

TREBALL DE FI DE GRAU

Grau en Enginyeria Biomèdica

DEVELOPMENT OF A WEB-BASED GRAPHICAL USER

INTERFACE TO DESIGN BRAIN FIBER MODELS FOR

TRACTOGRAPHY VALIDATION

Volum I

Memòria – Pressupost

Autor: Guillem González Vela
Director: Jordi Solà Soler
Departament ESAII
Co-Director: Emmanuel Caruyer
Convocatòria: Juny de 2017

Contents

Abstract IX

1 Introduction 1
1.1 Context . 2

1.1.1 Center . 2
1.1.2 Research Team . 2
1.1.3 The internship . 2

1.2 Background . 3
1.2.1 Diffusion MRI . 3
1.2.2 Tractography . 3
1.2.3 Phantomαs . 4

1.3 Objective . 8

2 Methodology 9
2.1 Requirements . 10
2.2 Technologies involved . 11
2.3 Target User . 15
2.4 Design . 16

2.4.1 User interface . 16
2.4.2 Phantom display . 18
2.4.3 Observer pattern design 25
2.4.4 Browser stability . 25
2.4.5 HTML . 27
2.4.6 GUI Construction . 30
2.4.7 GUI Handlers . 34
2.4.8 GUI Managers . 35
2.4.9 JSON load and save . 37
2.4.10 App initiation . 40
2.4.11 CSS . 40
2.4.12 Homepage . 45
2.4.13 Documentation . 45
2.4.14 File structure . 48

2.5 Licensing and source . 52

3 Results 53

4 Environmental Impact 61

5 Budget 63

I

CONTENTS CONTENTS

6 Self Learning 65

7 Conclusions 67

8 Future Extensions 71

II

List of Figures

1.1 Graphic identity of Inria institute 2
1.2 Representation of three tractograms of the same subject as in-

terpreted by 3 different tractography algorithms. Courtesy of
Emmanuel Caruyer [1]. 3

1.3 Illustration of different steps taken by Phantomαs [2]. a. An ex-
ample of fiber bundle configuration, and spherical regions filled
with free water. b. Corresponding slice of T1-weighted image.
c. Ground truth fiber orientation distribution (zoom of the red
square in 1.b). d. Fiber reconstructed with probabilistic stream-
line tracking. Courtesy of Emmanuel Caruyer. 4

1.4 Process of computing the trajectory for a fiber bundle in "symmetric"

tangent mode [3]. a. The given control points. b. First and last
derivatives definition. c. Middle tangents calculus. d. Path
interpolation. 5

1.5 Structure of a JSON phantom description for Phantomαs. As
many as fiber_geometries and isotropic_regions children needed
may be added. 6

1.6 An example of a phantom description contained in a JSON file for
Phantomαs [4] and the representation of the phantom described
as rendered by phantomas_view script [1]. Its points and trajec-
tory representation process are exemplified with this same fiber
bundle in figure 1.4. 7

1.7 Control points must be contained in a single array with as many
as coordinates present in the fiber bundle description. 7

2.1 HTML document example, with CSS embedded in <style> mark
and JavaScript in <script>. 12

2.2 Application and browser interaction with the user. Note that the
User may interact with two different parts of the app: the HTML
elements and the WebGL canvas. 16

2.3 User interface schema as shown in the HTML page 17
2.4 Four groups of objects interacting between them are responsible

for representing phantom element: The Phantom object, Source
classes, Mesh-wrapper classes and THREE.js objects. 18

2.5 Sample of the code present in show function, used for setting up
the scene. 21

III

LIST OF FIGURES LIST OF FIGURES

2.6 Meshes wrapped by mesh-wrapper classes. a. Fiber tube rep-
resentation in FiberTube. b. Fiber path and control points in
FiberSkeleton. c. IsotropicRegion representation. 22

2.7 Sample code to add phantom elements to the scene using mesh-
wrapper classes. 22

2.8 Structure of the main properties contained in Phantom object and
its class. 23

2.9 Schema representing the behavior of the observer pattern. Ob-
servers, referenced to a subject, are notified once notify()method
is triggered. 25

2.10 Applying segment constraints: a. Phantom with non-distinguishable
segments. Experience was laggy. b. Phantom with constrained
segments. Segments are visible but experience was smooth. . . . 26

2.11 Constant meshConstraints declaration. The number of segments
specified in each of the rules is always into account by mesh-
wrapper classes. 27

2.12 User interface schema as shown in the HTML page, drawn over
the interface structure shown in figure 2.3. 28

2.13 HTML code structure. Those elements shown in grey are created
empty as will be managed by JavaScript GUI code. 28

2.14 HTML simplified code for building the interface shown in fig-
ure 2.13. 29

2.15 GUI Constructors’ functions firing depending on actions taken by
the user. 30

2.16 Simplified version of setupGUI function. 32
2.17 Simplified version of editExit function. 32
2.18 “editGUI” <div> element HTML structure during a control point

edition. 34
2.19 Class interaction in Phantomαs Web Designer, with GuiStatus

class having an essential function. 35
2.20 Simplified code contained in the loadPhantom function, which

creates a new Phantom object with all of its elements out of a
parsed JSON string. 38

2.21 Code in pushDownload function responsible for pushing the down-
load of a phantom description JSON file. 39

2.22 Code contained in the init function, responsible for loading the
file request and executing the main initiation functions. 41

2.23 Code used in main.css file for organizing the page display for the
global <html> element and leftGUI <div>. 42

2.24 Code used in main.css file for declaring classes used in dynamic
GUI behavior. 43

2.25 Two of the functions present in GUI Style Handlers, set as events
and responsible of their look depending on user’s actions. 43

2.26 Code used in icons.css, which defined a new font and a new
styling class for invoking icons contained in custom font icons.woff. 44

2.27 General look of simple Phantomαs Web Designer’s homepage. . . 45
2.28 General look of the heading of Phantomαs Web Designer’s user

documentation. 46
2.29 Heading of the FiberSource class constructor and its result after

JSDoc3 processing. 47

IV

LIST OF FIGURES LIST OF FIGURES

2.30 Contents of JSDoc3 configuration file, jsdoc-conf.json 48
2.31 Structure of main files and folders present in root folder. Descrip-

tion of each available in table 2.6. 49
2.32 HTML <head> extract, which references necessary JavaScript and

CSS code. These are referenced following the relative paths
shown in figure 2.31. 51

2.33 Phantomαs Web Designer’s GitHub repository as of 2017-05-14. . 52

3.1 Phantomαs Web Designer in non-edit mode, displaying a 30-
element phantom over Mozilla Firefox 37 in a Fedora 21 system. 54

3.2 Screenshot of a fiber being placed the mouse over its entry in the
element list and it being highlighted. 55

3.3 Fiber being edited. As edition mode was triggered, the user in-
terface features more tools without taking more space. Note also
how the point being edited is highlighted in the scene. 56

3.4 User using the interactive drag and drop tool to move a control
point over a selected plane. The green point represents the actual
while the red is the former. Undo button may be pressed at any
time to recover the former position. 56

3.5 Phantom designed from scratch using Phantomαs Web Designer.
Its description file was generated and later loaded with Phantomαs. 57

3.6 Designed phantom displayed with phantomas_view script, included
in Phantomαs. 58

3.7 Diffusion Weighted Image (DWI) output generated by Phan-
tomαs after having processed the phantom’s JSON file. Both
show the middle plane cut. a. T1 DWI. b. T2 DWI. 59

3.8 Processed tractography over the phantom, on MedInria [5]. . . . 59

8.1 Schema of what the future Phantomαs web environment is meant
to be. 72

V

List of Tables

2.1 Simplified list of most relevant Phantom methods. 24
2.2 GUI construction function collection 31
2.3 Events used over application’s DOM elements and their descrip-

tion [6]. 34
2.4 List of GUI Handler functions present in the code. 36
2.5 Properties in GuiStatus object with their type and default value. 37
2.6 List of main files and folders present in root folder, as shown in

figure 2.31, and its description. 50

4.1 Development estimate CO2 emissions. 62

5.1 Staff costs. 64
5.2 Establishment and service costs. 64

6.1 Main self-learned technologies and their main resources studied. . 66

VII

Abstract

Diffusion Magnetic Resonance Imaging (MRI) is an advanced MRI technique
which can provide brain white matter tissue microscopic information. From
this information, the connectivity map of axons in the brain can be obtained
using tractography algorithms. However, this cartography of the brain wiring
is known to suffer from several biases.

Phantomαs is an open source library created with the aim of evaluating
tractography. It allows the creation of in silico brain phantoms and simulates
its diffusion weighted MR images. Tractograms obtained from these MR im-
ages can be compared to the ground truth. The trajectories of the tracts are
provided to Phantomαs in a hand written plain text file. This process can be
time consuming and tedious for the users.

The aim of this project is to create a graphical user interface (GUI) for
designing phantoms and generating corresponding description files for Phan-
tomαs. We developed a software that runs in a web-based user interface. It
enables users to interact with a 3D representation of a phantom and manually
edit any property to generate the corresponding description file.

IX

CHAPTER 0. ABSTRACT

Resum
La Imatgeria per Ressonància Magnètica (MRI per les seves sigles en anglès) de
difusió és una tècnica avançada d’MRI que pot proporcionar informació sobre el
teixit microscòpic de la matèria blanca del cervell. A partir d’aquesta informació
i mitjançant algorismes de tractografia, pot obtenir-se el mapa de connexions
entre axons al cervell. És sabut que aquesta cartografia de connexions del cervell
sol presentar nombrosos biaixos.

Phantomαs és una llibreria de codi lliure creada amb l’objectiu d’avaluar
algorismes de tractografia. Permet crear fantomes in silico i simula les seves
imatges potenciades en difusió. Les tractografies obtingudes a partir d’aquestes
imatges poden ser comparades amb el model inicial. Les trajectòries dels tractes
es proporcionen a Phantomαs mitjançant fitxers de text pla escrits a mà. Aquest
procés pot comportar molt de temps i resultar feixuc als usuaris.

L’objectiu d’aquest projecte és crear una interfície gràfica d’usuari (GUI
per les seves sigles en anglès) per dissenyar fantomes i generar els seus cor-
responents fitxers de descripció per Phantomαs. El programari desenvolupat
s’executa en una interfície d’usuari integrada en un entorn web i permet els
usuaris d’interactuar amb una representació 3D del fantoma i editar-ne qual-
sevol característica per generar el fitxer de descripció.

X

CHAPTER 0. ABSTRACT

Resumen
La Imagería por Resonancia Magnética (MRI por sus siglas en inglés) de di-
fusión es una avanzada técnica de MRI que puede proporcionar información
sobre el tejido microscópico de la materia blanca del cerebro. A partir de esta
información, mediante algorismos de tractografía puede obtenerse el mapa de
conexiones entre axones en el cerebro. Es conocido que esta cartografía de conex-
iones del cerebro suele presentar numerosos sesgos.

Phantomαs es una librería de código libre para evaluar algorismos de trac-
tografía. Permite crear fantomas in silico y simula sus imágenes potenciadas en
difusión. Las tractografías obtenidas a partir de estas imágenes pueden entonces
compararse con el modelo inicial. Las trayectorias de los tractos se proporcio-
nan a Phantomαs mediante ficheros de texto llano escritos a mano. Este proceso
puede llevar mucho tiempo y resultar pesado para los usuarios.

El objetivo de este proyecto es crear una interficie gráfica de usuario (GUI)
para diseñar fantomas y generar sus correspondientes ficheros de descripción
para Phantomαs. El programa desarrollado es ejecutado en una interficie de
usuario integrada en un entorno web y permite a los usuarios interactuar con
una representación 3D del fantoma y editar cualquier característica para generar
el fichero de descripción.

XI

Chapter 1

Introduction

1

1.1. CONTEXT CHAPTER 1. INTRODUCTION

1.1 Context
This thesis was developed during an internship carried out during spring 2017
in Inria Rennes — Bretagne Atlantique research center, hosted by VisAGeS ,
team belonging to both Inria and IRISA institutes.

1.1.1 Center
The research center Inria Rennes — Bretagne Atlantique was created in 1980
and concerns two different French research institutes, Inria and IRISA. It is
located in Rennes, in Campus Beaulieu, and is associated with Université de
Rennes I.

Inria is a French national institute for research in math and informatics.
Its acronym stands for “Institut National de Recherche en Informatique et en
Automatique”, “National Institute of Research in Informatics and Automatics”
in English. Inria was created in 1967 and it currently employs 2600 people
distributed in 9 different locations around France [7].

Figure 1.1: Graphic identity of Inria institute

IRISA is a mixt research unit for informatics, signal and image treatment
and robotics. Its acronym stands for “Institut de recherche en informatique
et systèmes aléatoires”, “Research institute in computer science and random
systems” in English. IRISA was created in 1975 and it currently employs 800
people divided in 40 teams around Brittany [8].

