earth
Mover’s Distance over a metric space defined by the classifier/CNN. We showed
with some Dummy and Image datasets how this criterion overcomes some of the
limitations of classical Uncertainty Sampling which do not perform as well on Neu-
ral Networks.

24 Chapter 3. Active Learning

(A) Our method, Warm start (B) US method, Warm start

(C) Our method, Cold-start (D) US method, Cold start

FIGURE 3.11: Sampled labels for DUMMY-Gaussian using our
method (Left column) and Uncertainty Sampling method (Right col-
umn). Warm start setting (First row) and Cold start setting (Second

row)

25

Chapter 4

One-shot learning

Most deep learning models require huge amounts of data in order to be trained.
Deep neural networks struggle when they are trained with few samples, which is a
quite common scenario when there is not enough data for a certain task. The one-
shot learning setting aims to correctly classify samples given only one example from
each class. This concept can be extended to few-shot learning where an algorithm
only has access to few examples from each class.
One common example would be the easiness of humans to recognize an object that
has been seen just once. I.e. if a segway is shown to a person for the first time,
it is enough for building a mental classification model in order to recognize new
segways in the future, and it is not needed to show hundreds of segways in different
positions, orientations, colors... as we usually do with neural networks.

4.1 Problem definition

We formalize the problem with the following notation:
Given an unlabeled image x̂ and a small subset of (image, label) pairs S = {(x1, y1), ..., (xN , yN)}
where each label yi ∈ RNc is codified by a one-hot binary vector of dimensionality
Nc, being Nc the number of classes.. We want to find a classifier ŷ = C(S, x̂) which
given the subset S predicts from which of the Nc classes is x̂ from.
In figure 4.1, a visual example of one-shot learning for a subset of five different
classes is depicted. In this case, we say it is a 1-shot, 5-way problem where "Nc-
way" represents the number of classes and "Ns-shot" the number of images per class
being Nc = 5 and Ns = 1 for this particular example.

FIGURE 4.1: Visual example of a 1-shot 5-way problem.

26 Chapter 4. One-shot learning

We are presenting two methods:

1. The first method is a k-nearest neighbors algorithm (k-NN) that makes use
of a non-linear learnable metric. [44] introduced a end-to-end trainable k-NN
for one-shot learning using the cosine similarity metric between image em-
beddings, [40] extended this work providing better results when using the eu-
clidean distance.

Given the embedding vectors of features from two different images we are
training a neural network that non-linearly combines the distance between the
individual features in that embedding space. We show that simple architec-
tures that follow this approach can lead to considerable improvements over
more complex recent models.

2. Instead of just weighting similarities/distances between pairs of elements as
in the k-NN approach, in this second method we want each sample xi to have
knowledge of the full subset S. To fullfill this purpose we use Graph Neural
Networks. We will explain this method in more detail at section 2.2.5

4.2 Method 1 | Non-Linear metrics

Following the notation from [44], we can approximate ŷ = C(S, x̂) as a k-NN in the
following way:

ŷ =

N∑
i=1

sim(x̂, xi)yi (4.1)

Where sim(x̂, xi) ∈ [0, 1] is a measure of similarity between two samples.
The similarity between samples can be decomposed in the following way sim(x̂, xi) =
m(f(x̂), f(xi)) where:

1. f(·) is an embedding function that maps from an image x to an embedding
vector of low-dimensionality.

2. m(·, ·) is a similarity metric between the embedding vectors f(x). Vinyals et al.
[44] introduced a end-to-end trainable k-NN for one-shot learning using the
cosine similarity metric between image embeddings, Snell, Swersky, and Zemel
[40] extended this work providing better results when using the euclidean dis-
tance. In [25] they train a residual network for approximating the distance
function.

In this work we present a very simple and trainable metric m(·, ·) that can lead
to considerable improvements over more complex recent models.

4.2.1 Metric Learning

Following the survey [1] we distinguish between two different family metrics:

• Linear metrics: Their expressive power is limited, but they are easier to opti-
mize and usually provide better generalization. They often give rise to convex
formulations.

