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ABSTRACT
We provide the explicit solution of a general second order linear difference equation via the computation of its
associated Green function. This Green function is completely characterized and we obtain a closed expression
for it using functions of two–variables, that we have called Chebyshev functions due to its intimate relation
with the usual one–variable Chebyshev polynomials. In fact, we show that Chebyshev functions become
Chebyshev polynomials if constant coefficients are considered.
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1. Introduction

Second order linear difference equations appear in mathematics and in sciences in both contexts, pure
and applied. For instance, homogeneous equations with constant coefficients have generated an enormous
amount of production in relation with several numbers sequences as, Horadam, Fibonacci, Lucas, Pell,
Jacobsthal, to mention only a few, see [19]. Moreover, general homogeneous second order linear difference
equations also appear related with combinatorial problems and encompasses the recurrences generating
many famous combinatorial numbers, such as Fine, central Delannoy, Schröder, Motzkin, counting directed
animals and derangements numbers, that play an important role in enumerative combinatorics and count
several combinatorial objects, see for instance [4, 13] and references therein for the origin and the meaning
of these sequences.

On the other hand, in the framework of applied mathematics, homogeneous second order linear equa-
tions are related with the so-called three term recurrences and hence with special functions, orthogonal
polynomials and Jacobi matrices that play an important role in the mathematical models of systems that
appear in various branches of engineering. Even equations with constant coefficients are closely related with
the ubiquitous Chebyshev polynomials that are present in many areas of applied science. Moreover, second
order linear difference equations correspond to the finite difference discretization for the general second
order linear differential equation. So, they are widely used for the numerical analysis and approximation
of the corresponding physical application.

Closed form solutions of homogeneous second order equations with constant coefficients are well known
and widely used. Many papers are devoted to this specific topic, where the so called Binet Formula, and
hence the roots of the characteristic polynomial, appears as the starting point, see for instance [19]. In this
case, we can apply that any homogeneous second order equation with constant coefficients is equivalent to
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a Chebyshev recurrence to obtain all solutions as suitable combinations of Chebyshev polynomials, see [2],
although other approaches, based on the equivalence with a first order system, are also avaible, see [11]

In case of equations with variable coefficients, the closed form solution of the first order equation is
well–known and easy to obtain. For second order equations the only easy case appears when a non trivial
solution is known, since then the standard reduction of the orden technique, allows us to obtain another
linearly independent solution. However, in the general case closed formulas are more scarce and usually
very difficult to treat with. For instance, in [14], R.J. Mallik developed a formula expressing the solutions
solely in terms of the coefficients of the equation. His methodology has an strong combinatorial flavor and
it is based in the construction of suitable uples of integers to used them as set of indexes. Independently,
I. Godoskov gave in [9] two approaches based first in a canonical reduction of the given equation into
another one with only a coefficient and then either on recursive sums or on which the author calls discrete
dimensional-convolution procedure. In the very special case when the variable coefficients are periodic, the
authors have recently proved that the given equation is essentially equivalent to another one with constant
coefficients, specifically to a Chebyshev equation which parameter can be computed through a sum-formula
depending only on the coefficients, see [7]. As a by–product the characterization of the existence of periodic
solutions was obtained.

All the above mentioned works treat only with homogeneous equations, although in [15] R.J. Mallik
also considered the non–homogeneous case.

In this work we obtain a new closed formula for the solution of general second order linear difference
equations. First we follow the guidelines of the differential case and hence all ours results gravitate around
the Green function for the equation. Although this concept was already implicit in [5], to the best of our
knowledge this is the first time in which the definition of the Green function is established. Since the Green
function allows us to obtain a solution for the non–homogeneous equation and all the solutions for the
homogeneous one, our main aim is to obtain a closed formula for the computation of the Green function.
Besides, we also describe many additional properties. In particular, we show how the knowledge of the
Green function completely determines the coefficients of the equation and moreover we characterize those
functions that are the Green function of some equation.

Our technique is mainly combinatorial and hence it is closer to Mallik’s than to Gonoskov’s, and we
strongly believe that the obtained expression is more clear and simple than Mallik’s one. We adapt the
concept of binary multi-index introduced in [7] to obtain what we have called Chebyshev functions through
which the Green functions are expressed. When the obtained formula is applied to the case of constant
coefficients, it becomes the classical (a single variable) Chebyshev polynomials. In this particular case, we
obtain some result that seem be new, as the characterization of this kind of equations as shift–invariant.