1.1.2 Research Team
The research team VisAGeS (Vision, Action and information manaGement Sys-
tem in health) is jointly awarded by INSERM (National Institute of Health and
Medical Research) and Inria, belongs to IRISA and is located in Rennes, France.
It is devoted to the development of new processing algorithms in the context of
medical image computing and computer assisted interventions [9].

1.1.3 The internship
The internship carried out in VisAGeS team was supervised by researcher Em-
manuel Caruyer [10], taking place at research center Inria Rennes — Bretagne
Atlantique from February to June 2017.

Among the research topics of the team, the context of this internship covers
the neuroimaging. The main goal is to develop a software application to assist
processing algorithms for this kind of applications.

2

CHAPTER 1. INTRODUCTION 1.2. BACKGROUND

1.2 Background

In the last years medical imaging has become one of the most important tech-
nologies in medicine, given its capacity of providing a good basis for diagnostics
in a non-invasive manner. Any technique concerning medical image strongly lies
in hardware and software improvements, while requiring precision at a tiny error
margin. This has led medical institutions and companies to invest in research
for developing more and more precise medical imaging platforms.

The project defined in this thesis is based on the medical imaging approach
for the neural tracts. This information is taken from diffusion-weighted images
captured in a magnetic resonance procedure.

1.2.1 Diffusion MRI

Diffusion-weighted Magnetic Resonance Imaging (DWI), commonly known as
just “diffusion MRI” is an imaging method used in medicine that generates con-
trast in magnetic resonance images by using the diffusion of water molecules
contained in the subject [11].

The diffusion-weighted signal can be modeled using a tensor, which is the
basis of the popular technique known as Diffusion Tensor Imaging (DTI). DTI
is commonly used to generate tractographies of white matter in the brain. In
this kind of MRI, the diffusion is characterized for each direction of space and
the information inscribed in each voxel [12].

1.2.2 Tractography

From data collected in Diffusion Weighted Images (DWI) taken in a brain scan,
pathways present in brain’s white matter can be traced following the principal
diffusion directions locally. The computational reconstruction method is known
as tractography. Its aim is to describe in vivo and precisely the paths present in
brain’s white matter. This paths are “fibers” and the model itself is the “phan-
tom”.

Figure 1.2: Representation of three tractograms of the same subject as interpreted by
3 different tractography algorithms. Courtesy of Emmanuel Caruyer [1].

The tractography has a big computational cost and may be dominated by

3

1.2. BACKGROUND CHAPTER 1. INTRODUCTION

false-positive connections [13]. Numerous algorithms have been developed and
proposed as new approaches for this kind of analysis to avoid false positives and
to improve reliability.

During the development of the reconstruction algorithms, the main problem
faced is the validation step. The complex structure of the nervous system de-
mands accuracy in its reconstructions, specially when used for diagnosis. As the
target of interest are in vivo tissues, the main limitation to validation is that
we have no access to ground truth.

Phantom simulation

One of the approaches that allow validation is designing in silico phantoms.
From the knowledge in MRI technique, the DWI of an eventual scan of these
phantoms can be simulated by a software. From the DWI image the algorithms
can be tested while exactly knowing the structure of the initial design, and thus,
allowing their evaluation.

1.2.3 Phantomαs

Phantomαs [14] is an open-source software developed in Python [15] and C.
It creates realistic phantoms in diffusion MRI, exporting its result to later be
reconstructed, allowing the validation of the fiber tracking procedure. This
process is illustrated in figure 1.3.

An early version of Phantomαs was used to create the testing and train-
ing data of the 2nd HARDI Reconstruction Challenge [16], organized at ISBI
2013 [2].

a b c d

Figure 1.3: Illustration of different steps taken by Phantomαs [2]. a. An example
of fiber bundle configuration, and spherical regions filled with free water. b. Corre-
sponding slice of T1-weighted image. c. Ground truth fiber orientation distribution
(zoom of the red square in 1.b). d. Fiber reconstructed with probabilistic streamline
tracking. Courtesy of Emmanuel Caruyer.

This project will put all of its attention in the way Phantomαs interprets
the phantoms and how the users enter their models in.

4

CHAPTER 1. INTRODUCTION 1.2. BACKGROUND

Phantoms in Phantomαs

In Phantomαs, phantoms are to be contained in a spherical cortical area. Fiber
bundles are defined by a series of control points. These points are linked by the
trajectory of the fiber, computed by the software. The radius of the fiber is also
user-specified, being constant through all the path. Consulting the Phantomαs’
documentation [3] and its source code [4] we can understand the way the tra-
jectory is computed.

Between each pair of points, a 3rd-order polynomial is defined as the path of
the fiber. In order to define a 3rd-order polynomial, four constraints are needed.
Those are both points’ position in the 3D space and the tangent of the trajec-
tory in each of them. An example in 2D may be seen in figure 1.4.

1
2

3

4

5

1
2

3

4

5

1
2

3

4

5

1
2

3

4

5

a b c d

Figure 1.4: Process of computing the trajectory for a fiber bundle in "symmetric"

tangent mode [3]. a. The given control points. b. First and last derivatives definition.
c. Middle tangents calculus. d. Path interpolation.

First and last points get assigned as their derivative the perpendicular direc-
tion to the surface of the spherical cortical area. The way Phantomαs computes
other points’ tangents is the only parameter the user is allowed to modify in
this process.

There are three different options available for calculating these tangents:

1. symmetric: Tangents take the resultant slope of the the straight linking
the point before and the point after.

2. incoming: Tangents take the resultant slope of the the straight linking the
point in question and the point before.

3. outgoing: Tangents take the resultant slope of the the straight linking the
point in question and the point after.

By default, symmetric tangents is set; it is also the one featured in figure 1.4
example.

Apart from defining fibers, Phantomαs also allows to define “isotropic re-
gions”, which represent cavities in the brain filled with fluid. At the moment
only spherical isotropic regions are supported.

Phantom models in are defined in a JSON (“JavaScript Object Notation”)
format, usually saved as plain text files. Phantomαs includes several phantom
examples. The library also includes a script for displaying the model a three-
dimensional interactive way. This script is phantomas_view.

5

1.2. BACKGROUND CHAPTER 1. INTRODUCTION

A JSON file contains data in a human-readable structure, which makes phan-
tom design easier. For defining a phantom, Phantomαs parses the file, which
must contain an object with all the fibers and another with all the isotropic
regions contained. One of them is needed so a phantom is interpreted, but not
both required at the same time. The elements and their characteristics must be
included in the JSON file with the structure defined in figure 1.5.

JSON Parent

fiber_geometries isotropic_regions

Fiber bundle
(arbitrary name)

control_points

radius

tangents

Isotropic Region
(arbitrary name)

control_points

radius

... ...

Figure 1.5: Structure of a JSON phantom description for Phantomαs. As many as
fiber_geometries and isotropic_regions children needed may be added.

An example of a simple phantom described in a JSON file and its represen-
tation can be consulted in figure 1.6. This is the simplest example contained
in Phantomαs [4]. Note that fibers’ control points are expressed in a single
array with the structure shown in figure 1.7 and that the fiber bundle present
in figure 1.4 is the same as described in figure 1.6.

6

CHAPTER 1. INTRODUCTION 1.2. BACKGROUND

1 "fiber_geometries" : {

2 "fiber_name": {

3 "control_points":

4 [-10.0 , 0.0 , 0.0,

5 -5.0 , 0.0 , 0.0,

6 0.0 , 5.0 , 0.0,

7 5.0 , 0.0 , 0.0,

8 7.07, -7.07, 0.0],

9 "tangents": "symmetric",

10 "radius": 2.0

11 }

12 },

13 "isotropic_regions": {

14 "region_number": {

15 "radius" : 3.0,

16 "center": [0.0, 0.0, 0.0]

17 }

18 }

Figure 1.6: An example of a phantom description contained in a JSON file for
Phantomαs [4] and the representation of the phantom described as rendered by
phantomas_view script [1]. Its points and trajectory representation process are ex-
emplified with this same fiber bundle in figure 1.4.

1 "control_points":

2 [x_1 , y_1 , z_1,

3 x_2 , y_2 , z_2,

4 ... , ... , ... ,

5 x_n , y_n , z_n]

Figure 1.7: Control points must be contained in a single array with as many as coor-
dinates present in the fiber bundle description.

7

1.3. OBJECTIVE CHAPTER 1. INTRODUCTION

1.3 Objective
The current version of Phantomαs is used via the command-line and does re-
quire a sometimes complex installation process, making it not user-friendly. The
long-term objective is to create a software as a service platform that allows users
to define their own phantoms, to set the simulation and to download its result.

The objective of this project is to contribute in the development of this web
platform by developing “Phantomαs Web Designer”, a web-based interactive
tool for the creation, edition, visualization and analysis of phantoms. This
application must allow users to modify and/or create their own JSON files for
Phantomαs without having to edit the file itself, while having the knowledge
at all time on how their designed phantom will look like. An user-friendly
graphical interface and its compatibility with the different devices the users
might use must be carefully taken into account. In addition, this tool must be
entirely compatible with Phantomαs.

8

Chapter 2

Methodology

9

2.1. REQUIREMENTS CHAPTER 2. METHODOLOGY

2.1 Requirements
To accomplish its objective, the resulting application must feature certain func-
tionalities to allow the user to edit any aspect of a phantom without leaving the
interface. These basic requirements of the application and its interface must
carefully be taken into account during its design.

The requirements can be summarized in the following five points:

a) Phantomαs cross-compatibility
In Phantomαs, phantom data is contained in a plain-text JSON file. The
user has to be able to load the same file in both Phantomαs and the
application and receive the same response without any need of modifi-
cation. The output file should be cross-compatible as well, offering the
possibility of either processing it in Phantomαs or loading it again for
further edition.

b) Phantom display
The web canvas must continuously display the phantom model, being
the main interaction area for the user. The display should be similar to
phantomas_view package (see figure 1.6) included in Phantomαs to prevent
any confusion and to make the cross-compatibility of both tools clear.
Interaction with the model should be maximized and navigation through
different elements eased, enabling it to be used as a phantom-analysis
tool as well.

c) WYSIWYG interactive edition
The edition has to be interactive and intuitive. A what-you-see-is-what-
you-get manner should be implemented, so the user sees at all time how
modifications are taking place. Each element’s characteristics must be
well defined and consequences of the actions taken should be expected
by the user. The scene must be focused at all time on the element being
currently edited. Guidance edition tools are also desired to make the
edition task easier.

d) Wide edition control
The edition of any relevant property of the phantom regarding its later
processing must be considered, as well as the creation of elements and
the creation of phantoms from scratch. These involve:

• Creating and removing fibers and isotropic regions
• Editing general fibers’ and isotropic regions’ properties, such as ra-

dius or tangent-computing method.
• Creating and removing fibers’ control points
• Moving fibers’ control points and isotropic regions’ center point

e) Versatility
The application must be designed to be executed in any computer by any
user. Cross-platform, low hardware requirements, user-level set up and
least dependencies are important points to be taken into account. Only
desktop environments are expected to run this application; no mobile
device is considered.

10

CHAPTER 2. METHODOLOGY 2.2. TECHNOLOGIES INVOLVED

2.2 Technologies involved
Out of all possibilities available in the scene, a choice had to be made paying
special attention to the requirements introduced before. Having the opportunity
of building an application from scratch also offers a wide fork of choices.

The fact that Phantomαs was coded in Python and C does not affect the
development of the web application, as direct interaction between both is not
needed.

The selected language was JavaScript. It can be executed in any web nav-
igator, a tool which is widely available. Although it might be also executed in
mobile devices, the design is only to be desktop-ready. To run it on internet
navigators, HTML and CSS were employed to create a full web environment.
For the 3D graphic representation the JavaScript library THREE.js was used.

Once the main environment was defined, the used tools may be chosen. Most
of these are standard technologies used in web development or were selected by
the compatibility with the operative system used; the GNU/Linux distribution
Fedora 21 [17]. Each of these technologies used is introduced below.

JavaScript

JavaScript is a widely-implemented programming language [18]. It is part of
the core web content production, being employed in every modern web site.
All browsers support this language, making it executable for any device able to
navigate through the internet. JavaScript code is generally nested in an HTML
page.

JavaScript is an object-oriented, functional and interpreted language. This
last characteristic makes it act different depending on the interpreter the user
is using, and during the design this must be taken into account.

Cascading Style Sheets (CSS)

Cascading Style Sheets (CSS) is the style sheet language used for describing the
presentation of HTML pages. CSS provides many exclusive features and a way
to take control of the style of a web page separately from its content.

Hypertext Markup Language (HTML)

Hypertext Markup Language (HTML) is the main language for creating web
pages. It is a Markup language (not a programming language) and depends on
JavaScript for executing processes.

An HTML document usually contains references to files containing CSS code
and JavaScript code which act on the page. This code can also be nested in
the same document as shown in figure 2.1. These three languages conform the
major used basis in web development.