• Non-Linear metrics: They can capture non-linear variations in the data but
they are also more susceptible to overfit and can give rise to non-convex for-
mulations.

4.2. Method 1 | Non-Linear metrics 27

FIGURE 4.2: Intra-Class variance minimization, Inter-class variance
maximization.

Motivation of non-linear metrics

Focusing on the simple KNN approach for one-shot learning from equation 4.1. The
similarity function sim(xi, xj) will output high values when xi and xj come from the
same class, and low values when they come from different classes. Using a classic
similarity metric i.e cosine similarity, the output for two similar xi, xj will be close
to 1, and for two perpendicular xi, xj will be close to 0.

In terms of metric distance, the one-shot training is equivalent to reduce the Intra-
Class Variance and to increase the Inter-Class Variance, as it is depicted in image
4.2. When using a common metric like cosine similarity or euclidean distance for
m(·, ·), it will lead to similar embedding representations f(x) for all the samples that
come from the same class. We presuppose that some intra-class variance features
from some classes can be useful to discriminate between other classes, and it could
be interesting to avoid collapsing them while ignoring it whenever it is convenient.
It leads us to think about a non-linear combination of the features, where for exam-
ple we can have two different vector representations (a, b) from the same class, and
still compute a distance equal to 0.

Method

Linear metrics are unable to model non-linear structures that may be found in the
data. In order to capture these properties, we are learning a metric from the data
that non-linearly combines the distances between the individual features in the em-
bedding space.

Given two embedding vectors z1 ∈ RNf and z2 ∈ RNf the Lp, the distance is com-
puted as follows:

Lp(z1, z2) = ||z1 − z2||p =

 Nf∑
i=1

|z1(i)− z2(i)|p
 1

p

(4.2)

In the KNN setting, this distance can be re-scaled, or converted to a similarity by
multiplying it with some learned weights plus a bias, in such a way that a Softmax
can be added over the different distances between the unlabelled x̂ and the labelled
{x1, x2, ..., xN} to compute the class probabilities.

28 Chapter 4. One-shot learning

Lp_weighted(z1, z2, θ) =

 Nf∑
i=1

wθ(i)
p · |z1(i)− z2(i)|p

 1
p

+ bθ (4.3)

This last equation 4.3 can be interpreted as a weighted sum of the individual feature
distances between two vectors. By adding a non-linearity (Softmax or Sigmoid) we
can map it to a probability for our one-shot classifier. Notice that 4.3 followed by
a non-linearity is equivalent to the Perceptron architecture 2.5 that we explained at
the introduction, and we commented the Perceptron limitations in terms of function
approximation. In order to learn a distance by a non-linear combination of the fea-
tures, we only need to stack additional layers to the vector of individual distances
abs(z1− z2) ∈ RNf .
Therefore, we present an architecture m(·, ·) which is composed of an absolute dis-
tance between the feature vector representation of two images followed by two or
more fully-connected layers with a non-linearity. In the following line we show an
example of m(·, ·) in its simplest form when using one fully connected hidden layer
and one output layer.

m(f(xi), f(xj)) = abs(f(xi)− f(xj))→ fc(k)→ Relu→ fc(1)→ Activation (4.4)

This architecture is assuming some prior constraints that directly satisfy some of the
properties of a distance/similarity metric. We are briefly commenting this distance
properties. By an abuse of notation we considerm(·, ·) as a distance metric instead of
a similarity metric when listing this distance properties (Noticem(·, ·) can be trained
to be both things):

1. Simmetrym(a, b) = m(b, a): This is fulfilled by construction since the operation
abs(a− b) is commutative.

2. Identity m(a, a) = 0: When the two embedding vectors are equal, all the com-
ponents of the vector of feature distances abs(a − b) are always 0, this makes
this property easily learnable.

3. Non-negative m(a, b) > 0: This can be accomplished by a positive activation in
the last layer. I.e a sigmoid.

The fourth distance property Triangle inequality (m(a, c) < m(a, b) + m(b, c)) is not
necessarily fulfilled by non-linear metrics.

