

UNIVERSITAT POLITÈCNICA DE CATALUNYA

Doctoral Programme

AUTOMATIC CONTROL, ROBOTICS AND COMPUTER VISION

Ph.D. Thesis

LEARNING RELATIONAL MODELS

WITH HUMAN INTERACTION

FOR PLANNING IN ROBOTICS

David Martínez Martínez

Advisors:
Guillem Alenyà and Carme Torras

Barcelona, December 2016

Learning Relational Models with Human Interaction for Planning in Robotics

A thesis submitted to the Universitat Politècnica de Catalunya
to obtain the degree of Doctor of Philosophy

Doctoral programme:
Automatic Control, Robotics and Computer Vision

This thesis was completed at:
Institut de Robòtica i Informàtica Industrial, CSIC-UPC

Thesis advisors:
Guillem Alenyà and Carme Torras

c
 2016 David Martínez Martínez

LEARNING RELATIONAL MODELS

WITH HUMAN INTERACTION
FOR PLANNING IN ROBOTICS

David Martínez Martínez

Abstract

Automated planning has proven to be useful to solve problems where an agent has to
maximize a reward function by executing actions. As planners have been improved to solve more
expressive and difficult problems, there is an increasing interest in using planning to improve
efficiency in robotic tasks. However, planners rely on a domain model, which has to be either
handcrafted or learned. Although learning domain models automatically can be costly, recent
approaches provide good generalization capabilities and integrate human feedback to reduce
the amount of experiences required to learn.

In this thesis we propose new methods that allow an agent with no previous knowledge
to solve certain problems more efficiently by using automated planning. First, we show how
to apply probabilistic planning to improve robot performance in manipulation tasks (such as
cleaning the dirt or clearing the tableware on a table). Planners obtain sequences of actions that
get the best result in the long term, beating reactive strategies.

Second, we introduce new reinforcement learning algorithms where the agent can actively
request demonstrations from a teacher to learn new actions and speed up the learning process.
In particular, we propose an algorithm that allows the user to set the minimum sum of rewards
to be achieved, where a better reward also implies that a larger number of demonstrations will
be requested. Moreover, the learned model is analyzed to extract the unlearned or problematic
parts of the model. This information allow the agent to avoid irrecoverable errors and to provide
guidance to the teacher when a demonstration is requested.

Finally, a new domain model learner is introduced that, in addition to relational probabilistic
action models, can also learn exogenous effects. This learner can be integrated with existing
planners and reinforcement learning algorithms to solve a wide range of problems.

In summary, we improve the use of learning and automated planning to solve unknown tasks.
The improvements allow an agent to obtain a larger benefit from planners, learn faster, balance
the number of action executions and teacher demonstrations, avoid irrecoverable errors, interact
with a teacher to solve difficult problems, and adapt to the behavior of other agents by learning
their dynamics. All the proposed methods were compared with state-of-the-art approaches, and
were also demonstrated in different scenarios, including challenging robotic tasks.

Keywords: learning models for planning, model-based reinforcement learning, active learning,
probabilistic planning, robotics.

i

Resumen

La planificación automática ha probado ser de gran utilidad para resolver problemas en
los que un agente tiene que ejecutar acciones para maximizar una función de recompensa. A
medida que los planificadores han sido capaces de resolver problemas cada vez más complejos,
ha habido un creciente interés por utilizar dichos planificadores para mejorar la eficiencia de
tareas robóticas. Sin embargo, los planificadores requieren un modelo del dominio, el cual
puede ser creado a mano o aprendido. Aunque aprender modelos automáticamente puede ser
costoso, recientemente han aparecido métodos que permiten la interacción persona-máquina y
generalizan el conocimiento para reducir la cantidad de experiencias requeridas para aprender.

En esta tesis proponemos nuevos métodos que permiten a un agente sin conocimiento
previo de la tarea resolver problemas de forma más eficiente mediante el uso de planificación
automática. Comenzaremos mostrando cómo aplicar planificación probabilística para mejorar
la eficiencia de robots en tareas de manipulación (como limpiar suciedad o recoger una mesa).
Los planificadores son capaces de obtener las secuencias de acciones que producen los mejores
resultados a largo plazo, superando a las estrategias reactivas.

Por otro lado, presentamos nuevos algoritmos de aprendizaje por refuerzo en los que el
agente puede solicitar demostraciones a un profesor. Dichas demostraciones permiten al agente
acelerar el aprendizaje o aprender nuevas acciones. En particular, proponemos un algoritmo que
permite al usuario establecer la mínima suma de recompensas que es aceptable obtener, donde
una recompensa más alta implica que se requerirán más demostraciones. Además, el modelo
aprendido será analizado para identificar qué partes están incompletas o son problemáticas.
Esta información permitirá al agente evitar errores irrecuperables y también guiar al profesor
cuando se solicite una demostración.

Finalmente, se ha introducido un nuevo método de aprendizaje para modelos de dominios
que, además de obtener modelos relacionales de acciones probabilísticas, también puede apren-
der efectos exógenos. Mostraremos cómo integrar este método en algoritmos de aprendizaje por
refuerzo para poder abordar una mayor cantidad de problemas.