The current version of HTML standard is HTML5, published in October
2014 [19].

11

2.2. TECHNOLOGIES INVOLVED CHAPTER 2. METHODOLOGY

1 <html>

2 <head>

3 <title>Hello, World!</title>

4 <style>

5 body {

6 background-color: LightGreen;

7 font-family: times;

8 }

9 input[type=button]:hover {

10 background-color: red;

11 color: white;

12 font-weight: bold;

13 }

14 </style>

15 </head>

16
17 <body>

18 <input type="text" id="nameinput"/>

19 <input type="button" value="Set name!" onclick="sayHi()"/>

20 <ol id="visitors">

21 </body>

22
23 <script type="text/javascript">

24 function sayHi() {

25 var name = document.getElementById("nameinput").value;

26 var visitorList = document.getElementById("visitors");

27 var newVisitor = document.createElement("LI");

28 newVisitor.innerHTML = name.toString();

29 visitorList.appendChild(newVisitor);

30 }

31 </script>

32 </html>

Figure 2.1: HTML document example, with CSS embedded in <style> mark and
JavaScript in <script>.

12

CHAPTER 2. METHODOLOGY 2.2. TECHNOLOGIES INVOLVED

THREE.js

THREE.js [20] is a JavaScript library for creating animated 3D computer graph-
ics. THREE.js supports WebGL, an API for rendering graphics in any compati-
ble web browser. As THREE.js uses WebGL and JavaScript, it is cross-browser
compatible and does not require any extra plugin. 1

As THREE.js will be responsible for the scene, it will remain active at all
time. It is going to be the only JavaScript library in the application.

Mozilla Firefox

In addition to interpreting HTML, CSS and JavaScript, desktop web browsers
usually come with developer features such as a JavaScript console and debugger
or a style editor. As the code is not compiled at any time, it might be interpreted
in a different way by different browsers.

Setting the functionality of the application as a main priority and not spend-
ing much time on solving slight incompatibilities, the application in this project
was entirely tested on Mozilla Firefox [22] and its development tools. This does
not mean it does not work in other web browsers, but that its best performance
is found in Firefox.

Normalize.css

The present differences between language interpreters might make the web pages
look and act in a different way across different browsers: a slight difference in
the interpretation of the style may compromise the entire user experience.

Normalize.css [23] solves many of this issues by adding specific code for
each of the most commonly used browsers so that the subsequent styles act in
an homogeneous way. In this project its version 5.0.0 was implemented and
tweaked for particular behaviors.

Node.js

Node.js [24] is an open-source JavaScript environment that allows JavaScript
code to be run outside the web browser. This allows an easy interaction with
the present JavaScript environment in a dynamic and lightweight way, making
it a widely-used tool in web development. Although its main use is to be run
server-side when developing real-time applications, its packages may also be run
locally for other purposes.

Node.js works using a collection of “modules”, and it comes with its own
package manager, npm. For this project, the modules http-server (for testing
purposes) and JSDoc3 were used.

1All common desktop browsers do support WebGL, although in Mozilla Firefox some
graphics drivers may be blocked for ensuring stability [21].

13

2.2. TECHNOLOGIES INVOLVED CHAPTER 2. METHODOLOGY

JSDoc3

JSDoc3 [25] is an open-source API documentation generator for JavaScript.
Given the code, it parses those comments specially tagged for JSDoc3. Out of
those comments, the tool generates several structured web documents linked
between them, arranging all the elements in the code and easing the navigation
through its documentation. Templates and other parameters may be specified
for satisfying specific needs. JSDoc3 is usually used as a Node.js module.

reStructuredText

reStructuredText [26] is a lightweight markup language that renders in HTML.
It is easily readable and its structure and syntax really intuitive, which makes its
learning really easy and quick. reStructuredText is written in Python and usually
employed for building documentation of software written in this language.

In this project reStructuredText is used for building the user documentation
in HTML.

Git and GitHub

Git [27] is an open source version control system for tracking changes in col-
lective development of software projects. It allows change uploads to a remote
machine, although an online connection is not needed for commiting changes;
its information is stored in a specific hidden folder in the same project path.

GitHub [28] is a hosting service for Git repositories, providing many Git
functionalities by itself as well as adding its own features. GitHub repositories
are usually public, although private repositories are available in paid plans.

Both Git and GitHub were used for the project version control and collabo-
rative source code sharing.

Atom text editor

Atom [29] is an open source text editor developed by GitHub. Its code is based
os web technologies and offers a large plug-in platform for extensions, usually
built using Node.js. It also reads the Git information and displays changes,
branches and commits in the same text editor.

The code for both this project and the thesis itself were written using Atom.

14

CHAPTER 2. METHODOLOGY 2.3. TARGET USER

2.3 Target User
When designing the application it is important to take into account its target
user. This involves not only the system configuration, but also a tech-ease anal-
ysis for the design.

The users expected to use this application are those who currently build
or edit phantom descriptions out of plain text files. This usually concerns re-
searchers and software engineers for tractography computing algorithms, who
simulate phantoms in MRI using Phantomαs.

Grosso modo, the main characteristics of our target users are:

• Advanced knowledge in computer science, a computer is their main tool.
Ease in software installation and in internet navigation, having used sev-
eral kinds of user interfaces.

• Familiar with what a phantom is, how its description file for Phantomαs
is structured and how it is meant to be used.

• Used to look for and consult user documentation when using software.

From these characteristics we can conclude that the application will not need
many instructions as its features are yet expected by the users. The way a phan-
tom or the fiber bundles are modeled does not need to be explained, as users
are familiarized with these descriptions.

Regarding the user interface, it has to be as intuitive as possible. Preferably,
the interface should be so simple that an usage tutorial is not needed, although
user documentation explaining in detail its operation must be made available.

15

2.4. DESIGN CHAPTER 2. METHODOLOGY

2.4 Design

The interactive web page is divided in two kinds of elements. First, the General
User Interface (GUI), based in plain HTML elements modified on-the-go and
which let the user interact with the core of the code by using predefined events.
The other part relates to displaying the phantom, based on a THREE.js envi-
ronment using the WebGL engine. This structure is schematically represented
in figure 2.2. The whole application is hosted in a single HTML file that wraps
all these elements.

Javascript
Engine

WebGL
Engine

HTML Engine

Browser
renderer

HTML
Elements

WebGL
Canvas

DOM Events
THREE.js

User

Figure 2.2: Application and browser interaction with the user. Note that the User
may interact with two different parts of the app: the HTML elements and the WebGL
canvas.

As the application is expected to be part of a server-side environment, Phan-
tomαs’ JSON files for phantom description were only set to be loaded from the
server and not from the client. As a temporary solution, the path to the files is
to be specified as a variable in the URL.

A download prompt was used for downloading the indented .json plain-text
file containing the generated description of the phantom.

2.4.1 User interface

While using the application, the user will be most of the time paying attention
to the previsualization canvas, the phantom display area. This is the feature in
which the application is mostly based on.

16

CHAPTER 2. METHODOLOGY 2.4. DESIGN

Following this pattern, the user interface design is based on static areas.
The main element is the THREE.js scene, which features the editing phantom.
It is surrounded by HTML elements that guide the user through the edition.
Figure 2.3 shows the general user interface appearance.

HeadingPrevisualiza�on canvas

Element selec�on area

Element edi�on area

Download

View op�ons

Figure 2.3: User interface schema as shown in the HTML page

The scene continuously displays the phantom and allows mouse drag-and-drop
gestures for rotating and panning, as the wheel is used for zooming in and out.
In the view options area (identified in figure 2.3), buttons allow the user to
toggle between different displays or positions.

Elements of the phantom (such as fiber bundles and isotropic regions) are
continuously shown as a list in the left side of the page, classified by type and
marked with their own color in the scene.

For ease of edition, phantom display is tweaked once the user focuses in an
element. This involves highlighting it while fading the others and even showing
its internal structure while it is being edited. These options may be either en-
abled or disabled. Fading level may also be selected.

Once an element is selected for edition, its options appear in the element
edition area as shown in figure 2.3. This is the only dynamic area and it does
not show up unless an element is being edited.

Any edition action immediately takes place in the scene and does not need
any saving process. This is part of the WYSIWYG design. Control points edi-
tion allows an undo action that restores the former position of the point.

Visualization tools are featured at the right side of the page, as shown in
figure 2.3. These tools allow the user to change the camera position or tweak
the way the phantom is displayed. Their aim is to significantly improve user

17

2.4. DESIGN CHAPTER 2. METHODOLOGY

experience and usage comfort.
Placed at the right bottom corner, the download button lets the user retrieve

the phantom description file at any moment. This does not affect the behavior
of the application, whatever the status the user is in.

In order to avoid window scroll-bars, elements in the selection area are auto-
matically re-sized in case the edition elements do not fit in the window. When
the screen shape is changed by the user, all the elements in the page automati-
cally re-sized are as well.

2.4.2 Phantom display

This is the main part of the application. The phantom display canvas gathers
the most part of the page. It is completely interactive and resposible for the
WYSIWYG user experience (see page 10). Based on THREE.js, it is rendered
using WebGL in an HTML5 environment (see page 11).

To accomplish the requirement of loading any kind of phantom and display-
ing it in the canvas by only having its descriptor, we created many classes2
connected to each other to manage and simplify this functionality.

Phantom

FiberSource

RegionSource

FiberTube

FiberSkeleton

IsotropicRegion

THREE.js
objects

Figure 2.4: Four groups of objects interacting between them are responsible for repre-
senting phantom element: The Phantom object, Source classes, Mesh-wrapper classes
and THREE.js objects.

In order to simplify the design, classes and objects were divided into 4 dif-
ferent levels, as shown in figure 2.4.

2In object-oriented programming, a class is a template from which new objects may be
created.

18

CHAPTER 2. METHODOLOGY 2.4. DESIGN

1. Phantom object
Its aim is to contain all references to the classes related to each element of
the phantom and handle their modification. Although a class was created
for future purposes, the application only contains one phantom object
during its execution.

2. Source classes
They contain the description of each element in the phantom. Regarding
the fiber bundles, this class is also responsible for computing the trajectory
of the fiber and supplying it to the mesh-wrapper class objects.

3. Mesh-wrapper classes
The three such classes process the information contained in the source
classes and compute THREE.js mesh objects ready to be added to the
scene.

4. THREE.js objects
Basic and necessary elements for creating a scene and rendering it in We-
bGL. These are objects whose prototype3 is included in the THREE.js
library, so they are the only classes in the phantom display design that
have not been designed for this specific project.

In order to properly understand the transition from a phantom description
to a completely functional and interactive scene, Source classes are presented
first:

Source classes

The source classes are those which contain the information describing the ele-
ment concerned. There is one source class for fiber bundles, FiberSource, and
another for isotropic regions, IsotropicRegionSource. In addition, FiberSource
contains the methods4 for computing the path of the fiber bundle.

In accordance with the phantom description files, source classes contain the
same properties5 as explained in 1.2.3. In addition, those may contain a color
property with class THREE.Color as well. Although not compulsory when load-
ing a phantom description file, when exported from the app, this property is
included. This does not affect Phantomαs.

FiberSource class contains the method polyCalc. This method runs the
code necessary to compute the coefficients of the following 3rd-order polynomial
describing the path:

f(t) = a+ b
t− ti

ti+1 − ti
+ c

(
t− ti

ti+1 − ti

)2

+ d

(
t− ti

ti+1 − ti

)3

where a, b, c and d are the coefficients seeked by polyCalc, and t is the “times-
tamp”, a value over the unit relative to the length of the path.

3Code containing the class definition of an object
4Function that once defined is available to any of the objects of the same class, usually

acting over its properties.
5Variables contained by default in all objects of the same class

19

2.4. DESIGN CHAPTER 2. METHODOLOGY

Coefficient values are stored as properties and later used by the method
interpolate, which allows THREE.js’ objects to retrieve the trajectory from a
time-stamp. A setControlPoint function is also available, which is responsible
for taking all the steps necessary to recompute the path after changing the
position of a control point.

THREE.js objects

As explained before, for creating and managing the three dimensional environ-
ment representing the phantom, the JavaScript library THREE.js was used. In
this section, the main classes used from this library are introduced.

The core of the representation is the scene, an instance of the THREE.Scene

class. To set the view, a camera needs to be added. The camera chosen was
THREE.PerspectiveCamera, as it offers the lesser deformation.

Once the scene and the point of view are placed, those need to be rendered
by a renderer object. THREE.js contains several renderer classes. For We-
bGL rendering (see section 2.1), the corresponding class is THREE.WebGLRenderer.
Renderer objects have a DOM element6 for placing them in the page.

Every time the scene needs to be updated renderer.rendermust be executed.
This function is placed in a function named render, called every time the scene
suffers a change. When a continuous rendering is needed, a native WebGL
function called requestAnimationFrame is given the rendering reference. This
function can set the proper calling interval.