Using this simple architecture we have been able to outperform much more com-
plicated one-shot learning methods.

4.2.2 Learning procedure

Episodic tasks: Given a large dataset D with a large number of classes. We form
a few-shot task Ti by randomly selecting Nc classes from D and then sampling Ns

examples from each selected class, obtaining a subset Si of Ns ∗ Nc samples. We
also select a support subset B of training/test classification samples from the same
classes than Si.

Following the explanation from section 4.1 in order to solve a task we want to classify
a image x ∈ B into its corresponding class ygt ∈ B. Then our objective function is to
reduce the following expected loss with respect to the parametres θ:

4.3. Method 2 | GNN for contextual information 29

θ̂ = argmin
θ

ETi∼T
[∑

(x,ygt)∈B

L(y, Cθ(Si, x))
]

(4.5)

Loss: from equation 4.5 a classification loss L must be chosen in order to train the
algorithm. A basic cross entropy loss works for this purpose. Following this ap-
proach, the one-shot learning setup which can be seen as a complicated transfer
learning problem, has been simplified to a simple supervised classification problem.

4.3 Method 2 | GNN for contextual information

We presented a method that computes a non-linear pair-wise similarity between {x̂},
{x1,..,xN } samples, and assigns a probability to each class by weighting these similar-
ities. Notice the distance between samples is blind to the full subset {(x1, y1), .., (xN , yN)},
and a strong assumption is done when classifying by means of a weighting sum of
pair-wise distances. The first paper in introducing a method that takes into account
the full subset S was [44], other contextual approaches followed this work [27] [40].
Some of this works use sequence dependent methods for regulating the

We are presenting a contextual method by using Graph Neural Networks that con-
siders the full subset S. GNNs do not depend on the order of the input data and
they are flexible architectures. We think they can be a promising approach for the
one-shot learning problem. Graph Neural Networks are briefly introduced at section
2.2.5.

Graph Definition

The first step is to formulate the one-short learning framework into a graph G(V,E)
domain:

• V (nodes): Every image from a subset episode S = {(x1, y1), ..., (xN , yN)} and
the unlabeled image to classify x̂ are encoded into a embedding representation
z = f(x), z ∈ R1×r being r the number of features. Inspired on the metric
learning approach from our previous method 4.2.1, we compute a vector of
feature distances di = abs(ẑ − zi) ∈ R1×r. Considering every vector di as a
node of the graph, the matrix of nodes has a shape V ∈ RN×r.

• E (Adjacent matrix): As adjacent matrix E = (eij) ∈ RN×N we use a binary
matrix ei,j ∈ 0, 1, if the respective xi and xj images from two nodes di and dj
come from the same class, then ei,j = 1, otherwise ei,j = 0.

Local Operators

We are using three local operators, 1) Degree Operator, D, commented in the intro-
duction 2.2.5, 2) Adjacency Operator, A, also commented in the introduction. 3) we
are adding a third operator U = (uij)

ui,j :=

{
1 if aij = 0 and i 6= j
0 otherwise

(4.6)

The three operators are normalized by row, such that the sum of every row is 1. This
third operator broadcasts information from nodes that belong to a different class of
the local node.

30 Chapter 4. One-shot learning

Coarsening / Pooling

The graph equivalence of pooling is coarsening [2]. In this operation a α fraction of
the nodes are retained. In our network we are performing an Average Coarsen-
ing, equivalent to an Average Pooling for CNNs. The one-shot learning graph is
organized in Nc disjoint subgraphs of K samples each one, being Nc the number
of classes and K the number of samples per class, hence we just need to average
the inter-connected nodes from each class, and we get a single node per class, map-
ping each node to one single neuron and applying the Softmax activation we get the
probability distribution P (y|x̂, S). This operation is similar to the average from [40]
where they compute the mean of the feature samples before subtracting it to x̂, in
our case it is applied after subtracting the x̂ at the last layer of the GNN. The proto-
typical behavior of [40] the could also be implemented in terms of GNN using the
Laplace operator at the first layer of the GNN.