We have developed our results for equations with coefficients in a field of characteristic different of
2. Due to the combinatorial nature of the techniques, many of them are also valid for equations with
coefficients in an integral domain or even in more general rings, but to do this probably we would need
strong constrains on the coefficients.

2. Preliminaries

Throughout the paper, (K,+, ·) denotes a (commutative) field with characteristic not equal to 2. As usual,
the additive and the multiplicative identities of K are denoted by 0 and 1, respectively. If a ∈ K∗ = K\{0}
its inverse is denoted by a−1 and also by

1

a
. Moreover, N denotes the set of non–negative integers and

N∗ = N \ {0}. We always assume the usual conventions 00 = 1 and that empty sums and empty products

are defined as 0 and 1, respectively. Therefore,
j∑
k=i

ak = 0 and
j∏
k=i

aj = 1 when j < i.

A sequence of elements of K is a function a : N −→ K. We denote by `(K) the space of all sequences of
elements of K and by `(K∗) ⊂ `(K) the subset of the sequences a ∈ `(K) such that a(k) 6= 0 for all k ∈ N.

2



Clearly
(
`(K),+, ·) is a ring with identity with the element-wise sum and product of sequences. Therefore,

the additive identity in `(K) is the null sequence, whereas the multiplicative identity of `(K) is the constant
sequence whose entries are all equals 1. Moreover, identifying a ∈ K with the constant sequence whose
value at any k ∈ N is a, we get that K ⊂ `(K) is a subring of `(K). Through the paper, we use this
identification and hence if a ∈ K, we denote the corresponding constant sequence also by a. With this
convention in mind, 0 is the additive identity in `(K), whereas the multiplicative identity of `(K) is 1.
Clearly, `(K∗) is the group of units of `(K) and moreover if a ∈ `(K∗), then its multiplicative inverse is
denoted by a−1.

Given a ∈ `(K) and m ∈ N, the sequence am defined as am(k) = a(k + m) for any k ∈ N is called the
m-shift of a. Clearly, a0 = a, ar+s = (ar)s for any r, s ∈ N and a ∈ `(K) is constant iff a = a1. On the
other hand, when a ∈ `(K∗), then am ∈ `(K∗), (am)−1 = (a−1)m and this sequence is denoted by a−1

m .
For any sequence a ∈ `(K) and any k,m ∈ N, we define the definite integral of a between k and m as

the value

∫ k

m
a(s)∇s = sign(k −m)

max{k,m}∑
s=min{k,m}+1

a(s)

where sign(0) = 0, sign(−k) = −1 and sign(k) = 1 for any k ∈ N∗, see [18] for a slightly different definition
of the definite integral of a sequence. In particular, for any k ∈ N we have that∫ k

k
a(s)∇s = 0,

∫ k+1

k
a(s)∇s = a(k + 1) and

∫ k−1

k
a(s)∇s = −a(k).

Moreover, for any k,m, r ∈ N we have that∫ k

m
a(s)∇s+

∫ r

k
a(s)∇s =

∫ r

m
u(s)∇s

which taken r = m, implies that

∫ m

k
a(s)∇s = −

∫ k

m
a(s)∇s for any k,m ∈ N.

The definite integral is a linear and monotone functional, since for any a ∈ `(K)∣∣∣ ∫ m

k
a(s)∇s

∣∣∣ ≤ ∣∣∣ ∫ m

k
|a(s)|∇s

∣∣∣, for any k,m ∈ N.

Given a ∈ `(K) if we define A ∈ `(K) as A(k) =

∫ k

0
a(s)∇s, then A(k + 1)− A(k) = a(k + 1), for any

k ∈ N. Conversely, we have the following discrete version of the Fundamental Theorem of Calculus: Given
f ∈ `(K) then x ∈ `(K) satisfies that x(k) − x(k − 1) = f(k) for any k ∈ N∗ iff there exists α ∈ K such
that

x(k) = α+

∫ k

0
f(s)∇s, for any k ∈ N.

In particular, given β ∈ K, then x ∈ `(K) satisfies that x(k)− x(k − 1) = β for any k ∈ N∗ iff there exists
α ∈ K such that x(k) = α+ βk for any k ∈ N.
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3. Linear first order difference equations

Although the main objective of this work is to provide closed formulas for the solution of arbitrary linear
second order difference equations, for the sake of completeness we start considering the case of linear first
order difference equations. Indeed, the fundamental theorem of calculus is the most simple case of this kind
of problems. In spite of being a case simpler than the second order one, already appear both the necessity
of introducing some hypotheses on the coefficients and concepts that will be relevant in the analysis of
second order equations.

