TREBALL FI DE GRAU

Grau en Enginyeria Mecànica

ESTUDI PER A LA CONVERSIÓ D'UN COTXE DE CARRER A UNA CATEGORIA OFICIAL DE COMPETICIÓ

Memòria

Autor: Albert Ayllón Cervera
Director: Javier Luzón Narro
Convocatòria: Juny 2017
Índex

Capítol 1: Introducció ... 3
Resum ... 3
Resumen ... 4
Abstract ... 5
Objecte .. 6
Objectius ... 6
Abast .. 7
Història de la competició ... 7
 1894 - 1960 ... 7
 1960 - Present .. 8
Capítol 2: Selecció de la competició i el cotxe .. 11
Estudi de les competicions .. 11
 European Touring Car Cup i World Touring Car Championship ... 11
 World Rally Championship i WRC-2 ... 11
 WRC-3 ... 11
Requeriments del cotxe .. 12
Selecció del cotxe ... 12
Capítol 3: gàbia antibolcada ... 14
Espai interior .. 14
Disseny de la gàbia ... 15
 Croquis ... 15
 Material .. 18
 Proveïdor ... 19
 Estructura 3D ... 20
Simulació CATIA .. 23
 Mètode dels elements finits .. 23
 Proves .. 24
Diagnòstic i solucions adoptades ... 31
Repetició de les proves .. 32
Optimització ... 36
Resum ... 43
Capítol 4: Modificacions del cotxe .. 46
Característiques d’un cotxe de ral·li ... 46
Seguretat ... 46
Dinàmica del cotxe .. 47
Motor ... 52
Sistema de transmissió .. 53
Anàlisi dinàmic .. 55
Modificacions ... 56
Seguretat ... 56
Dinàmica ... 57
Motor ... 64
Resum .. 70
Simulació de Matlab .. 71
Bloques ... 71
Part comuna ... 74
Cotxe original ... 75
Cotxe modificat .. 77
Comparativa ... 79
Simulació a velocitat màxima ... 82
Capítol 5: Pressupostos i viabilitat .. 85
Pressupostos ... 85
Mà d’obra ... 85
Estimació d’hores .. 85
Pintura .. 86
Importació del cotxe .. 86
Pressupost final ... 87
Viabilitat de l’estudi ... 87
Capítol 6: Conclusions .. 90
Capítol 7: Bibliografia ... 91
Pàgines web .. 91
Llibres i normatives .. 92
Capítol 1: Introducció

Resum
El treball de fi de grau és una bona oportunitat de posar en pràctica una part dels coneixements adquirits durant el grau i iniciar-me en una àrea de la enginyeria mecànica d'interès personal.

La competició és la part dins del sector automobilístic que més porta a l'enginyeria als seus límits, tant en seguretat, eficàcia, durabilitat i fins i tot eficiència. Per això, una bona part de la tecnologia que avui en dia portem als nostres cotxes, primer ha sigut desenvolupada i perfeccionada en els circuits de carreres.

En aquest treball es buscarà fer un estudi el més complet possible per a convertir un cotxe de carrer en una màquina de carreres apta per a poder participar en una competició oficial regida per la Federació Internacional de l'Automòbil (FIA). També s'estudiarà quina competició és la més adient per l'adaptació del cotxe a la mateixa i quin cotxe és l'ideal per aquest fi.

Aquest projecte engloba diversos camps que he pogut cursar durant el grau, com la construcció de models 3D i la simulació en diferents programes de CAD, la resistència de materials i la simulació d'elements d'automòbils, entre d'altres. Això suposa un gran repte personal, ja que suposarà un gran auto aprenentatge de les eines que s'utilitzen en aquest camp i, a part, el meu principal objectiu al començar el grau és poder dedicar-me a aquest vessant de l'enginyeria.
Resumen

El trabajo de fin de grado es una buena oportunidad de poner en práctica una parte de los conocimientos obtenidos durante el grado y iniciarme en una área de la ingeniería mecánica de interés personal.

La competición es la parte de dentro del sector automovilístico que más lleva a la ingeniería a sus límites, tanto en seguridad, eficacia, durabilidad e incluso eficiencia. Por esto, una buena parte de la tecnología que hoy en día llevamos en nuestros coches, primero ha sido desarrollada y perfeccionada en los circuitos de carreras.

En este trabajo se buscará hacer un estudio lo más completo posible para convertir un coche de calle en una máquina de carreras apta para poder participar en una competición oficial regida por la Federación Internacional del Automóvil (FIA). También se estudiará que competición es la más adecuada para la adaptación del coche a la misma y qué coche es el ideal para este fin.

Este proyecto engloba diversos campos que he podido cursar durante el grado, como la construcción de modelos en 3D y la simulación en diferentes programas de CAD, la resistencia de materiales y la simulación de elementos de automóviles, entre otras. Esto supone un gran reto personal, ya que requiere un gran auto aprendizaje de las herramientas que se utilizan en este campo y, a parte, mi objetivo principal al comenzar estos estudios es poder dedicarme profesionalmente a esta vertiente de la ingeniería.
Abstract

The final degree project is a good opportunity to put into action a part of the knowledge acquired during the university studies and to get started in an specific area of the mechanical engineering of my personal interest.

The automotive racing is the part inside the automotive sector that pushes more the engineering to its limits, so is in matter of security, efficacy, durability and even efficiency. That’s the reason why an important proportion of the technology that nowadays is in our cars, has been developed and improved in racing tracks.

This project aims to be the most complete possible to convert a street car in a racing machine valid for taking part in an official competition ruled by the Automobile International Federation (FIA). The selection of the more adequate racing event and which car will fit better for that matter will be considered as well.

The project includes several fields that I’ve studied during my stay in university, for example the building of 3D models and simulating them in CAD programs, the properties of the materials, and the simulation of automobile elements. That supposes a big personal challenge, because it requires an important self-learning of the tools used in this field, and beside that, the main reason I took part in the grade is to work in this kind of engineering.
Objecte

Un cotxe de competició és una màquina molt complexa i el rendiment d'aquesta depèn de moltes variables, començant pel motor i acabant per les rodes, passant per xassís, direcció i suspensió per anomenar d'algunes. Tot i això, des d'unes dècades enrere, el punt més important del cotxe és la seguretat del pilot i copilot (en cas d'haver-hi) i un dels elements més importants en aquest aspecte és la gàbia de seguretat, que és una estructura metàl·lica tubular que evita que l'habitacle es deformi en cas de xoc o bolcada. Es farà especial èmfasi en aquesta peça ja que es indispensable per qualsevol categoria.

Objectius

L'objectiu principal d'aquest estudi és dissenyar una gàbia de seguretat o gàbia antibolcada apta segons la normativa que marca la FIA i trobar les adaptacions necessàries per aconseguir un cotxe competitiu. Posteriorment, determinar la viabilitat del treball comparant el resultat de l'estudi amb la resta dels cotxes de la categoria.

Per aconseguir l'objectiu principal, cal distribuir la feina en uns objectius específics mes concisos.

- Escollir la categoria més adient per a què l'estudi sigui viable.
- Escollir el cotxe que es sometrà a les modificacions.
- Definir els punts clau que millorar per a què el cotxe sigui competitiu.
- Definir l'espai sobre el qual es pot treballar mitjançant els plànols del cotxe o fent-ne uns a partir d'una maqueta a escala o el mateix cotxe si és possible (cas que s'intentarà evitar per tal d'evitar imprecions).
- Dissenyar i validar pel mètode d'elements finits la gàbia de seguretat més funcional i ergonòmica possible i escollir el millor material fent un estudi de diferents acers.
- Modificacions al xassís per la millora de la rígidesa estructural del vehicle i validar pel mètode d'elements finits.
- Estudi dels components que poden millorar la dinàmica del cotxe
- Potenciació del motor al nivell de la competència en les proves.
- Adaptació de la transmissió a la nova potència del motor.
- Fer un estudi numèric de la potència i la força que arriba a les rodes i l'acceleració del cotxe. Comparar-les amb les xifres d'abans i després de les modificacions.
- Definir el pressupost i la viabilitat davant la el preu d'un cotxe nou oficial.

Abast

A aquest estudi es centrarà en el disseny de la gàbia de seguretat i la validació d'aquesta mitjançant el mètode d'elements finits.

Pel sistema de suspensió, es buscarà la millor solució que els fabricants especialitzats poden oferir que sigui aplicable al cas de l’estudi.

La potenciación del motor es farà mitjançant un estudi teòric i escollint les peces necessàries per aconseguir els resultats d'aquest estudi que puguin ser aplicables al vehicle escollit.

Respecte l'apartat de la transmissió es tindrien en compte els fabricants que ens poden oferir una solució ràpida tot i que en cas necessari, s'estudiaria la forma d'adaptar la transmissió als nous requeriments.

Finalment, l’estudi numèric del motor i la transmissió, es farà mitjançant el simulador de MATLAB intentant representar el cotxe el mes fidel possible al de l’estudi.

El pressupost tindrà en compte totes les peces adquirides i els costos de fabricació de les necessàries com així també les hores de mà d'obra estimades per la instal·lació de les quals. No es tindran en compte el preu de les hores involucrades en l’estudi de la conversió del cotxe.

Història de la competició

1894 - 1960

La història de la competició automobilística s'inicia paral·lelament a la indústria de l’automòbil, que donava els seus primers passos. La primera cursa va tindre lloc a França el 22 de juliol de 1894. El recorregut cobria una distància d'uns 130km començant a París amb una graella de sortida de 21 vehicles. La cursa va començar a les 8 del matí i va acabar a Rouen a les 8 de la tarda, amb una parada per esmorzar al camí. El guanyador va ser un vehicle que consistia en un tractor a vapor enganxat a un carro.

Aquesta primitiva competició va ser la precursora de les tantes disciplines que avui en dia existeixen, com per exemple els ral·lis. Al 1911 es va disputar la primera edició del ral·li més famós, el Ral·li de Monte-Carlo. En aquesta prova van competir 20 cotxes, dels quals 18 van arribar a la meta. Els vehicles no diferien gaire dels comuns al carrer en la època i produïen una potència que anava des dels 20 cv fins als 60cv. El cotxe vencedor
va ser el Turcat-Méry de només 25 cv. Amb aquest tipus de cotxe, amb la tecnologia que permetia el 1923, va disputar-se les primeres 24 Hores de Le Mans.

Als propers anys, els fabricants com Alfa Romeo, Bugatti, Auto Union i Mercedes-Benz entre d’altres, van donar el salt i van passar de competir amb cotxes de carrer a fer-ho amb veritables màquines de carreres dissenyades només per a la competició.

Aquells cotxes solien voltar els 600 cv tot i que algun cotxe sobrepassava els 700 cv i estaven limitats a un pes màxim de 750kg. Aquesta última norma és curiosa perquè avui en dia es limita el pes mínim en comptes del màxim. Per aconseguir complir aquests requisits, es va recórrer als aliatges d’alumini per a la construcció de la carrosseria. Mercedes-Benz, va deixar al descobert l’alumini dels seus cotxes per estalviar el pes de la pintura i van passar a ser recordats com les Fletxes Platejades. En aquests cotxes es va basar es van basar els fabricants durant els primers anys de la que actualment coneixem com Formula 1. El primer gran premi es va disputar a Torí l’1 de setembre de 1946 amb victòria d’Alfa Romeo.

Mentre la Formula 1 encara estava en bolquers, transcorria la època daurada dels ral·lis de llarga distància que es va expandir ràpidament per tota Europa. Va ser llavors quan al 1953 la FIA va crear el Campionat Europeu de Ral·lis, unificant les proves que anteriorment es feien separades en un mateix campionat amb 10 o 11 etapes segons la font, ja que no hi ha gaire informació al respecte. En aquesta època també naixia la NASCAR, que consisteix en una competició, normalment en un circuit oval, la qual els cotxes que competien eren dissenyats especialment per les carreres però amb una carrosseria basada en els cotxes de carrer.

1960 - Present

Durant la dècada dels 60, la FIA va donar llum verda a una competició de turismes, la European Touring Car Championship (ETCC), que seria precursora de la actual World Touring Car Championship (WTCC) on competeixen turismes modificats. Als inicis competien diversos tipus de cotxes amb potències i cilindrades molt variades i hi havien diferents categories dins la mateixa
competició. Amb el pas dels anys, es van unificar aquestes diferències i actualment la cilindrada està limitada a 1600cc amb sobrealimentació o 2000cc amb aspiració natural. A finals de la dècada també va nàixer el ral·licross, que consisteix en curses curtes en un circuit amb una part de la pista d'asfalt i una altra de grava.

La època més revolucionària a la Formula 1 va ser durant els anys 70. Van ser els anys on l’aerodinàmica es va instaurar als monoplaces i les escuderis van experimentar amb diferents dissenys per dominar la tècnica de l’aerodinàmica. Això va donar com a resultat uns gegants ailerons als cotxes i moltes solucions curioses, com instal·lar ailerons posteriors a la part davantera del cotxe. També va ser el gran moment de l’efecte terra, que mitjançant unes modificacions als baixos del cotxe aquest feia una gran força en direcció al terra i era un gran avantatge en el pas de corba. Aquesta tècnica es va prohibir donada la perillositat, ja que si el cotxe es separava lo suficientment del terra, el cotxe tenia tendència a "enlairar-se".

Al 1978 va disputar-se la primera cursa París - Dakar, uns anys abans de que comencés la època daurada dels ral·lis al 1982, amb les regulacions introduïdes per la FIA que donava lloc al anomenat Grup B. Els cotxes pertanyents a aquesta categoria van ser els més ràpids, potents i sofisticats de la història. La potència era propera als 600 cv, juntament amb el seu baix pes i la tracció a les quatre rodes els feia unes màquines molt ràpides i nervioses, raó per la qual la FIA va cancel·lar aquesta categoria després d’un accident fatal al Ral·li de Portugal de 1986. Llavors van passar al Grup A, cotxes de producció modificats, que son els antecessors als actuals cotxes de ral·li.
Avui en dia, encara segueixen en actiu bona part de les competicions esmentades. Amb l'entrada al 2011 gràcies als X Games del Ral·licross, on participen pilots molt reputats del món del ral·li. Molts fabricants aprofiten les diferents disciplines per investigar i desenvolupar les últimes tecnologies que pot ser algun dia estarà present als cotxes de carrer. A més a més, si tenen bons resultats, és una bona forma de publicitat per a la marca.
Capítol 2: Selecció de la competició i el cotxe

Estudi de les competicions
Degut a que el que es vol aconseguir es transformar un cotxe de carrer a un de competició ens acurta substancialment la llista entre les competicions que es poden escollir. S’han descartat les competicions de monoplaces, de prototips, i de ral·licross ja que aquests cotxes estan dissenyats únicament per a la competició. En definitiva, només ens queden les diferents disciplines de ral·lis i turismes les quals, els cotxes pertanyents, tenen les següents característiques principals.

European Touring Car Cup i World Touring Car Championship
Els cotxes han de comptar amb 4 seients, tracció a dues rodes, de 4/5 portes (de 2/3 portes només si la silueta es idèntica a la versió de 4/5 portes) i una llargada mínima de 4,2 metres. Una cilindrada màxima de 2000 cc amb aspiració atmosfèrica o 1600 cc amb sobrealimentació i un pes mínim de 1100 kg (pilot inclòs).

World Rally Championship i WRC-2
Cotxes de producció amb motor sobrealimentat de cilindrada màxima de 1600 cc o amb aspiració atmosfèrica de 2000 cc com a màxim i tracció a les quatre rodes. El pes mínim del cotxe ha de ser de 1230 kg.

WRC-3
Tracció a dues rodes, cilindrada màxima de 1.620 cc per a gasolina i 2000 cc per versió atmosfèrica o dièsel amb un pes mínim de 1080 kg per als gasolina i 1150 kg per als dièsel. També poden competir cotxes de categoria inferior.

Les demandes de les competicions també són importants a l'hora d'escollir cotxe i preparar-lo. Els campionats de turismes es disputen en circuits tancats amb molt bon paviment i una pista, en general, més amplia que els ral·lis, també s’assolen velocitats més altes i per tant l’aerodinàmica juga un paper més important. Per altra banda el gran repte dels ral·lis es tindrà molta tracció en tot moment ja que han de càrrega sobre asfalt, grava i neu i les pistes revirades de les proves afavoreixen als cotxes més àgils.

Donat el abast del treball, sembla que una competició de ral·li pot ser mes adequada per a fer la conversió, ja que els esforços s’hauran de centrar en la estabilitat i la mecànica del cotxe i l’aerodinàmica quedaria relegada a un segon pla. Llavors quedan 3 categories per escollir. Com en les dues categories superiors de ral·li es demanen cotxes de tracció a les quatre rodes i la
major part dels cotxes compta amb tracció a les dues rodes, complicaria bastant el treball de convertir un cotxe de dues rodes motrius a quatre. Per tant la categoria que més s’ajusta a l’abast del treball és la WRC-3.

Requeriments del cotxe
Per determinar el rendiment que ha de tenir el cotxe, primer s’ha de donar una ullada a la competència. A la competició que arranca el 2017 hi han 5 cotxes que competeixen en aquesta categoria.

<table>
<thead>
<tr>
<th>Model</th>
<th>Cilindrada</th>
<th>Potència</th>
<th>Força</th>
<th>Pès en buit</th>
<th>Aspiració</th>
<th>Tracció</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citroën DS 3 R3T</td>
<td>1598 cc</td>
<td>210 cv</td>
<td>350 Nm</td>
<td>1080 kg</td>
<td>Turbo</td>
<td>Davantera</td>
</tr>
<tr>
<td>DS 3 R3 Max</td>
<td>1598 cc</td>
<td>234 cv</td>
<td>430 Nm</td>
<td>1080 kg</td>
<td>Turbo</td>
<td>Davantera</td>
</tr>
<tr>
<td>Peugeot 208 R2</td>
<td>1598 cc</td>
<td>185 cv</td>
<td>190 Nm</td>
<td>1030 kg</td>
<td>Turbo</td>
<td>Davantera</td>
</tr>
<tr>
<td>Toyota GT86 R3</td>
<td>1998 cc</td>
<td>238 cv</td>
<td>230 Nm</td>
<td>1080 kg</td>
<td>Atmosfèrica</td>
<td>Posterior</td>
</tr>
<tr>
<td>Renault Clio R3T</td>
<td>1618 cc</td>
<td>225 cv</td>
<td>420 Nm</td>
<td>1080 kg</td>
<td>Turbo</td>
<td>Davantera</td>
</tr>
</tbody>
</table>

Taula 2.1 - Cotxes de la competència

Tots els cotxes tenen unes característiques similars, excepte el Peugeot ja que tot i que competeix a la mateixa categoria, les restriccions són més limitades al ser R2, això li permet poder pesar 50kg menys.