For showing the scene up, lights are also needed. In our specific scene, an
ambient light THREE.AmbientLight was added and 8 directional lights placed in
each corner of the space.

The code for a simplified example of the scene used in this specific applica-
tion is shown in figure 2.5. The actual one is contained in the show function and
can be found in the annex. Note that no object is present as only cameras and
lights are added to the scene.

The main type of objects to be added to a scene are called “meshes”, instances
of THREE.Mesh. Those are the result of processing a geometry object and a mate-
rial object. For all mesh elements shown in the scene, THREE.MeshBasicMaterial
was used. Geometries may be created by using several classes present in the
library.

In addition to the classes included in THREE.js, two other classes were added
as another library, appended directly from THREE.js’ source code [30]. These
are THREE.TrackballControls, which allows the user to freely move around the
scene by using mouse and touch gestures, and THREE.TransformControls, which
builds an interactive interface over any mesh (in this case, fibers’ control points)
that allows free drag-and-drop to change position.

6Element appendable in an HTML page via JavaScript code.

20

CHAPTER 2. METHODOLOGY 2.4. DESIGN

1 var renderer = new THREE.WebGLRenderer();

2 document.appendChild(renderer.domElement);

3
4 var scene = new THREE.Scene();

5 var aspect = window.innerWidth / window.innerHeight;

6 var camera = new THREE.PerspectiveCamera(50, aspect, 1, 100));

7 scene.add(camera);

8
9 var ambientLight = new THREE.AmbientLight(0xffffff, .5);

10 var directionalLight = new THREE.DirectionalLight(0x555555, .15);

11
12 scene.add(ambientLight, directionalLight);

13
14 renderer.render(scene, camera);

Figure 2.5: Sample of the code present in show function, used for setting up the scene.

Mesh-wrapper Classes

Once the source classes are defined, their information is taken to the THREE.js
scene. This task is performed by the mesh-wrapper classes, which include a
reference to their source object and return an object capable of being added
directly to the scene.

In case their source object does not include a color property, mesh-wrapper
classes do create it by assigning a random value obtained from the same color
library used by phantomas_view, for display homogeneity. This library is stored
in a constant named colors.

Whereas two different classes were defined for the source objects, there are
three for the mesh-wrapper. As shown in figure 2.6, these are:

a) FiberTube: Generates the tube mesh, a THREE.Mesh object.

b) FiberSkeleton: Generates a path thread and spheres marking the control
points. These are two objects of classes THREE.Line and THREE.Mesh.

c) IsotropicRegion: Generates the single sphere representing an isotropic
region, as a THREE.Mesh instance.

The source objects built can be easily represented in a THREE.Scene by using
the mesh-wrapper classes. Example 2.7 illustrates this procedure by assuming
that two source instances, fiber and region were already built.

21

2.4. DESIGN CHAPTER 2. METHODOLOGY

a b c

Figure 2.6: Meshes wrapped by mesh-wrapper classes. a. Fiber tube representation
in FiberTube. b. Fiber path and control points in FiberSkeleton. c. IsotropicRegion

representation.

1 // Our three variables are already defined

2 scene instanceof THREE.Scene; // true

3 fiber instanceof FiberSource; // true

4 region instanceof IsotropicRegionSource; // true

5
6 var tube = new FiberTube(fiber);

7 scene.add(tube.mesh);

8
9 var skeleton = new FiberSkeleton(fiber);

10 scene.add(skeleton.line);

11 scene.add(skeleton.spheres);

12
13 var sphere = new IsotropicRegion(region);

14 scene.add(sphere.mesh);

Figure 2.7: Sample code to add phantom elements to the scene using mesh-wrapper
classes.

22

CHAPTER 2. METHODOLOGY 2.4. DESIGN

Phantom class

This is the last class present in the phantom display structure. It is the largest
one as in addition to containing references to all source and mesh-wrapped ob-
jects, it also contains all the required methods to change the way the phantom
shows up in the scene.

The first thing this class features is a reference to each of the source and
mesh-wrapper objects, which are constructed by itself throught the method
Phantom.addFiber or Phantom.addIsotropicRegion. Their structure is defined in
figure 2.8.

Phantom

fibers isotropicRegions

source
Array.<IsotropicRegionS

ource>

sphere
Array.<IsotropicRegion>

skeleton
Array.<FiberSkeleton>

source
Array.<FiberSource>

tube
Array.<FiberTube>

Figure 2.8: Structure of the main properties contained in Phantom object and its class.

Although not necessary for tweaking the display, the GUI requires the arrays
to be the same length and the indexes to match between related elements.

The application was designed so the only needed object to change the visu-
alization was the Phantom object. Thus, it contains several methods that allow
this behavior, and which subsequently call any required procedure for taking it
into action.

A simplified list of the most relevant Phantom methods may be found in ta-
ble 2.1. For further description, please check the developer documentation (see
page 45) or the code found in the annex.

23

2.4. DESIGN CHAPTER 2. METHODOLOGY

Method call Description

addFiber(fiber) Adds a Fiber to the Phantom, by creating
their FiberTube and FiberSkeleton.

addIsotropicRegion(region) Adds a Fiber to the Phantom, by creating
its IsotropicRegion.

addToScene(scene) Adds all Phantom bundles to the given
scene.

newFiber() Creates a new “blank” fiber in the scene.

newIsotropicRegion() Creates a new “blank” isotropic region in the
scene.

addCP(fiberindex, cpbefore) Adds a new Control Point to a specified
Fiber in the Phantom.

removeCP(fiberindex, cp) Removes an existing Control Point of a spec-
ified Fiber in the Phantom.

fadeAll(opacity) Fades all bundles to the given opacity.

unfadeAll() Unfades all bundles.

fiberHighlight(n) Fades all but the given fiber.

cpHighlight(fiber, cp) Overlays a colored slightly bigger sphere
over a control point. Used for forcing user
focus onto it.

revealSkeleton(scene, n) Adds Phantom to the scene and fades all by
adding a Skeleton fiber to a given fiber.

regionHighlight(n) Fades all but the given region.

Table 2.1: Simplified list of most relevant Phantom methods.

24

CHAPTER 2. METHODOLOGY 2.4. DESIGN

2.4.3 Observer pattern design

In order to provide the consistency between all elements present in a phantom,
the “observer pattern” was implemented in Phantomαs Web Designer. This
pattern is used in software when an object is acting as an “observer”, being de-
pendent of another object, the “subject”. When implemented, once the subject
changes its state, all of its observers are notified about it [31]. Its behavior is
schematized in figure 2.9.

observers = <array>[
Observer A,
Observer B,
...]

notify()

Subject refresh() Subject refresh()

Figure 2.9: Schema representing the behavior of the observer pattern. Observers,
referenced to a subject, are notified once notify() method is triggered.

During the development of this application, the observer pattern was used
between source and mesh-wrapper objects. Source objects contain a method
named addObserver for this purpose, whereas all mesh-wrapper objects have a
refresh method.

By using any of the methods included in source classes, all observers get
their refresh method called. This way ensures the concordance between these
two core parts of the application.

2.4.4 Browser stability

When designing an application to be run in several clients, stability is a point
to be taken into account in order to ensure a suitable performance and user
experience.

In Phantomαs Web Designer theWebGL canvas is the main resource spender.
As so, we may lower them: as long as the phantom is displayed, we may disre-
gard good graphic effects.

25

2.4. DESIGN CHAPTER 2. METHODOLOGY

To keep a limited number of graphical elements to display we may specify
the amount of segments meshes will feature. Segments are the number of ver-
tices conforming a mesh. The lesser the segments are, the lesser the computing
needed, making the application more fluent by lowering some of the displaying
quality. Changing the amount of segments is purely visual and does not affect
the phantom edition at all. This can be appreciated in figure 2.10.

The amount of segments in a mesh has to be specified in its building geome-
try. To handle this, mesh-wrapper constructors7 expect an optional parameter
as an object, which may include the amount of segments to build.

This parameter is determined by the Phantom function, which returns the
optimal number out of a constraint list set in the constant meshConstraints,
declared at the main script of the code.

a b

Figure 2.10: Applying segment constraints: a. Phantom with non-distinguishable
segments. Experience was laggy. b. Phantom with constrained segments. Segments
are visible but experience was smooth.

From several experience tests taken in different clients and platforms, the
constant meshConstraints is currently specified in Phantomαs Web Designer as
shown in figure 2.11.

7Functions that create an object of a specific class.

26

CHAPTER 2. METHODOLOGY 2.4. DESIGN

1 var meshConstraints = {

2 maxTotalAxialSegments: 1440,

3 maxMeshAxialSegments: 64,

4
5 maxTotalRadialSegments: 480,

6 maxMeshRadialSegments: 32,

7
8 maxTotalLineSegments: 960,

9 maxMeshLineSegments: 128,

10
11 maxTotalSkeletonSphereSegments: 240,

12 maxMeshSkeletonSphereSegments: 16,

13
14 maxTotalIsotropicRegionSegments: 1024,

15 maxMeshIsotropicRegionSegments: 32

16 }

Figure 2.11: Constant meshConstraints declaration. The number of segments specified
in each of the rules is always into account by mesh-wrapper classes.

2.4.5 HTML

Web browsers work over HTML files. These contain the HTML markup itself,
with both JavaScript and CSS code if applicable. This code may be either
embedded in the HTML or referenced to an external file.

This application is wrapped in a single HTML file, named phantomas.html

and located in the root directory. All CSS and JavaScript code is referenced.

The HTML page only contains the elements which remain static in the page,
whereas the rest are managed by the GUI’s JavaScript code.

To understand the structure of the HTML page, we must remind the struc-
ture of the interface itself, introduced in figure 2.3 (page 17). The same structure
along with its HTML elements is reproduced in figure 2.12.

Each area is defined by a <div> element8. There are three main divisions,
placed in three recognizable columns. Inside each, more <div> elements are
placed to ease the interaction with CSS and JavaScript code. elements9
are also used for element lists or for properly placing consecutive elements.

The HTML code structure is shown in figure 2.13. Those empty elements
that are to be filled by JavaScript code are shown in grey. A simplified HTML
code for building this interface can be found in figure 2.14.

8Defines a division in an HTML document. Groups elements to format them with CSS.
9Delimits an unordered list in an HTML document.

27

2.4. DESIGN CHAPTER 2. METHODOLOGY

leftGUIleftGUI

Element edition area

Download

Preview
Phantom

Axis

Z Plane

Y Plane

X Plane

Opacity selectorList of Isotropic Regions

List of Fibers

Fibers

Isotropic Regions

Figure 2.12: User interface schema as shown in the HTML page, drawn over the
interface structure shown in figure 2.3.

<body>

<div>
leftGUI

<div>
container

<div>
rightGUI

<div>
--Fibers--

<div>
--Regions--

<div>
editGUI

fiberSelector

regionSelector

<button>
switchView

<input>
opacity

viewButtons

<div>
bottomButton

Figure 2.13: HTML code structure. Those elements shown in grey are created empty
as will be managed by JavaScript GUI code.

28

CHAPTER 2. METHODOLOGY 2.4. DESIGN

1 <body>

2 <div id="leftGUI">

3 <div>

4 Fibers

5 </div>

6 <ul id="fiberSelector">

7

8

9 <div>

10 Isotropic Regions

11 </div>

12 <ul id="regionSelector">

13

14
15 <div id="editGUI">

16 </div>

17 </div>

18
19 <div id="container">

20 </div>

21
22 <div id="rightGUI">

23 <button id=’switchViewButton’ />

24

25

26

27

28 <button id=’toggleAxesButton’>

29

30

31 <input type=’button’ title="X Plane (X)">

32

33

34 <input type=’button’ title="Y Plane (Y)">

35

36

37 <input type=’button’ title="Z Plane (Z)">

38

39

40

41 <input id=’opacitySelector’/>

42 <div id="bottomButtons">

43 <button title="Save (S)">

44 </div>

45 </div>

46 </body>

Figure 2.14: HTML simplified code for building the interface shown in figure 2.13.

29

2.4. DESIGN CHAPTER 2. METHODOLOGY

2.4.6 GUI Construction
As an HTML file only contains the pattern to the General User Interface (GUI),
it has to be built by JavaScript code. GUI Construction concerns those func-
tions which read the information from the phantom and display the correspond-
ing GUI.

There are three empty DOM Elements placed in the HTML page, awaiting
content fill (see figure 2.13). Each of them is identified by an ID which JavaScript
code may reference to, as seen in figure 2.14. Those are:

• Fiber selection list

• Isotropic Region selection list

• Edition user interface

There are seven different GUI Construction functions that act depending on
user’s actions. A list with their description can be found in table 2.2, and the
timeline in figure 2.15 shows when are those fired.

setupGUI

cpEdit

regionEdit

fiberEdit
addCPSelect

editExit

User edits fiber

User edits region

User leaves
control point edition

exitCPEdit

User leaves edition mode

App is initiated
or

phantom is changed
User edits

control point

Figure 2.15: GUI Constructors’ functions firing depending on actions taken by the
user.