Given a, c, f ∈ `(K) the first order linear difference equation with coefficients a, c and data f consists in
finding all sequences x ∈ `(K) satisfying the identity

a(k)x(k) = c(k − 1)x(k − 1) + f(k), k ∈ N∗. (1)

Each sequence x ∈ `(K) satisfying the above identity is called a solution of the difference equation. Note
that any solution of the Equation (1) does not depend on the values a(0) and f(0).

One of the main problems related with Equation (1) is the so called initial value problems that refers to
determine a solution from a given value. Specifically, the initial value problem at m ∈ N ask for a solution
of (1) satisfying that x(m) = α for a given α ∈ K. Clearly, to determine x from (1) and α we must to
impose conditions on the coefficients a and c. So, fixed m to obtain x(k) for k > m is necessary that
a(k) 6= 0, whereas to obtain x(k) for k < m we need that c(k − 1) 6= 0. Moreover, since we wish to solve
any initial value problem it is reasonable to demand that a, c ∈ `(K∗). Under this hypothesis it is easy to
check that

x(k) =


α

k−1∏
j=m

c(j)

a(j + 1)
+

k∑
s=m+1

f(s)

a(s)

k−1∏
j=s

c(j)

a(j + 1)
, k ≥ m,

α

m−1∏
j=k

a(j + 1)

c(j)
−

m∑
s=k+1

f(s)

a(s)

s−1∏
j=k

a(j + 1)

c(j)
, k ≤ m,

which in particular implies that for any f ∈ `(K), any m ∈ N and any α ∈ K the corresponding initial
value problem has a unique solution.

The above expression motivates us to consider the function g : N× N −→ K∗ defined as

g(k, s) =
1

a(s)

(max{k,s}−1∏
j=min{k,s}

c(j)

a(j + 1)

)sign(k−s)

and that we name Green function of the initial value problem for Equation (1). Notice that fixed s ∈ N,
the sequence x(k) = g(k, s) is the unique solution of the Equation (1) satisfying x(s) = a(s)−1. Clearly g
depends on a and c and hence it should be denoted as ga,c. Since we assume the coefficients a and c are
fixed, for the sake of simplicity we have dropped the subindexes a, c.

With the above notations and hypotheses we have the following key result about initial value problems
for first order linear difference equations.

Proposition 3.1. Given a, c ∈ `(K∗), then for any α ∈ K, any f ∈ `(K) and any m ∈ N, the unique
solution of the initial value problem

a(k)x(k) = c(k − 1)x(k − 1) + f(k), k ∈ N∗, x(m) = α
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is given by

x(k) = α
g(k,m)

g(m,m)
+

∫ k

m
g(k, s)f(s)∇s, k ∈ N.

Taking into account that when the coefficients are constant, then

g(k, s) =
1

a

( c
a

)k−s
, k, s ∈ N,

and we have the following particular case.

Corollary 3.2. Given a, c ∈ R∗, then for any α ∈ K, any f ∈ `(K) and any m ∈ N, the unique solution
of the initial value problem

ax(k)− cx(k − 1) = f(k), k ∈ N∗, x(m) = α

is given by

x(k) = α
( c
a

)k−m
+

1

a

∫ k

m

( c
a

)k−s
f(s)∇s =

( c
a

)k[
α
(a
c

)m
+

1

a

∫ k

m

(a
c

)s
f(s)∇s

]
, k ∈ N.

Notice that when a = c = 1, then g(k, s) = 1 for any k, s ∈ N and moreover, the above identity coincides
with the fundamental theorem of calculus.

4. Initial value problems and Green function for second order equations

Given three sequences a, c ∈ `(K∗) and b ∈ `(K), for any f ∈ `(K), the second order difference equation
with coefficients a, b, c and data f consists in finding all sequences x ∈ `(K) satisfying the identity

a(k)x(k + 1)− b(k)x(k) + c(k − 1)x(k − 1) = f(k), k ∈ N∗. (2)

Any sequence x ∈ `(K) satisfying the above identity is called a solution of the difference equation. Note
that any solution of the Equation (2) does not depend on the value of the coefficients a, b and the data f
at k = 0.