En resumen, hemos mejorado el uso de técnicas de aprendizaje y planificación para resolver
tareas desconocidas a priori. Estas mejoras permiten a un agente aprovechar mejor los planifica-
dores, aprender más rápido, elegir entre reducir el número de acciones ejecutadas o el número
de demostraciones solicitadas, evitar errores irrecuperables, interactuar con un profesor para
resolver problemas complejos, y adaptarse al comportamiento de otros agentes aprendiendo sus
dinámicas. Todos los métodos propuestos han sido comparados con trabajos del estado del arte,
y han sido evaluados en distintos escenarios, incluyendo tareas robóticas.

iii

Acknowledgements

I would like to thank my supervisors, Guillem Alenyà and Carme Torras, for their valuable
guidance. Their support was essential to get to this point and I owe them this opportunity. I
am also very grateful to Katsumi Inoue and Tony Ribeiro, who welcomed me to work with them
at the National Institute of Informatics during several months in what became a very fruitful
research stay.

Moreover, I had a great experience at both IRI and NII, and I also want to thank all the
colleagues, researchers and staff that made this years a great memory. And last but not least, I
would like to thank my friends and family who have supported me all these years.

This work has been partially supported by the following:

FPU12-04173 The Spanish Ministry of Education, Culture, and Sport via a FPU doctoral grant.

FP7-ICT2009-6-269959 The EU Project IntellAct.

201350E102 The CSIC project MANIPlus.

TIN2014-58178-R The MINECO project RobInstruct.

The latest version of this thesis can be obtained through
http://www.iri.upc.edu/thesis/show/78.

v

http://www.iri.upc.edu/thesis/show/78

Contents

Abstract i

Resumen iii

Acknowledgements v

1 Introduction 3
1.1 Motivation . 5
1.2 Contributions . 6

2 Preliminaries 9
2.1 Background . 9

2.1.1 Relational Formulation . 9
2.1.2 Propositional Formulation . 12
2.1.3 Markov Decision Processes . 13
2.1.4 Model Learning . 13
2.1.5 Reinforcement Learning . 14
2.1.6 Active Learning . 14
2.1.7 Planning Excuses . 15

2.2 Domains Used for Experimentation . 16
2.2.1 Domains from the IPPC . 17
2.2.2 Robotic Applications . 20

3 Planning in Robotics 25
3.1 Introduction . 25
3.2 Previous work . 26
3.3 Proposed approach . 28

3.3.1 Perception . 29
3.3.2 Actions . 30
3.3.3 Planning . 33

3.4 Planning with uncertain actions . 35
3.4.1 Probabilistic planner . 35
3.4.2 Issues . 36

3.5 Experimental results . 37
3.5.1 Moving lentils to a container . 39
3.5.2 Picking up lentils . 40

3.6 Conclusions . 40

4 Reinforcement Learning with Active learning 43
4.1 Previous work . 44
4.2 Related RL Algorithms . 45

4.2.1 The R-MAX algorithm . 45
4.2.2 The E3 algorithm . 46
4.2.3 The REX algorithm . 46

vii

viii CONTENTS

4.3 REX-D . 47
4.3.1 Algorithm . 47
4.3.2 Teacher Guidance . 50
4.3.3 Improving Learned Models to Minimize Teacher Interactions 52
4.3.4 The Cranfield Benchmark Setup . 55
4.3.5 Experimental Results . 58

4.4 Dangerous actions . 64
4.4.1 Detecting Dangerous Literals . 66
4.4.2 Avoiding Dead-ends . 66
4.4.3 Experimental Results . 68

4.5 V-MIN . 71
4.5.1 Algorithm . 72
4.5.2 Reward Function . 74
4.5.3 Performance Analysis . 75
4.5.4 Experimental Results . 76

4.6 Conclusions . 79

5 Learning Models for Planning 83
5.1 Previous Work . 84
5.2 Model Learner . 85

5.2.1 Candidate Planning Operator Generation 85
5.2.2 Planning Operator Selection . 90

5.3 Experiments . 95
5.3.1 Domains . 95
5.3.2 Evaluation of the Model Learner . 96
5.3.3 Evaluation in RL . 100

5.4 Robot Table Clearing . 102
5.4.1 Learning a Model with RL . 104
5.4.2 Evaluation of the Learned Model . 107

5.5 Conclusions . 108

6 Conclusions 109
6.1 Additional Remarks . 110
6.2 Future Work . 110

A List of publications 113

Bibliography 115

1
Introduction

Robots are capable of performing difficult actions, but they lack the cognitive abilities to solve

complex tasks that require specific action sequences. There are many tasks where reactive

strategies do not suffice, and designing a specific algorithm to solve each single task is not a

desirable situation.

Automated planning and scheduling is a branch of AI that focuses on obtaining strategies or

action sequences to solve complex tasks. Planners require a state and a model to reason about

the action sequence that maximizes the reward. The state represents the agent and the envi-

ronment in which the task is being executed, while the model represents how the state changes

when actions are executed. The difficulty of the planning process depends on the assumptions

taken about the states and the model. In this thesis, we consider probabilistic relational models

with actions and exogenous effects, but we will assume that states are completely observable

and discrete.

Planners rely on a model that has to be either handcrafted or learned. Manually coding

models is a very tedious and error-prone task that requires specific technical knowledge about

the platform being used. Therefore, it is desirable to have the option of autonomously learning

models. However, learners cannot tackle yet the expressive models that planners do, which

forces complex models to be mostly handcrafted. In this thesis we propose a new algorithm that

can learn relational probabilistic models with action effects and exogenous effects. Such models

allow robots to reason about more challenging problems:

- Uncertainty, which is ubiquitous in robotics as actions may fail or produce unexpected

effects.