As seen in figure 2.15, the interface is initiated with both setupGUI and
editExit. From then on, other GUI construction functions are recursively fired.

Each of the GUI construction functions are introduced as follows.

30

CHAPTER 2. METHODOLOGY 2.4. DESIGN

Function Description

setupGUI() Constructs a basic-static GUI when no action has taken
place yet.

editExit() Removes any edition UI. Adds new element buttons.

regionEdit(index) Adds the isotropic region edition GUI.

fiberEdit(index) Adds the fiber edition GUI.

addCPselect() Adds the control point selector UI for the current fiber.

cpEdit(index) Constructs the Control Point edition UI for a given in-
dex of a control point.

exitCPedit() Removes the former Control Point edition UI.

Table 2.2: GUI construction function collection

setupGUI and editExit

Function setupGUI is fired along with editExit once the app is initiated or the
phantom array of elements is changed.

The former is responsible for filling the element selector lists. The latter
empties the edition <div> and builds new element buttons on top. This is the
reason why it needs to be called after the app is initiated.

Each of these procedures are simple; setupGUI reads from Phantom object
(see section 2.4.2 on page 23) the amount of objects present on it and builds
one selection element for each of them.

A simplified code may be consulted in figures 2.16 and 2.17.

fiberEdit and regionEdit

These two functions are responsible for building the main properties’ edition
interface for the respective elements. They only require a single parameter, the
index of the element in the phantom object array.

Main properties’ edition interface consists in a form structure with informa-
tion and editable elements.

For a fiber, these elements are

• Number of points

• Fiber color

• Path length

• Radius (editable)

• Tangents (editable)

31

2.4. DESIGN CHAPTER 2. METHODOLOGY

1 // Retrieve DOM elements

2 var fiberSelector = document.getElementById("fiberSelector");

3 var regionSelector = document.getElementById("regionSelector");

4
5 // Add *none* option

6 var option = document.createElement("LI");

7 option.innerHTML = ’*none*’

8 fiberSelector.appendChild(option);

9 regionSelector.appendChild(option);

10
11 // Add the rest of the options

12 phantom.fibers.source.forEach(function(fiber, index) {

13 var option = document.createElement("LI");

14
15 //Color mark for the selector

16 var selectColorSpan = document.createElement("span");

17 selectColorSpan.style.color = fiber.color.getStyle();

18 selectColorSpan.innerHTML = ’■ ’; //#9632 is the unicode

reference for the black square

19
20 //Text in selector

21 var selectTextSpan = document.createElement("span");

22 selectTextSpan.innerHTML = fiber.controlPoints.length.toString() + "

points";

23
24 option.appendChild(selectColorSpan);

25 option.appendChild(selectTextSpan);

26
27 fiberSelector.appendChild(option);

28 });

29
30 // Same for isotropic regions

31 phantom.regions.source.forEach(...

Figure 2.16: Simplified version of setupGUI function.

1 // Empty edit GUI

2 var editGUI = document.getElementById(’editGUI’);

3 editGUI.innerHTML = ""

4
5 var newfiberbutton = document.createElement("BUTTON");

6 newfiberbutton.innerHTML = "New Fiber";

7
8 var newregionbutton = document.createElement("BUTTON");

9 newregionbutton.innerHTML = "New Region";

10
11 editGUI.appendChild(newregionbutton);

12 editGUI.appendChild(newfiberbutton);

Figure 2.17: Simplified version of editExit function.

32

CHAPTER 2. METHODOLOGY 2.4. DESIGN

and for a region they are

• Region color

• Radius

• Position, containing:

◦ Position in x (editable)
◦ Position in y (editable)
◦ Position in z (editable)

These elements are added in editGUI <div> element. In the case of fiberEdit,
it is always called along with addCPSelect, which appends the list of control
points for the specific fiber.

addCPSelect, cpEdit and exitCPEdit

Three functions are responsible for the control points edition interface. cpEdit

builds the edition interface of a control point, while exitCPEdit empties its
space.

Interface is built in a new <table> element created by fiberEdit. It contains
the control point selection, created by the function addCPSelect. This function
was designed separately to allow an independent refresh.

The table hosting the control point edition interface consists in two columns.
The left one, thinner, contains the vertical list of the control points, while the
second is the one where DOM elements responsible for the control point edition
are built.

Elements present in a control point edition interface concern:

• Order number of the current control point

• Position in x (editable)

• Position in y (editable)

• Position in z (editable)

• Drag and drop toggle button

• Undo edition button

• New control point button

• Remove control point button

The HTML structure schema is summarised in figure 2.18, as contained in
“editGUI” <div> element (see figure 2.13 in page 28).

33

2.4. DESIGN CHAPTER 2. METHODOLOGY

<td>
cpEditor

<td>

<fieldset>

<button>

Figure 2.18: “editGUI” <div> element HTML structure during a control point edition.

2.4.7 GUI Handlers

GUI Handlers are all those functions called by a specific GUI element that has
been set to do so when created.

Elements having a GUI Handler target have it referenced as an event. This
reference is created when this element is declared, either by a GUI Constructor
or in the HTML file.

There are several events to set in a DOM Element. In Phantomαs Web
Designer the most used are specified in table 2.3.

Event Description

onload Browser has finished loading the page

onmouseenter Cursor is moved onto the element

onclick User clicks the HTML element

onchange HTML element has been changed

onmouseleave Pointer is moved out of the element

keyup User releases a keyboard key

Table 2.3: Events used over application’s DOM elements and their description [6].

34

CHAPTER 2. METHODOLOGY 2.4. DESIGN

All functions of the GUI handlers group are described in table 2.4. In addi-
tion, there is a small group of handlers related to CSS classes in the document.
Those will be introduced in section 2.4.11.

In several parts of the code it may also be seen that functions were designed
for being as well called to restore phantom display mode.

This is used by class GuiStatus, introduced in next section, does specific10
calls to fiberSelectClick, regionSelectClick and cpSelectClick functions in
order to restore phantom display mode.

2.4.8 GUI Managers
Last group of functions responsible for the GUI are the GUI Managers. Those
harmonize the whole GUI with its environment.

The class GuiStatus is part of the GUI Managers. Its function is storing the
task the user is performing and calling the Phantom class for visualization har-
mony. An schema of its functioning is shown in figure 2.19. Only one GuiStatus

object is present at once.

Phantom

FiberSource

RegionSource

GUI Status

Render in THREE.js Scene

Creates

DOM Events

Notifies Visual Change

DOM
Elements

Render in browser

Modify

Figure 2.19: Class interaction in Phantomαs Web Designer, with GuiStatus class hav-
ing an essential function.

In a GuiStatus object the GUI current status is stored in five properties, as
shown in table 2.5.

10Those calls are flagged with a boolean. When true, these functions act slightly different.

35

2.4. DESIGN CHAPTER 2. METHODOLOGY

Handler function Description

switchViewButton Handler for preview button. Switches on and
off the fade of the scene.

fiberSelectClick Events to be fired when a fiber was selected
from the list.

regionSelectClick Events to be fired when an isotropic region
was selected from the list.

cpSelectClick Events to be fired when a control point was
selected from the list.

newFiberClick Fires the creation of a new fiber and goes into
edition.

newIsotropicRegionClick Fires the creation of a new isotropic region
and goes into edition.

removeFiberClick Fires the removal of a fiber and quits edition.
Prompts the user for confirmation.

removeIsotropicRegionClick Fires the removal of an isotropic region and
quits edition. Prompts the user for confirma-
tion.

newCPclick Fires the addition of a new Control Point af-
ter the current one. Gets into edit mode.

newCPonmouseover Hover for new control point button. Simu-
lates to the scene the addition of a new con-
trol point in green color.

newCPonmouseout Restores the scene after un-hover in the new
control point button.

removeCPclick Fires the removal of a control point and quits
edition. Prompts the user for confirmation.

toggleAxes Toogles axes view button. Switches between
showing or removing them in the scene.

moveCameraXY Moves view to the XY plane.

moveCameraXZ Moves view to the XZ plane.

moveCameraZY Moves view to the ZY plane.

opacitySelectChange Fired when the value in the opacity selector
is changed. Corrects the value and fires the
scene change.

saveClick Prompts the user to download the description
of the current phantom.

Table 2.4: List of GUI Handler functions present in the code.

36

CHAPTER 2. METHODOLOGY 2.4. DESIGN

Name Type Default value Description

editingFiber Number undefined Index of currently be-
ing edited fiber. If any,
undefined.

editingCP Number undefined Index of currently being
edited control point. If any,
undefined.

editingRegion Number undefined Index of currently being
edited isotropic region. If
any, undefined.

previewing Boolean false Whether preview mode is
active or not.

dragAndDropping Boolean false Whether drag and drop con-
trol point edit mode is active
or not.

Table 2.5: Properties in GuiStatus object with their type and default value.

GuiStatus features two main methods. First, editing, which makes it to
change its properties to the given status. Second, retrieve, which makes the
Phantom object and the GUI HTML elements to restore their default displaying
mode by reading its own properties. retrieve uses several GUI Handlers’ func-
tions.

Function resizeGUI is the second and last element of the GUI Managers. Its
function is to make all the elements fit in the screen so that no window scroll
bar pops up.

The way to do so is by re-sizing the element selectors, leaving the exact
amount of shown elements so that all the elements fit in the leftGUI <div>.
Other elements in the selection lists can be seen by scrolling.

resizeGUI is called every time the browser window is re-sized or other ele-
ments are created in any of the leftGUI <div> areas.

2.4.9 JSON load and save
As this app was developed for avoiding plain text edition of Phantomαs’ JSON
files, functions for loading and exporting them are essential. These are loadPhantom
and pushDownload.

A simple string containing the JSON information is all that loadPhantom

needs to load the file. It creates all the source objects and returns all of them
added in a Phantom object. A sample code of this function can be seen in fig-
ure 2.20.

37

2.4. DESIGN CHAPTER 2. METHODOLOGY

1 function loadPhantom(string) {

2 // Create an empty phantom

3 var phantom = new Phantom();

4 // Parse objects contained in the string

5 var loadedFibers = JSON.parse(string).fiber_geometries;

6 var loadedRegions = JSON.parse(string).isotropic_regions;

7
8 // Add them to the phantom

9 for (var property in loadedFibers) {

10 if (loadedFibers.hasOwnProperty(property)) {

11 var fiber = loadedFibers[property.toString()];

12 // addFiber Phantom method is used

13 phantom.addFiber(new FiberSource(fiber.control_points, fiber.

tangents, fiber.radius);

14 }

15 }

16 for (var property in loadedRegions) {

17 ...

18 }

19
20 // log an error in case fibers or regions were not found.

21 if (phantom.isotropicRegions.source.length == 0) console.warn(’Any

region found in file’);

22 if (phantom.fibers.source.length == 0) console.warn(’Any fiber found in

file’);

23
24 return phantom;

25 }

Figure 2.20: Simplified code contained in the loadPhantom function, which creates a
new Phantom object with all of its elements out of a parsed JSON string.

38

CHAPTER 2. METHODOLOGY 2.4. DESIGN

Creating a string with the contents of a JSON file just involves turning into
a string each of the properties of the elements in the phantom. The method
export contained in Phantom prototype returns this string.

Note that it also adds the color property, which loadPhantom is also ex-
pecting. In case there is none, it is ignored and randomized by mesh-wrapper
constructors.

As for the name contained in Phantomαs’ JSON files, those are set just with
a single number, which is the index in the Phantom array.

Allowing the user to download the JSON file is somewhat more complex. For
allowing the download of a file which does not exist in the server, a redirection
to an URL which includes its data was created [32].

First, an empty <a> element is placed somewhere in the page, styled to not
be displayed:

Function pushDownload encodes the JSON string as a link redirection, adds
the file name and simulates its click. A simplified code of the pushDownload

function is shown in figure 2.21.
The file name includes a time stamp. For instance, a file downloaded on

12/05/2017 at 18:46h would be named after 120520171846-phantom_save.json.

1 // Encode the JSON string "content"

2 var uriContent = "data:text/json;charset=utf-8," + encodeURIComponent(

content);

3
4 // Find the empty element located in the HTML page.

5 var dlAnchorElem = document.getElementById(’downloadAnchorElem’);

6 // Add the encoded string as the href attribute

7 dlAnchorElem.setAttribute("href", uriContent);

8 // Set the download filename. timestamp function creates a string in a

ddmmyyyyhhmm structure

9 dlAnchorElem.setAttribute("download", timestamp()+"-phantom_save.json");

10 // Simulate a click in the anchor element

11 dlAnchorElem.click();

Figure 2.21: Code in pushDownload function responsible for pushing the download of
a phantom description JSON file.