We say that Equation (2) has constant coefficients when a, c ∈ K∗ and b ∈ K.
The equation

a(k)x(k + 1)− b(k)x(k) + c(k − 1)x(k − 1) = 0, k ∈ N∗, (3)

corresponds to take as data the null function in Equation (2), is called homogeneous and we refer it as the
homogeneous equation associate with (2). Clearly the null sequence is always a solution of the homogeneous
equation and we refer it as the trivial solution.

Throughout this section we consider fixed the coefficients a, c ∈ `(K∗) and b ∈ `(K). The first result
establishes that each solution of any equation with coefficients a, b and c is completely determined by its
values at two consecutive indexes.

Lemma 4.1. Given m ∈ N and α, β ∈ K, for any f ∈ `(K) the second order difference equation

a(k)x(k + 1)− b(k)x(k) + c(k − 1)x(k − 1) = f(k), k ∈ N∗
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has a unique solution x ∈ `(K) such that x(m) = α, x(m+ 1) = β. In particular, when f = 0, then x = 0
iff there exists m ∈ N such that x(m) = x(m+ 1) = 0.

Given m ∈ N, α, β ∈ K, for any f ∈ `(K), the problem of obtaining the solutions of Equation (2)
satisfying that x(m) = α and x(m+ 1) = β is known as the initial value problem for the Equation (2) at
m with data f and initial data α and β. Therefore, the above lemma says that any initial value problem
for the Equation (2) has a unique solution. Clearly, if x ∈ `(K) is solution of Equation (2) and we consider
the values α = x(m) and β = x(m + 1), where m ∈ N, then x is the unique solution of this initial value
problem. So, determining the solution of any initial value problem at any m ∈ N is equivalent to obtaining
all the solutions of the Equation (2).

In the sequel we denote by S the set of solutions of the homogeneous equation associated with (2); that
is, z ∈ S iff

a(k)z(k + 1)− b(k)z(k) + c(k − 1)z(k − 1) = 0, k ∈ N∗.

Moreover, for any f ∈ `(K) we denote by S(f) the set of solutions of the Equation (2) with data f .
We remark that S and S(f) depend on a, b and c and hence it should be denoted as Sa,b,c and Sa,b,c(f),
respectively. Since we assume the coefficients of the Equation (2) are fixed, for the sake of simplicity we
drop the subindexes a, b and c in the above notations. The following result reflects the linear character of
the Equation (2).

Proposition 4.2 (Superposition Principle). The set S is a two dimensional K–vector space and for any
f ∈ `(K) then we get S(f) = x+ S, where x ∈ S(f). Moreover, given m ∈ N and α, β ∈ K, if x ∈ `(K) is
the unique solution of the initial value problem

a(k)x(k + 1)− b(k)x(k) + c(k − 1)x(k − 1) = f(k); k ∈ N∗, x(m) = α, x(m+ 1) = β,

then x = y + z where z is the unique solution of the initial value problem for the homogeneous equation

a(k)z(k + 1)− b(k)z(k) + c(k − 1)z(k − 1) = 0; k ∈ N∗, z(m) = α, z(m+ 1) = β,

and y is the unique solution of the initial value problem

a(k)y(k + 1)− b(k)y(k)− c(k − 1)y(k − 1) = f(k); k ∈ N∗, y(m) = y(m+ 1) = 0.

Next we introduce the mail tool for the resolution of any initial value problem. We call the Green function
for the difference Equation (3), or simply the Green function, the function g : N× N −→ K defined for
any s ∈ N as g(·, s), the unique solution of the homogeneous Equation (3) satisfying g(s, s) = 0 and
g(s+ 1, s) = a(s)−1. Notice that for any s ∈ N, from the identity

a(s+ 1)g(s+ 2, s+ 1)− b(s+ 1)g(s+ 1, s+ 1) + c(s)g(s, s+ 1) = 0,

we obtain that g(s, s+ 1) = −c(s)−1, whereas from the identity

a(s+ 1)g(s+ 2, s)− b(s+ 1)g(s+ 1, s) + c(s)g(s, s) = 0,

we obtain that b(s+ 1) = a(s+ 1)a(s)g(s+ 2, s). Therefore, the coefficients of the equation determine its
Green function and conversely, the Green function completely determines the coefficients of the equation,
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since the value b(0) is not relevant to solve the equation. Explicitly, we have that

a(k) =
1

g(k + 1, k)
, c(k) =

−1

g(k, k + 1)
, k ∈ N and b(k) =

g(k + 1, k − 1)

g(k + 1, k)g(k, k − 1)
, k ∈ N∗. (4)

We remark that since the Green function depends on a, b and c it should be denoted as ga,b,c. Again we
have dropped the subindexes a, b and c for the sake of simplicity.