- Relational models that permit generalizing between different objects, which reduces sig-

nificantly the experiences required to learn a model.

- Exogenous effects, which are common in real-world domains where the robot is not

4 Introduction

isolated. Different agents, such as people or other robots, may move and interact with

the environment to change the state.

In addition to a planner and a learner, we need an algorithm that obtains the set of ex-

periences required to learn the model. Reinforcement learning (RL) is a branch of machine

learning concerned with using experience gained through interacting with the world to improve

a system’s ability to make behavioral decisions (Littman, 2015). Model-free RL approaches are

very efficient computationally but slow to learn as they require more experiences. In model-

based RL, experiences are used to estimate a transition model, which is then used by planners

to predict the long-term outcomes of the actions. Model-based methods are computationally

intensive, but squeeze the most out of each experience. As the tasks that we are tackling have

actions that are slow to execute, model-based approaches are more appropriate.

Model-based RL algorithms require a strategy to balance exploration and exploitation. Explo-

ration is selecting actions to learn the dynamics related to unknown parts of the model, thereby

allowing better policies to be obtained in the future. Exploitation consists in selecting actions to

maximize rewards based on the current model. Some approaches provide good generalizations

to reduce the exploration required (Lang et al., 2012), but still a lot of exploratory actions are

required in complex domains to obtain good plans.

Active Learning (AL) is a special case of semi-supervised machine learning in which a learn-

ing algorithm is able to interactively query the user to request demonstrations. AL algorithms

learn faster than RL ones because they do not have to explore states with low rewards (Chernova

and Veloso, 2009). However, they continuously require the help of a teacher.

In this thesis, we take the different approach of combining both RL and AL. The idea is

to use mostly RL to learn the model autonomously, but also to apply AL to quickly learn and

overcome specific difficult problems. The result is that, by requesting a few demonstrations,

a lot of exploration and low rewards can be avoided. When introducing a teacher in the RL

loop, the challenge is to decide when to request a demonstration. Moreover, a more informative

human-agent interaction would also help the teacher to propose better demonstrations.

Finally, the proposed algorithms are analyzed in robotic and simulated tasks. Simulated

experiments can be repeated easily to get meaningful statistics, so they are the most appropriate

to evaluate the performance and learning rate of an algorithm. In contrast, robotic tasks provide

more challenging scenarios where the algorithms face noisy complex dynamics, but experiments

involving robots are usually very time consuming to repeat and it can be difficult to repeat the

initial conditions.

1.1 Motivation 5

Figure 1.1: Robotic tasks. Left: The WAM robot is cleaning the dirt on a surface. Center:
The UR5 robot is assembling the Cranfield benchmark. Right: The WAM robot is clearing the
tableware on a table.

Motivation

The motivation of this PhD is to improve the performance of tasks through automated planning.

However, the tasks that we tackle are not known beforehand, so we need an autonomous learner.

This learner should request demonstrations from a teacher to learn new actions, and also execute

such actions to improve its model. Moreover, the agent should learn from its errors, and avoid

repeating them.

To evaluate the proposed algorithms, we considered two types of experiments. First, several

domains from the International Probabilistic Planning Competition were used as a benchmark to

compare against other state-of-the-art algorithms. However, our aim was to use those algorithms

also in real domains, more precisely to robotic tasks. Therefore, we considered the following

robotic tasks:

- The assembly of industrial pieces with the help of a teacher, which was part of the IntellAct

EU FP7 project. The robot starts with no previous knowledge and has to learn how pieces

are placed, the precedence constrains between the pieces, and how to undo wrong assem-

blies (Fig. 1.1-center). Furthermore, to get the most informative teacher demonstrations,

the robot also provides feedback about the unlearned parts of the model so that the needed

demonstrations are obtained.

- Cleaning the dirt on a surface. The robot has two types of actions: pick up actions that

directly remove dirt, and grouping actions which move dirt together so that it can be

picked up easily. It is not trivial to decide which actions to execute, as there is a lot of

uncertainty in the actions, specially if there is a lot of dirt (Fig. 1.1-left).

6 Introduction

- Clearing the tableware on a table. The robot piles tableware together and brings it to the

kitchen. The challenge is creating the largest piles that are stable, so that the number of

trips to the kitchen is minimized and the tableware does not fall. A more complex version

of this problem includes external agents, such as people bringing new tableware or other

robots helping to complete the task (Fig. 1.1-right).

Contributions

This thesis combines reinforcement and active learning to quickly obtain domain models for safe

task execution in robotics. The probabilistic relational models learned can be used by planners

to accomplish tasks in collaboration with external agents. Below we list the contributions that

have been achieved:

1. We have shown that probabilistic planning can solve complex tasks faster than reactive

strategies, while still providing a similar performance for easy tasks (Martínez et al.,

2015a, 2013). Moreover, we proved experimentally that replanning every few actions was

highly recommendable in noisy environments, and that the trade-off between planning

time and plan quality should be adapted to the complexity of each problem. These results

are presented in Chapter 3.

2. We have proposed the REX-D algorithm that combines RL and AL to learn tasks (Martínez

et al., 2014a, 2016a). It is a RL approach that requests teacher demonstrations to quickly

solve difficult problems and extend its repertoire of actions. The result is that, when

compared with RL algorithms, REX-D requires much fewer action executions to learn a

model that can solve the task. On the other hand, if compared with AL approaches, REX-D

requests just a few demonstrations to learn, as most of the model is learned through RL.