39

2.4. DESIGN CHAPTER 2. METHODOLOGY

2.4.10 App initiation

Once the HTML page is loaded and the scripts referenced to it are loaded,
document.onload function is executed. In this app, the init function was as-
signed as document.onload. It loads the JSON file (if any) and calls the main
JavaScript functions.

HTTP Request

To load an specified JSON file, an HTTP Request is performed. This is included
in the init function.

Due to further development expected in Phantomαs, for now the JSON file
must be placed in the server and the user has no option to select it from its
hard drive. The path to this file is to be specified in the URL itself, sepa-
rated by a question mark. For example, for loading the file placed in path
examples/fibers.json the URL would be:

phantomas.html?examples/fibers.json

Once the JavaScript function has located the file, it parses its contents and
loads it into a Phantom object called phantom, by using the loadPhantom function.
In case no file is specified or the file is not found, it enters in “scratch mode” by
creating an empty Phantom object.

After having defined phantom, the app is initated by running both the show

and setupGUI functions.
All the information regarding the HTTP request is logged in the JavaScript

browser console for aiding at debugging. The code contained in init function
is shown in figure 2.22.

2.4.11 CSS

Styling sheets in Phantomαs Web Designer do not only define the look of the
HTML elements but also their style behavior when interacting between them.

Up to four CSS files are referenced in the HTML <head> section:

• main.css: Main styling sheet for the HTML elements. Defines main classes
and their behavior.

• icons.css: Defines a class11 pointing at a secondary file font containing
the icons shown in buttons.

• w3.css: W3C CSS library for buttons styling.

• normalize.css: normalize.css CSS sheet, used for maintaining homoge-
neous appearance across different browsers (see section 2.2).

11A class in CSS is a group in which elements being part of it share the same styling.
Elements usually change their class dynamically.

40

CHAPTER 2. METHODOLOGY 2.4. DESIGN

1 // Set init as window.onload function

2 window.onload = init;

3
4 function init() {

5 // Check whether a path was or not specified

6 if (location.href.indexOf(’?’) > 0) {

7 path = location.href.substring(location.href.indexOf(’?’) + 1);

8 makeRequest();

9 } else {

10 phantom = new Phantom();

11 console.log(’No specified path found. Loading scratch mode.’);

12 show();

13 setupGUI();

14 }

15
16 function makeRequest() {

17 var request = new XMLHttpRequest();

18 request.overrideMimeType("text/plain");

19 request.open("get", path, true);

20 request.onreadystatechange = function() {

21 if (this.readyState === 4) { // If request is completely finished

22 if (this.status === 200) { // If it was successful

23 phantom = loadPhantom(this.response);

24 } else { // If it was not successful

25 console.error(’Error: ’ + path + ’ was not found. Loading

scratch mode.’)

26 phantom = new Phantom();

27 }

28 show();

29 setupGUI();

30 }

31 };

32 request.send(null); // End the request

33 }

34 }

Figure 2.22: Code contained in the init function, responsible for loading the file
request and executing the main initiation functions.

41

2.4. DESIGN CHAPTER 2. METHODOLOGY

main.css

Main styling sheet main.css was built from scratch for this specific application.
It serves three functionalities: placing correctly <div> elements in the page,
styling HTML interface, and defining classes for the behavior of element selec-
tion lists during interaction.

The main goal of this application is that the interface remains static. This
means that no scrolling bar pops up at any time in the window to avoid unde-
sired behavior. This is ensured by precisely setting the margins in global <html>
element and <div> divisors, all set with the inline-block display mode. The
code used in leftGUI <div> is shown as a sample in figure 2.23.

1 hml, html, body {

2 margin: 0;

3 padding: 0;

4 }

5
6 #leftGUI {

7 float: left;

8 text-align: left;

9 display: inline-block;

10
11 width: 19%;

12 margin: 0;

13 padding: .5%;

14 }

Figure 2.23: Code used in main.css file for organizing the page display for the global
<html> element and leftGUI <div>.

Setting up an harmonious look with the rest of the page for those generic
DOM elements used in the GUI is also an aim of main.css. This involves <input>
fields or and elements used for ordering buttons and lists.

The action taken is setting background black and font white, as the Three.js
scene, and disabling padding and bullets in lists as none is expected.

Last but really important function of main.css is styling element lists ac-
cording to the user action. This makes a big leap in user experience.

This ability is managed by using CSS classes declared in main.css, which
are set by JavaScript code in GUI Builders, and changed dynamically by a
special category in GUI Handlers functions which focus just on elements’ style
class. These different classes are declared in main.css as shown in figure 2.24.
GUI Handlers’ functions managing those over elements may be consulted in ta-
ble 2.25.

42

CHAPTER 2. METHODOLOGY 2.4. DESIGN

1 .enabledList {

2 overflow: scroll;

3 overflow-x: hidden;

4 cursor: pointer;

5 padding-left: 5px;

6 border-style: solid;

7 border-width: 1px;

8 border-color: grey;

9 border-right: 0;

10 }

11 .disabledList {

12 background-color: grey;

13 padding-left: 10px;

14 }

15 .optionUnselected {

16 }

17 .optionSelected {

18 padding-left: 15px;

19 color:yellow;

20 font-weight:bold;

21 }

22 .optionOnMouseOver {

23 font-weight:bold;

24 background-color: DimGrey;

25 }

26 .optionSelectedAndOnMouseOver {

27 background-color: DimGrey;

28 padding-left: 20px;

29 color:yellow;

30 font-weight:bold;

31 }

Figure 2.24: Code used in main.css file for declaring classes used in dynamic GUI
behavior.

1 function optionOnMouseOver(option) {

2 if (option.className == ’optionSelected’) {

3 option.className = ’optionSelectedAndOnMouseOver’;

4 } else if (option.className == ’optionUnselected’) {

5 option.className = ’optionOnMouseOver’;

6 }

7 }

8 function optionOnMouseLeave(option) {

9 if (option.className == ’optionSelectedAndOnMouseOver’) {

10 option.className = ’optionSelected’;

11 } else if (option.className == ’optionOnMouseOver’) {

12 option.className = ’optionUnselected’;

13 }

14 }

Figure 2.25: Two of the functions present in GUI Style Handlers, set as events and
responsible of their look depending on user’s actions.

43

2.4. DESIGN CHAPTER 2. METHODOLOGY

w3.css and icons.css

Two stylesheets add more classes to the page. These are w3.css and icons.css

and are used solely on buttons.

World Wide Web Consortium (W3C) deployedW3.CSS, a free-to-use styling
sheet with the aim to provide a cross-platform good-looking and light-weight
environment [33].

Its button classes were the only used to provide a better user experience.

Button values are shown as icons. This is thanks to a styling class defined
in icons.css that calls a new font, stored in a .woff file in icons/ root folder.

This font is custom built for reducing its weight, and contains 5 “Material
Icons” [34], the ones shown in the GUI. Those are invoked by defining the class
and writing the code assigned to the icon in the font. icons.css code is shown
in figure 2.26.

1 @font-face {

2 font-family: ’appicons’;

3 font-style: normal;

4 font-weight: 400;

5 src: url(../icons/icons.woff) format(’woff’);

6 }

7
8 .icons {

9 font-family: ’appicons’;

10 font-weight: normal;

11 font-style: normal;

12 font-size: 24px;

13 line-height: 1;

14 letter-spacing: normal;

15 text-transform: none;

16 display: inline-block;

17 white-space: nowrap;

18 word-wrap: normal;

19 direction: ltr;

20 }

Figure 2.26: Code used in icons.css, which defined a new font and a new styling class
for invoking icons contained in custom font icons.woff.

normalize.css

As introduced in “Technologies involved” (page 11), normalize.css was used as
a tool for harmonizing the style along most browsers in the market.

CSS stylesheet normalize.css is a slightly modified version of normalize.css [23]
version 5.0.0. These modifications were taken during the development of the
GUI for better responsiveness.

44

CHAPTER 2. METHODOLOGY 2.4. DESIGN

2.4.12 Homepage

To wrap a few sample examples in Phantomαs and referencing some contents
related to the application, a plain HTML page was built.

Links referencing to elements such as the documentation, examples or in-
formation related to Phantomαs were included to guide the user through the
possibilities the application offers.

This homepage currently looks as in figure 2.27. It is stored as index.html

and contains no JavaScript nor CSS code apart from inline styling.

Figure 2.27: General look of simple Phantomαs Web Designer’s homepage.

2.4.13 Documentation

Two different documentations were created for Phantomαs Web Designer. The
first is the “User Documentation”, addressed to Phantomαs Web Designer’s
users. The other, the “Developer Documentation”, is addressed to those de-
velopers who want to improve the code or build something related to it.

Both are rendered in HTML, so it may be read by using the same browser
in which the application is being executed in.

In the “User Documentation” all possibilities regarding the usage of the app
are explained. It is only directed towards the users.

It was created with reStructuredText, a lightweight markup language that
renders in HTML [26]. A sample of the user documentation can be seen in
figure 2.28.

As for as the “Developer Documentation” concerns, it was created with JS-
Doc3, an open-source API documentation generator for JavaScript [25].

45

2.4. DESIGN CHAPTER 2. METHODOLOGY

Figure 2.28: General look of the heading of Phantomαs Web Designer’s user docu-
mentation.

Each of the files, functions and classes to be documented have a heading
of commented code between the flags /** and */. Those flags are parsed and
interpreted by JSDoc3, which creates a series of HTML files containing the
whole documentation and the parsed code, all linked in between them.

An example of a heading with comments to be parsed by JSDoc3 and its
result can be found in figure 2.29.

In order to be consistent in each JSDoc3 processing, a specific configuration
file was created. This configuration is expected by the tool and was designed
by following its documentation [25]. It is also given along with the application’s
code. This configuration file is formatted in JSON and its content may be con-
sulted in figure 2.30.

46

CHAPTER 2. METHODOLOGY 2.4. DESIGN

1 function FiberSource(controlPoints, tangents, radius, color) {

2 /** @class FiberSource

3 * @classdesc A fiber bundle in Phantomas is defined as a cylindrical

tube wrapped around

4 its centerline. The centerline itself is a continuous curve in 3D, and

can be

5 simply created from a few control points. All the fibers created are

supposed to connect two

6 cortical areas.

7 * FiberSource is the basic Class for the representation of a Fiber.

Objects containing

8 the geometries to be added to the scene are to be referred to

FiberSource for

9 gathering any necessary information.

10
11 * @param {array} controlPoints Array-of-arrays (N, 3) containing the 3

-D coordinates

12 of the fiber Control Points.

13 * @param {string} [tangents=’symmetric’] Way the tangents are to be

computed.

14 Available options: ’incoming’, ’outgoing’, ’symmetric’

15 * @param {number} [radius=1] Fiber radius; same units as

controlPoints.

16 * @param {number} [color] Color in which the fiber should be

displayed. If not

17 specified, to be picked randomly from {@link colors}.

18
19 * @property {array} observers Objects to be notified when some change

is applied

20 */

Figure 2.29: Heading of the FiberSource class constructor and its result after JSDoc3
processing.

47

2.4. DESIGN CHAPTER 2. METHODOLOGY

1 {

2 "source": {

3 "include": ["js", "gui"],

4 "includePattern": ".+\\.js(doc|x)?$",

5 "excludePattern": "(^|\\/|\\\\)_"

6 },

7 "opts": {

8 "destination": "./doc/developer/"

9 },

10 "tags": {

11 "allowUnknownTags": true,

12 "dictionaries": ["jsdoc","closure"]

13 },

14 "plugins": [],

15 "templates": {

16 "cleverLinks": true,

17 "monospaceLinks": false

18 }

19 }

Figure 2.30: Contents of JSDoc3 configuration file, jsdoc-conf.json

2.4.14 File structure
All files containing the described JavaScript functions (extension .js) and CSS
files (extension .css) are placed in a root folder which also contains the .html

file of Phantomαs. Their relative path is placed in the HTML file heading, so
that they can be loaded by the browser.

To avoid JavaScript code from running when dependent elements have not
been loaded yet, the window.onload function is referenced, as explained in sec-
tion 2.4.10.

Many other files are present in the source code folder, such as documentation
or icons. The complete structure is shown in figure 2.31. The contents of each
of the main files is explained in table 2.6, while the code present in the HTML
<head>, for referencing those, may be consulted in figure 2.32.

48

CHAPTER 2. METHODOLOGY 2.4. DESIGN

phantomas-web/

index.html

phantomas.html

css/

icons.css

main.css

normalize.css

w3.css

doc/

jsdoc-conf.json

developer/

index.html

user/

img/

source.rst

index.html

examples/

3Dfanning_13bundles.json

60crossing_3bundles.json

90kissing_3bundles.json

fibers.json

isbi_challenge_2013.json

gui/

cpedit.js

fiberedit.js

handlers.js

regionedit.js

resize.js

setup.js

status.js

stylehandlers.js

icons/

icons.woff

favicon.ico

js/

FiberSource.js

MeshSource.js

axes.js

load.js

main.js

Phantom.js

save.js

dragAndDrop.js

lib/

TrackballControls.js

three.min.js

TransformControls.js

Figure 2.31: Structure of main files and folders present in root folder. Description of
each available in table 2.6.