Es necessitarà un cotxe al què es pugui aconseguir treure més de 220 cv i de pes molt contingut, preferiblement de motor 1.6 amb turbo per aconseguir més força. Tot i que no és un gran avantatge perquè en terra la tracció davantera es prou competitiva, es buscarà, si pot ser, que sigui de tracció posterior.

Selecció del cotxe
Primer es farà un repàs als cotxes nous, descartant aquells que ja formen part de la competició. Per tant, es passarà de llarg de DS, Peugeot, Toyota i Renault. També es descarta el grup VAG (Volkswagen, SEAT, Audi i Skoda) juntament amb Alfa Romeo, BMW i Mercedes-Benz per no comptar amb un motor 1.6 turbo o un 2.0 atmosfèric a la seva gama.

Després de la recerca, les marques més interessants semblen Nissan, Opel, Mazda i Ford. Mazda compta amb el MX-5 que tot i ser més car, es un cotxe fet per a les carreteres revirades, compta amb tracció posterior i un motor atmosfèric. La competència en canvi, disposa de motors turbo i tracció davantera. Per altra banda, dintre dels cotxes d'ocasió, es busca més varietat de cotxes de propulsió i/o motors atmosfèrics ja que, difícilment es superaran les prestacions dels cotxes nous, que ja són prou bones. Buscant un cotxe de menys
de 5 anys i pocs quilòmetres a l'odòmetre, l'antic model de BMW 120i s'adapta a les exigències que es busquen, les demes opcions no sembren gaire interessants. Per tant així queda la llista dels candidats.

D'aquesta taula, el Mazda sembla una bona opció. Un cotxe petit, àgil, amb un repartiment de pesos del 50:50 i un molt baix centre de gravetat. El motor encara té marge per poder exprimir-lo més però hi ha un contratemps. Aquest motor té una relació de 13:1 a la cambra de combustió i les normes el limiten superiorment a 12:1.

Un cop descartat aquest candidat, el següent cotxe que sembla millor és el Ford Fiesta. No és el cotxe més potent per només 10 cavalls i el seu pes és el més contingut amb una diferència de més de 100 kg respecte el segon. Té un sobre cost de menys de 1.700 € respecte l'Opel Corsa, que sembla la segona millor opció. El cost extra del Ford Fiesta no es excessiu i es tindrà un cotxe prou competitiu amb el que treballar.

Revisant les normes a fons, no es troba cap inconvenient que inhabilitin a aquest cotxe, per tant l'estudi es farà sobre el Ford Fiesta ST. El preu final del cotxe, no serà exactament aquest, ja que l'estudi es basarà en la versió nord-americana. Les raons per les quals s'escollirà la versió nord-americana són els 15cv de més amb els que el cotxe compta i les mides que es podran aconseguir són de la versió de 5 portes, només venuda als EUA en la versió ST.

L'apartat de pressupost tindrà en compte el preu dels EUA i el cost de transportar-lo fins a Espanya. Els requisits del cotxe per circular per Europa no es tindran en compte perquè no és un cotxe destinat a circular per les carreteres europees.

<table>
<thead>
<tr>
<th>Model</th>
<th>Cilindrada</th>
<th>Potència</th>
<th>Força</th>
<th>Pes</th>
<th>Aspiració</th>
<th>Tracció</th>
<th>0-100 km/h</th>
<th>Preu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nissan Pulsar</td>
<td>1618 cc</td>
<td>190 cv</td>
<td>240 Nm</td>
<td>1390 kg</td>
<td>Turbo</td>
<td>Davantera</td>
<td>7,7 s</td>
<td>24.150 €</td>
</tr>
<tr>
<td>Opel Corsa</td>
<td>1598 cc</td>
<td>207 cv</td>
<td>280 Nm</td>
<td>1293 kg</td>
<td>Turbo</td>
<td>Davantera</td>
<td>6,8 s</td>
<td>20.056 €</td>
</tr>
<tr>
<td>Mazda MX-5 RT</td>
<td>1998 cc</td>
<td>160 cv</td>
<td>200 Nm</td>
<td>1120 kg</td>
<td>Atmosfèrica</td>
<td>Posterior</td>
<td>7,4 s</td>
<td>28.300 €</td>
</tr>
<tr>
<td>Ford Fiesta ST</td>
<td>1596 cc</td>
<td>197 cv</td>
<td>276 Nm</td>
<td>1163 kg</td>
<td>Turbo</td>
<td>Davantera</td>
<td>6,9 s</td>
<td>21.725 € (*)</td>
</tr>
<tr>
<td>BMW 120i</td>
<td>1995 cc</td>
<td>170 cv</td>
<td>210 Nm</td>
<td>1375 kg</td>
<td>Atmosfèrica</td>
<td>Posterior</td>
<td>7,6 s</td>
<td>15.490 € (**)</td>
</tr>
</tbody>
</table>

Taula 2.1 - Comparació de cotxes
Capítol 3: Gàbia antibolcada

Espai interior
Abans de començar amb les modificacions s’ha de definir l'espai interior. Això bàsicament consisteix en estripar tot l'interior, ja que només ens faria la funció de llast. Llavors tots els seients, embellidors, catifes i el quadre de comandaments ha de ser tret de l'interior del cotxe. Tot i que per unes setmanes disposo d'un model de Ford Fiesta gairebé idèntic al del treball, podré treure les mides però hauran de ser aproximades. La raó és què, per a dissenyar la gàbia, s’han de soldar els suports directament a la carrosseria autoportant, la qual està sota l’encatifat, embellidors i demés elements.

Un cop tingut això en compte i amb l’ajuda d'un croquis del cotxe en una tarda es van treure les mesures lo més acurades possible.

Amb un marge del voltant dels 3 centímetres, no hi hauria d’haver un gran problema a l'hora de dissenyar la gàbia de seguretat, la qual aniria des de la part posterior de la roda davantera, pujant 84cm fins arribar al pilar A. L'arc es corbarà per aquesta zona i recorrerà el sostre fins arribar als 125cm de darrera de la roda davantera per a continuació baixar al terra del cotxe. Les mides d'amplada son diferents tant en la part davantera, mitjana i posterior on, separats per 117 cm anirà ancorada la gàbia de seguretat a la carrosseria de la part superior de les rodes posteriors. D'altra banda, també varia l'amplada per 27 cm entre el sostre i la meitat inferior del cotxe a la zona dels seients.
Disseny de la gàbia

Croquis

Ara que ja estan aclarits els límits on pot arribar la gàbia de seguretat es el moment de començar a treballar en ella. Per a tal fi s'utilitzarà el programa CATIA. Aquest programa permet fer disseny en 3D i també calcular els esforços de l'estructura mitjançant el mètode dels elements finits.

Primer de tot es començarà ubicant els punts més pròxims a la carrosseria per a tenir l'espai ben definit i a continuació es traçaran les línies que uneixen aquests punts i s'afeigneran corbes entre les línies en els trams on el tub sigui corbat. El radi d'aquests ha de ser de 3 vegades el diàmetre del tub com a mínim. Les normes ens marquen que per els elements principals el tub ha de ser de mínim diàmetre de 45 mm, per tant el radi que es marcarà serà de 135 mm. Tenint en compte això s'adaptaran les línies que marquen els tubs a un dels dissenys que ens dóna la normativa.

Il·lustració 2.2 - Estructures de gàbia principals

Dels tres dissenys aquests, s'ha d'escollir un, el més senzill i robust, qualitats les quals es busquen en aquest treball, sembla el disseny de la dreta. Aquest compta amb una barra antibolcada principal, dues mitges barres antibolcada laterals, un membre transversal i dos suports posteriors. En el cas de l’esquerra, l’angle que el pilar A fa sobre l’horitzontal es proper als 25 graus, el qual és un angle massa petit i tindrà pitjors resultats a la prova estàtica de la barra antibolcada davantera. D’altra banda, el disseny del mig, comporta un angle prou tancat a la barra antibolcada lateral que farà modificar la posició dels suports i barra tranversal posteriors, el que comportarà que hi siguin més allunyaades de la carrosseria. Per aquestes raons s'escollirà el tercer disseny com a base per a començar la gàbia de seguretat.
Ara es passa als elements de reforç de l'estructura, hi han que son obligatoris. Per començar, estan les diagonals a la barra antibolcada principal. El disseny almenys ha de tindre una diagonal que creui la estructura des de la part superior de la barra antibolcada principal fins un dels suports del pilar B o C de l'estructura. En aquest cas el disseny triat serà una creu que connecti els costats oposats de la base de la barra principal antibolcada amb les seves parts superiors.

Aquest disseny en creu també s'utilitzarà com a reforç lateral de l'estructura, és una de les opcions que dóna la normativa. Estarà situat en la part baixa de l'estructura on no dificulti la sortida dels ocupants.

Per els reforços al sostre s'escollirà el disseny 253-13 de la següent figura, ja que oferirà un millor suport a la barra antibolcada davantera al tenir un suport a la part central. Els centres dels tubs a la part davantera no poden distar més de 100 mm.
Encara falta per afegir el reforç del pilar del parabrisa, que anirà des de la part inferior de les mitges barres antibolcada laterals fins la travessa frontal. Aquest és l’últim tub obligatori que queda per afegir a l’estructura que de moment té aquesta forma.

Il·lustració 2.5 - Disposició de les barres

Abans de passar a construir l’estructura tubular, s’afegiran uns últims reforços que, si bé no són obligatoris, ajudaran a fer una gàbia més segura. La normativa ofereix una gran varietat de formes en les que reforçar la gàbia, d’aquestes s’escolliran les 2 més útils per aquest estudi.

La idea es reforçar principalment la barra antibolcada principal i la travessa que uneix les dues barres laterals, que són les barres que es sotmetran a les proves estàtiques. Per aquest fi s’adaptaran els següents dos dissenys.

Il·lustració 2.6 - Reforços extra
Per últim s'afegirà un reforç a les barres antibolcada laterals que ha d'anar comprès dins d'aquestes mides.

- Dimension A must be a minimum of 300 mm
- Dimension B must be a maximum of 250 mm
- Dimension C must be a maximum of 300 mm
- Dimension E must not be more than half the height of the door aperture (H).

Il·lustració 2.7 - Distàncies de les barres a la porta

Material
Ara ja es tenen definits els espais per on passarà l'estructura tubular, es moment de definir els radis que els tubs de l'estructura tindran. La normativa diu que l'acer utilitzat ha de ser un acer pobre en carboni (màxim 0,3%), no aliat i amb un contingut màxim de 1,7 en manganès i un 0,6% en demés substàncies i ha de poder suportar una resistència a la ruptura de 350 MPa. Les mides mínimes són de 45 mm de diàmetre exterior amb un espessor de 2,5 mm o 50 mm i 2 mm, respectivament per la barra antibolcada principal. Pels demés tubs és un diàmetre de 38 o 40 mm amb un espessor de 2,5 o 2 mm, respectivament.

Per trobar els acers idonis per la construcció de la gàbia antibolcada, es consultarà el catàleg de propietats de materials de la web matweb.com. Es buscaran acers baixos en carboni, ja que la normativa és molt restrictiva amb els demés aliatges. Es regeixen per la norma AISI, d'aquesta norma, la sèrie 1XXX és per acers només aliat amb carboni i dins d'aquesta sèrie els acers amb els números 101X i 102X pertanyen a dos tipus d'acer però amb diferents tractaments, la normativa també diu que ha de ser un acer tractat en fred. Els dos exemples d'aquests dos acers són els AISI 1010 i AISI 1020. Les seves propietats son les següents.
Abans de buscar un proveïdor per als tubs d’acer, sobre el paper les diferències són notables però gens exagerades. El metall de més qualitat ofereix 115 MPa més de resistència màxima i 45 MPa més de resistència a la deformació elàstica.

Proveïdor

Ara es buscarà un proveïdor de tubs que ens faciliti el preu per tal de poder afegir-ho directament al pressupost com el material per a la gàbia. Després d’una extensa recerca, es troben poques metal·lúrgiques que ofereixin el preu. A la web MetalsDepot s’ofereixen els preus de tubs d’acer amb diferents qualitats i per films. En tubs rodons d’acer es troba l’acer A513 Tipus 5, que és equivalent a un AISI 1020/1026 segons indica el fabricant. El mateix fabricant també ven l’acer A513, un equivalent al AISI 1010. La web dóna les dades de les tensions màximes, el límit elàstic i el pes de cada perfil que seran les dades que s’utilitzaran per realitzar les simulacions.

<table>
<thead>
<tr>
<th>Acers</th>
<th>Límit elàstic (MPa)</th>
<th>Tensió màxima (MPa)</th>
<th>Elongació (%)</th>
<th>%C</th>
<th>%Mn</th>
<th>%Resta</th>
<th>Coef. de Poisson</th>
<th>Mòdul de Young (GPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIA</td>
<td>-</td>
<td>350</td>
<td>-</td>
<td>0,3</td>
<td>1,7</td>
<td>0,6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>AISI 1010</td>
<td>305</td>
<td>365</td>
<td>20%</td>
<td>0,105</td>
<td>0,45</td>
<td>0,09</td>
<td>0,29</td>
<td>205</td>
</tr>
<tr>
<td>AISI 1020</td>
<td>350</td>
<td>450</td>
<td>20%</td>
<td>0,2</td>
<td>0,45</td>
<td>0,09</td>
<td>0,29</td>
<td>186</td>
</tr>
</tbody>
</table>

Taula 2.3 - Comparativa d’acers

Les diferències entre aquests dos materials són més evidents que en els que s’havien comparat anteriorment. Existeix una diferència important en el preu, és quasi el doble més car l’acer A513 Tipus 5 però a canvi té unes molt bones propietats mecàniques en comparació a l’altre. També es tindrà en compte la soldabilitat dels acers. Així podrem saber si caldrà un preescalfament per a soldar, fet que derivaria en un major cost.

Es calcularà el valor de carboni equivalent amb els valors màxims. La composició química es farà dels acers AISI 1010 i AISI 1020, ja que són equivalents.

Pel cas del AISI 1010 tenim:

$$CEV = C + \frac{Mn}{6} + \frac{Cr + Mo + V}{6} + \frac{Ni + Cu}{15}$$
El material presentarà una bona soldabilitat, ja que el llindar per al sobre escalfament es situa al 0,8%. Al ser percentatges semblants de carboni, ja que la resta d'elements no es troben presents a cap dels dos acers, l'altre acer també hauria de tindre una bona soldabilitat. Es comprova:

$$CEV = 0,105 + \frac{0,45}{6} = 0,18\%$$

Es confirma que ambdós materials presenten una bona soldabilitat així que en aquest apartat la diferència és mínima. Com aquesta és una peça molt important en aquest treball, s'utilitzarà per a construir el primer model 3D, l'acer A513 Tipus 5 per les seves propietats mecàniques.

Estructura 3D

La guia per escollir els diàmetres i el gruixut dels tubs serà el sentit comú i, després d'escollir-les, fer el sòlid en 3D, les simulacions i, posteriorment, adaptar els diàmetres i gruixos dels tubs a les mides òptimes. S'obrirà el programa CATIA en mode Part Design i es construirà el model utilitzant la eina Rib. Aquesta permet seleccionar un croquis, que en aquest cas serà el diàmetre exterior del tub, i una línia central, que ja s'han traçat. Aquesta eina dóna la opció de seleccionar el gruixut desitjat així com la direcció radial del gruix i també s'activarà la casella d'unir els extrems, així actuaran d'unió a l'hora de fer l'anàlisi estàtic.

La oferta de perfils és prou àmplia, per la barra antibolcada principal i la travessa frontal s'escollirà el tub més gruixut de la estructura tubular, un diàmetre de 47,625 mm i un gruix de 6,35 mm, són les barres que més tensions suportaran. Per a les barres antibolcada laterals i els suports posteriors s'escollirà un diàmetre de 44,45 mm i un gruix de 4,77 mm per a les barres antibolcada laterals, i de 3,05 pels suports posteriors, ja que per la seva forma i posició tindran una demanda menor de tensions. També s'han afegit unes bases d'acer que simula la posició on la estructura aniria ancorada al cotxe.
Les barres del sostre seran del mateix diàmetre i gruix que les barres antibolcada laterals. Els demés tubs seran del mínim diàmetre i gruix permès per la normativa, 38,1 mm i gruix 2,41 mm, respectivament (s'ha comentat prèviament que el mínim és 2,5, però en cas de ser en polzades, el límit inferior és 0,095”, i és la mida que ofereix el proveïdor).

Un cop construïdes totes les barres, a les unions d'aquestes, s'utilitzarà les eines Edge Fillet i Variable Edge Fillet per donar un radi que faci menys brusc les cantonades que genera la construcció de les barres. Això també facilita la simulació al no haver-hi canvis bruscos en les superfícies, a part, afegeix el material que hauria de ser aplicat a l'estructura en la execució de la soldadura dels tubs.
L'estructura sòlida ja està completa. El següent pas és aplicar el material que s'ha escollit. Llavors ens anem a l'apartat del material i afegim les dades que el programa demana per fer els anàlisis.

Il·lustració 2.10 - Unió de la barra antibolcada frontal

Il·lustració 2.11 - Propietats d'anàlisi de l'acer ASTM A513 Tipus 5
Simulació CATIA
Un cop afegides les dades del material escollit, s'aplica el material a la peça i seguidament ja es pot començar a preparar l’anàlisi estàtic. Per això es canviarà el mode en el que s'està treballant en CATIA per el de Generative Structural Analysis.

Mètode dels elements finits
Aquest programa utilitza aquest mètode per calcular les tensions i els desplaçaments que pateix la peça quan actua alguna força sobre ella.

El mètode dels elements finits és una forma de calcular les dades que es necessiten perquè té una bona precisió. A grans trets, aquest mètode es basa en la divisió d’un material continu en un conjunt de petits elements connectats entre sí per nodes.