Moreover, we show that REX-D can analyze its internal model to issue more informative

demonstration requests, which makes the system more accessible to non-expert teachers.

REX-D is presented is Section 4.3.

3. We have extended REX-D to identify and avoid dangerous effects (Martínez et al., 2014b,

2015b). The interaction with the teacher is essential to solve the cases where safe alterna-

tives could not be found autonomously. This method is presented is Section 4.4.

4. REX-D has also been extended into V-MIN (Martínez et al., 2015c), which is a more

general algorithm where the user selects the minimum target value (sum of rewards)

to be achieved. In Section 4.5 we present it and show its main advantages, that can be

summarized as:

1.2 Contributions 7

- REX-D is limited to goal-oriented tasks, but V-MIN can be applied to any reward-based

task.

- The teacher can select the quality of the model to be learned (high-quality models

take longer to be learned than low-quality ones).

- V-MIN can adapt easier to changes in the task while reusing its previous knowledge.

5. We have proposed a learner that obtains a relational probabilistic model with action

effects and exogenous effects that explains a set of given experiences (Martínez et al.,

2016b, 2015d) (Chapter 5). This work improves previous approaches that could not

tackle exogenous effects (Pasula et al., 2007). We have also shown that this learner can

be integrated in V-MIN to learn a wider number of domains (Martínez et al., 2017).

2
Preliminaries

In this chapter we present the background used to define the methods proposed in this thesis,

and the domains in which the experiments will be performed.

Background

In this section we present the formulation that we will use throughout this thesis, as well as the

related tools and techniques.

Relational Formulation

A relational representation is used to define the models, planners and learners used in this thesis.

This formulation assumes complete observability and probabilistic effects.

Literals li are expressions of the form (:)p(t1; :::; tm) where p is a predicate symbol, (:)

represents that the atom may be optionally negated, and ti are the terms. Terms can be variables,

which have a preceding “?” symbol (e.g. ?X), and can also be objects, which are represented

without an “?” symbol (e.g. box1). We use a relational representation where expressions take

objects as arguments to define their grounded counterparts. A state s is defined as a conjunction

of grounded literals that follow the closed world assumption s = lg1; :::; l
g
N .

Experiences E = e1; e2; ::: are defined as triples e = (s; a; s0) where s0 is the successor state of

s after executing a. A successor state s0 is obtained by applying all grounded operators or rules

to (s; a).

10 Preliminaries

Noisy Deictic Rules

A Noisy Deictic Rule (NDR) rule r is defined as

r(t1; :::; tn) : action(r) ^ pre(r)!

8>>>>><>>>>>:
p(r; 1) : eff(r; 1)

� � � : � � �

p(r; nr) : eff(r; neff)

p(r; 0) : eff(r; 0);

(2.1)

where ti are the terms, action(r) is the action that the rule represents, pre(r) = l1 ^ � � � ^ lm
are a set of literals that represent the preconditions for the rule to be applicable, eff(r; i) are the

effects that define the set of literals that are changed in the state with probability p(r; i) when

the rule is applied, and eff(r; 0) is the noisy effect that represents all other, unmodeled, rare and

complex effects. The sum of effect probabilities must be
P

i p(r; i) = 1.

A NDR rule represents only one action. However, each action may be represented by several

rules, where each has different preconditions. All the rules defining one action have disjoint

preconditions, and therefore, each state-action pair (s; a) is covered by just one rule r. This

is required because planners can only work with conflict-free rules. A planner has to know

precisely the expected effects of applying a rule. If two different rules were to make conflicting

changes, the effects would be undefined.

Planning Operators

A planning operator o 2 O defines how a literal changes based on a set of preconditions.

Operators take the form

o(t1; :::; tn) = lh : p(o) l1 ^ � � � ^ lm; (a) (2.2)

where lh is the head of the operator, p(o) is the probability of lh being in the next state given that

the body and the action are satisfied, l1 ^ � � � ^ lm are the literals in the body, (a) is an optional

action, and ti are the terms that may appear in the head, body and action. The action is optional

so that operators can capture both action effects when there is an action, and exogenous effects

when there is no action. Note that operators are not Horn clauses as negation can appear in

both the body and the head.

We require operators to be mutually exclusive, there cannot be two operators with the same

head atom that cover the same (s; a) as their heads may conflict. This is required because

planners can only work with conflict-free operators. One example of such conflict would be

[o1(obj1) = at(obj1) : 0:8 :::] and [o2(obj1) = :at(obj1) : 0:6 :::] where both heads cannot

2.1 Background 11

hold at the same time as one contradicts the other.

To define the transition model we will use either NDR rules or planning operators. The main

differences between them are:

- NDR rules have several effects, each with several literals. Therefore, they can represent

literals that change together. Planning operators only have a single effect with one literal.

- NDR rules must represent an action, and only one NDR rule may be applied at each time

step. Planning operators can optionally represent an action, and different operators may

be applied at the same time step. Therefore, planning operators can represent exogenous

effects while NDR rules cannot.

As a result, we will use planning operators in tasks with exogenous effects, and NDR rules

will be the preferred choice for tasks without exogenous effects.

Grounding and Applying Operators and Rules

A grounded operator only has objects as terms. If an operator o has n variables, its groundings

Gr(o) are a set of operators, each taking one of the possible combinations of n objects.