49

2.4. DESIGN CHAPTER 2. METHODOLOGY

File name Description
phantomas-web/ Root folder
index.html Phantomαs Web Designer’s homepage
phantomas.html Phantomαs Web Designer’s HTML
css/ CSS files are placed in this directory
icons.css Class definition for button icons
main.css Main classes definition
normalize.css normalize.css CSS file
w3.css W3CSS button classes
doc/ Documentation
jsdoc-conf.json JSDoc3 configuration file
developer/ Developer documentation
index.html Main page for documentation, followed by its files
user/ User documentation
img/ User documentation image files
source.rst User documentation reStructuredText source file
index.html User documentation processed HTML file
examples/ Phantomαs’ examples
gui/ GUI JavaScript code
cpedit.js cpEdit and exitCPedit functions
fiberedit.js fiberEdit function
handlers.js GUI Handlers functions
regionedit.js regionEdit function
resize.js resizeGUI function
setup.js guiSetup and editExit functions
status.js GuiStatus class
stylehandlers.js GUI Style Handlers functions
icons.woff Font containing GUI’s icons
favicon.ico Page browser icon
js/ Core JavaScript code
FiberSource.js FiberSource and IsotropicRegionSource classes
MeshSource.js Mesh-wrapper classes
axes.js buildAxes function
load.js loadPhantom function
main.js Variable declaration. init and show functions
Phantom.js Phantom class
save.js Phantom.export method, pushDownload function
dragAndDrop.js dragAndDrop function
lib/ Libraries
TrackballControls.js THREE.TrackballControls class
three.min.js THREE.js r84
TransformControls.js THREE.TransformControls class

Table 2.6: List of main files and folders present in root folder, as shown in figure 2.31,
and its description.

50

CHAPTER 2. METHODOLOGY 2.4. DESIGN

1 <link rel="icon" href="icons/favicon.ico">

2 <link rel="stylesheet" href="css/normalize.css" />

3 <link rel="stylesheet" href="css/w3.css" />

4 <link rel="stylesheet" href="css/main.css" />

5 <link rel="stylesheet" href="css/icons.css">

6
7 <script type="text/javascript" src="lib/three.min.js"></script>

8 <script type="text/javascript" src="lib/TrackballControls.js"></script>

9 <script type="text/javascript" src="lib/TransformControls.js"></script>

10
11 <script type="text/javascript" src="js/FiberSource.js"></script>

12 <script type="text/javascript" src="js/MeshSource.js"></script>

13 <script type="text/javascript" src="js/Phantom.js"></script>

14 <script type="text/javascript" src="js/dragAndDrop.js"></script>

15 <script type="text/javascript" src="js/load.js"></script>

16 <script type="text/javascript" src="js/save.js"></script>

17 <script type="text/javascript" src="js/axes.js"></script>

18 <script type="text/javascript" src="js/main.js"></script>

19
20 <script type="text/javascript" src="gui/handlers.js"></script>

21 <script type="text/javascript" src="gui/resize.js"></script>

22 <script type="text/javascript" src="gui/status.js"></script>

23 <script type="text/javascript" src="gui/setup.js"></script>

24 <script type="text/javascript" src="gui/stylehandlers.js"></script>

25 <script type="text/javascript" src="gui/fiberedit.js"></script>

26 <script type="text/javascript" src="gui/regionedit.js"></script>

27 <script type="text/javascript" src="gui/cpedit.js"></script>

Figure 2.32: HTML <head> extract, which references necessary JavaScript and CSS
code. These are referenced following the relative paths shown in figure 2.31.

51

2.5. LICENSING AND SOURCE CHAPTER 2. METHODOLOGY

2.5 Licensing and source
Phantomαs Web Designer is open-source software, hold by the BSD 2-Clause
License (“Berkeley Software Distribution License”). This license allows modifi-
cation and commercial use while always reproducing its content and acknowl-
edging its author.

Source code is also open since its early development, as its git repository is
public in GitHub [35], as seen in figure 2.33.

All of its future development is expected to continue through this same
repository, in which pull requests12 are welcome. The complete text of the
license can also be found in the repository.

Figure 2.33: Phantomαs Web Designer’s GitHub repository as of 2017-05-14.

12Source code modification suggested by another GitHub user.

52

Chapter 3

Results

53

CHAPTER 3. RESULTS

In this chapter the result of the finished project from the user eye is pre-
sented.

Although for a full demonstration on how the software works and the way it
meets its requirements a dynamic mean might be necessary, a sneak peek will
be introduced to get the idea on how the application behaves.

The last version of Phantomαs Web Designer is hosted1 in the URL phantomas.

ddns.net and ready to use. Its source code is available in its GitHub repository
github.com/ecaruyer/phantomas-web. Although the code itself does not need to
be compiled, a local HTTP server is usually needed for loading local phantom
description files.

Software operation

The main requirements set were the ability of the software to load Phantomαs
JSON files and being able to display the phantom contained in a 3D interactive
environment. This functionality is presented in figure 3.1, by loading 2013
HARDI ISBI Challenge’s phantom description [16].

Figure 3.1: Phantomαs Web Designer in non-edit mode, displaying a 30-element phan-
tom over Mozilla Firefox 37 in a Fedora 21 system.

As of the ability to recognize and analyze different elements, the application
fades the one in which the mouse is placed over, allowing the user to easily
recognize it. This feature can be seen in figure 3.2.

1Until 2017 fall

54

phantomas.ddns.net
phantomas.ddns.net
github.com/ecaruyer/phantomas-web

CHAPTER 3. RESULTS

To aid the edition, it keeps focused while editing, although it might be un-
faded at any moment – without affecting the edition process – by using the
preview button placed at the top right corner of the screen.

Figure 3.2: Screenshot of a fiber being placed the mouse over its entry in the element
list and it being highlighted.

By clicking on an element, the application enters into edition mode. The
user interface is then deployed and the lists are re-sized. A fiber and one of
its control points being edited can be seen in figure 3.3. Note how the scene
was easily moved by the user to place the editing element in the middle of the
canvas.

As for the interactive edition, drag and drop controls were implemented.
In figure 3.4 those may be seen in action. Note that the visual axis option is
also enabled and that opacity is set to zero to ensure a more comfortable display.

By carefully watching the scene, one of the major problems faced when using
WebGL and can also be noticed: the transparency. The way WebGL deals with
the transparency needs an special attention THREE.js is unable to completely
provide in this specific case.

During the coding process specific code had to be placed to fix this issue.
Although it was almost solved, when rendering with transparency disk segments
in tubular forms are unfortunately visible. Aliasing problems can also be ap-
preciated when two meshes share a surface.

55

CHAPTER 3. RESULTS

Figure 3.3: Fiber being edited. As edition mode was triggered, the user interface
features more tools without taking more space. Note also how the point being edited
is highlighted in the scene.

Figure 3.4: User using the interactive drag and drop tool to move a control point over
a selected plane. The green point represents the actual while the red is the former.
Undo button may be pressed at any time to recover the former position.

56

CHAPTER 3. RESULTS

Phantomαs Processing

Phantomαs compatibility was shown in the previous section by loading a phan-
tom description specifically designed for Phantomαs.

In this section a phantom will be designed by using Phantomαs Web De-
signer and later, loaded and processed in Phantomαs.

For this demonstration a simple phantom example containing two fibers and
a single isotropic region was created from scratch with Phantomαs Web De-
signer. Its representation is displayed in figure 3.5. Once its description was
generated and downloaded, its JSON file was processed in Phantomαs. As intro-
duced, Phantomαs includes a visualization script called phantomas_view, which
renders a 3D phantom representation. A screenshot is available at figure 3.6.
Note how the homogeneity is kept by representing it in a similar way, although
phantomas_view is unable to read colors and exclusively sets random values.

Figure 3.5: Phantom designed from scratch using Phantomαs Web Designer. Its
description file was generated and later loaded with Phantomαs.

Once Phantomαs processes the phantom descriptions, a Diffusion Weighted
Image (DWI) is given as output. In figure 3.7 both T1 and T2 DWI images
are represented. From these images the tractography can be processed and its
result compared to the ground truth. In figure 3.8 the representation of this
phantom’s tractogram is displayed by using the software medInria [5]. The two
fibers in the phantom are easily recognizable in the predicted tracts.

57

CHAPTER 3. RESULTS

Figure 3.6: Designed phantom displayed with phantomas_view script, included in Phan-
tomαs.

58

CHAPTER 3. RESULTS

a b

Figure 3.7: Diffusion Weighted Image (DWI) output generated by Phantomαs after
having processed the phantom’s JSON file. Both show the middle plane cut. a. T1
DWI. b. T2 DWI.

Figure 3.8: Processed tractography over the phantom, on MedInria [5].

59

Chapter 4

Environmental Impact

61

CHAPTER 4. ENVIRONMENTAL IMPACT

The impact in the environment the software may cause is considered negligi-
ble as long as it runs in the local client machine and does not require any server.
Thus, we can consider its process unnoticeable among the other programs be-
ing simultaneously executed. Note that this is regarding to the actual version
of Phantomαs Web Designer. The planned future development in Phantomαs
involves a dedicated hosting server (see page 72).

The development impact can be estimated by summing up the consumption
of the main tool, a desktop PC. CO2 emissions were estimated in table 4.1 by
considering an average consumption of 220 W1.

Machine spend 220 W

Working time 565 h

CO2 average emission in France [36] 52 g/kWh

EMISSION ESTIMATE 6,464 g CO2

Table 4.1: Development estimate CO2 emissions.

1As estimated from the configuration used

62

Chapter 5

Budget

63

CHAPTER 5. BUDGET

In this chapter we present a budget on the cost that developing a similar
project would have on the market.

As it is a software project, it is understandable that the sum of engineer-
ing hours (table 5.1) places as the highest priced outlay, while the production
means are easily redeemed. Establishment costs were also taken into account
(table 5.2).

As every piece of the production was made with open-source software, this
involves no costs and thus does not appear in the estimate.

In a professional project, several tests that did not actually take place in
this project would have to be taken into account to ensure its quality.

Activity Price Amount Cost (e)

Project design 35 e/h 70 h 2,450 e

Software development 20 e/h 425 h 8,500 e

Software testing and bug fixing 20 e/h 70 h 1,400 e

Documentation devising 20 e/h 35 h 700 e

TOTAL COST 13,050 e

Table 5.1: Staff costs.

Activity Price Cost (e)

Electricity costs 100 e/month 500 e

Establishment costs 500 e/month 2,500 e

TOTAL COST 3,000 e

Table 5.2: Establishment and service costs.

Final cost: 16,050 e

64

Chapter 6

Self Learning

65

CHAPTER 6. SELF LEARNING

As a Bachelor’s Degree in Biomedical Engineering student, I chose this
project for both its relationship with the discipline and my interest in software
development.

By using the knowledge acquired during these four years studying at Uni-
versitat Politècnica de Catalunya I could develop this project. But many of the
techniques used had to be self-learned during the development of the project.

Most of my self-learning is directly related to the technologies used for the
development (page 11), and many resources have been used for learning their
usage. Table 6.1 gathers the main technologies learned and the main resources
used.

Technology Main resources

JavaScript

Book “JavaScript : the definitive guide” [18]

W3Schools’ JavaScript Reference [6]

Mozilla Foundation’s JavaScript Documentation [37]

Three.js Three.js’ official documentation [38]

HTML
W3Schools’ HTML Reference [39]

Mozilla Foundation’s HTML Documentation [40]

CSS
W3Schools’ CSS Reference [41]

Mozilla Foundation’s CSS Documentation [42]

git Book: “Pro Git” [43], available online in git ’s website [27]

Table 6.1: Main self-learned technologies and their main resources studied.

66

Chapter 7

Conclusions

67

CHAPTER 7. CONCLUSIONS

After having developed the entire application and tested its behavior, the
result has been appreciated as satisfactory.

We consider that the application meets all of the initial requirements. In this
chapter the final project will be compared with them (introduced in page 10)
in order to prove they are all met.

a) Phantomαs cross-compatibility
Phantomαs Web Designer is able to load any JSON file yet used in Phan-
tomαs, although at the moment this step is taken from the server side.

In the other direction, a JSON file with the exact same structure can be
exported and loaded in Phantomαs for further processing.

We can consider this requirement is accomplished.

b) Phantom display and WYSIWYG edition
The phantom canvas display takes the main part of the page, gathering
the most attention of the user at all time. It is completely interactive and
the user is able to freely change the view with simple mouse gestures or
through specific controls placed at the right panel of the page.