Gràcies a fer aquesta divisió, les equacions que regeixen el comportament de tot el conjunt d’elements seran les mateixes que en cada element individual. Així passem d’un sistema continu, que te infinit grans de llibertat, a un sistema amb un número de graus de llibertat finit el comportament del qual es modela per un sistema d’equacions. En el cas de CATIA, primer s’ha de crear una malla de tetraedres que simuli la estructura 3D de la gàbia de seguretat.

Il·lustració 2.12 - Mètode dels elements finits

Així passem a obtenir les condicions de contorn, que son les variables que condicionen el canvi del sistema, com les càrregues, els desplaçaments, les tensions,... i el domini, que és la superfície de cada una de les cares de cada tetraedre que CATIA ha creat. Sobre els nodes que defineixen cada tetraedre, es defineixen les incògnites de l’element que ens interessen, en el aquest cas, els desplaçaments i les tensions. Aquestes incògnites, s'anomenen graus de llibertat de cada node. Els graus de llibertat de un node son les variables que determinen l’estat i/o posició del node i amb les dades de la força aplicada, aquest mètode permet calcular les tensions, els desplaçaments i la temperatura que la peça assoleix degut a les forces aplicades, tot i que aquesta última dada no es d’interès en el treball.
Proves

Un cop obert el mode de CATIA Generative Structural Analysis, es crea una malla de tetraedres, a la qual s'han d'aplicar unes restriccions. La malla haurà de ser d'una distància entre nodes de 10mm i amb una alçada de la curvatura de 2mm. El motiu de seleccionar aquestes mides està condicionat per la memòria de càlcul de l'ordinador. Un cop aplicades les restriccions necessàries, actualitzem el model i així es crea la malla.

Il·lustració 2.13 - Mallat de l'estructura

Ara es passa a aplicar les subjeccions a la carrosseria. Amb la eina Clamp, ancorem les parts inferiors dels blocs on es soldarà l'estructura a la carrosseria.

Barra antibolcada principal

Les proves estan regulades per la Autoritat Sancionadora d'Esports de Motor Canadenca (ASN). Aquesta prova consisteix en aplicar una determinada força que ve dictada per la següent fórmula on \(w \) és el pes del cotxe, en aquest cas s'agafarà el mínim permès i la \(g \) correspon a la força de la gravetat.

\[
F = 7.5 \times (w + 150) \times g
\]

Aquesta força ha de ser aplicada per un tampó fet en acer d'unes determinades mides. El test es farà simulant la força d'aquest tampó sobre la cara superior de la barra antibolcada principal. Aquesta força haurà de ser de:

\[
F = 7.5 \times (1080 + 150) \times 9.81 = 90,50 \, kN
\]

Amb la eina Distributed Force, s'afegeix aquest valor amb signe negatiu en la direcció Z i es selecciona la cara superior de la barra antibolcada davantera.
Il·lustració 2.14 - Prova de la barra antibolcada principal

Un cop aplicades totes les dades, es cllica calcular. Per obtenir uns bons resultats les la tensió d'estrès principal que dóna el programa no hauria de superar els 350 MPa que la normativa limita segons la qualitat de l'acer que requereix. També s'han de tenir en compte els desplaçaments que la peça ha sofert, que en cap cas haurien de superar els 50 mm. Un cop aclarit això, es passa a veure els resultats.

Tensió principal

Il·lustració 2.15 - Prova 1, tensió principal a la barra antibolcada principal

La prova d'estrès principal ens mostra que la tensió màxima és de 370 MPa en signe negatiu. El material del qual està construït no té problemes en suportar aquesta tensió, però en aquestes
proves es busca no superar una tensió de 350 MPa. El punt crític de la peça s'ubica en la part superior de les barres en creu que subjecten la barra antibolcada principal.

Desplaçaments

Il·lustració 2.16 - Prova 1, desplaçaments a la barra antibolcada principal

Els desplaçaments màxims de l'estructura no arriben als 5 mm, per tant es un resultat bo ja que el límit són 50 mm.

Tensió de Von Mises

Il·lustració 2.17 - Prova 1, tensió de Von Mises a la barra antibolcada principal
Les tensions de Von Misses no superen els 350 MPa, per tant el resultat es correcte malgrat que la normativa no diu res en respecte a aquest tipus de tensió.

Barra antibolcada davantera

Segons diu la norma de ASN, la barra antibolcada davantera ha de suportar una càrrega que compleixi la següent fórmula.

\[F = 3,5 \times (w + 150) \times g \]

La càrrega s'ha d'aplicar mitjançant un tampó similar al de la prova anterior. En la prova es simularà seleccionant la cara superior de la barra antibolcada frontal i les cares que comprenen les juntes amb les barres antibolcada laterals. Per aquesta prova s'han de realitzar dues simulacions de la forma que indiquen les següents figures.

![Il·lustració 2.18 - Proves 2 i 3 a la barra antibolcada frontal](image)

La primera prova s'aplicarà a la cara on hi són les juntes de la gàbia en aquesta part i la segona s'aplicarà tant a la barra antibolcada frontal com a les dues juntes. La força aplicada haurà de ser aquesta.

\[F = 3,5 \times (1080 + 150) \times 9,81 = 42,23 \, kN \]

Aquesta força s'ha de descompondre en vectors verticals i horitzontals. Per la primera prova tindrem les següents forces:

\[F_{x1} = 42,23 \times \cos(25^\circ) = 38,28 \, kN \]

\[F_{y1} = 42,23 \times \sin(25^\circ) = 17,85 \, kN \]
Les tensions d’aquesta prova reflecteixen una bona dissipació de les tensions a través de tota l’estructura que fa que hi l’estructura superi aquesta part de la prova amb un ampli marge, la tensió màxima es de 219 MPa.

No s’aprecien grans desplaçaments en aquesta prova, el màxim és 1,47 mm
La tensió màxima de Von Mises és de 218 MPa, molt semblant a la de la prova de tensions d'estresses principals i l'absorbeix pràcticament tota la barra de suport de la barra antibolcada frontal.

Es repetiran els mateixos càlculs que a la prova anterior, però amb l'angle de la segona prova, per tant les forces seran aquestes:

\[F_{xz} = 42,23 \cdot \cos(5^\circ) = 42,07 \, kN \]

\[F_{xz} = 42,23 \cdot \sin(5^\circ) = 3,68 \, kN \]
La tensió en aquest cas torna a ser major del desitjat, aquest cop per menys diferència. El dos punts crítics que arriben a la tensió de 365 MPa estan situats al la part inferior dels extrems de la barra antibolcada frontal.

Desplaçaments

Tot i que l'estructura pateix una deformació més acusada, en aquest cas el límit està marcat en 100 mm, per tant el marge es prou ampli per superar aquesta part de la prova.
Tensió de Von Mises

Il·lustració 2.24 - Prova 3, tensió de Von Mises a la barra antibolcada frontal

Per la tensió de Von Mises el resultat es correcte, està per sota de 350 MPa.

Diagnòstic i solucions adoptades

Barra antibolcada principal

En el cas de la barra antibolcada principal, els punts crítics estan a les barres en forma de creu que estan unides als extrems superiors i inferiors de la barra antibolcada principal. La màxima tensió que es registra és de 370 MPa, que està 20 MPa per sobre dels requeriments de la prova.

Les barres que conformen aquesta creu estan fetes del mínim diàmetre i espessor permès per la normativa, per tant, per solucionar aquest problema, s'augmentarà el gruix de la barra i si tot i així no és suficient, s'augmentarà el diàmetre o s'afegirà algun element de reforç en la junta.

Barra antibolcada frontal

L'estructura ha superat la primera prova d'aquest element amb èxit. No ha estat així amb la segona prova, que ha donat una tensió màxima de 365 MPa, 15 MPa per damunt del límit. El punt crític es situa en les unions de la barra antibolcada frontal amb les barres antibolcada laterals i els seus suports.

Aquests últims també estan fets del mínim diàmetre i espessor possible, així que s'augmentarà la secció del tub i es tornaran a fer les proves, si tot i així no les passa, es farà lo mateix amb les
barres laterals i si cal amb la barra antibolcada frontal. També es contemplarà la opció d’afegir un element de reforç que ajudi a alleugerar les tensions en aquest punt.

Repetició de les proves
Les modificacions que s’han dut a terme a l’estructura han sigut els canvis d’espessor de les barres en creu que subjecten la barra antibolcada principal i les barres que suporten la unió de la barra antibolcada frontal. Aquestes barres que són de diàmetre 38,1 mm han passat de 2,41 mm d’espessor a 3,05 mm. Aquest espessor es el següent més gran que el proveïdor de tubs d’acer ofereix.

Il·lustració 2.25 - Barres modificades
Un cop modificades les barres marcades en vermell, es repetiran els passos citats anteriorment per fer les proves.
Tensions de la barra antibolcada principal

Il·lustració 2.26 - Prova 1, tensió principal a la barra antibolcada principal, estructura rectificada.

Podem observar que amb aquests canvis en l’espessor de les barres, la tensió màxima apreciada és de 300 MPa, per tant ara la gàbia antibolcada passa aquesta prova sense problema.

Tensions de la barra antibolcada frontal

Il·lustració 2.27 - Prova 3, tensió principal a la barra antibolcada frontal, estructura rectificada

Una situació molt semblant a la anterior torna a succeir. Aquest cop la tensió màxima es de 301 MPa al mateix punt de l’estructura però la prova es superada amb èxit.
Il·lustració 2.28 - Prova 3, desplaçaments a la barra antibolcada frontal, estructura rectificada

S’observa que els desplaçaments han augmentat lleugerament, el màxim abans de la prova era de 9,29 mm i ara és de 9,82 mm.

Il·lustració 2.29 - Prova 3, tensió de Von Mises a la barra antibolcada frontal, estructura rectificada

La tensió de Von Mises també d’ha mantingut en el mateix màxim.

Encara que l’altra test de la barra antibolcada frontal ja era satisfactori, s’ha tornat a realitzar per comprovar els canvis en les tensions.
Il·lustració 2.30 - Prova 1, tensió principal a la barra antibolcada principal, estructura rectificada

La tensió màxima sobre el suport de la barra lateral ha baixat des dels 219 MPa previs fins 186 MPa.
Optimització

Aquest disseny, ja és vàlid, encara que es buscarà ajustar el pes de l’acer que s’utilitza en la construcció. Per tant, aquelles barres que són més grans del mínim que la normativa demana, es rebaixaran per buscar el límit en el qual la gàbia seguirà passant les proves amb el mínim material possible.

Estudi de les tensions

Per determinar quines barres son susceptibles de rebaixar la secció, aquestes són les que s’han construït per sobre dels mínims que la norma estableix, d’aquestes les que conservaran el seu diàmetre han sigut les modificades en la primera simulació. Per comprovar les tensions que estan suportant les barres, s’ha de donar una ullada a les proves i mirar-les en detall. Per la primera prova.

De la imatge, els punts marcats en blau fosc determinen les tensions que arriben als 300 MPa. Les barres on s’ubiquen aquestes tensions no es modificaran, per tant la barra antibolcada principal i les barres en creu anteriorment modificades, mantindran la secció que tenien.

D’altra banda, la tensió en les barres del sostre es situa sobre els 200 MPa, depèn de la part. Aquestes 3 barres es reduiran, també es pot observar que les barres laterals, en la seva majoria no arriba als 100 MPa excepte en certs punts on està proper a 200 MPa. Els suports posteriors tampoc pateixin tensions críiques.

De moment tenim 7 barres candidates, les dues mitges barres antibolcada lateral, les tres barres de reforç del sostre i els suports posteriors, a sofrir una rebaixa de la secció. Ara es comprovarà si els demes tests fan viable la aplicació d’aquesta rebaixa.
Les tensions màximes són de 186 MPa al suport de la barra antibolcada lateral, mentre que a la barra antibolcada lateral només s’assoleixen tensions properes als 100 MPa en la part superior d’aquesta i en la barra antibolcada principal.

Veient en detall les tensions de la prova frontal a 5º. Les tensions màximes les experimenta la barra antibolcada frontal, amb uns pics de 301 MPa negatius i 279 MPa positius. Les barres susceptibles a la reducció experimenten unes tensions properes als 100 MPa. Per tant la optimització de l’estructura passarà per reduir l’espessor de les barres a la mida següent més petita que el proveïdor ofereixi.
Comprovació de resultats

Primera simulació

Ara es compararan els resultats obtinguts després de la reducció de secció per veure si es viable. La prova de la barra antibolcada principal ha quedat així.

Il·lustració 2.34 - Prova 1, tensió principal a la barra antibolcada principal, optimització 1

En aquest cas es pot observar un cas curiós. S’ha reduït la secció de les barres del sostre, les barres laterals i les de suport posteriors. Amb aquest canvi de diàmetres, la força que s’aplica sobre la barra antibolcada principal, es dispersa en forma de tensions molt més homogèniament que en les proves prèvies. Això permet que la tensió màxima sigui menor tot i que la zona on es reflecteixen les tensions màximes ara sigui major. La tensió màxima ara és 7 MPa inferior.

Il·lustració 2.35 - Prova 2, detall del suport a la barra lateral, optimització 1
Diferents resultats hi ha hagut a la primera prova de la barra antibolcada frontal amb la càrrega a 25º. Les tensions màximes han augmentat en 56 MPa, tot i que encara existeix un marge de més de 100 MPa per arribar al límit establert.

Il·lustració 2.36 - Prova 3, detall de la barra antibolcada frontal, optimització 1

En la última prova de la barra antibolcada frontal, amb una càrrega a 5º, les tensions crítiques s’han concentrat en els punts centrals superiors i inferiors i als seus extrems. Es pot observar com les tensions han pujat 25 MPa respecte a la prova amb els perfils més grans, tot i que no és un gran problema ja que segueix superant les proves.

Segona simulació

Per tant, aquesta reducció de secció ha sigut satisfactòria, llavors, en aquelles peces on les tensions no han sigut crítiques es seguirà buscant una reducció de secció. Segons les últimes proves, les barres antibolcada laterals i la barra de reforç del sostre longitudinal no es modificaran i per tant, els suports posteriors i les dues barres diagonals de reforç del sostre patiran una altra reducció de secció.

Aquesta reducció de secció consistirà en una reducció al mínim gruix de les barres diagonals del sostre, i una reducció al mínim tant de diàmetre i espessor pels suports posteriors. Ja que les tensions màximes suportades han sigut al voltant dels 100 MPa. Els resultats d’aquesta reducció són els següents.
Es pot observar, que malgrat els punts de limitació de les barres són simètrics, hi existeixen petites diferències que si bé, per algun error de mil·límetres, l'estructura es asimètrica o per la mateixa procés de mallat els resultats de tensions són diferents a una barra que a l'altra, tot i això s'estudiarà aquest cas com si les dues barres suportessin aquesta màxima tensió.

Aquesta simulació ha donat uns resultats que fins ara no s'havien donat. La tensió crítica ara és positiva i es dóna a les barres diagonals del sostre. La tensió màxima negativa es manifesta a la barra longitudinal del sostre, però no es dissipa per les barres posteriors de suport tan uniformement com en l'anterior prova. Tot i això aquesta prova és superada amb èxit.

Es pot observar com ara, en la barra de suport a la barra lateral on s'aplica la càrrega, la tensió es reparteix més uniformement. Els punts crítics estan pràcticament en tota la part superior de la barra però la tensió baixa fins als 188 MPa.
En la última prova es troba una tensió màxima que supera els 350 MPa. Es situa en la part central de la barra antibolcada davantera, on es junten les 3 barres de reforç del sostre. Aquesta prova indica que la reducció de secció en les dues barres diagonals de reforç del sostre no supera les proves. Per tant, es modificaran aquestes barres a un gruix que el fabricant només ofereix en aquest diàmetre, l’espessor serà llavors de 2,77 mm. Els suports posteriors, amb el canvi de diàmetre i secció han passat la prova satisfactòriament.

Tercera Simulació

Com en la última simulació, només no s’ha superat un dels tests, es començarà primer analitzant aquesta última prova.

Amb aquest gruix, a la prova de la barra antibolcada frontal amb la càrrega a 5º, l’estructura segueix sense superar les proves, la tensió màxima es dóna en la part superior de la zona mitja de la barra antibolcada frontal. Per tant, els espessors de les barres diagonals dels sostre tornaran als de origen quan sí superava la prova.
Quarta simulació

Un cop restablerts els gruixos de 3,05 mm tal com hi eren abans, es farà la simulació per comprovar que les modificacions que també han repercutit a altres barres no afecten en gran mesura aquesta simulació.

Es pot observar que la tensió crítica es dissipa en una superfície més gran al llarg de la barra antibolcada principal, facilitant així la dissipació i que la tensió màxima sigui menor. També és a destacar que la tensió màxima és 3 MPa menor que en les anteriors proves on els suports posteriors eren d’una secció major.

Llavors es passa a comprovar els resultats de les altres dues proves, que no haurien de donar problemes a l’hora de complir els límits de tensió màxima.

En la prova de la barra antibolcada frontal a 25º, els resultats són semblants als últims obtinguts, per tant, tot correcte.