Example 2.1. Having the objects fa; b; cg and the operator o1(?X; ?Y) = at(?Y) : 0:8
road(?X; ?Y) ^ at(?X), the possible groundings can be obtained by substituting ?X and ?Y for

every permutation of 2 objects. One grounding would be: o1(a; c) = at(c) : 0:8 road(a; c) ^
at(a).

The transition dynamics are defined by a set of planning operators O. A grounded operator

og is said to cover a state-action pair (s; a) when the literals of the body are in s, and the optional

action of the operator is either a, or the operator has no action: cov(og; s; a) = (body(og) � s) ^
((action(og) = a) _ (action(og) = ?)).

Likewise, a non-grounded operator o covers (s; a) if one of its groundings does: cov(o; s; a) =

9 og 2 Gr(o) j cov(og; s; a).

The same operations that we have shown for planning operators can be applied to NDR

rule. The only difference would be that a grounded rule rg covers a state-action pair (s; a)

when the literals in the preconditions are in s, and the action a is equal to the rule’s action:

cov(rg; s; a) = (pre(rg) � s) ^ (action(rg) = a).

Calculating the Likelihood

A successor state s0 is obtained by applying all groundings of all operators to (s; a). When a

grounded operator og is applied to (s; a), its head is added to the state s0 with a probability p(og)

if cov(og; s; a).

12 Preliminaries

If s0 is a successor state of s, we define changes(s; s0) as the set of literals fc 2 s0; c =2 sg.
Given an experience e = (s; a; s0) and a grounded operator og, a change c 2 changes(s; s0) has a

likelihood

P (c j og) =

8<:p(og); cov(og; s; a) ^ (c = head(og))

0; otherwise:
(2.3)

A set of non-grounded operators O gives the following likelihood to a change c:

P (cjO) =

8<:P (cjog); 9! og 2 Gr(O) j P (cjog) > 0

0; otherwise,
(2.4)

where 9! is the operator for uniqueness quantification. If more than one operator covers the

same change given the same state-action pair, there is a conflict and the behavior is undefined,

so a likelihood of 0 is given.

Finally, a set of planning operators O covers an experience e = (s; a; s0) with a likelihood

P (e j O) =
Y

c2changes(e)

P (c j O; s; a): (2.5)

Likewise, a grounded NDR rule rg covers an experience e = (s; a; s0) with a likelihood

P (e j rg) =
X
i

8<:p(rg; i); cov(rg; s; a) ^ (s0 � eff(rg; i))

0; otherwise;
(2.6)

and a set of NDR rules R has a likelihood

P (ejR) =

8<:P (ejrg); 9! rg 2 Gr(R) j P (ejog) > 0

0; otherwise:
(2.7)

Propositional Formulation

On the propositional level, multi-valued atoms mi are expressions of the form p = x, where p

is a predicate, x is the value, and atoms have no terms. A state is a conjunction of proposi-

tional multi-valued atoms s = m1;m2; :::;mn where every predicate must appear only once (i.e.

8mi 2 s; @x; y j ((mi = x) ^ (mi = y)); x 6= y).

The propositional formulation will be used only in Chapter 5 with LFIT algorithm (Inoue

et al., 2014).

2.1 Background 13

Markov Decision Processes

Fully-observable planning problems with uncertainty can be described formally with Markov

Decision Processes (MDP). A finite MDP is a five-tuple hS;A; T;R;
i where:

- S is a set of discrete states.

- A is a set of actions that an agent can perform.

- T : S �A� S ! [0; 1] is the transition model that describes the probability of obtaining a

successor state by executing an action from a given state. Note that in this thesis we will

use a set of planning operators O or a set of NDR rules R to define the transition model.

- R : S �A! R is the reward function.

-
 2 [0; 1) is a discount factor that measures the degradation of future rewards.

A policy � is a function � : S ! A that specifies which action to execute when in state s. The

value function V �(s) = E[
P

t

tR(st) j s0 = s; �] is the sum of expected rewards when applying

the policy � from state s. The goal is to find a policy � that maximizes the value function V �(s).

Model Learning

Machine learning techniques can be used to learn models for planning from a set of experiences.

We have used Pasula et al. (2007)’s learning algorithm in some of our algorithms as it was the

best approach for probabilistic relational domains. Eventually, we proposed a new learning

algorithm (Chap. 5) that can learn more expressive models.

Pasula et al. (2007) use a greedy heuristic search to obtain a set of planning operators O
that minimize a score function. The algorithm starts with an arbitrary set of candidates, and

iteratively modifies this set and checks if the score function improves. This process is repeated

until the set cannot be further improved. The algorithm is very fast but has local minimums.

The score function for a set of experiences E is

s(O; E) = E
e2E

[log(P (ejO))]� � Pen(O)

Conf(E; �)
; (2.8)

where � > 0 is a scaling parameter, and the penalty term Pen(O) =
P

o2O jbody(o)j is the

number of atoms in the operator bodies. With this score function, the algorithm looks for sets

of operators that maximize the likelihood and minimize the number of atoms in the operators.

14 Preliminaries

Environment

Model

StatePolicy

Planning

Execution Observation

Learning

Figure 2.1: Overview of a model-based RL algorithm.