The relevance of the Green function is showed in the next result; compare it with the corresponding to
initial value problems for first order difference equations.

Theorem 4.3. Given α, β ∈ K and f ∈ `(K), the unique solution of the initial value problem

a(k)x(k + 1)− b(k)x(k) + c(k − 1)x(k − 1) = f(k); k ∈ N∗, x(m) = α, x(m+ 1) = β,

is given by

x(k) = α
g(k,m+ 1)

g(m,m+ 1)
+ β

g(k,m)

g(m+ 1,m)
+

∫ k

m
g(k, s)f(s)∇s, k ∈ N.

Proof. If we consider the sequence z(k) = βa(m) g(k,m) − αc(m) g(k,m + 1), k ∈ N, it is clear that
z ∈ S and moreover z(m) = α and z(m+1) = β. Therefore, from the Superposition Principle, it is enough

to prove that y ∈ `(K) defined as y(k) =

∫ k

m
g(k, s)f(s)∇s for any k ∈ N, satisfies that y ∈ S(f) and

y(m) = y(m+ 1) = 0.
Clearly y(m) = 0 and moreover y(m+ 1) = g(m+ 1,m+ 1)f(m+ 1) = 0. On the other hand, if given

k ∈ N∗ we consider the value A(k) = a(k)y(k + 1)− b(k)y(k) + c(k − 1)y(k − 1), then

A(k) = a(k)

∫ k+1

m
g(k + 1, s)f(s)∇s− b(k)

∫ k

m
g(k, s)f(s)∇s− c(k − 1)

∫ k−1

m
g(k − 1, s)f(s)∇s

=

∫ k−1

m

[
a(k)g(k + 1, s)− b(k)g(k, s)− c(k − 1)g(k − 1, s)

]
f(s)∇s

+

∫ k

k−1

[
a(k)g(k + 1, s)− b(k)g(k, s)

]
f(s)∇s+ a(k)

∫ k+1

k
g(k + 1, s)f(s)∇s

=
[
a(k)g(k + 1, k)− b(k)g(k, k)

]
f(k) + a(k)g(k + 1, k + 1)f(k + 1) = f(k),

since a(k)g(k + 1, s)− b(k)g(k, s)− c(k − 1)g(k − 1, s) = 0 for any s ∈ N.

As an example, we consider the following initial value problem for an uncoupled equation, see Corollary
7.6 for the general case,

(k + 2)z(k + 1) + kz(k − 1) = f(k), x(0) = α, x(1) = β.
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The Green function for this uncoupled equations is

g(2k + 1, 2s) =
(−1)|k−s|

2s+ 2

[
min{k, s}+ 1

max{k, s}+ 1

]sign(k−s)

, k, s ∈ N,

g(2k, 2s+ 1) =
(−1)|k−s|−1

2k + 1
, k, s ∈ N

g(m,n) = 0, otherwise.

and hence the unique solution of the above initial value problem is determined by

x(2k) =
(−1)k

2k + 1

[
α+

k−1∑
s=0

(−1)s+1f(2s+ 1)

]
, k ∈ N,

x(2k + 1) =
(−1)k

2(k + 1)

[
2β +

k∑
s=1

(−1)sf(2s)

]
, k ∈ N.

We end this section by introducing a very useful concept for the analysis of linear second order difference
equations. The Wronskian, also called the Casoratian see [1], is the map

ω : `(K)× `(K) −→ `(K)

(z, w) −→ zw1 − z1w;

that is,

ω[z, w](k) = z(k)w(k + 1)− z(k + 1)w(k), for any k ∈ N.

It is clear that the wronskian is a bilinear skew–symmetric map. In addition, for any u,w, z ∈ `(K) it is
satisfied that ω[uz, uw] = uu1ω[z, w]; that is

ω[uz, uw](k) = u(k)u(k + 1)ω[z, w](k), for any k ∈ N.

Moreover, ω[z, w] = 0 when z and w are linearly dependent. The relation between the wronskian and the
solution of the homogeneous difference Equation (3) is clarify in the sequel well-known result.