Per acabar, en la prova a la barra antibolcada principal s’ha obtingut la tensió màxima més baixa de totes les proves i aquesta es concentra principalment en la barra longitudinal del sostre. Els suports posteriors estan més sol·licitats que mai, tot i que el màxim és voltant als 250 MPa. Per tant, aquest és el disseny òptim per la estructura.
Resum

L'estructura que s'ha sotmès a la prova inicialment estava formada per:

<table>
<thead>
<tr>
<th>Part</th>
<th>Posició</th>
<th>Diàmetre (mm)</th>
<th>Espessor (mm)</th>
<th>Longitud (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barra antibolcada principal</td>
<td></td>
<td>47,625</td>
<td>6,35</td>
<td>3495</td>
</tr>
<tr>
<td>Barra antibolcada frontal</td>
<td></td>
<td>47,625</td>
<td>6,35</td>
<td>1170</td>
</tr>
<tr>
<td>Mitges barres antibolcada laterals</td>
<td></td>
<td>44,45</td>
<td>4,77</td>
<td>2130</td>
</tr>
<tr>
<td>Barres de reforç de sostre diagonals</td>
<td></td>
<td>44,45</td>
<td>4,77</td>
<td>820</td>
</tr>
<tr>
<td>Barra de reforç de sostre longitudinal</td>
<td></td>
<td>44,45</td>
<td>4,77</td>
<td>660</td>
</tr>
<tr>
<td>Barres en creu principals</td>
<td></td>
<td>38,1</td>
<td>2,41</td>
<td>1690</td>
</tr>
<tr>
<td>Suports posteriors</td>
<td></td>
<td>38,1</td>
<td>3,05</td>
<td>975</td>
</tr>
<tr>
<td>Barres en creu laterals</td>
<td></td>
<td>38,1</td>
<td>2,41</td>
<td>1315</td>
</tr>
<tr>
<td>Reforços del pilar A</td>
<td></td>
<td>38,1</td>
<td>2,41</td>
<td>1255</td>
</tr>
<tr>
<td>Reforços de les barres antibolcada laterals</td>
<td></td>
<td>38,1</td>
<td>2,41</td>
<td>315</td>
</tr>
<tr>
<td>Reforços posteriors a la barra antibolcada principal</td>
<td></td>
<td>38,1</td>
<td>2,41</td>
<td>1085</td>
</tr>
</tbody>
</table>

Taula 2.5 - Mides inicials dels tubs i posició a la gàbia antibolcada
En les longituds de les barres s'ha arrodonit superiorment amb una precisió de 5 mm i el pes de l'estructura és de 106,663 kg.

En la prova de la barra antibolcada principal, els extrems superiors de les barres en creu principals que suporten la barra antibolcada principal han superat el límit establert, 350 MPa. La prova ha donat com a tensió màxima 370 MPa. Per solucionar aquest problema s'han modificat les següents barres.

<table>
<thead>
<tr>
<th>Parts modificades</th>
<th>Diàmetre (mm)</th>
<th>Espessor (mm)</th>
<th>Pes de l'estructura (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barres en creu principals</td>
<td>38,1</td>
<td>3,05</td>
<td>109,608</td>
</tr>
<tr>
<td>Suport del pilar A</td>
<td>38,1</td>
<td>3,05</td>
<td></td>
</tr>
</tbody>
</table>

Taula 2.6 - Modificacions de l'estructura rectificada

Amb aquestes modificacions, l'estructura ha superat la prova, les tensions màximes han sigut del voltant de 300 MPa a la barra antibolcada principal i la barra antibolcada frontal a les seves respectives proves on anteriorment havien fracassat. Per tant aquest disseny és vàlid tot i així, l'estructura sembla que es pot alleugerar disminuint la secció en alguns punts. S'han fet quatre optimitzacions fins arribar a un model vàlid i amb el mínim pes possible.

<table>
<thead>
<tr>
<th>Optimitzacions</th>
<th>Tensió màxima (Mpa)</th>
<th>Barra crítica (Mpa)</th>
<th>Pes (kg)</th>
<th>Prova Superada</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original</td>
<td>301</td>
<td>Barra antibolcada frontal</td>
<td>109,608</td>
<td>OK</td>
</tr>
<tr>
<td>1</td>
<td>326</td>
<td>Barra antibolcada frontal</td>
<td>102,446</td>
<td>OK</td>
</tr>
<tr>
<td>2</td>
<td>377</td>
<td>Barra antibolcada frontal</td>
<td>100,782</td>
<td>KO</td>
</tr>
<tr>
<td>3</td>
<td>364</td>
<td>Barra antibolcada frontal</td>
<td>101,23</td>
<td>KO</td>
</tr>
<tr>
<td>4</td>
<td>323</td>
<td>Barra antibolcada frontal</td>
<td>101,76</td>
<td>OK</td>
</tr>
</tbody>
</table>

Tabla 2.7 - Tensions i pes de les optimitzacions

La prova de la barra antibolcada frontal amb el pes a 5º ha sigut la que ha marcat finalment els límits per a la optimització de material. Els canvis de diàmetres i pesos son els següents.

<table>
<thead>
<tr>
<th>Part</th>
<th>(diàmetre (mm) x espessor (mm))</th>
<th>Mesura original</th>
<th>Mesures de les optimitzacions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Barra de reforç de sostre diagonal</td>
<td>44,45 x 4,77</td>
<td></td>
<td>44,45 x 3,05</td>
</tr>
<tr>
<td>Suport posterior</td>
<td>44,45 x 3,05</td>
<td>44,45 x 2,41</td>
<td></td>
</tr>
<tr>
<td>Barra antibolcada lateral</td>
<td>44,45 x 4,77</td>
<td>44,45 x 3,05</td>
<td>44,45 x 3,05</td>
</tr>
<tr>
<td>Reforç del sostre longitudinal</td>
<td>44,45 x 4,77</td>
<td>44,45 x 3,05</td>
<td>44,45 x 3,05</td>
</tr>
</tbody>
</table>

Tabla 2.8 - Modificacions de les barres en les optimitzacions
Part	Pes original (kg)	Pes de les optimitzacions (kg)
Barra de reforç de sostre diagonal | 3,631 | 2,477 | 1,988 | 2,212 | 2,477
Suport posterior | 2,864 | 2,283 | 1,94 | 1,94 | 1,94
Barra antibolcada lateral | 7,86 | 6,505 | 6,505 | 6,505 | 6,505
Reforç del sostre longitudinal | 2,97 | 1,988 | 1,988 | 1,988 | 1,988
Total | 109,608 | 102,446 | 100,782 | 101,23 | 101,76

Tabla 2.9 - Evolució del pes en les optimitzacions

Amb la optimització del disseny s’han evitat afegir 8 kg aproximadament, que sense ells, l’estructura és viable segons les proves de la ASN i finalment l’estructura queda amb un pes de 101,76 kg, que s’haurà d’afegir al pes final del cotxe.

Finalment, el preu dels tubs, és el que marca el fabricant, seran trams rectes de tubs que encara s’han de conformar i soldar. Aquest apartat es tractarà en el capítol 4.

<table>
<thead>
<tr>
<th>Diàmetre (mm)</th>
<th>Espessor (mm)</th>
<th>Longitud (m)</th>
<th>Preu</th>
</tr>
</thead>
<tbody>
<tr>
<td>47,625</td>
<td>6,35</td>
<td>6,096</td>
<td>279 €</td>
</tr>
<tr>
<td>44,45</td>
<td>4,77</td>
<td>2,438</td>
<td>142 €</td>
</tr>
<tr>
<td>44,45</td>
<td>4,77</td>
<td>1,829</td>
<td>107 €</td>
</tr>
<tr>
<td>38,1</td>
<td>3,05</td>
<td>1,219</td>
<td>44,45 €</td>
</tr>
<tr>
<td>38,1</td>
<td>2,41</td>
<td>6,096</td>
<td>115 €</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>687 €</td>
</tr>
</tbody>
</table>

Tabla 2.10 - Cost dels tubs d’acer

Les mesures que s’han escollit son les que ofereix el fabricant, d’aquestes, amb les mides que es tenies s’ha escollit la mida superior a la de la barra. També varies barres sortiran d’un mateix tram per economitzar el treball. D’altra banda, en la barra més petita, queda un marge de més de metre i mig sobrant donat no es donen mides compreses entre 3 i 6 metres.
Capítol 4: Modificacions del cotxe

En aquest apartat s'estudiaran els punts característics d'un cotxe de ral·li i es buscaran les solucions que facin falta per implementar al cotxe de l'estudi. Per trobar els components necessaris, es buscarà en pàgines d'Internet de fabricants especialitzats. La qualitat de la peça escollida serà en relació a la rellevància que aquesta tingui sobre el comportament, en els punts més importants es buscaran peces de la més alta qualitat. Finalment es farà una simulació de la transmissió que té en compte molts dels canvis als que es sotmetrà el cotxe.

Característiques d'un cotxe de ral·li

En aquest apartat es farà un repàs a les diferents àrees que s'han de tenir en compte a l'hora de modificar el cotxe.

Seguretat

El més important és la seguretat. Com s'ha comentat abans, està la gàbia de seguretat però hi han altres elements que també són imprescindibles:

Indumentària del pilot:
Consta de diferents elements, primer està el casc. Ha de ser un casc obert, específic per ral·li que superi els requeriments de les normes de la competició. La FIA facilita un llistat amb els cascs reglamentaris que hi ha al mercat. Com accessori obligatori, el pilot ha de dur un HANS (Head And Neck Support Device) que va connectat al casc i protegirà el coll de patir una fuetada cervical en cas de xoc. De vestuari ha de dur un mono ignífug i unes sabates adequades, ambdues coses regulades també per la normativa de la FIA. Aquest apartat no s'aplicarà al cost final ja que no forma part del cotxe.

Bàquet i arnès:
El seient del cotxe ha de ser un bàquet específic que ha de complir la funció d'evitar que el cos del pilot es mogui lateralment i de protegir-lo davant d'un accident. Està regulat per la norma FIA 8855-1999. Hi han diversos fabricants que ofereixen seients que compleixen aquesta normativa, es buscarà un que ofereixi una bona qualitat sense comprometre molt el preu. Lo mateix es farà per escollir l'arnès de retenció reglamentari que subjectarà el pilot al seient. Ambdós elements segons la normativa queden obsolets passats 5 anys de ser fabricats.

Extintor:
També es imprescindible dur un extintor, així ho diu la norma FIA 8865-2015 que regula el tipus d'extintor que ha de dur un cotxe de ral·li que protegirà que no es prengui foc l'habitacle i permetrà que els pilots extingeixin qualsevol foc al cotxe.
Dinàmica del cotxe
Un cotxe de ral·li ha d'anar tot lo ràpid que les lleis de la física permetin. Per això s'han d'avaluar totes les àrees que puguin millorar el comportament. Per sort he tingut la oportunitat de conduir un Ford Fiesta i les sensacions d'estabilitat són molt bones. Personalment, millor que altres cotxes de la competència que he pogut provar. Tot i que la base de la que es parteix es bona, el cotxe requereix una posada a punt per complir les exigències de les proves.

Diferencial:
El diferencial és una peça bàsica a l'eix motriu del cotxe. Al llarg d'una corba, les rodes exteriors recorren més distància que les interiors. Si les rodes motrius de diferents costats no poden girar a diferent velocitat durant un viratge, la roda interior oposarà resistència i el cotxe tindrà més dificultats per girar. Això ho soluciona el diferencial enviant una menor potència a la roda que ofereix més resistència i així la roda exterior per rebre'n més i girar a més velocitat.

Aquesta característica fa que els diferencials corrents tinguin un desavantatge, si una roda es separa del paviment per complet, l'altra roda motriu deixarà de rebre la potència del motor. Llavors, aquesta potència anirà a la roda que no està al terra, fent-la girar de manera incontrolable.

Un diferencial autoblocant és un sistema dissenyat per anul·lar la contribució del diferencial quan es registra una certa diferència en la velocitat de rotació de les rodes motrius. La seva funció és garantir que una quantitat adequada de potència del motor es distribueixi entre les rodes motrius, utilitzant un dispositiu per limitar la diferència de velocitat de gir entre els dos engranatges laterals. Això s'aconsegueix de distintes formes, com, per exemple, amb sistemes multi embragatge, sistemes de fricció que actuen mitjançant fluids viscosos i sistemes controlats electrònicament. Aquests últims són els més utilitzats entre els vehicles de competició.

Carrosseria autoportant:
Juntament amb el motor i la suspensió, la carrosseria forma part de l'estructura bàsica del cotxe, de la qual depèn el comportament d'aquest. La carrosseria ideal ha de ser rígida i resistent. Un cop assolits aquests dos punts, s'ha de buscar la lleugeresa. La rigidesa juga un paper decisiu en el comportament per carretera. Una estructura rígida no es doblegarà ni canviarà de forma al conduir per una carretera amb irregularitats o al girar.
La estructura més habitual en els cotxes moderns, és la carrosseria autoportant, que combina l'estructura amb la carrosseria. La robustesa d'aquesta última s'aconsegueix amb per mitjà de la disposició d'una sèrie de peces, com els panels, que li donen lleugeresa i rigidesa. Té l'avantatge afegit de que es pot rebaixar l'altura sobre el terra a més a més de donar resultats excel·lents en l'absorció d'impactes.

Il·lustració 3.1 - Carrosseria autoportant del Ford Fiesta

Tot i això, millorar la rigidesa d'aquesta és molt important. Una forma de fer-ho és aplicant soldadures de reforç. Les carrosseries dels cotxes fets en sèrie, els panells es solen soldar amb els mínims punts de soldadura possibles. Fet que pot provocar que la carrosseria no sigui tot lo rígida que podria ser.

Una altra forma d'augmentar la rigidesa és instal·lant barres de reforç on s'acoblen als punts d' ancoratge de la suspensió. Un cop instal·lades aquestes barres, millorarà la precisió del comportament de les suspensions i millorant alhora la resposta de la direcció, fent-la més immediata i precisa. Aquest element, sumat a un reforç pels baixos del cotxe, que connecta la suspensió al carenat del cotxe, limitant així qualsevol moviment no desitjat i obtenint el màxim rendiment de les mateixes.

Un altre element que millora la rigidesa del cotxe es la gàbia antibolcada, ja que, tot i estar dissenyada per protegir als ocupants, un cop instal·lada i ben ancorada a la carrosseria augmentarà la rigidesa de l'estructura.
Sistema de frenada:

Un motor més potent requerirà un sistema de frenada més potent, més robust i capaç de resistir la fatiga causada pel seu ús. Per instal·lar-ne el més eficaç s’ha de tenir en compte que els discs i mordaces més grans també augmentaran la massa no suspesa del cotxe, que pot empitjorar la maniobrabilitat. La regla més important és que la potència de frenada sempre ha de ser major que la potència del cotxe, encara que si s’instal·la un sistema de fre massa potent en un vehicle lleuger com el del treball, potser s’està perjudicant el rendiment del vehicle.

El component fonamental de millorar la frenada d’un cotxe són les pastilles de fre. D’aquestes depèn la potència de la frenada i la resistència a la fatiga dels frens. Cada tipus de pastilla té una temperatura òptima de treball i una tolerància diferent al calor. Les pastilles de fre d’alta gama es desgasten abans i augmenten el desgast dels frens de disc, degut a l’aument de fricció.

Els conductes del sistema de fre són els tubs i maneguets pels que circula el líquid de frens. Generalment solen estar fabricats de cautxú, material el qual tendeix a inflar-se amb les frenades brusques. Això pot provocar una pèrdua en la potència de frenada. Aquest fenomen es pot prevenir instal·lant uns conductes fabricats amb un revestiment de malla d’acer inoxidable, la qual combina la flexibilitat del cautxú amb una major resistència a la deformació.

La forma més eficaç d’augmentar la potència de frenada és augmentant la capacitat de frenada. Això s’aconsegueix mutant discs de fre d’una mida més gran i canviant la mordassa de fre. Els discs de fre més grans provoquen una major massa no suspesa, que perjudica el comportament del cotxe, l’alternativa a això és l’ús de discs lleugers de ceràmica.

D’altra banda, les mordasses convencionals pressionen només per una de les seves cares. Una forma de millorar-les, és substituint-les per unes altres de pistons oposats, amb el consegüent augment de la potència de frenada.

Suspensió:

Tot ajustament de suspensió pensat per a una conducció més esportiva requerirà inevitablement una pèrdua de confort per guanyar velocitat. En el àmbit dels ral·lis, aquest és un tema complex, ja que s’han de tenir molt presents les transferències de masses en funció del paviment en el que es competeix, en aquest cas, asfalt i grava.

Hi existeixen diversos tipus de suspensió, siguin independents, rígides o semirígides. Els sistemes de suspensió independents, es caracteritzen per no transmetre els moviments d’una roda a la de l’altre extrem de l’eix. Aquest tipus de suspensions son els més comuns a la
competició. En canvi, en les rígides, els moviments d'una roda d'un costat repercuteix directament el la del altre costat. El sistema de les semirígides és molt semblant, només que un element connectat a les dues rodes absorbeix part de l'energia que es transmeten.

Il·lustració 3.2 - Suspensió posterior del Ford Fiesta

Els sistemes que s'utilitzen a les competicions, compten amb esmortidors i molles. Els amortidors tenen una major força d'amortiment pensats per fer el cotxe més estable a altes velocitats. I les molles contribueixen a millorar la maniobrabilitat, ja que permeten aconseguir un centre de gravetat més baix i contraresten la inclinació a les corbes i el capcineig en les frenades i acceleracions.

Les suspensions més utilitzades en els ral·lis són les suspensions regulables en altura, mitjançant esmortidors que permetin augmentar o disminuir el seu recorregut i a més a més es pot ajustar la força de l'amortiment.

Les barres estabilitzadores més rígides contribueixen a reduir el capcineig a les corbes. Reforçant la barra estabilitzadora davantera s'augmenta el subviratge i reforçant la posterior, es sofrirà més sobreviratge.

Rodes

En el cas del ral·li, els pneumàtics s'han d'adaptar al paviment en el que es corri. L'adherència i la rigidesa són les característiques més importants dels pneumàtics d'alt rendiment. En el cas dels ral·lis es defineixen tres tipus de pneumàtics. Els d'asfalt, estan fets han d'estar fets amb un compost de goma capaç de fon dre's lleugerament amb la pista i en aquesta zona el pneumàtic ha de ser el més llis possible per a que es mantingui la rigidesa. Una amplada dels pneumàtics major, augmenta la superfície de contacte i, per tant, s'augmenta l'adherència.

El perfil del pneumàtic indica la seva altura en relació a la seva amplada. Els pneumàtics amb un perfil baix té una rigidesa major, ja que la seva paret lateral es més curta, es corba menys al
girar i frenar. El contratemps del perfil baix es que augmenta així les masses no suspeses del cotxe, i pot empitjorar la maniobrabilitat.

Les gomes que s'utilitzen per fabricar la part del pneumàtic que entra en contacte amb la pista, rep el nom de compost, del qual depèn l'adherència. Els pneumàtics d'alt rendiment estan fets amb compostos més tous, el problema que tenen és que es desgasten més ràpidament que un compost més dur.

Els canals que s'obren a la superfície del pneumàtic són els patrons de rodament i la seva finalitat és mantindre l'adherència sobre una pista mullada al expulsar l'aigua que el pneumàtic recull.