Reinforcement Learning

We use model-based RL to tackle unknown problems. In this thesis we will consider the case

where the reward function R is given and the transition model T is unknown. Figure 2.1 shows

an overview of a standard model-based RL algorithm:

1. Observations of the environment are used to update the state.

2. Previous experiences consisting on triples e = (s; a; s0) are used to learn a model.

3. The planner obtains a policy with the model.

4. The action selected by the policy is executed.

The goal of the agent is to maximize V (s), and it can employ two strategies to accomplish it:

- Exploration: Execute actions to explore unvisited parts of the model. The more complete

a model is, the better the policies obtained by the planner, which improves long-term

rewards.

- Exploitation: Execute actions to maximize the sum of discounted rewards based on the

current model.

In RL, a very important problem is the exploration-exploitation dilemma, which involves finding

a balance of sufficient exploration to obtain a good model without consuming too much time

addressing the low-value parts of the state.

Active Learning

In active learning, an agent can request demonstrations from the teacher to learn. In our work,

when a demonstration is requested, the teacher selects an action from the optimal policy ��(s),

and tells the agent the name of the action, its parameters and how to perform it.

2.1 Background 15

In robotics, standard human-robot interaction capabilities such as speech and visual infor-

mation provide the communication between the teacher and the robot. Moreover, learning from

demonstration (Argall et al., 2009) can be used to learn new actions.

Planning Excuses

Whenever the system fails to plan, information can be extracted about the failure using excuses

(Göbelbecker et al., 2010; Menezes et al., 2012). Excuses are changes to the initial state that

would make the task solvable, and thus they indicate the important literals that cause the

planner to fail.

Definition 2.1. (Excuse) Given an unsolvable planning task, using a set of objects Cs0 and an

initial state s0, an excuse is a pair ’ = hC’; s’i, which makes the task solvable, where C’ is a

new set of objects and s’ is a new initial state.

Excuses can be classified as acceptable, good, or perfect, as follows.

- Acceptable excuses change the minimum number of literals in the initial state. An excuse

’ is acceptable iff 8’0; C’ � C’0 and s04s’ � s04s’0 (where 4 denotes the symmetric

set difference).

- Good excuses are acceptable excuses with changes that cannot be explained by another

acceptable excuse.

- A perfect excuse is a good excuse that obtained the minimal cost using a cost function.

Applying goal regression over all acceptable excuses would be highly suboptimal, so a set of

good excuse candidates are generated and checked with the planner (Göbelbecker et al., 2010).

Candidates for good excuses can be obtained under certain assumptions using a causal graph

and a domain transition graph (Helmert, 2006), which are generated with the planning operator

set O. A causal graph CGO is a directed graph that represents the dependencies of literals

between each other. A domain transition graph Gl of a literal l is a labeled directed graph that

represents the possible ways that the groundings of the literal can change and the conditions

required for those changes.

Definition 2.2. A causal graph CGO is a directed graph that represents the dependencies of

literals between each other. An arc (u; v) exists when u 2 body(o) and v 2 head(o) for an

operator o 2 O.

Definition 2.3. A domain transition graph Gl of a literal l is a labeled directed graph that

represents the possible ways that the groundings of the literal can change and the conditions

16 Preliminaries

required for those changes. An arc (u; v) exists when there is a grounded operator og 2 Gr(O)

such that u and v are groundings of l, u 2 body(og) and v 2 head(og). The label comprises the

literals body(og) n fug.

To restrict the number of candidates, we only consider those that are relevant to achieving

the goal. Using the causal graph and the domain transition graph, the candidates can be ob-

tained with a fix point iteration (Göbelbecker et al., 2010) by adding the literals that contribute

to the goal and those that are potentially required to reach other literals added previously to the

candidate set. From the set of excuse candidates, we select those that are not reachable by Gl
from any literal in the current state, and those that are involved in a cyclic dependency in CGO.

Finally, the planner is used to test which of the excuse candidates should be added to obtain

the best results. The best are selected as the excuses that explain the failure.

Note that operators in stochastic domains have effects with different probabilities. To gen-

erate the excuses in these conditions, low probability effects are ignored when generating the

causal graph and domain transition graph.

Domains Used for Experimentation

In this section we describe the domains used to validate experimentally the proposed algorithms.

There are two types of domains:

- Domains from the International Probabilistic Planning Competition (IPPC). These domains

are widely used in the planning community, and thus they are the best choice to compare

against other state-of-the-art algorithms.

- Robotic tasks. They provide more challenging scenarios to challenge the effectiveness of

planners and learners.

Simulated problems can be easily repeated to get meaningful statistics, so they were the

appropriate tool to evaluate the performance of algorithms. In addition to IPPC domains, some

robotic domains could also be executed in simulation. To automate experiments that involve

interacting with a teacher, we developed an automated teacher that plans the optimal action

based on a ground truth model. If more than one action was optimal, it considers the guidance

provided by the learner (see Sec. 4.3.2) to choose which action to demonstrate. This automated

teacher performs similarly to human teachers because it uses optimal policies.

In contrast, robotic tasks provide more realistic challenges that involve a lot of uncertainty

and unforeseen situations. However, they cannot be repeated automatically, so it is more time

consuming to repeat them.

2.2 Domains Used for Experimentation 17

Domains from the IPPC

The International Probabilistic Planning Competition (IPPC) (Vallati et al., 2015) provides a set

of domains that are designed for investigating the applicability of planning techniques to a range

of real-world applications.