4.4 Related work

One of the first works in one-shot learning dates back to 2006 by Fei-Fei, Fergus,
and Perona [8], using a Bayesian Framework, they assumed that currently learned
classes can help to make predictions on new ones when just one or few labels are
available. More recentlly, in 2013 [19] presented a Hierarchical Bayesian model that
reached human level error.

This last year, a great progress has been done in one-shot learning, a wide vare-
ity of papers have been published. Koch, Zemel, and Salakhutdinov [15] presented
a deep-learning model based on computing the pair-wise distance between samples
using Siamese Networks, then, this learned distance can be used to solve one-shot
problems by k-nearest neighbors classification. [44] Presented an end-to-end train-
able K-NN using the cosine distance. They also introduced a contextual mechanism
using an attention LSTM model that takes into account all the samples of the sub-
set S when computing the pair-wise distance between samples. [40] extended the
work from [44], by using euclidean distance instead of cosine which provided sig-
nificant improvements, they also build a prototype representation of each class for
the few-shot learning scenario. Mehrotra and Dukkipati [25] trained a deep residual
network together with a generative model to approximate the pair-wise distance be-
tween samples.

A new line of meta-learning methods for one-shot learning is rising lately: Ravi and
Larochelle [30] introduced a Meta-Learning method where an LSTM updates the
weights of classifier for a given episode. Munkhdalai and Yu [28] also presented a
Meta-Learning architecture that learns meta-level knowledge across, and it changes
its inductive bias via fast parametrization. It is also using an external memory mech-
anism that helps the generalization. Finn, Abbeel, and Levine [9] are using a model
agnostic meta learner based on gradient descent, the goal is to train a classification
model such that given a new task, a small amount of gradient steps with few data
will be enough to generalize. Lately, Mishra et al. [27] used Temporal Convolutions
which is a deep recurrent network that uses dilated convolutions, this method also
exploits contextual information from the subset S providing very good results.

In our work we presented a basic approach for learning a similarity metric between
pair-wise samples by adding some restrictions to the network architecture, we also

4.5. Experiments 31

presented a contextual method based on Graph Neural Networks which unlike re-
current methods, the output is invariant from the order of the input samples S.

4.5 Experiments

For the one-shot experiments we used the Omniglot dataset presented by Lake, Salakhut-
dinov, and Tenenbaum [18] and mini-Imagenet dataset Vinyals et al.[44] which is a
small version of ILSVRC-12 [17]. All experiments are based on the Nc-way Ns-shot
setting. For all experiments we used the same values Nc and Ns for both training
and testing.

4.5.1 Omniglot

Dataset: Omniglot is a dataset of 1623 characters from 50 different alphabets, each
character/class has been drawn by 20 different people. Following [44] implementa-
tion we split the dataset in 1200 classes for training and the remaining 423 for testing
and we increased the training data by random rotations multiples of 90 degrees.

Architecture: Inspired by the Embedding architecture from [44], a CNN was used as
an embedding function f(·) consisting of four stacked 3x3-convolution layers with
64 filters followed by a Batch-Normalization, a 2x2 max-pooling, and a leaky-relu,
resulting in a 1x1x64 embedding. For the Metric Network m(·, ·) we used a fully-
connected neural network of 4 hidden layers each of them followed by a leaky-relu
activation, the number of the neurons at each hidden layer is {128, 128, 64, 64} re-
spectively. We didn’t use the contextual GNN in the Omniglot experiments since
we didn’t notice significant improvements for this dataset. All models have been
trained using Adam optimizer, batch size 40, during 100.000 iterations, initializing
the learning rate at 1e-3.

Results: Results are shown at table 4.3. We present three different experiments.

• Our Euclidean: is our own implementation for the euclidean distance method
which we approximate by removing all the hidden layers from our metric net-
work m(·, ·). It is equivalent to the weighted euclidean distance commented at
4.3. This method is already very powerful as it was demonstrated by [40].