Tots aquests aspectes estan regits per la normativa de la FIA i es disposa de dos proveïdors oficials, Michelin i DMACK, tant per els pneumàtics de asfalt, terra o neu. La mida de les llandes també està regulat.

Aerodinàmica

Els elements aerodinàmics ben empleats redueixen la resistència a l'aire i minven l'efecte de les forces que separen el cotxe de la carretera. Aquests elements es diferencien segons en la part del cotxe que està instal·lat.

Els faldons davanters tenen la funció de limitar el flux d'aire que passa per sota del cotxe, reduint així la sustentació del tren davanter. En canvi, la funció dels faldons posteriors és evitar les turbulències que es generen a la part posterior del cotxe i garantir que l'aire flueixi amb suavitat. Els faldons laterals s'encarreguen de reduir la resistència a l'aire que te lloc a tot el lateral del vehicle.

L'alero posterior, s'acobra a la part superior de la part posterior de la carrosseria i s'encarrega de que l'aire flueixi amb suavitat als seus voltants per a que no es generin turbulències. A més a més també disminueix la sustentació aprofitant la força de l'aire per empènyer el cotxe contra el terra. D'aquesta última funció, també és realitzada per el difusor posterior. Aquest expulsa l'aire de sota del cotxe cap amunt per generar-ne l'efecte.
Motor

El motor del que es disposa, és un semblant als de ral·li, ja que comparteix amb 4 cilindres col·locats en fila. Aquests cilindres comparteixen el mateix cigonyal i el bloc de cilindres està fet d'una peça. L'estructura és senzilla i és un motor relativament lleuger. Les vàlvules estan accionades per un doble arbre de lleves, un controla les vàlvules de l'escapament i l'altre les de l'admissió.

Aquest sistema permet reduir els errors en el seu funcionament, a part de que, al repartir el treball entre dos arbres de lleves, la fatiga que suporta cadascun és menor. Aquest sistema és el més utilitzat en motors d'alt rendiment. Aquest motor està sobrealimentat per un sistema turbocompressor.

El tren de potència del cotxe està format per un motor frontal transversal i tracció davantera. Al ubicar en aquesta posició el motor i la transmissió afegeixen molt pes a la part davantera del cotxe, maximitzant l'habitacle disponible. Les rodes davanteres són les encarregades de transmetre la potència i girar, factor que farà que els pneumàtics davanterers estiguin molt sol·licitats i es desgastin més ràpid. Un cop es coneix el motor que es té, es procedirà a estudiar les formes d'augmentar el rendiment del motor.

Centraleta

També coneguda com ECU (Engine Control Unit), s'encarrega de gestionar la injecció de combustible al motor, controlar la ignició de la mescla, l'obertura i tancament de les vàlvules i també la pressió de bufat del turbo com característiques principals. L'ajustament d'aquest chip es fa necessari a l'hora d'elevar la pressió del turbo o canviar qualsevol peça del sistema d'admissió o d'escapament, entre d'altres.

Sistema d'admissió

El filtre d'aire del cotxe impedeix que entri brutícia a l'interior del motor, en un cotxe de carrer, el motor està molt protegit dels elements exteriors per maximitzar la seva vida útil. La normativa contempla el canvi del filtre d'aire per un menys restrictiu que el de sèrie. Aquest canvi no afegirà gaire potència si no que està orientat a facilitar l'acceleració i millorar la resposta del motor a la zona alta del compta-revolucions.
Sistema d'escapament

Un escapament de competició redueix la resistència que oposa l'escapament de sèrie. Això farà guanyar revolucions més ràpid i que la resposta sigui més immediata. Al ser un cotxe amb turbocompressor el guany de potència serà més important tot i que s'ha de vigilar perquè pot comportar una pèrdua de força.

Turbocompressor

Augmentar la pressió de bufada o la mida del dispositiu de sobrealimentació és una forma senzilla d'aconseguir un augment de potència sense haver de modificar el motor en sí. Els resultats s'obtenen al comбинar-lo amb un ajust de la mecànica encara són millors però s'ha de tindre en compte aquest efecte repercuteix en la tensió suportada pels elements del motor i si l'aument de la força del turbo s'augmenta molt, el motor hauria de ser reforçat i reajustat.

Una turbina d’una mida major augmenta la potència del motor de manera significativa però per contra, una turbina major, provoca una resposta més lenta del motor i el cotxe només serà eficaç a altes revolucions ja que reduirà la força del motor a baixes revolucions.

Els intercanviadors de calor, o més comunament conegut com intercoolers, tenen un paper molt important en el sistema de sobrealimentació. S’encarreguen de refredar l’aire que es comprimeix a la turbina, disminuint així el seu volum i maximitzant l’eficiència del motor. Amb un intercooler més gran, serà més eficient i tindrà una millor capacitat de refrigeració, però perdrà pressió.

Sistema de transmissió

Els motors solen assolir velocitats de gir de milers de revolucions per minut. Aquests girs són massa ràpids per transmetre’ls directament a les rodes, per tant es requereix un mecanisme de transició de la força. Aquest paper el fa la transmissió, aquesta compta amb diversos engranatges i mecanismes per transmetre la velocitat i potència adequada a les rodes.

S'utilitzen engranatges grans al arrancar i en velocitats baixes, maximitzant la força del motor per a posar el cotxe en moviment que, a mida que es guanya velocitat, es canvien les marxes...
del cotxe i els engranatges que s'utilitzen cada cop són més petits, generant més velocitat i menys força. En un canvi manual com el que equipa el cotxe, el pilot pot canviar lliurement de marxa permetent-li així utilitzar la marxa més adequada per a cada situació.

Engranatge final

Després de que la potència hagi passat pels engranatges, aquesta deu travessar també l'engranatge final, que és l'element que connecta la transmissió a les rodes. La relació de marxa, que és la relació entre aquests dos engranatges, pot afectar considerablement a les prestacions d'un cotxe. En els cotxes esportius, la relació d'engranatges de l'engranatge final sol ser gran, per a millorar l'acceleració, un engranatge final menor, millora els consums reduint les revolucions en general.

Transmissió de doble embragatge

Les transmissions de doble embragatge, són en essència transmissions manuals que s'activen gràcies a dos sistemes d'embragatge. També poden funcionar de forma automàtica.

Els embragatges es reparteixen les marxes pars i imparelles així poden canviar-se de l'una a l'altra de forma instantània. Un altre avantatge d'aquest sistema és que el pilot també pot decidir quina marxa utilitzar en tot moment. És el sistema més utilitzat en la competició ja que millora substancialment el temps de canvi de marxa respecte un canvi manual convencional.
Anàlisi dinàmic

Aquest anàlisi, es basa en la meva experiència en la conducció i les sensacions que el cotxe m'ha transmès. La versió que he pogut provar compta amb un motor petit de gasolina de 1.25 litres i 82 cavalls. La posada a punt del cotxe està enfocada al confort i l'estalvi de combustible.

La prova no ha pogut ser gaire exhaustiva per què no he pogut entrar a cap recinte tancat on poder posar una mica més al límit el cotxe, ha sigut un viatge de 30km principalment de carretera i autopista amb una petita part de ciutat. La estructura del cotxe es molt estable, a baixes velocitats no dóna la sensació d'estar conduint un cotxe de menys de 4 metres per l'aplom que té sobre la carretera.

A mida que es guanya velocitat es comporta molt àgilment i es molt cómode de prendre les corbes amb una direcció què, per ser un utilitari, es bastant dura i directa afegint-li un punt de esportivitat que el fa divertit de conduir. Un cop que es supera la velocitat de ciutat i se li busquen una mica les pessigolles, el cotxe tendeix a barquejar.

A velocitats d'autopista torna a recordar la sensació de no ser-hi a un utilitari, el cotxe va molt assentat i el que em fa tornar a la realitat és el comportament d'absorbir les irregularitats del paviment ja que, si bé les transmet suauament, triga en recuperar la estabilitat inicial. Aquesta sensació augmenta més accentuadament un cop es superen els 120km/h.

Les raons principals a la falta d'estabilitat penso que és la suspensió i el seu tarat per aportar més confort que esportivitat i el poc pes del que el cotxe disposa. La versió que es tractarà al treball ja ve amb una posada a punt més esportiva i aquests problemes d'estabilitat haurien d'estar solucionats per a una conducció per la carretera àgil i lleugera.
Modificacions
A continuació, s'escolliran les peces que es tindran en compte per millorar la seguretat i comportament del cotxe argumentant les raons per les que cal aquest component. Moltes d'aquestes peces ja estan normalitzades per la FIA i els fabricants les venen assegurant les qualitats que es demanen.

Seguretat
Principalment, en aquest apartat es buscaran uns seients, arnesos i extintor que estiguin homologats per la FIA.

Bàquet i arnès:
La normativa que regiix els seients és la FIA 8855-1999, per tant s'ha d'escollir un model que compleixi les exigències. Hi han de diverses qualitats, que principalment afectaran en la comoditat i la subjecció del pilot, dues coses que depenen totalment de la seva morfologia, així que es buscarà un model estàndard amb bona qualitat preu.

En la pàgina web de McGill Motorsport hi han diversos models de diferents qualitats i preus i tots els seients que vénen són aprovats per la FIA. S'escollirà el seient STR 'Rapidó', el preu és de 306€, que amb els suports, que també vénen a la mateixa pàgina suma 336€ en total. Com s'hauran d'instal·lar dos seients, el preu final serà el doble. Aquesta mateixa pàgina web també ven arnesos homologats per la FIA. S'escollirà un arnès de 5 punts. El preu és de 126€.

Extintor:
Els cotxes de ral·li han de tindre un extintor de mínim 3 kg. La empresa SPA Design ofereix a la seva pàgina web un extintor de bona qualitat i dissenyat per a cotxes de competició de la FIA. Utilitza una tovera multidireccional que extingeix els focs ràpidament.
Dinàmica

Diferencial:
El cotxe compta amb un diferencial de tipus LSD (Limited Slip Differential) actuat pel sistema de fre. És un tipus de diferencial molt utilitzat en ral·lis i en altres tipus de competicions, perquè al estar controlat electrònicament, el seu funcionament és molt precís. El problema arriba en la normativa de la competició, només estan permès els diferencials mecànics amb la excepció de si és de fluids viscosos, només està permès en cotxes homologats per la FIA i que aquests el portessin de sèrie.

Una web de peces d'alt rendiment oficial de Ford, ofereix un diferencial mecànic específic pel Ford Fiesta ST fabricat per Quaife. El preu és de 936 €, és una peça que implica un cost notable, aquesta peça no comportarà cap millora dinàmica al cotxe però les normes obliguen a substituir-la. Per obtindre el màxim rendiment la peça instal·lada s'escull aquest proveidor.

Carrosseria autoportant:
Com s'ha comentat anteriorment, el cotxe compta amb una bona estabilitat i degut al seu baix pes i mides reduïdes, tot i així hi han diverses tècniques per millorar-la. La gàbia antibolcada aportarà una estabilitat extra una vegada estigui ben fixada a la carrosseria. La rigidesa de la gàbia de seguretat es pot millorar afegint-hi un parell de barres transversals que uneixin els dos suports posteriors i les dues barres antibolcada laterals. Aquestes dues barres reforçaran l'estructura i dotaran al cotxe d'una encara millor estabilitat.

Aquesta millora d'estabilitat s'haurà de veure reflectida en simulacions com les que s'han fet en el capítol anterior, però aquest cop, fixant-se en els desplaçaments, com més curts siguin els desplaçaments, més rígida serà l'estructura. Les millores més notables haurien de donar-se en aplicar càrregues laterals.

Una de les proves on hi ha hagut càrrega lateral, ha sigut la prova de la barra antibolcada frontal on la càrrega es col·loca a 25 graus de la vertical.
En aquest cas, els desplaçaments són continguts, tot i que es dispersen pel sostre, per tota la barra antibolcada lateral i el suport d’aquesta.

Amb el reforç s’aconsegueix que els desplaçaments siguin nuls en més parts de la barra antibolcada lateral.

Es farà una altra simulació aplicant la força propera a la horitzontal en tota la part lateral davantera de l’estructura. Aquesta prova pot donar més dades útils que l’anterior, ja que pràcticament la força s’aplica de forma vertical. El mòdul del vector serà 15 kN, repartit en les direccions x, y i z de la següent forma. Aquesta força està pensada per simular una hipotètica força G.
màxima (exagerada per fer més visibles els canvis) que el cotxe pugui suportar en un determinat moment al fer un viratge ràpid i brusc. L'estructura sense reforços es deforma d'aquesta manera.

Il·lustració 3.14 - Desplaçaments de la gàbia sense reforç

Té uns desplaçaments màxims de 4,89 mm concentrats en la part on es corba més severament l'estructura, que es van dissipant a mida que recorren la resta de la barra antibolcada lateral fins que s'arriba al sostre. El suport d'aquesta pateix deformacions comprimides en un rang de 1,5 a 3 mm.
Il·lustració 3.15 - Desplaçaments de la gàbia amb reforç

Amb el reforç s'ha aconseguit que el màxim desplaçament es redueixi a menys de la meitat a la barra antibolcada lateral, que és un suport important per al pilar A del cotxe. D’altra banda en el suport de la barra antibolcada lateral, el rang de deformacions ha sigut menor, de 1 a 2,32 mm. En aquesta prova es pot concloure que hi ha hagut una millora substancial de la rigidesa de l'estructura.

D’altra banda, no es farà una prova per comprovar la millora de la rigidesa obtinguda de la barra posterior, ja que al estar ubicada tan a prop dels punts d'ancoratge, no s'apreciaran desplaçaments en aquestes. La efectivitat d'aquesta barra seria efectiva en un projecte real, ja que els punts de la carrosseria on s’estaria soldada, també patirien deformacions les quals aquesta barra s'encarregaría de minimitzar.

Per concloure aquest apartat, s'ha de senyalar que aquestes barres aporten un pes extra al cotxe, que serà de 2,531 kg per a la barra davantera i 2,296 kg la barra posterior. En total sumen al conjunt 4,827 kg que s'hauran d'afegir al pes final del cotxe.

Per a una de les dues barres, s’aprofitarà el tram sobrant de l’encàrrec al proveïdor. Per l’altra el preu serà el següent.

<table>
<thead>
<tr>
<th>Diàmetre (mm)</th>
<th>Espessor (mm)</th>
<th>Longitud (m)</th>
<th>Preu</th>
</tr>
</thead>
<tbody>
<tr>
<td>38,1</td>
<td>2,41</td>
<td>1,219</td>
<td>38 €</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>726 €</td>
</tr>
</tbody>
</table>

Taula 3.1 - Preu total de les barres de la gàbia antibolcada amb el reforç estructural
Sistema de fre:
El cotxe equipa uns frens ventilats de diàmetre 273 mm i de gruix 23 mm davant les mides dels frens de darrera són de 253 i 10,1 mm, respectivament, orientats a una conducció esportiva però, segurament, no per a l’ús intensiu que es farà d’ells. Com les exigències dels frens són molt diferents a l’asfalt i a la grava, es muntaran diferents frens segons la prova, així que el cotxe ha de comptar amb dos jocs de frens. Per altra banda, la normativa no permet el sistema ABS, així que s’haurà de desactivar.

Per determinar una mida que sigui vàlida per al cotxe, es farà una ullada a la competència, ja que la potència i pes han de ser prou semblants com per a que siguin vàlids uns frens similars i així no s’instal·laran uns frens sobre dimensionats ni uns frens que no siguin prou potents.

<table>
<thead>
<tr>
<th>Cotxe</th>
<th>Davanters (asfalt)</th>
<th>Postiors (asfalt)</th>
<th>Davanters (grava)</th>
<th>Postiors (grava)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ø x gruix (mm)</td>
<td>Pistons</td>
<td>Ø x gruix (mm)</td>
<td>Pistons</td>
</tr>
<tr>
<td>DS 3 R3 Max</td>
<td>330 x 36</td>
<td>4</td>
<td>300 x 8</td>
<td>2</td>
</tr>
<tr>
<td>Renault Clio R3T</td>
<td>330 x 32</td>
<td>4</td>
<td>274 x 11</td>
<td>2</td>
</tr>
<tr>
<td>Citroën DS3 R3T</td>
<td>330 x 30</td>
<td>4</td>
<td>300 x 8</td>
<td>2</td>
</tr>
<tr>
<td>Peugeot 208 R2</td>
<td>310 x 30</td>
<td>4</td>
<td>290 x 8</td>
<td>4</td>
</tr>
<tr>
<td>Toyota GT86 CS-R3</td>
<td>330 x 30</td>
<td>4</td>
<td>295 x 10</td>
<td>2</td>
</tr>
</tbody>
</table>

Taula 3.2 - Frens equipats pels cotxes de la competència

A partir d’aquestes dades es pot deduir que tots els cotxes utilitzen discs de fre ventilats a l’eix frontal i massissos a l’eix posterior.

Els frens a les rodes davanteres, es queden clarament per sota de les exigències de la competició, tot i que aquest diàmetre pot ser útil en el fre posterior quan el cotxe corri sobre grava, ja que tot i que seria el més petit de tots, és ventilat, això fa que tingui un millor rendiment, igualant-lo amb la competència. Els frens de les rodes posteriors no s’aprofitaran ja que és clarament inferior a la resta de cotxes.