Traditionally, PPDDL (Younes and Littman, 2004) was the standard language used for plan-

ning applications. Among other features, actions had parameters (variables that may be instan-

tiated with objects), preconditions and effects. The effects of actions could be also conditional.

At the IPPC 2011 (Coles et al., 2012) the language used in the uncertain track was changed to

RDDL (Sanner, 2010), which allowed modeling a variety of new problems with stochasticity,

concurrency, and a complex reward and transition structure.

NDR rules are easy to translate to PPDDL ones as both are a preconditions-effects rep-

resentation, but they are difficult to translate to RDDL because every literal dynamics have

to be specified separately. In contrast, planning operators are easy to transform to a RDDL

representation, but exogenous effects cannot be represented directly in PPDDL (a rule for each

combination of action effects and exogenous effects would have to be created).

In this thesis we will use domains from the IPPC 2008 as they have a wider support from

planners and learners, and also from the IPPC 2014 in cases where the learners support them.

Most IPPC 2014 domains include exogenous effects that require a RDDL representation and a

learner that supports them.

Triangle Tireworld

In this domain, a car has to move to its destination, but it has a probability of getting a flat tire

while it moves. The car starts with no spare tires but it can pick them up in some locations. The

actions available in this domain are: a “Move” action to go to an adjacent position, a “Change

Tire” action to replace a flat tire with a spare tire, and a “Load Tire” action to load a spare tire

into the car if there are any in the current location. The main difficulty in the Triangle Tireworld

domain is the dead end when the agent gets a flat tire and no spare tires are available. Safe and

long paths exist with spare tires, but the shortest paths do not have any spare tires. Figure 2.2

shows the easiest problem of the Triangle Tireworld domain (problem 1 in IPPC 2008 and 2014).

This domain was present in both IPPC 2008 and 2014. The difference is that in the IPPC 2008

the problem finishes when the goal is reached, while in the IPPC 2014 there is one exogenous

effect (when the goal reward is received the “goal-reward-received” literal becomes true, and

the reward is no longer obtained). This subtle difference has no impact for planners, but this

extra exogenous effect has to be learned by learners.

18 Preliminaries

Figure 2.2: The Triangle Tireworld domain. The car represents the position where the robot
starts, the red circle represents the goal, and the tires represent that the position contains a
spare tire.

Figure 2.3: The Exploding Blocksworld domain. An example of an initial and a goal states is
shown. The image is reproduced from (Younes et al., 2005).

Exploding Blocksworld

This domain, which was part of the IPPC 2008, is an extension of the well-known Blocksworld

domain that includes dead ends. The robot employs “pick up” and “put on” actions to position

a set of blocks in a given layout. A block that is placed on the table, or another block, has a

probability of exploding and destroying the object beneath. After a block is destroyed, it cannot

be picked up and no other blocks can be placed on top of it. Destroying the table also implies

that the system cannot place blocks on it anymore. To solve these problems, the planner has to

take care to avoid destroying the blocks that are important for reaching the solution. Figure 2.3

shows an example of a problem in the Exploding Blocksworld domain.

2.2 Domains Used for Experimentation 19

Figure 2.4: The Crossing Traffic domain. The robot has to reach the goal on the top right (red).
However, cars appear randomly from the right side (blue) and move to the left.

Crossing Traffic

The Crossing Traffic domain (IPPC 2014) is a grid where a robot must get to a goal and avoid

cars arriving randomly and moving left. The goal is located on the top right of the grid, and the

robot starts on the bottom right position. If a car overlaps with the robot, the robot disappears

and can no longer move around. The robot can "duck" underneath a car by deliberately moving

right when a car is to the right of it. The robot receives -1 for every time step it has not reached

the goal. The best strategy is to move first to the left to be able to see if a car is coming, and

crossing whenever there are no cars in the way. Figure 2.4 shows an example of the Crossing

Traffic domains.

Elevators

The Elevators (IPPC 2014) domain has a number of elevators delivering passengers to either the

top or the bottom floor (the only allowable destinations). Potential passengers arrive at a floor

based on Bernoulli draws with a potentially different arrival probability for each floor.

An elevator can move in its current direction if the doors are closed, can remain stationary

(noop), or can open its door while indicating the direction that it will go in next (this allows po-

tential passengers to determine whether to board or not). Note that the elevator can only change

direction by opening its door while indicating the opposite direction. Figure 2.5 represents the

Elevators domain.

A passable plan in this domain is to pick up a passenger every time they appear and take

them to their destination. A better plan includes having the elevator "hover" near floors where

passengers are likely to arrive and coordinating multiple elevators for up and down passengers.

20 Preliminaries

Floor 0

Floor 1

Floor 2

Floor 3

Figure 2.5: The Elevators domain. On the left, people are waiting for an elevator, and the arrow
on each person indicates whether that person is going up or down. On the right, the elevators
are carrying passengers to another floor. When an elevator stops on a floor, it has to open the
doors to let people enter.

Robotic Applications

Here we describe the different robotic applications that we wanted to solve. In following

chapters we will show how can they be solved with the proposed algorithms.

Cleaning Dirty Surfaces

This task consists in cleaning the dirt on a surface by using a robot arm grasping a cloth, and an

optional secondary robot arm holding a dustpan. The objective of the robot is to minimize the

time required to clean the surface.