• Our Learnable Metric: It is the already explained implementation of our algo-
rithm with 4 layers for the embedding network, and 4 hidden layers for the
metric network.

• Our Learnable Metric*: it is a variation of our model where we add one extra
convolutional layer to the embedding network f(x) to compare it with the
other methods that are also using 5 layers for the embedding network.

Our Learnable Metric is providing competitive results while remaining very simple
in terms of methodology and architecture. The only difference between our method
and Matching Networks for this experiment [44] is the trainable distance instead of
cosine distance. Residual Pair-Wise [25] is also learning a metric from the data using
Residual Networks, but since no prior is imposed, the network has to learn the full
concept of distance from the data what makes the learning harder.

32 Chapter 4. One-shot learning

5-Way 20-Way
Model 1-shot 5-shot 1-shot 5-shot
Pixels [44] 41.7% 63.2% 26.7% 42.6%
Siamese Net [15] 97.3% 98.4% 88.2% 97.0%
Matching Networks [44] 98.1% 98.9% 93.8% 98.5%
Neural Statistician [6] ∗∗ 98.1% 99.5% 93.2% 98.1%
Residual Pair-Wise [25] ∗ - - 94.8% -
Prototypic Net. [40] 97.4% 99.3% 95.4% 98.8%
Agnostic Meta-learner [9] 98.7 ±0.4% 99.9 ±0.3% 95.8 ±0.3% 98.9 ±0.2%
Meta Networks [28]∗ 98.9% - 97.0% -
TCML [27]∗ 98.96% ±0.20% 99.75% ±0.11% 97.64% ±0.30% 99.36% ±0.18%
Our Euclidean 98.6% 99.5% 95.5% 98.3%
Our Learnable Metric 98.8% 99.5% 96.6% 98.5%
Our Learnable Metric* 99.0% 99.6% 97.0% 98.5%

FIGURE 4.3: Omniglot results. All models are using 4 layers with 64
filters per layer for the embedding network f(x) except those marked
with a * which are using 5 layers. Those marked with ** are using a

completely different architecture.

Our network is giving stronger results for the case of 1-shot than for the few-shot sce-
nario, notice that for the 1-shot 5-Way is giving the best results along with [27] [28]
that are using more complex methods like external memory modules [28], Fast/Slow
weights [28] or RNN by means of dilated convolutions [28]. We didn’t notice signif-
icant improvements using our contextual GNN in the Omniglot dataset.

4.5.2 Mini-Imagenet

Dataset: Mini-imagenet is a more challenging dataset for one-shot learning pro-
posed by [44] derived from the original ILSVRC-12 dataset [17]. It consists of 84x84
RGB images from 100 different classes with 600 samples per class. It was created
with the purpose of increasing the complexity for one-shot tasks while keeping
the simplicity of a light size dataset that still fits in memory on modern machines
what makes it suitable for fast prototyping. We used the split proposed by Ravi and
Larochelle [30] with 64 classes for training, 16 for validation and 20 for test. We used
80 classes for training and 20 for testing in the same way as [44][27].

Architecture: The Embedding architecture used for mini-imagenet is extremely sim-
ple which is useful for fast prototyping. Similarly to the Omniglot architecture con-
sists of 4 layers: 2× {conv_layer, batch-normalization, max_pool(2, 2), leaky relu}, 1
× {conv_layer, batch-normalization, leaky relu} and 1 × { fc_layer}. All layers have
64 neurons, and kernel size 3, the first layer has stride 2.
For the Learnable Metric we are using exactly the same architecture as in Omniglot
experimens.
The Graph Neural Network architecture is formed by 4 × {Graph Conv., Batch Norm.,
Leaky Relu} and 1 × {Average Pooling, Graph Conv, Softmax}.

Results: Results on mini-imagenet are shown at the table 4.4. Mini-Imagenet is a
much harder task than Omniglot. The GNN that didn’t improve the performance
on Omniglot improved it on Mini-Imagenet, especially in 5-shot learning where the
accuracy increased by ∼ 3%.