Després de valorar la possibilitat d’aprofitar dos dels quatre discs que el cotxe té, és hora de fer una ullada a fabricants especialitzats. Una distribuidora especialitzada en sistemes de frenada, anomenada Brumse Heinz, ofereix un ventall molt ampli amb tots els components necessaris per a la instal·lació completa d’un equip de frenada. S’introduceix la marca, model i motor del cotxe de l’estudi i s’ha buscar en l’apartat de Sistemes esportius de frenada. La oferta que ofereix la web és la següent.
<table>
<thead>
<tr>
<th>Fabricant</th>
<th>Diàmetre (mm)</th>
<th>Gruix (mm)</th>
<th>Pistons</th>
<th>Preu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revo</td>
<td>332</td>
<td>28</td>
<td>4</td>
<td>2.350,00 €</td>
</tr>
<tr>
<td>Stop Tech</td>
<td>332</td>
<td>32</td>
<td>4</td>
<td>3.097,90 €</td>
</tr>
<tr>
<td>Stop Tech</td>
<td>332</td>
<td>28</td>
<td>4</td>
<td>2.875,40 €</td>
</tr>
<tr>
<td>Tarox</td>
<td>300</td>
<td>24</td>
<td>6</td>
<td>1.589,99 €</td>
</tr>
<tr>
<td>Tarox</td>
<td>325</td>
<td>28</td>
<td>6</td>
<td>2.259,80 €</td>
</tr>
<tr>
<td>VMAXX</td>
<td>290</td>
<td>24</td>
<td>4</td>
<td>1.069,00 €</td>
</tr>
</tbody>
</table>

Taula 3.3 - Oferta de sistemes de frenada

Tots els discs, són ventilats. El rang de preu és prou divers, els sistemes de Stop Tech, quedaran descartats per l’alt preu, ja que els de Revo i Tarox, són similars i per un preu notablement inferior. Vista la diversitat de mides, s’instal·laran uns frens de mida 325-332 mm en les rodas davanteres i de 290-300 mm a l’eix posterior. La opció que sembla més racional seria instal·lar a les rodas davanteres el sistema de frenada Tarox de 325 mm i el sistema VMAXX de 290 mm a les rodas posteriors. Les raons són perquè són els dos sistemes més econòmics i, en el cas de les rodas davanteres, tot i que és el diàmetre més petit, té dos pistons més que la competència.

En el cas de les rodas posteriors, uns frens de 290 mm ventilats amb quatre pistons de pressió, són més que suficient per estar a l’alçada dels demés cotxes, a més a més els 24 mm de gruix, permeten que la mateixa pinça valgui per el disc que ve de sèrie en el cotxe a l’eix davanter, per tant, s’estalvia comprar un joc de discs de fre addicional.

Per una qüestió de coherència a la hora d’escollir els proveïdors, i donat que la diferència de preu no és exagerada, s’instal·laran els discs de Tarox també a l’eix posterior. A més a més, aquest pack de sistema de frenada, inclou les pastilles de fre i tubs connectors de malla d’acer que és molt important per no sofrir una pèrdua de potència de frenada durant una etapa de ral·li.

Aquests dos elements no estaven inclosos en el pack del fabricant VMAXX. Escollint aquest sistema, el cotxe tindrà una potència de frenada a la alçada dels millors de la categoria.

Suspensió:
La suspensió es una de les parts més determinants del cotxe, tot i que els enginyers de Ford han posat a punt la suspensió del cotxe per a fer-la mes esportiva, la suspensió es substituirà per una específica de ral·li. El cotxe porta de sèrie un sistema de suspensió independent, de
Tipus McPherson a l'eix davanter i una suspensió semi rígida de braços tirats amb una barra de torsió al darrere.

El sistema de la suspensió davantera és bo, però de la posterior no és tan efectiva com una suspensió McPherson. L'objectiu serà reemplaçar la suspensió posterior per un sistema millor a part de canviar els quatre amortidors.

Per aquest component, es buscarà un proveïdor amb bona reputació que asseguri tindre el millor sistema de suspensió de la categoria. Un dels millors fabricants, és Öhlins. Ha sigut proveïdor de Volkswagen a l'any 2016, el cotxe guanyador del campionat de WRC des de 2013.

L'amortidor de més alta gama d'aquest fabricant, específic per ral·li i ral·licross, és el ALR TPX/TTX. És un sistema McPherson, amb un amortidor de 44 mm de diàmetre. El fabricant ofereix tant el sistema complet McPherson per 2.280 € o només l'amortidor per 1.154 €.

Per la suspensió davantera s'optarà per substituir només els amortidors i per l'eix posterior es prescindirà de la suspensió de barres tirades i s'adaptarà aquest sistema McPherson per a que es pugui utilitzar en el cotxe.

Rodes:
Aquest és un apartat bastant limitat, ja que la normativa ens marca les mides de les llantes: 6" x 15" per ral·lis de grava i 7" x 17" per ral·lis d'asfalt de pes mínim de 8kg per ambdós casos. Els pneumàtics, al ser un element de constant canvi, depenen de l'equip que utilitzi el cotxe, per tant, no es comptaran en el pressupost. L'element que sí es tindrà en compte, seran les llandes. S'optarà per un fabricant especialitzat i amb experiència. El cotxe ha d'equipar dos jocs de llandes i l’únic requeriment és que pesi més de 8 kg. S'ha trobat un venedor que ofereix les dues mides de llanda. El fabricant és Team Dynamics i el model Pro Rally i segons diu, el pes aproximat de la llanda és de 8,16 kg. Al portal web autohispania es venen aquestes llandes, les de 15" valen 168 € i les de 17", 195 €.
Aerodinàmica:
El cotxe ve amb uns faldons esportius i un petit aleró. Els demés cotxes de la categoria equipen els mateixos faldons que els cotxes de factoria. Els cotxes d'aquesta categoria no són suficientment ràpids com per a que sigui profitosa la substitució de tots els faldons. De fet, cap cotxe d'aquesta categoria porta cap pack especial d'aerodinàmica, per tant es faran modificacions en aquest aspecte. L’únic element que sí es necessari és la presa d’aire del sostre del cotxe. Aquesta presa ajuda a tindre una bona ventilació a l’interior del vehicle. Per Internet s’ha trobat un pack aerodinàmic de la marca C4U específic per al grup R5. D’aquest pack, ofereixen també els components individualment, el preu de la presa d’aire és de 692 €.

Alleugeriment:
Es compta amb un cotxe molt lleuger de base. Supera per 83 kg el mínim permès a la competició, que és de 1080 kg. No s’ha tingut la possibilitat de poder extreure les peces que no són necessàries d’un model semblant i per tindre una aproximació del pes potencial que es pot treure, s’ha trobat un contacte que ha realitzat un alleugeriment del Ford Fiesta, en el seu cas, la versió de 82 cv.

Segons aquesta font, el pes que s’ha pogut extreure de l’interior ha sigut de més de 200 kg. Les peces de les que s’ha prescindit són Els seients, embellidors, recobriment de moqueta, l’equip d’aire condicionat, el sistema de so i la roda de recanvi. Per tant, no haurà d’haver problemes per aconseguir una reducció de pes pròxima als 1080 kg. Aquest serà el pes en el que s’estimarà el pes final, ja que la addició de la gàbia, la qual suma 106,587 kg, deixa marge de maniobra per col·locar llastres on calgui. El pes dels llastres depèn de moltes variables degudes al canvi de peces, que de moltes de les quals no es té el pes.

Motor
El motor del cotxe es prou bo, és una de les parts a les que s’ha donat més importància a l’hora d’escollir el cotxe, compta amb 197 cv. És un bloc motor molt robust que, segons Ford, és capaç de suportar fins a 400 cv. L’objectiu del projecte es aconseguir una potència entre 230 i 250 cv així que la garantia que dóna Ford es prendreu com suficient i no es faran reforços específics al bloc per a que puguin suportar l’augment de potència. Per tant, a partir de unes modificacions en la centraleta, filtr d’aire i sistema d’escapament s’espera guanyar una potència de més de 30cv, en cas contrari es buscarien altres vies per aconseguir-ho.

Centraleta i filtr d’aire:
La electrònica d’aquest cotxe està controlada per la centraleta que ofereix un rendiment més esportiu en respecte als altres models de la gama però contenint les emissions. La normativa
permèt modificar aquest component lliurement. De totes formes, aquest canvi en la centraleta és obligat, perquè més endavant es modificaran components que requereixen una actualització de la centraleta.

La centraleta del fabricant Mountune, és la més utilitzada en competició per al Ford Fiesta ST. La pàgina de venda mostra un gràfic al banc de proves amb la comparació del rendiment amb el kit instal·lat i sense ell. La prova ha sigut realitzada amb gasolina de 93 octans, per això la potència de fàbrica del cotxe és menor.

Il·lustració 3.19 - Gràfica comparativa de la potència i la força abans i després d'equipar la nova centraleta

Les corbes vermelles de potència i par són les del cotxe de fàbrica i en blau les del cotxe amb el kit de Mountune equipat. Els pics de les línies vermelles és de 177,55 cv i 288,45 Nm i en les blaves passen a ser de 203,80 cv i 335,34 Nm. Per tant és un augment del voltant del 15% en els dos casos. El motiu que la força del motor sigui tan gran, és donat a que aquest cotxe té la funció que incrementa el bufat del turbo per uns moments i augmenta el parell màxim del cotxe en un 10%.

El pack de la centraleta i els seus components val 891 € i amb el combustible utilitzat als ral·lis, s'espera arribar a una potència mínima de 215 cv. Ja que és la potència que el fabricant diu que dóna als motors de 197 cv. Per el parell màxim, serà semblant al de la prova de Mountune, per tant s’assumirà que el cotxe tindrà un parell de 335 Nm al completar aquesta instal·lació.

Aquest kit de la centraleta inclou un filtre d’aire d’alt rendiment que millorarà la resposta del motor, la normativa contempla la substitució d’aquest component.
Sistema d'escapament:

El cotxe equipa un sistema d'escapament exclusiu per al model, tot i que no difereix gaire del sistema estàndard del motor 1.6 Ford que equipa. Es buscarà substituir-lo per un d'alt rendiment. La normativa diu que el diàmetre interior ha de ser de màxim 60mm. Els fabricants de tubs d'alt rendiment principalment fan diàmetres de 63,5 mm a 76 mm aproximadament. Per tant no s'instal·larà un escapament de grans dimensions que afegixi molta potència. El fabricant Borla, ofereix un tub de diàmetre 57,15 mm i l'augment de potència que indica a la pàgina, és proper al 10%. Per tant la potència del cotxe, amb aquest element, pujarà de 215 cv a 236 cv. El parell motor és suposat el mateix que es té anteriorment, 335 Nm. El cost del sistema d'escapament és de 665 €.

Turbocompressor:

El fabricant que subministra els turbocompressors a Ford és Borg Werner. És un fabricant especialitzat en turbos de competició tot i que en aquest motor també compleix la funció d’estalviar benzina. Amb la modificació de la centraleta es maximitzarà la potència i parell extra que dóna el turbo al motor i així s’estalviarà canviar el turbocompressor per un altre de més gran, el qual és una peça d'alt cost.
Tot i així, es pot millorar el rendiment del turbo canviant la vàlvula de descàrrega per una enfocada a la competició. La normativa no diu res al respecte d’aquest element. Per tant es mirarà de canviar-lo. El fabricant Mountune té al seu catàleg una vàlvula de descàrrega que millora el rendiment del turbo en motors que han sigut potenciats. En un cotxe de sèrie, canviar aquest element no repercutiria gaire el funcionament del motor però en aquest cas, millorarà la resposta del motor en les recuperacions i també a la zona alta del compta-revolucions. Això contribueix a que la corba de la potència del motor sigui més estable. El preu és de 123 €.

Ja que s'augmentarà la pressió del turbo, per evitar el sobreescalfament del sistema, es reemplaçarà l'intercooler i els tubs que el connecten a la resta del motor. El mateix fabricant té al catàleg tant un intercooler d'alt rendiment com uns tubs, fets a mida per aquest intercooler, que milloren el flux d’aire entre els sistemes. Aquests últims valen 357 € i el intercooler val 715 €. Aquests components a part de millorar la resposta també incrementen lleugerament la potència i la força del cotxe, que es podria estimar en una potència total de 240 cv i 340 Nm.

Transmissió:
Tots els cotxes de ral·li equipen una transmissió seqüencial de 5 o 6 marxes. El Ford Fiesta ve amb una caixa de canvis manual de 6 velocitats, es buscarà adaptar la transmissió per fer-la seqüencial o, directament, canviar tota la transmissió per una seqüencial que s'adapte a les exigències que es demanen. Aquest és l'element és car del cotxe, i també el més necessari, ja que la diferència entre un canvi manual i un de seqüencial a l'hora de competir en ral·lis, és abismal. El temps que es perd canviant la marxa en comparació a la rapidesa d'un canvi seqüencial és determinant per a que un cotxe sigui competitiu.

Un dels proveïdors oficials de Ford, Quaife, a la seva pàgina web té un catàleg de transmissions seqüencials molt ampli. Hi té de universals, que poden ser adaptades al cotxe de l’estudi. Per a buscar una bona transmissió es buscarà una especial per a tracció davantera.
El model QBM2M, és una transmissió universal que es podrà adaptar al Ford Fiesta ST, també facilita la instal·lació que el diferencial auto blocant és del mateix fabricant al ser del mateix fabricant del diferencial mecànic. La potència màxima que pot suportar és de fins 385 cv, així que serà una transmissió robusta i fiable. Donat la qualitat d'aquest component, el preu va en conseqüència a això, és de 9.005 €. Aquest preu també inclou un diferencial a escollir entre la gama ATB i Tran-X LSD. El diferencial que prèviament s'ha escollit era un Quaife ATB, per tant, en el preu s'estalviarà els 936 € que val el diferencial.

Amb el canvi de la transmissió, també canvien les relacions de les marxes. que seran les següents.

<table>
<thead>
<tr>
<th>Marxa</th>
<th>1ª</th>
<th>2ª</th>
<th>3ª</th>
<th>4ª</th>
<th>5ª</th>
<th>6ª</th>
<th>Engranatge final</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original</td>
<td>3,72</td>
<td>2,05</td>
<td>1,36</td>
<td>1,03</td>
<td>0,82</td>
<td>0,69</td>
<td>3,82</td>
</tr>
<tr>
<td>Modificat</td>
<td>2,833</td>
<td>2,071</td>
<td>1,611</td>
<td>1,286</td>
<td>1,045</td>
<td>0,87</td>
<td>4,143</td>
</tr>
</tbody>
</table>

Taula 3.4 - Relacions de transmissió originals i noves

Amb aquest canvi de transmissió, el cotxe tindrà una primera marxa més llarga que serà més útil que la original, ja que el cotxe ara compta amb més potència per arrencar i permet estirar més el motor per guanyar velocitat a la zona alta del compta-revolucions. La segona marxa és similar a la original. La resta de marxes tenen una relació més curta, en un rang entre 0,2 i 0,3 de diferència, que milloraran l'acceleració del cotxe a altes velocitats. En ral·lis prima més l'acceleració que la velocitat punta, i en aquest rang de velocitats, aproximadament entre 100 km/h i 180 km/h, tindre una relació de marxes més curta es tradueix en més acceleració en aquest tram de velocitats. A part d'aquestes millores en l'acceleració del cotxe, el ratio de l'engranatge final, al ser més gran, millorarà l'acceleració. La raó d'això, és perquè el eix de la transmissió original donarà una 3,82 voltes per girar una volta les rodes i en canvi en la nova transmissió haurà de girar 4,143 voltes per a girar una revolució la roda. Això significa que el motor es pot revolucionar més ràpid i en conseqüència, accelerar més ràpid.

Aquest apartat s'aprofita també per avaluar el canvi de l'embragament, ja que està estretament relacionat amb la transmissió. Un embragament de carrer està pensat per l'eficiència i la suavitat al canviar de marxa. En canvi, un embragament de competició, és molt brusc e incòmode per un ús urbà però molt efectiu per a poder treure el màxim
profit del motor i la transmissió. Es buscarà un d'específic per a un Ford Fiesta ST de competició.

El fabricant especialitzat, Spec Clutch, ofereix a través d'un portal de venda de recanvis d'alt rendiment, anomenat Edge Autosport, un ventall d'embragaments diferents per al Ford Fiesta ST. Es divideixen en Stage 1 a 4, essent el Stage 4 el de més alt rendiment, capaç de suportar forces de fins 480 Nm. El preu és de 402 € i s'inclourà al pressupost destinat a la transmissió.

Refrigeració

Aquest és un punt important, ja que una potència més gran al cotxe implica una major generació de calor per part del motor, i el sistema de refrigeració ha de ser efectiu. Aquest tema s'ha tractat anteriorment en l'apartat del turbocompressor, però s'ha d'ampliar posant les mires aquest cop directament al motor. El radiador d'origen del Ford Fiesta ST, no està pensat per a un ús continuat i es queda molt petit en comparació a la quantitat de calor que ha de dissipar. Per tant s'ha de reemplaçar per un radiador d'alt rendiment. L'empresa 2J Racing, és un fabricant i distribuïdor components per a diversos models de cotxe, entre ells el Ford Fiesta ST. En la seva web, hi ha un radiador d'alt rendiment de la marca Mishimoto. El cost és alt però en aquests moments està d'oferta, 200 $ més barat, el preu final és de 446 €.

Il·lustració 3.25 - Radiador Mishimoto
Resum

Un cop es tenen clars quins són els components que s’instal·laran, es farà unes llistes amb els elements substituïts i el seu efecte en el cotxe. Es dividiran en elements de seguretat, de millora de la dinàmica i de millora de motor.

En l’apartat de seguretat s’han agafat elements bàsics que la normativa exigeix.

<table>
<thead>
<tr>
<th>Element</th>
<th>Pes extra (kg)</th>
<th>Preu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gàbia antibolcada</td>
<td>106,587</td>
<td>726 €</td>
</tr>
<tr>
<td>Bàquets</td>
<td>9</td>
<td>672 €</td>
</tr>
<tr>
<td>Arnesos</td>
<td>0,5</td>
<td>252 €</td>
</tr>
<tr>
<td>Extintor</td>
<td>3</td>
<td>935 €</td>
</tr>
</tbody>
</table>

Taula 3.5 - Preu i pes dels elements de seguretat

Per l’apartat de la dinàmica del cotxe les modificacions han sigut les següents.

<table>
<thead>
<tr>
<th>Component</th>
<th>Millora</th>
<th>Preu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diferencial auto blocant mecànic</td>
<td>Cap (Obligatori)</td>
<td>Inclòs</td>
</tr>
<tr>
<td>Gàbia antibolcada</td>
<td>Rigidesa</td>
<td>726 €</td>
</tr>
<tr>
<td>Sistema de frenada</td>
<td>Potència de frenada</td>
<td>7.700 €</td>
</tr>
<tr>
<td>Sistema de suspensió</td>
<td>Estabilitat</td>
<td>6.868 €</td>
</tr>
<tr>
<td>Llandes per asfalt i grava</td>
<td>Rigidesa (Obligatori)</td>
<td>1.452 €</td>
</tr>
<tr>
<td>Presa d’aire</td>
<td>Ventilació a l’habitacle</td>
<td>692 €</td>
</tr>
</tbody>
</table>

Taula 3.6 - Preu de les modificacions de la part de la dinàmica

Aquestes modificacions són totalmente essencials en quant al comportament del cotxe, s’ha dedicat una part important del pressupost per a tal fi. En aquest aspecte no s’ha escatimat en despeses i s’han instal·lat components d’alt rendiment per tindre un cotxe competitiu.