The robot has a set of actions designed to clean all distributions of dirt, including dirt

grouping actions, and dirt cleaning actions. Grouping actions rearrange the dirty areas on the

surface, so that they become easier to clean by means of future actions, while cleaning actions

directly remove the dirt. The difficulty is finding the best combination of these actions to clean

the dirt. This task is explained with more detail in Sec. 3, and Fig. 2.6 shows the WAM robot

cleaning with different cloth grasps.

2.2 Domains Used for Experimentation 21

Figure 2.6: Left: the WAM robot arm is cleaning lentils from a table to a container. Right: three
different grasps of the textile used for cleaning, each one leading to different behaviours of the
cleaning actions.

The Cranfield Benchmark

The Cranfield benchmark involves assembling an industrial item, the parts of which are shown

in Fig. 2.7-left. There are precedence constraints in the assembly that restrict the order in which

the parts have to be assembled. Square pegs have to be placed before the separator, the shaft

before the pendulum, and all other pieces before the front faceplate.

Figure 2.7-right shows an example of a state. The state defines which holes of the back

faceplate are free and the status of each piece (i.e. if it is graspable, if it is already assembled,

and if it is a peg in a horizontal position that is harder to grasp).

There is a different action to place each type of object, and the reward is obtained after

completing the assembly. Moreover, some variants of this scenario are used in more difficult and

interesting problems, as follows.

- Pegs are difficult to place when they are in a horizontal position. Therefore, actions are

required to place them in a vertical position.

- Wrong initial states can be used, e.g., an initial state where the separator is placed before

the pegs. In this case, the robot first has to remove the separator in order to place the

square pegs.

- Changing some parts for new ones, such as replacing the front faceplate with another that

is not compatible with a pendulum. This is an interesting problem for learning when part

of the domain is already known.

22 Preliminaries

PegInHole(peg4,hole3)

Clear(peg4)

PendulumPlaced(pen)

Clear(pen)

PegInHole(peg3,hole4)

Clear(peg3)
Clear(sep)

PegInHole(shaft,hole5)
Clear(shaft)

Free(hole1)

Horizontal(peg1)
Clear(peg1)

Free(hole2) Clear(peg2) Clear(front)

Figure 2.7: Cranfield benchmark assembly. Left: The different pieces used to assemble the
structure. Right: An example of the state literals used to describe the Cranfield benchmark.

Clearing Tableware on a Table

This task represents a robotized restaurant. The robots have to take plates, cups and spoons

from a table to the kitchen. However, moving to the kitchen is a costly action, and therefore the

robot has to stack the tableware before taking them, minimizing the time spent.

The actions can take the top object on top of a pile and place it in another location, or move

entire piles. Piles may become unstable if objects are not piled properly. For example, if a plate

is placed on top of a pile containing a cup and a fork, there is a high probability that it will

become unstable. To obtain stable piles, in general, plates should be placed on the bottom, cups

on top of them, and cutlery on the top. Unstable piles are harder to move, and objects may fall

and break. Finally, the robot has to take the whole piles to kitchen. The difficulty of this task is

creating the largest possible stable piles so that the number of trips to the kitchen is minimized

and no objects are broken.

The robotic setup (Fig. 2.8) consists of a robot arm equipped with a gripper, and a RGB-D

Kinect camera that is positioned on the ceiling. To generate symbolic state representations

for the decision maker, the perception system recognizes the tableware on the table and their

relative positions, and maintains a believe state that is needed to tackle the occlusions when an

object is placed on top of another. The movement primitives to execute pick and place actions

are also available in the robot.

There are two variants of this task:

- An easy one where there is only one robot that has to pile and take tableware to the

kitchen.

http://www.iri.upc.edu/groups/perception/surfaceCleaning
http://www.iri.upc.edu/groups/perception/surfaceCleaning

	Abstract
	Resumen
	Acknowledgements
	Contents
	Introduction
	Motivation
	Contributions

	Preliminaries
	Background
	Relational Formulation
	Propositional Formulation
	Markov Decision Processes
	Model Learning
	Reinforcement Learning
	Active Learning
	Planning Excuses

	Domains Used for Experimentation
	Domains from the IPPC
	Robotic Applications

	Planning in Robotics
	Introduction
	Previous work
	Proposed approach
	Perception
	Actions
	Planning

	Planning with uncertain actions
	Probabilistic planner
	Issues

	Experimental results
	Moving lentils to a container
	Picking up lentils

	Conclusions

	Reinforcement Learning with Active learning
	Previous work
	Related RL Algorithms
	The R-MAX algorithm
	The E3 algorithm
	The REX algorithm

	REX-D
	Algorithm
	Teacher Guidance
	Improving Learned Models to Minimize Teacher Interactions
	The Cranfield Benchmark Setup
	Experimental Results

	Dangerous actions
	Detecting Dangerous Literals
	Avoiding Dead-ends
	Experimental Results

	V-MIN
	Algorithm
	Reward Function
	Performance Analysis
	Experimental Results

	Conclusions

	Learning Models for Planning
	Previous Work
	Model Learner
	Candidate Planning Operator Generation
	Planning Operator Selection

	Experiments
	Domains
	Evaluation of the Model Learner
	Evaluation in RL

	Robot Table Clearing
	Learning a Model with RL
	Evaluation of the Learned Model

	Conclusions

	Conclusions
	Additional Remarks
	Future Work

	List of publications
	Bibliography
	LEARNING RELATIONAL MODELSWITH HUMAN INTERACTIONFOR PLANNING IN ROBOTICSDavid Martínez Martínez