4.6. One-shot Learning Conclusion 33

5-Way
Model 1-shot 5-shot
Matching Networks [44] 43.6% 55.3%
Prototypical Networks [40] 46.61% ±0.78% 65.77% ±0.70%
Model Agnostic Meta-learner [9] 48.70% ±1.84% 63.1% ±0.92%
Meta Networks [28] 49.21% ±0.96 -
Ravi and Larochelle [30] 43.4% ±0.77% 60.2% ±0.71%
TCML [27] 55.71% ±0.99% 68.88% ±0.92%
Our Learnable Metric 48.3% ± 0.46% 61.4% ±0.42%
Our GNN 48.8% ± 0.27% 64.3% ±0.25%

FIGURE 4.4: Mini-Imagenet results

4.6 One-shot Learning Conclusion

One-shot learning has gained a lot of popularity this last year. We presented two
main contributions in this work. 1) The learnable non-linear metric, 2) The Graph
Neural Network for contextual information.

1. We showed it is possible to get very competitive results with respect to more
complex methods by using a non-lineaer combination of features to compute a
similarity metric. Although it produced good improvements in the Omniglot
dataset, we didn’t notice significant changes in Mini-Imagenet.

2. For Mini-Imagenet we introduced a Graph Neural Network as a meta-learner
structure that is able to see all the support set S = {(x1, y1), ..., (xN , yN)}. It sig-
nificantly improved the results for the 5-Way 5-Shot case. Graph Neural Net-
works are very flexible structures and invariant to input permutations which
is the case for the subset S, which leads us to think that GNN can be further
optimized for one-shot learning tasks.

35

Chapter 5

Conclusions

Semi-supervised learning is a topic of great interest these days. Larger amounts of
data are stored every day and labeling them all is an impossible and expensive task.
As a consequence, unsupervised and semi-supervised learning are gaining ground
into the field of machine learning.
In this paper we focused on the topics of Active Learning and One-shot Learning for
image classification:

Active Learning for image datasets is a very bounded problem, as the span of ac-
tions that can be performed by the algorithm is limited by the number of samples.
Therefore, the degrees of freedom for this algorithm are limited as well. Other di-
rections of Active Learning are information seeking or curious agents, which look
very promising in the near future. If we think in how a person interacts with the
world when pursuing a task, the number of possibilities to choose is almost infinite.
Choosing the correct task to receive a positive feedback can not be done by randomly
sampling uncertain decisions, as most of the possible decisions will not produce any
kind of feedback for that task. We think that agents that learn to be curious in a less
"bounded" environment is currently a very promising research line.

One-shot learning is a very hard problem and we still do not understand the
mechanisms that humans use to recognize new objects so easily. By now, one-shot
learning is similar to a domain adaptation setting, where the training classes are the
source domain, and the test classes are the target domain. It would be interesting
to exploit new domain adaptation methods in order to better generalize to new one-
shot samples.

37

Bibliography

[1] Aurélien Bellet, Amaury Habrard, and Marc Sebban. “A survey on metric
learning for feature vectors and structured data”. In: arXiv preprint arXiv:1306.6709
(2013).

[2] Michael M Bronstein et al. “Geometric deep learning: going beyond euclidean
data”. In: IEEE Signal Processing Magazine 34.4 (2017), pp. 18–42.

[3] Corinna Cortes and Vladimir Vapnik. “Support vector machine”. In: Machine
learning 20.3 (1995), pp. 273–297.

[4] Jia Deng et al. “Imagenet: A large-scale hierarchical image database”. In: Com-
puter Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on. IEEE.
2009, pp. 248–255.

[5] David K Duvenaud et al. “Convolutional networks on graphs for learning
molecular fingerprints”. In: Advances in neural information processing systems.
2015, pp. 2224–2232.

[6] Harrison Edwards and Amos Storkey. “Towards a neural statistician”. In: arXiv
preprint arXiv:1606.02185 (2016).