In addition, any edition step made is shown in the visual display continu-
ously, making the display the main input of information to the user. The
result obtained from the current edition is always visible, allowing the
user to see how the exported phantom will be and thus, implementing
the WYSIWYG (what-you-see-is-what-you-get) edition.

We can consider both of these requirements are accomplished.

c) Wide edition control
Editing all those properties relevant to the geometry processing, was the
core target of Phantomαs Web Designer.

The final application allows all of these modifications to be taken on
element of a phantom. For the fiber bundles, this involves:

• Adding new fiber bundles
• Removing fiber elements at the phantom
• Changing the tangent computation method
• Specifying a fiber radius
• Editing control points:

• Adding new control points
• Removing existent control points
• Changing the position of a control point

On top, the position of a control point can be edited either by selecting
the exact point in the area, or by drag and dropping it in the scene. Un-
doing changes is also available for this tool.

68

CHAPTER 7. CONCLUSIONS

As for the isotropic regions, the edition tools allow:

• Adding new isotropic regions

• Removing isotropic regions from the phantom

• Editing their radius

• Specifying their center position

We have shown that the user is able to edit all those characteristics in
a phantom, so we may consider this requirement is fairly accomplished.
Adding more interactive tools to ease the user experience could be con-
sidered as a feature extension.

d) Versatility
Being the web environment the chosen for the development, the applica-
tion may be run in most desktop environments. This makes Phantomαs
Web Designer an universal application and sets it as a good base for the
future development of Phantomαs. Note thatWebGL is also implemented
in last mobile devices models, which would also able to execute the code,
although the application is not feasible as its design did not target them
at all.

As for the requirements needed for running the software, those are sat-
isfied by using an average machine capable of running a modern web
browser which supports WebGL technologies. As of May 2017, over
92% of active web desktop clients in the world were using such soft-
ware, whereas in France almost 96% were [44]. this along with the fact
that for using a web application any kind of installation is needed makes
Phantomαs Web Designer a very versatile application.

Expected user (see page 15) includes researchers who have as main work-
ing tool a modern desktop environment. In this way, we can ensure this
requirement is accomplished.

After testing the application and experiencing the edition, we can also con-
clude that our web environment is capable of perfectly hosting all the require-
ments Phantomαs Web Designer needs.

The web environment is currently hosting applications that in the past were
never set to be executed in a browser. Many of the tools used during the
development (see page 11) are also based on web technologies. This fact proves
this environment is becoming stable and that our application will stay feasible
in end-clients’ computers for long term.

69

Chapter 8

Future Extensions

71

CHAPTER 8. FUTURE EXTENSIONS

Phantomαs Web Designer only concerns the design of phantoms and gener-
ating its description for Phantomαs, but it is just part of a project that will be
developed in the future.

Although Phantomαs was perfectly functional, the amount of dependencies
and its lack of user interface was making it a tedious tool for some users. Hav-
ing evaluated the situation, a new approach was set by Phantomαs’ designers:
developing an entirely functional web-based version of the library.

Phantomαs Web designer is the first piece of this web environment. When
its development is finished it will allow the users to edit their phantoms, set
the MRI options and download their processed DWI images. This process is
schematized in figure 8.1.

Specify
acquisition

settings

Download
your DWI

Download
phantom

description

Upload
phantom

description

Start from
scratch

Figure 8.1: Schema of what the future Phantomαs web environment is meant to be.

72

Bibliography

[1] E. Caruyer, L. Bloy, B. Tunç, J. Lecoeur, V. Shankar, and R. Verma,
“A comparative study of 16 tractography algorithms for the corticospinal
tract: reproducibility and subject-specificity,” in ISMRM, (Milan, Italy),
May 2014.

[2] E. Caruyer, A. Daducci, et al., “Phantomas: a flexible software library to
simulate diffusion MR phantoms,” in ISMRM, (Milan, Italy), May 2014.

[3] E. Caruyer, “Phantomas 0.1 documentation.” http://www.

emmanuelcaruyer.com/phantomas/, 2017-05-14.

[4] E. Caruyer, “ecaruyer/phantomas: Create realistic digital phantoms in dif-
fusion MRI..” http://github.com/ecaruyer/phantomas, 2017-05-14.

[5] VisAGeS Research group, “medInria.” https://med.inria.fr/, 2017-04-22.

[6] W3C, World Wide Web Consortium, “JavaScript and HTML DOM Refer-
ence.” http://www.w3schools.com/jsref, 2017-05-16.

[7] “Inria, un établissement public de recherche dédié aux sciences
du numérique - Inria.” http://www.inria.fr/institut/inria-en-bref/

inria-en-quelques-mots, 2017-04-18.

[8] “www.irisa.fr | Institut de Recherche en Informatique et Systèmes Aléa-
toires.” http://www.irisa.fr/, 2017-04-18.

[9] “VisAGeS » Vision, Action and information manaGement System in
health.” http://team.inria.fr/visages/, 2017-04-19.

[10] E. Caruyer, “Emmanuel Caruyer homepage — CNRS Researcher, IRISA
(UMR 6074), VisAGeS Research group, Rennes FR-35042..” http://

emmanuelcaruyer.com/, 2017-05-05.

[11] D. G. Taylor and M. C. Bushell, “PRELIMINARY COMMUNICATION:
The spatial mapping of translational diffusion coefficients by the NMR
imaging technique,” Physics in Medicine and Biology, vol. 30, pp. 345–349,
Apr. 1985.

[12] V. Wedeen, R. Wang, et al., “Diffusion spectrum magnetic resonance imag-
ing (dsi) tractography of crossing fibers,” NeuroImage, vol. 41, no. 4,
pp. 1267 – 1277, 2008.

75

http://www.emmanuelcaruyer.com/phantomas/
http://www.emmanuelcaruyer.com/phantomas/
http://github.com/ecaruyer/phantomas
https://med.inria.fr/
http://www.w3schools.com/jsref
http://www.inria.fr/institut/inria-en-bref/inria-en-quelques-mots
http://www.inria.fr/institut/inria-en-bref/inria-en-quelques-mots
http://www.irisa.fr/
http://team.inria.fr/visages/
http://emmanuelcaruyer.com/
http://emmanuelcaruyer.com/

BIBLIOGRAPHY BIBLIOGRAPHY

[13] K. Maier-Hein, P. Neher, et al., “Tractography-based connectomes are dom-
inated by false-positive connections,” bioRxiv, 2016.

[14] E. Caruyer, “Phantomas - Simulate realistic diffusion MRI Phantom - Em-
manuel Caruyer homepage — CNRS Researcher, IRISA (UMR 6074), Vis-
AGeS Research group, Rennes FR-35042..” http://emmanuelcaruyer.com/

phantomas.php, 2017-04-20.

[15] “Welcome to Python.org.” http://www.python.org/, 2017-05-05.

[16] “HARDI reconstruction challenge 2013 - HARDI reconstruction challenge
2013.” http://hardi.epfl.ch/static/events/2013_ISBI/, 2017-05-05.

[17] Red Hat, Inc., “Fedora.” http://getfedora.org/, 2017-05-05.

[18] D. Flanagan, JavaScript : the definitive guide. Beijing Sebastopol, CA:
O’Reilly, 2011.

[19] W3C, World Wide Web Consortium, “Open Web Platform Milestone
Achieved with HTML5 Recommendation.” http://www.w3.org/2014/10/

html5-rec.html.en, 2017-05-04.

[20] “three.js - Javascript 3D library.” http://threejs.org/, 2017-05-05.

[21] Mozilla Foundation, “Blocklisting/Blocked Graphics Drivers -
MozillaWiki.” http://wiki.mozilla.org/Blocklisting/Blocked_Graphics_

Drivers, 2017-05-04.

[22] Mozilla Foundation, “Download Firefox — Free Web Browser — Mozilla.”
http://www.mozilla.org/en-US/firefox/new/, 2017-05-05.

[23] “Normalize.css: Make browsers render all elements more consistently..”
http://necolas.github.io/normalize.css/, 2017-05-05.

[24] “Node.js.” http://nodejs.org/, 2017-05-05.

[25] “Use JSDoc: Index.” http://usejsdoc.org/, 2017-05-05.

[26] “reStructuredText Markup Specification.” http://docutils.sourceforge.

net/docs/ref/rst/restructuredtext.html, 2017-05-05.

[27] “Git.” http://git-scm.com/, 2017-05-05.

[28] GitHub, Inc., “GitHub.” http://github.com/, 2017-05-05.

[29] GitHub, Inc., “Atom.” http://atom.io/, 2017-05-05.

[30] “mrdoob/three.js: JavaScript 3D library..” http://github.com/mrdoob/

three.js/, 2017-05-15.

[31] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Ele-
ments of Reusable Object-oriented Software. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 1995.

[32] User “volzo”, “javascript - Download JSON object as a file from browser
- Stack Overflow.” http://stackoverflow.com/questions/19721439/

download-json-object-as-a-file-from-browser, 2017-05-17.

76

http://emmanuelcaruyer.com/phantomas.php
http://emmanuelcaruyer.com/phantomas.php
http://www.python.org/
http://hardi.epfl.ch/static/events/2013_ISBI/
http://getfedora.org/
http://www.w3.org/2014/10/html5-rec.html.en
http://www.w3.org/2014/10/html5-rec.html.en
http://threejs.org/
http://wiki.mozilla.org/Blocklisting/Blocked_Graphics_Drivers
http://wiki.mozilla.org/Blocklisting/Blocked_Graphics_Drivers
http://www.mozilla.org/en-US/firefox/new/
http://necolas.github.io/normalize.css/
http://nodejs.org/
http://usejsdoc.org/
http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html
http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html
http://git-scm.com/
http://github.com/
http://atom.io/
http://github.com/mrdoob/three.js/
http://github.com/mrdoob/three.js/
http://stackoverflow.com/questions/19721439/download-json-object-as-a-file-from-browser
http://stackoverflow.com/questions/19721439/download-json-object-as-a-file-from-browser

BIBLIOGRAPHY BIBLIOGRAPHY

[33] W3C, World Wide Web Consortium, “W3.CSS Home.” http://www.

w3schools.com/w3css, 2017-05-17.

[34] Google Inc., “Material Icons — Material Design.” http://material.io/

icons/, 2017-05-17.

[35] G. González Vela and E. Caruyer, “ecaruyer/phantomas-web: Web inter-
face for Phantomas..” http://github.com/ecaruyer/phantomas-web, 2017-
05-14.

[36] RTE France, “eco2mix co2 en | RTE France.” http://www.rte-france.com/
en/eco2mix/eco2mix-co2-en, 2017-05-20.

[37] Mozilla Foundation, “JavaScript | MDN.” https://developer.mozilla.org/
en-US/docs/Web/JavaScript, 2017-05-20.

[38] “three.js docs.” https://threejs.org/docs/, 2017-05-20.

[39] W3C, World Wide Web Consortium, “HTML Reference.” https://www.

w3schools.com/tags/default.asp, 2017-05-16.

[40] Mozilla Foundation, “HTML | MDN.” https://developer.mozilla.org/

en-US/docs/Web/HTML, 2017-05-20.

[41] W3C, World Wide Web Consortium, “CSS Reference.” https://www.

w3schools.com/cssref/default.asp, 2017-05-16.

[42] Mozilla Foundation, “CSS | MDN.” https://developer.mozilla.org/

en-US/docs/Web/CSS, 2017-05-20.

[43] S. Chacon, Pro Git. Berkeley, CA New York, NY: Apress,Distributed to
the Book trade worldwide by Spring Science+Business Media, 2014.

[44] A. Deveria and L. Schoors, “Can I Use.” http://caniuse.com/, 2017-05-20.

77

http://www.w3schools.com/w3css
http://www.w3schools.com/w3css
http://material.io/icons/
http://material.io/icons/
http://github.com/ecaruyer/phantomas-web
http://www.rte-france.com/en/eco2mix/eco2mix-co2-en
http://www.rte-france.com/en/eco2mix/eco2mix-co2-en
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://threejs.org/docs/
https://www.w3schools.com/tags/default.asp
https://www.w3schools.com/tags/default.asp
https://developer.mozilla.org/en-US/docs/Web/HTML
https://developer.mozilla.org/en-US/docs/Web/HTML
https://www.w3schools.com/cssref/default.asp
https://www.w3schools.com/cssref/default.asp
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/CSS
http://caniuse.com/

	Abstract
	Introduction
	Context
	Center
	Research Team
	The internship

	Background
	Diffusion MRI
	Tractography
	Phantoms

	Objective

	Methodology
	Requirements
	Technologies involved
	Target User
	Design
	User interface
	Phantom display
	Observer pattern design
	Browser stability
	HTML
	GUI Construction
	GUI Handlers
	GUI Managers
	JSON load and save
	App initiation
	CSS
	Homepage
	Documentation
	File structure

	Licensing and source

	Results
	Environmental Impact
	Budget
	Self Learning
	Conclusions
	Future Extensions