Amb les modificacions al motor l’estimació de potència final serà de 240 cv i 340 Nm. Una potència que seria la màxima per una diferència de 6cv amb el segon més potent. En termes de força el motor tindria una força aproximada de 340 Nm, per darrere dels Citroën DS3 R3T, Renault Clio i el DS 3 R3 Max, que tenen 430, 350 i 420 Nm respectivament. Són uns nombres acceptables per les modificacions que s’han realitzat al motor i així s’ha obtingut el guany de potència.

<table>
<thead>
<tr>
<th>Component</th>
<th>Potència (cv)</th>
<th>Parell (Nm)</th>
<th>Millora</th>
<th>Preu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original</td>
<td>197</td>
<td>276</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centraleta i filtre d'aire</td>
<td>215</td>
<td>335</td>
<td>Potència i força</td>
<td>891 €</td>
</tr>
<tr>
<td>Escapament</td>
<td>236</td>
<td>335</td>
<td>Potència</td>
<td>665 €</td>
</tr>
<tr>
<td>Vàlvula de descàrrega i intercooler</td>
<td>240</td>
<td>340</td>
<td>Potència i força</td>
<td>480 €</td>
</tr>
<tr>
<td>Transmissió seqüencial i embragatge</td>
<td>240</td>
<td>340</td>
<td>Acceleració</td>
<td>9.407 €</td>
</tr>
<tr>
<td>Radiador</td>
<td>240</td>
<td>340</td>
<td>Refrigeració</td>
<td>446 €</td>
</tr>
</tbody>
</table>

Taula 3.7 - Guany de potència i preu dels elements de l’apartat del motor
Simulació de Matlab

En el programa Matlab, dins de la seva funció de Simulink, es pot simular el comportament del cotxe en la seva acceleració. Partint de la base d'un sistema de transmissió de quatre velocitats que està disponible a la llibreria de Simulink, s'introduiran les dades del cotxe d'abans i després de ser modificat. La simulació tindrà una durada de 50 segons i el cotxe començarà des de zero km/h.

Il·lustració 3.26 - Vista general de la transmissió de sis velocitats

Blocs

Els blocs es corresponen a una transmissió manual, però com es té la possibilitat de canviar totes les dades necessàries, per al cotxe modificat s'utilitzaran els mateixos blocs i es s'ajustaran els resultats de la simulació a uns propis d'una transmissió seqüencial.

Senyals del conductor:

Aquest bloc serveix com a port de sortida de senyals, les quals es poden definir lliurement. L'accelerador és una dada compresa entre 0 i 1 i es dirigeix a la entrada de la demanda de gas del motor de combustió.

La senyal d'embragatge determina quan es trepitja el pedal de l'embragament i està connectat al port d'entrada de l'embragatge.

Els ports que van de S_1 a S_6 corresponen al moviment de la palanca de canvi de marxa, fent així un pols positiu a l'hora d'engranar la marxa i un pols negatiu quan es desengrana. Aquests polsos es dirigeixen als sincronitzadors de la caixa de canvis.
Motor de combustió
Aquest bloc representa un model de motor de combustió amb guspira. Com s’ha comentat abans té un port d’entrada de l’accelerador que especifica la força que es demana al motor.

Els ports F i B són ports de conservació de rotació mecànica que estan associats al cigonyal i al bloc del motor. Els ports P i FC són la senyal física de sortida de les dades de la potència i el consum de carburant, respectivament.

Embragatge:
El port P del bloc de l'embragatge rep els polsos d'activació del pedal que l' acciona. Aquest passa a través d'un bloc de control del mecanisme de l'embragament i per un altre que regula la força de la molla resistiva de l'embragatge. Un cop la senyal ha passat aquests dos blocs arriba a un altre que uneix l'embragatge amb l'eix que transmet la força del cigonyal. Aquest bloc uneix aquests dos elements mitjançant fricció rotacional. L’eix que transmet el moviment surt del bloc de l'embragatge i es dirigeix a la caixa de canvis. L'altre senyal de sortida, és una sortida física que dóna la força que suporta l'embragatge, que és la que fa el motor.

Caixa de canvis:
La caixa de canvis rep el moviment rotacional de l'embragatge i els canvis de posició dels anells que controlen quina marxa està connectada. Dins es troben els sincronitzadors de les marxes i també el ràtio de cada marxa.
Engranatge final:
Divideix el moviment rotacional que prové de la sortida de la caixa de canvis per la relació que se li imposa.

Xassís del vehicle:
Aquest bloc comprèn totes les característiques físiques del cotxe, com són el pes, la posició del centre de gravetat, l'adherència dels pneumàtics de les rodes motrius a la carretera, entre d'altres dades.

El port d'entrada rep un moviment rotatori provinent de l'engranatge final i el converteix en velocitat, donada en m/s què, mitjançant un bloc multiplicador, es converteix a km/h.
Part comuna
En ambdós casos es tindrà una part comuna a l'estudi, començant per les senyals del conductor, que per tenir-hi una comparació directa, s'han buscat unes senyals vàlides en comú per a que cap dels dos motors es cali o es sobre revolucioni i doni error en la simulació.

Il·lustració 3.28 - Senyals del conductor

En un temps de 50 segons, segons la simulació, no cal arribar a engranar cinquena ni sisena, per tant, com s'observa, la senyal d'aquestes marxes és 0.

En el moment de engranar la marxa, es fa una accelerada gradual per evitar un lliscament de rodes i una acceleració suau i constant per a tenir unes solucions més acurades. El temps de canvi de marxa en el cotxe manual serà aproximat a 2 segons, segons la marxa. Aquest temps de 2 segons es calcularà un altre cop un cop es tinguin els resultats de la simulació del cotxe modificat i es restarà el temps necessari per ajustar-lo a un temps de canvi de marxa equivalent a una transmissió seqüencial.

El bloc de l'embragatge també es mantindrà igual per als dos casos. Tot i que s'ha reemplaçat el embragament del cotxe, no es compta amb dades suficients per poder modificar aquest apartat.

Il·lustració 3.29 - Embragament Simulink
Cotxe original

S'introduiran les dades del cotxe original que es tenen, les altres dades que s'hagin d'estimar es comentarà i es donaran les raons per a fer tal estimació.

Motor

<table>
<thead>
<tr>
<th>Engine torque</th>
<th>Dynamics</th>
<th>Units</th>
<th>Fuel Consumption</th>
<th>Speed Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model parametrization:</td>
<td>Normalized 3rd-order polynomial matched to peak power</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engine type:</td>
<td>Sparkignition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum power:</td>
<td>197</td>
<td>kW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speed at maximum power:</td>
<td>6000</td>
<td>rpm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum speed:</td>
<td>300</td>
<td>km/h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stall speed:</td>
<td>150</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Il·lustració 3.30 - Dades del motor del cotxe original

El cotxe original compta amb 197 cv a 6.000 rpm, la velocitat màxima de gir s'ha fixat en 8.500 tot i que no influeix en la simulació ja que no s'arribarà a tal velocitat. La pèrdua de velocitat inicialment estava fixada en 200 rpm, donat que el cotxe de sèrie té una posada a punt esportiva, s'ha rebaixat aquesta dada en un 25 % respecte un cotxe convencional. Les demés dades que demana el bloc en les altres pestanyes s'han deixat sense tocar, ja que no es disposen de tals xifres.

Caixa de canvis i engranatge final

Il·lustració 3.31 - Relació de l'engranatge de la primera marxa del cotxe original

Obrint el bloc que determina el canvi de revolucions que es produeix a la caixa de canvis es pot canviar el ràtio de la marxa. Les dades de les pestanyes sobrants es desconeixen. L'engranatge final funciona de la mateixa manera, i es canvia el ràtio pel següent.
Aquests paràmetres defineixen tant el pes, com la posició del centre de gravetat respecte el terra i els dos eixos l'àrea frontal i el coeficient aerodinàmic. La dada de l'àrea frontal i de la posició del centre de gravetat no les facilita Ford. L'àrea frontal s'ha extret d'un cotxe amb unes dimensions frontals i coeficient aerodinàmic similars (Peugeot 307 CC) i per la posició del centre de gravetat s'ha tingut en compte un repartiment de pesos del 60% al tren davanter i 40% al posterior, dades estàndard per cotxes amb tracció i motor davanters. L'alçada del centre de gravetat s'ha deixat la que venia per defecte.
Cotxe modificat

Motor

<table>
<thead>
<tr>
<th>Engine Torque</th>
<th>Dynamics</th>
<th>Limits</th>
<th>Fuel Consumption</th>
<th>Speed Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model parameterization:</td>
<td>Normalized 3rd-order polynomial matched to peak power</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engine type:</td>
<td>Spark-ignition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum power:</td>
<td>240</td>
<td>HP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speed at maximum power:</td>
<td>8500</td>
<td>rpm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum speed:</td>
<td>9000</td>
<td>rpm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stall speed:</td>
<td>75</td>
<td>rpm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Il·lustració 3.34 - Dades del motor del cotxe modificat

Un cop aplicada la potència del cotxe de ral·li, donades les millores que s'han aplicat al motor, s'ha apujat en 500 rpm tant la velocitat del motor a màxima potència i la velocitat màxima de gir. D'altra banda, aquests canvis també permeten un millor aprofitament de l'energia del motor i per tant la pèrdua serà substancialment menor. En aquest cas, s'ha escollit el 50% de la velocitat de pèrdua respecte el cotxe original.

Caixa de canvis i engranatge final

S'han aplicat les relacions de canvi del sistema de transmissió de Quaife a les sis velocitats. També ha sigut modificat el paràmetre de l'engranatge final.

Il·lustració 3.35 - Relació d'engranatge final del cotxe modificat
Xassís del cotxe

<table>
<thead>
<tr>
<th>Parameters</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass:</td>
<td>1080 kg</td>
</tr>
<tr>
<td>Number of wheels per axle:</td>
<td>2</td>
</tr>
<tr>
<td>Horizontal distance from CG to front axle:</td>
<td>1.12005 m</td>
</tr>
<tr>
<td>Horizontal distance from CG to rear axle:</td>
<td>1.36895 m</td>
</tr>
<tr>
<td>CG height above ground:</td>
<td>0.3 m</td>
</tr>
<tr>
<td>Frontal area:</td>
<td>2.08 m²</td>
</tr>
<tr>
<td>Drag coefficient:</td>
<td>0.32</td>
</tr>
<tr>
<td>Initial velocity:</td>
<td>0 m/s</td>
</tr>
</tbody>
</table>

Il·lustració 3.36 - Paràmetres del xassís del cotxe modificat

S’ha afegit el pes del cotxe, i el centre de gravetat s’ha mogut seguint les següents hipòtesis.

Donat que es modificarà tot l'interior i s'afegirà la gàbia, es modificarà aquest punt. També es compta amb l'addició de llastres que es poden col·locar allà on faci falta, en aquest cas, com més baix i enrederit estigui millor distribució de pesos, que ara s'ha estimat en un 55 % en el tren davanter. La rebaixa en la suspensió també farà baixar el centre de gravetat, tasca en la que ajuda les modificacions citades anteriorment i s'ha estimat en una rebaixa de 10 cm. Les demès dades romanen igual.
Comparativa

Els gràfics que ofereix aquest sistema de transmissió son la velocitat de gir del motor, la velocitat del cotxe, la posició dels anells de la transmissió, la força que fa el motor a l’embragatge i el lliscament de les rodes.

Velocitat de gir del motor

![Il·lustració 3.37a - RPM del motor original](image1)
![Il·lustració 3.37b - RPM del motor modificat](image2)

Els canvis de marxes son dependents del temps, per tant es té una comparació on es veu que el motor modificat guanya revolucions més ràpid que l’original. En primera el cotxe original canvia quasi al les 5.000 rpm i en canvi, el modificat arriba a les 6.000 rpm. En els casos de canviar de segona a tercera i de tercera a quarta, la diferència de revolucions és propera a les 2000 rpm, que en el cas del cotxe modificat, arriba pràcticament les 8.000 voltes per minut en el canvi de segona a tercera i els supera per poc en el canvi de tercera a quarta marxa. És un règim molt elevat on no s'està traient el màxim profit de la potència del motor, ja que la potència màxima es dóna a les 6.500 rpm.

Velocitat del cotxe

![Il·lustració 3.38a - Velocitat del cotxe original](image3)
![Il·lustració 3.38b - Velocitat del cotxe modificat](image4)
Com era d'esperar, la velocitat del cotxe millora, tot i que en el segon cas, estan simulats els canvis de velocitats com si fos un cotxe manual, per tant s'hauria de restar el temps que es triga en canviar de marxa. Aquest, és de una mica superior a 2 segons. Aquests 2 segons s'haurien de restar en cada canvi de marxa i amb aquest canvi quasi instantani de marxa no es produiria una pèrdua tan accentuada de velocitat, que està causada per la resistència que oposa l’aire i la carretera. Com s’observa, les velocitats són molt altes en ambi dos casos, segurament degut a que no es coneixien una bona part de les variables involucrades en aquesta simulació. Tot i així, es pot fer una bona comparació del guany de velocitat en cada vehicle.

<table>
<thead>
<tr>
<th>Cotxe</th>
<th>50 km/h</th>
<th>100 km/h</th>
<th>150 km/h</th>
<th>180 km/h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original</td>
<td>9,8 s</td>
<td>14,5 s</td>
<td>30 s</td>
<td>50 s</td>
</tr>
<tr>
<td>Modificat</td>
<td>9 s</td>
<td>12,5 s</td>
<td>24,5 s</td>
<td>32,5 s</td>
</tr>
<tr>
<td>Modificat i rectificat</td>
<td>7 s</td>
<td>10,5 s</td>
<td>20,5 s</td>
<td>28,5 s</td>
</tr>
</tbody>
</table>

Tabla 3.8 - Comparació del temps d'acceleració

Per a la rectificació, s’ha extret 2 segons en cada canvi de marxa. En el resultat final s’observa que és un canvi prou substancial, tant per la potència del cotxe com en el temps invertit en canviar de marxa i a més velocitat, més diferència hi ha entre els dos cotxes. La major diferència es troba a la velocitat màxima del cotxe original, ja que, pels temps de canvi de marxes del cotxe, no assoleix els 180 km/h fins arribar als 50 segons de la simulació. En canvi, el cotxe modificat els agafa en tercera però arribant fins les 8.000 rpm. La velocitat final en la simulació del cotxe modificat, supera per poc els 200 km/h, xifra que hauria de ser superior degut a la pèrdua de velocitat en el canvi de marxes.
Força del motor

En aquest cas, la força del motor, en conjunt, és més alta la del cotxe original. La raó és que el cotxe està treballant en un rang de revolucions més baix, i per tant, la corba del parell del cotxe es troba en una zona més estable. Com s’observa en el cas del cotxe modificat, quan treballa a un règim més baix de rpm, el pic màxim de la força es dóna en segona marxa, a unes 5.000 rpm. Un cop supera aquest punt, la força baixa en picat. Així també ho fa quan engrana tercera i quarta marxa, ja que en la simulació, el motor treballa en un rang de 6.000 a 8.000 rpm.

Posició dels anells de la transmissió

En aquest cas, les gràfiques són idèntiques ja que el senyal utilitzat és igual. Es comença la simulació amb la primera marxa engranada i es succeeixen correctament.
El lliscament de les rodes, s'ha fixat en un màxim del 0,1%, que és el valor genèric amb el que el programa obre el sistema de transmissió. Tot i així, al arrencar les rodes llisquen en un 35% en el cas del cotxe original, i de un 27% aproximadament en les rodes del cotxe modificat.

Tot i tindre una potència major, s'observa que s'ha millorat la tracció en l'arrencada. El cotxe original té una primera marxa molt enfocada a l'ambient urbà i a les pujades. El ràtio és de 3,72, un ràtio que el fa pujar de revolucions molt ràpid i tindre molta força, part d'aquesta es dissipa degut al lliscament dels pneumàtics.

D'altra banda, el cotxe modificat té un ràtio de 2,877, que el permet sortir més progressivament. Aquest ràtio és més efectiu en un cotxe potent ja que el motor ha de fer més força per posar en moviment el cotxe. El canvi de transmissió i l'aument de potència son dos factors que s'ajuden entre sí i la millora d'un repercuteix positivament en l'altre.

Simulació a velocitat màxima

Per concloure les simulacions, es farà una última simulació per trobar la velocitat màxima que arriba el cotxe de ral·lis amb les condicions que s'han introduït a les simulacions prèvies.

Les senyals del conductor s'han modificat per fer-les més ajustades a la realitat, ja que en la anterior simulació el cotxe sobrepassava les 8.000 voltes per minut. El temps de simulació també s'ha ampliat per poder assolir la velocitat màxima, ara és de 120 segons, suficients per poder engranar les sis marxes del sistema de transmissió. Les senyals controladores de l'accelerador, l'embragament i la palanca de canvis ha quedat de la següent manera.
Per aconseguir un canvi de marxes correcte, s’han acurtat els temps als que es realitzava el canvi de marxa i s’han afegit uns nous canvis de marxa als segons 40 i 80 de la simulació, corresponen a la cinquena i sisena marxa, respectivament.

Amb la rectificació dels temps dels canvis de marxes, ara es té una gràfica de velocitat de gir del motor molt més coherent. Els pics de velocitat màxima són voltants a les 7.000 rpm, una bona velocitat per fer un canvi de marxa, tenint en compte que la potència màxima es dóna als 6.500 rpm.