[7] Meng Fang, Yuan Li, and Trevor Cohn. “Learning how to Active Learn: A
Deep Reinforcement Learning Approach”. In: arXiv preprint arXiv:1708.02383
(2017).

[8] Li Fei-Fei, Rob Fergus, and Pietro Perona. “One-shot learning of object cat-
egories”. In: IEEE transactions on pattern analysis and machine intelligence 28.4
(2006), pp. 594–611.

[9] Chelsea Finn, Pieter Abbeel, and Sergey Levine. “Model-Agnostic Meta-Learning
for Fast Adaptation of Deep Networks”. In: arXiv preprint arXiv:1703.03400
(2017).

[10] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press,
2016.

[11] Ian Goodfellow et al. “Generative adversarial nets”. In: Advances in neural in-
formation processing systems. 2014, pp. 2672–2680.

[12] Geoffrey E Hinton and Ruslan R Salakhutdinov. “Reducing the dimensionality
of data with neural networks”. In: science 313.5786 (2006), pp. 504–507.

[13] Ajay J Joshi, Fatih Porikli, and Nikolaos Papanikolopoulos. “Multi-class active
learning for image classification”. In: Computer Vision and Pattern Recognition,
2009. CVPR 2009. IEEE Conference on. IEEE. 2009, pp. 2372–2379.

[14] Ajay J Joshi, Fatih Porikli, and Nikolaos P Papanikolopoulos. “Scalable active
learning for multiclass image classification”. In: IEEE transactions on pattern
analysis and machine intelligence 34.11 (2012), pp. 2259–2273.

[15] Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov. “Siamese neural
networks for one-shot image recognition”. In: ICML Deep Learning Workshop.
Vol. 2. 2015.

38 BIBLIOGRAPHY

[16] Ksenia Konyushkova, Raphael Sznitman, and Pascal Fua. “Learning Active
Learning from Real and Synthetic Data”. In: CoRR abs/1703.03365 (2017). URL:
http://arxiv.org/abs/1703.03365.

[17] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classifica-
tion with deep convolutional neural networks”. In: Advances in neural informa-
tion processing systems. 2012, pp. 1097–1105.

[18] Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. “Human-
level concept learning through probabilistic program induction”. In: Science
350.6266 (2015), pp. 1332–1338.

[19] Brenden M Lake, Ruslan R Salakhutdinov, and Josh Tenenbaum. “One-shot
learning by inverting a compositional causal process”. In: Advances in neural
information processing systems. 2013, pp. 2526–2534.

[20] Yann LeCun. “The MNIST database of handwritten digits”. In: http://yann. le-
cun. com/exdb/mnist/ (1998).

[21] Yann LeCun et al. “Handwritten digit recognition with a back-propagation
network”. In: Advances in neural information processing systems. 1990, pp. 396–
404.

[22] David D Lewis and William A Gale. “A sequential algorithm for training text
classifiers”. In: Proceedings of the 17th annual international ACM SIGIR conference
on Research and development in information retrieval. Springer-Verlag New York,
Inc. 1994, pp. 3–12.

[23] Xin Li and Yuhong Guo. “Adaptive active learning for image classification”.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
2013, pp. 859–866.

[24] Yujia Li et al. “Gated graph sequence neural networks”. In: arXiv preprint arXiv:1511.05493
(2015).

[25] Akshay Mehrotra and Ambedkar Dukkipati. “Generative Adversarial Resid-
ual Pairwise Networks for One Shot Learning”. In: arXiv preprint arXiv:1703.08033
(2017).

[26] Marvin Minsky and Seymour Papert. “Perceptrons.” In: (1969).

[27] Nikhil Mishra et al. “Meta-Learning with Temporal Convolutions”. In: arXiv
preprint arXiv:1707.03141 (2017).

[28] Tsendsuren Munkhdalai and Hong Yu. “Meta Networks”. In: arXiv preprint
arXiv:1703.00837 (2017).

[29] Alec Radford, Luke Metz, and Soumith Chintala. “Unsupervised representa-
tion learning with deep convolutional generative adversarial networks”. In:
arXiv preprint arXiv:1511.06434 (2015).