Observant les dues gràfiques, es dedueix que la velocitat màxima del cotxe no està definida per la relació de les marxes del cotxe, si no per la resistència que oposa l’aire i la carretera. El pic de velocitat màxima es situa just abans del canvi a la sisena marxa, el cotxe arriba fins als 230 km/h. Un cop engranada la sisena marxa, la velocitat tendeix a estancar-se en una velocitat pròxima als 230 km/h.
El parell pateix una davallada quan es superen les 6.000 revolucions. Aquesta pèrdua de força és més clara en la segona i la tercera marxa, que és quan el cotxe arriba a un pic més alt en les revolucions per minut del motor. En canvi, quan s’engrana sisena, s’obté un parell alt i constant, tot i que el cotxe gairebé no guanya velocitat. En el cas del lliscament del pneumàtic, segueix essent el mateix que a la simulació prèvia.
Capitol 5: Pressupostos i viabilitat

En aquest últim capítol es definiran els pressupostos finals i es farà una valoració de tot el treball fet, finalment es determinarà la viabilitat del mateix.

Pressupostos

Durant el treball s'han tingut en compte els preus de tots els productes adquirits però en canvi, per a instal·lar tots els productes canviats s'hauran d'invertir un número determinat d'hores de personal qualificat, el qual té un preu.

Mà d'obra

Per a dur a terme una preparació d'aquesta magnitud, s'ha de comptar amb especialistes en la matèria. Concretament, un enginyer mecànic, un mecànic experimentat i un especialista en acers que pugui donar forma i soldar l'estructura de la gàbia antibolcada, en el preu d'aquest últim es té en compte el material necessari per a poder fer totes les soldadures necessàries. Més endavant es definirà el cost de pintar el cotxe.

<table>
<thead>
<tr>
<th>Operari</th>
<th>Preu per hora</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enginyer mecànic (EM)</td>
<td>20 €</td>
</tr>
<tr>
<td>Mecànic (M)</td>
<td>17,5 €</td>
</tr>
<tr>
<td>Especialista d'acers (EA)</td>
<td>25 €</td>
</tr>
</tbody>
</table>

Taula 4.1 - Preu per hora dels operaris

Estimació d'hores

A continuació es detallaran els treballs que s'han de fer al cotxe per aplicar totes les modificacions que s'han estudiat prèviament. Es tindran en compte unes hores improdutives entre un 10 i 15% de les hores treballades, producte de hores perdudes en imprevistos o en pensar les solucions als problemes que puguin anar sortint. Les hores estimades per a la part de substitució de peces s'han fet en funció d'opinions d'experts en la matèria. D'altra banda, per tenir una bona estimació de les hores necessàries per a donar forma i soldar la gàbia de seguretat, el noi australià que prèviament havia facilitat la informació del pes extret del cotxe producte d'estripar l'interior, s'ha posat en contacte amb l'operari que va fer la feina de la gàbia de seguretat i m'ha comunicat que el temps que ha trigat en tenir-la llesta ha sigut de 50 h.
<table>
<thead>
<tr>
<th>Component</th>
<th>Temps (h)</th>
<th>Operaris</th>
<th>Hores pagades</th>
<th>Preu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centraleta i filtre d’aire</td>
<td>2</td>
<td>M</td>
<td>2</td>
<td>35 €</td>
</tr>
<tr>
<td>Escapament</td>
<td>4</td>
<td>EM i M</td>
<td>8</td>
<td>150 €</td>
</tr>
<tr>
<td>Vàlvula de descàrrega i intercooler</td>
<td>2</td>
<td>M</td>
<td>2</td>
<td>35 €</td>
</tr>
<tr>
<td>Transmissió seqüencial</td>
<td>10</td>
<td>EM i M</td>
<td>20</td>
<td>375 €</td>
</tr>
<tr>
<td>Radiador</td>
<td>1</td>
<td>M</td>
<td>1</td>
<td>18 €</td>
</tr>
<tr>
<td>Diferencial autoblocant mecànic</td>
<td>2</td>
<td>M</td>
<td>2</td>
<td>35 €</td>
</tr>
<tr>
<td>Sistema de frenada</td>
<td>2</td>
<td>M</td>
<td>2</td>
<td>50 €</td>
</tr>
<tr>
<td>Sistema de suspensió</td>
<td>10</td>
<td>EM i M</td>
<td>20</td>
<td>375 €</td>
</tr>
<tr>
<td>Llandes per asfalt i grava</td>
<td>1</td>
<td>M</td>
<td>1</td>
<td>15 €</td>
</tr>
<tr>
<td>Presa d’aire</td>
<td>2</td>
<td>M</td>
<td>2</td>
<td>30 €</td>
</tr>
<tr>
<td>Gàbia antibolcada</td>
<td>50</td>
<td>EA</td>
<td>50</td>
<td>1.250 €</td>
</tr>
<tr>
<td>Reforç de la carrosseria</td>
<td>10</td>
<td>EA</td>
<td>10</td>
<td>250 €</td>
</tr>
<tr>
<td>Instal·lació de l’interior</td>
<td>5</td>
<td>M</td>
<td>5</td>
<td>88 €</td>
</tr>
<tr>
<td>Hores improductives</td>
<td>5</td>
<td>EM, M i EA</td>
<td>15</td>
<td>313 €</td>
</tr>
<tr>
<td>Total</td>
<td>106</td>
<td>EM, M i EA</td>
<td>140</td>
<td>3.018 €</td>
</tr>
</tbody>
</table>

Taula 4.2 - Hores estimades de treball i preu de la mà d’obra

Pintura

Aquest és l’últim preu que encara queda per saber, per a tenir un preu realista s’ha fet ús de la pàgina web d’una empresa dedicada a xapa i pintura, *Certified First*, que fa pressupostos online. Dins d’aquest portal, es demana el tipus de cotxe a pintar, el tipus de pintura i les zones del cotxe per a pintar/reparar. S’ha seleccionat una pintura bàsica, un cotxe compacte i totes les zones del cotxe, amb un nivell de danys lleu (del 0% al 9%). El pressupost final ha sigut de 1.758,11 €, suma que s’haurà de sumar als pressupostos finals.

Importació del cotxe

Ara ja es tenen clares totes les despeses relacionades amb la posada a punt del cotxe per a convertir-lo en un de ral·lis. El cotxe que s’ha escollit per el treball es tracta d’un Ford Fiesta ST de 5 portes. Aquest model només està disponible als EUA, s’ha escollit aquest perquè només he pogut tenir accés a dos Ford Fiesta de 5 portes i a més a més, als EUA, el model compta amb 15 cv més que el seu homòleg a Europa. Després d’una cerca ràpida per Internet, s’han trobat diversos importadors i també vàries pàgines amb informació al voltant de la importació de cotxes des dels EUA.

El principal problema que tenen els cotxes importats dels EUA és la homologació i superar la inspecció tècnica de vehicles. Aquests dos problemes no es tindran, ja que el cotxe no està destinat a circular en carreteres obertes al trànsit. Un cop aclarit això, es determinarà el preu total del cotxe de sèrie, que té un preu inicial de 22 mil dòlars.
El preu d'importar el cotxe és molt similar al de comprar la versió de 3 portes i 182 cv a Espanya, que volta els 22.000 €.

Pressupost final
Es recolliran totes les despeses que s'han detallat prèviament per tindre un preu final del cotxe de ral·lis. En el preu de la gàbia antibolcada, s'ha tingut en compte la mà d'obra de la mateixa en el preu.

<table>
<thead>
<tr>
<th>Concepte</th>
<th>Preu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cotxe</td>
<td>19.742 €</td>
</tr>
<tr>
<td>Manipulació portuària als EUA</td>
<td>450 €</td>
</tr>
<tr>
<td>Manipulació portuària a Espanya</td>
<td>500 €</td>
</tr>
<tr>
<td>Gastos d'enviament</td>
<td>1.500 €</td>
</tr>
<tr>
<td>Total</td>
<td>22.192 €</td>
</tr>
</tbody>
</table>

Taula 4.3 - Cost del cotxe

El preu es fixarà en 60 mil, és un preu prou ajustat tenint en compte que en moltes parts de l’estudi no s’ha escatimat en despeses per tindre un cotxe, que sobre el paper, pot ser un cotxe guanyador. A més a més, s’ha reservat un marge en el preu per possibles imprevistos o hores extres.

Viabilitat de l’estudi
L’objectiu principal d’aquest estudi és determinar la viabilitat per poder competir en una competició oficial de la FIA, fent una conversió d’un cotxe de carrer per a que pugui complir les exigències de la FIA i també ser competitiu. Per tant, es compararà tant la fitxa tècnica del cotxe com el preu amb els de la competència.
En comparació a la competència, es té el cotxe més potent i amb una força acceptable, és 55 cv més potent que el Peugeot i 30 cv més que el Citroën DS3 R3. La transmissió és semblant a la de la resta, i els frens, a pesar de ser d'un diàmetre una mica inferior a la mitja, compta amb 6 pistons i frens ventilats al darrera, així que els frens estaran a l'alçada. La carrosseria s'ha reforçat amb la soldadura i el disseny de la gàbia està optimitzat per afegir-hi més rigidesa a l'estructura. En les suspensions, el Ford Fiesta és l'únic que compta amb suspensió McPherson als dos eixos, fet que comporta una reducció de pes en aquest punt vers la competència i el rendiment és prou bo.

Taula 4.5 - Comparació de les característiques del cotxe de l’estudi amb la competència

<table>
<thead>
<tr>
<th>Cotxe</th>
<th>Ford Fiesta R3</th>
<th>Citroën DS3 R3</th>
<th>Citroën DS3 R3 Max</th>
<th>Renault Clio R3T</th>
<th>Toyota GT-86 CS-R3</th>
<th>Peugeot 208 R2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potència (cv)</td>
<td>240 - 5.000 rpm</td>
<td>210 - 4.750 rpm</td>
<td>234 - 4.750 rpm</td>
<td>225 - 4.500 rpm</td>
<td>232</td>
<td>185 - 7.750 rpm</td>
</tr>
<tr>
<td>Parell (Nm)</td>
<td>340</td>
<td>350</td>
<td>430</td>
<td>420</td>
<td>235</td>
<td>190</td>
</tr>
<tr>
<td>Pes (kg)</td>
<td>1080</td>
<td>1080</td>
<td>1080</td>
<td>1080</td>
<td>1080</td>
<td>1030</td>
</tr>
<tr>
<td>Transmissió</td>
<td>Quaife Seq. - 6 vel.</td>
<td>Seq. - 6 vel.</td>
<td>Seq. - 6 vel.</td>
<td>Sadev ST 82-17 Seq. 6 vel.</td>
<td>Drenth 350 Seq. - 6 vel.</td>
<td>Seq. - 5 vel.</td>
</tr>
<tr>
<td>Sistema de frenada</td>
<td>Ø x e FA 325 x 28 mm, Tarox (6 pistons)</td>
<td>330 x 30 mm, Alcon (4 pistons)</td>
<td>330 x 36 mm, Alcon (4 pistons)</td>
<td>330 x 32 mm, PFC (4 pistons)</td>
<td>330 x 30 mm, Alcon (4 pistons)</td>
<td>310 x 30 mm, Alcon (4 pistons)</td>
</tr>
<tr>
<td></td>
<td>Ø x e FG 300 x 24 mm</td>
<td>300 x 30 mm</td>
<td>300 x 30 mm</td>
<td>300 x 30 mm</td>
<td>300 x 30 mm</td>
<td>285 x 26 mm</td>
</tr>
<tr>
<td></td>
<td>Ø x e PA 300 x 24 mm</td>
<td>300 x 8 mm, Alcon (2 pistons)</td>
<td>300 x 8 mm, Alcon (2 pistons)</td>
<td>274 x 11 mm, PFC (2 pistons)</td>
<td>295 x 10 mm, Alcon (2 pistons)</td>
<td>290 x 8 mm, Alcon (2 pistons)</td>
</tr>
<tr>
<td></td>
<td>Ø x e PG 273 x 23 mm</td>
<td>300 x 8 mm</td>
<td>300 x 8 mm</td>
<td>274 x 11 mm</td>
<td>295 x 10 mm</td>
<td>290 x 8 mm</td>
</tr>
<tr>
<td>Carrosseria</td>
<td>Reforçada amb soldadura</td>
<td>Reforçada amb soldadura</td>
<td>Reforçada amb soldadura</td>
<td>-</td>
<td>-</td>
<td>Reforçada amb soldadura</td>
</tr>
<tr>
<td>Suspensió</td>
<td>McPherson</td>
<td>McPherson</td>
<td>BOS (Ø 52 mm)</td>
<td>McPherson</td>
<td>Pseudo McPherson</td>
<td>Reiger</td>
</tr>
<tr>
<td></td>
<td>Ø 44 mm</td>
<td>Eix rigid en H</td>
</tr>
<tr>
<td>Post.</td>
<td>McPherson</td>
<td>McPherson</td>
<td>BOS (Ø 52 mm)</td>
<td>McPherson</td>
<td>Multi link</td>
<td>McPherson</td>
</tr>
<tr>
<td></td>
<td>Eix rigid en H</td>
</tr>
<tr>
<td>Preu</td>
<td>60.000 €</td>
<td>68.900 €</td>
<td>82.900 €</td>
<td>80.000 €</td>
<td>84.000 €</td>
<td>57.500 €</td>
</tr>
</tbody>
</table>
Finalment, el preu del Ford Fiesta és clarament inferior a la resta, amb l' excepció del Peugeot 208 R2, que és d'un preu semblant però està construït amb una normativa més restrictiva i per tant, menys potent. El preu és 12 mil euros inferior al Citroën DS3 R3 i es tenen unes prestacions millors. Amb la resta de cotxes, en els quals està més igualat en termes de rendiment, el preu del cotxe de l’estudi és proper a 24 mil euros inferior.

Malgrat que aquesta categoria es va crear per acollir cotxes econòmics per incentivar l'entrada de noves escuderies al campionat, el cotxe dissenyat a aquest estudi té un cost molt favorable respecte els de la competència. Ja que té les prestacions equiparables als millors de la categoria, amb el preu d'un cotxe d'una categoria inferior.

Tot i que el conjunt és d'un preu contingut, el punt on aquest projecte no surt rentable és en la gàbia de seguretat. Hi existeixen fabricants especialitzats en gàbies antibolcada que també estan homologades per la FIA i el preu és proper als 1000€. Un preu molt inferior als 2.500€ que ha costat aproximadament la compra dels tubs i la construcció de la gàbia.

Les gàbies antibolcada comercials han sigut homologades mitjançant l'article 253 de l'annex J i per tant, no són necessàries les proves estàtiques de la ASN. Deixant de banda la diferència de diners, aquesta gàbia antibolcada, que supera les proves estàtiques, és molt robusta i serà més segura que una gàbia comercial, ja que compta amb més barres de reforç i ha superat les proves de la ASN.
Capítol 6: Conclusions

Aquest projecte, ha tingut com objectiu demostrar la viabilitat de poder convertir un cotxe comú en un cotxe competitiu en una competició regulada per la FIA. Per entrar en matèria s’ha fet una introducció històrica al món de la competició, la qual ajuda a comprendre els avenços que hi ha hagut durant els més de 100 anys d’evolució de la competició, tant en matèria de seguretat com de potència i aerodinàmica dels vehicles. També s’han donat a conèixer les categories que han tingut més rellevància històrica i, entre aquestes, el World Rally Championship (WRC), que és la categoria reina en termes de ral·lis.

L’elecció de la tercera categoria del WRC ha fet possible poder fer un estudiu d’un preu contingut i l’elecció del Ford Fiesta ST ha facilitat la conversió del cotxe, ja que el seu rendiment de sèrie és prou bo.

S’ha dissenyat una gàbia de seguretat específica per aquest cotxe. Durant el disseny, s’han seguit les normatives relatives a les gàbies antibolcada tant de la FIA com de la ASN. Aquesta gàbia finalment ha tingut un preu superior que les gàbies antibolcada que venen els fabricants especialitzats. Malgrat això, la gàbia dissenyada ofereix les garanties d’haver superat les proves de la ASN, que no són necessàries per a la homologació de la FIA. Fet que no es compleix en les gàbies comercials ja que s’atenen només a la normativa FIA i per tant, l’estructura és menys complerta. En definitiva, a l’apartat de la gàbia de seguretat, es pot afirmar que la gàbia construïda és de millor qualitat que les comercials estàndard malgrat que té un sobre cost sobre aquestes. Aquest sobre cost és totalment assumible donat el pressupost final del projecte.

En l’apartat de les modificacions, s’han trobat fàcilment peces fabricades exclusivament per al Ford Fiesta ST, fet que ha facilitat la cerca de solucions per a millorar el rendiment del cotxe, que finalment té una potència estimada superior a la resta de cotxes de la categoria. A més a més, les simulacions que s’han realitzat han sigut satisfactòries i s’ha observat un augment de l’acceleració i velocitat màxima.

En l’apartat econòmic, el cotxe té un cost final semblant al d’un cotxe de una categoria inferior. Aquest és un gran punt a favor, ja que deixa un gran marge de maniobres en cas de que la posada en pràctica de les solucions plantejades a l’estudi no tinguin el rendiment desitjat un cop es posi a la pràctica.

Per tant, es pot concloure que aquest projecte sembla viable i hi han possibilitats reals de poder comptar amb un cotxe competitiu seguint els punts d’aquest estudi.
Capítol 7: Bibliografia

Pàgines web
www.cc-organisation.com
rallyemontecarlo.unblog.fr
www.kolumbus.fi
boutique.citroenracing.com
www.ford.com
www.ryanclinnick.com
www.evolutionm.net
www.the-blueprints.com
dsportmag.com
www.caranddriver.com
www.fordparts.com
www.seguropordias.com
www.peugeot-sport.com
www.renaultsport.com
www.toyota-motorsport.com
edgeautosport.com
shop.quaife.co.uk
shop.topbodykit.co.uk
www.lmperformance.com
www.mountuneusa.com
www.autohispania.com
www.bremsen-heinz.de
www.ohlins.com
www.tritekdevelopments.com
www.mcgillmotorsport.com
www.spa-uk.co.uk
www.mcgillmotorsport.com
www.nickygrist.com
www.rderacing.com
www.bellhelmets.eu

Llibres i normatives

Manual de Automóviles - Arias Paz

Apex - Polyphony Digital

Homologation

Annex J - Article 260 - Categories R1, R2, R3 i R4

Annex J - Article 253 - Seguretat

Normativa 8855-1999 - Bàquet

Normativa 8865-2015 - Extintor

Normativa 8858-2010 - HANS

Normativa 8859-2015 - Casc

2013 Homologation Regulations For Safety Cages