[30] Sachin Ravi and Hugo Larochelle. “Optimization as a model for few-shot learn-
ing”. In: (2016).

[31] Frank Rosenblatt. “The perceptron: A probabilistic model for information stor-
age and organization in the brain.” In: Psychological review 65.6 (1958), p. 386.

[32] Nicholas Roy and Andrew McCallum. “Toward optimal active learning through
monte carlo estimation of error reduction”. In: ICML, Williamstown (2001), pp. 441–
448.

http://arxiv.org/abs/1703.03365

BIBLIOGRAPHY 39

[33] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning inter-
nal representations by error propagation. Tech. rep. California Univ San Diego La
Jolla Inst for Cognitive Science, 1985.

[34] Tim Salimans et al. “Improved techniques for training gans”. In: Advances in
Neural Information Processing Systems. 2016, pp. 2234–2242.

[35] Franco Scarselli et al. “The graph neural network model”. In: IEEE Transactions
on Neural Networks 20.1 (2009), pp. 61–80.

[36] Ozan Sener and Silvio Savarese. “A Geometric Approach to Active Learn-
ing for Convolutional Neural Networks”. In: arXiv preprint arXiv:1708.00489
(2017).

[37] Burr Settles. “Active learning literature survey”. In: University of Wisconsin,
Madison 52.55-66 (2010), p. 11.

[38] Burr Settles and Mark Craven. “An analysis of active learning strategies for
sequence labeling tasks”. In: Proceedings of the conference on empirical methods
in natural language processing. Association for Computational Linguistics. 2008,
pp. 1070–1079.

[39] Claude E Shannon. “A note on the concept of entropy”. In: Bell System Tech. J
27.3 (1948), pp. 379–423.

[40] Jake Snell, Kevin Swersky, and Richard S Zemel. “Prototypical Networks for
Few-shot Learning”. In: arXiv preprint arXiv:1703.05175 (2017).

[41] Panagiotis Stanitsas et al. “Active convolutional neural networks for cancer-
ous tissue recognition”. In: ICIP. 2017.

[42] Sainbayar Sukhbaatar, Rob Fergus, et al. “Learning multiagent communica-
tion with backpropagation”. In: Advances in Neural Information Processing Sys-
tems. 2016, pp. 2244–2252.

[43] Simon Tong and Daphne Koller. “Support vector machine active learning with
applications to text classification”. In: Journal of machine learning research 2.Nov
(2001), pp. 45–66.

[44] Oriol Vinyals et al. “Matching networks for one shot learning”. In: Advances in
Neural Information Processing Systems. 2016, pp. 3630–3638.

[45] Keze Wang et al. “Cost-effective active learning for deep image classification”.
In: IEEE Transactions on Circuits and Systems for Video Technology (2016).

[46] Min Wang et al. “Active learning through density clustering”. In: Expert Sys-
tems with Applications 85 (2017), pp. 305–317.

	Abstract
	Introduction
	Introduction to Machine Learning
	Machine Learning Basics
	Types of learning
	Supervised Training
	The Bias Variance trade-off

	Deep Learning
	Historical context of deep learning
	Multilayer Perceptron
	Convolutional Neural Networks
	Generative Adversarial Networks
	Graph Neural Networks

	Active Learning
	Problem definition
	Related work
	Active Learning methods
	Uncertainty Sampling
	Similarity of Distributions
	Best Greedy

	Semi-supervised method
	Experiments setup
	Datasets
	Architectures
	Warm/Cold start scenarios

	Experiments
	Dummy experiments
	MNIST & SVHN experiments

	Active Learning Conclusions

	One-shot learning
	Problem definition
	Method 1 | Non-Linear metrics
	Metric Learning
	Learning procedure

	Method 2 | GNN for contextual information
	Related work
	Experiments
	Omniglot
	Mini-Imagenet

	One-shot Learning Conclusion

	Conclusions
	Bibliography