Proposition 4.4. If z, w ∈ S, then it is satisfied that

a(k)ω[z, w](k) = c(0)ω[z, w](0)

k−1∏
j=1

c(j)

a(j)
, k ∈ N∗.

In particular, ω[z, w] ∈ `(K∗) iff ω[z, w](0) ∈ K∗ and this property is equivalent to be {z, w} a basis of S.

Proof. For any k ∈ N∗ we have that

a(k)ω[z, w](k) = z(k)
[
b(k)w(k)− c(k − 1)w(k − 1)

]
−
[
b(k)z(k)− c(k − 1)z(k − 1)

]
w(k)

= c(k − 1)
[
z(k − 1)w(k)− z(k)w(k − 1)

]
= c(k − 1)ω[z, w](k − 1),
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and hence ω[z, w] is a solution of the first order difference equation with coefficients a and c. Therefore
from Proposition 3.1, for any k ∈ N we have that

ω[z, w](k) = ω[z, w](0)

k−1∏
j=0

a(j + 1)−1c(j) = a(k)−1c(0)ω[z, w](0)

k−1∏
j=1

a(j)−1c(j)

and hence, the invertibility property of the wronskian is then consequence of being a, c ∈ `(K∗).
Finally, from Theorem 4.3 we have that

(
z(k), w(k)

)
=
(
g(k, 0), g(k, 1)

) [ 0 a(0)
−c(0) 0

] [
z(0) w(0)
z(1) w(1)

]
,

and when ω[z, w](0) ∈ K∗ we also have

(
g(k, 0), g(k, 1)

)
= ω[z, w](0)−1

(
z(k), w(k)

) [ w(1) −w(0)
−z(1) z(0)

] [
0 −c(0)−1

a(0)−1 0

]
.

Therefore, ω[z, w](0) ∈ K∗ iff {z, w} is a basis of S.

Notice that the identity of the above Proposition also implies that ω[z, w] ∈ `(K∗) iff ω[z, w](m) ∈ K∗
for some m ∈ N.

Corollary 4.5. Given s ∈ N, then
{
g(·, s), g(·, s + 1)

}
is a basis of S. More generally, given s, ŝ ∈ N,{

g(·, s), g(·, ŝ)
}

is a basis of S iff g(ŝ, s) 6= 0 or equivalently iff g(s, ŝ) 6= 0.

Proof. If z = g(·, s) and w = g(·, ŝ), then

ω[z, w](ŝ) = a(ŝ)−1g(ŝ, s) and ω[z, w](s) = −a(s)−1g(s, ŝ)

and the result is a direct consequence of the above Proposition.

Corollary 4.6. Consider z, w ∈ S a basis of S. Then

g(k, s) = a(s)−1ω[z, w](s)−1
[
w(k)z(s)− z(k)w(s)

]
, for any k, s ∈ N.

Proof. From Proposition 4.4 we know that ω[z, w] ∈ `(K∗). On the other hand, fixed s ∈ N if we consider
u ∈ `(K) defined as u = wz(s) − zw(s), then u ∈ S. Since u(s) = 0 and u(s + 1) = ω[z, w](s), we finally
conclude that g(·, s) = ω[z, w](s)−1a(s)−1u.

5. Equivalent equations

In the previous section we have shown that the knowledge of a pair of linearly independent solutions of a
given linear homogeneous equation of second order completely determines the unique solutions of any initial
value problems for arbitrary data. The objective of this section is to determine when two homogeneous
difference equation of second order have the same solutions. In fact, we analyze a more general scenario
in which we can obtain the solution of a given equation from the solution of another one, multiplying by
a fixed sequence in `(K∗).
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Through this section we consider fixed the sequences a, â, c, ĉ ∈ `(K∗) and b, b̂ ∈ `(K), the homogeneous
Equation (3) and

â(k)x(k + 1)− b̂(k)x(k) + ĉ(k − 1)x(k − 1) = 0, k ∈ N∗, (5)

and we denote by S and by Ŝ the spaces of solutions of the Equations (3) and (5), respectively.

Given ν ∈ `(K∗) Equation (5) is called ν–equivalent to (3) iff Ŝ = νS. Notice that the above identity

says that {z, w} is basis of S iff {νz, νw} is basis of Ŝ.
Clearly Equation (5) is ν–equivalent to (3) iff Equation (3) is ν−1–equivalent to (5). So, when ν = 1 we

drop the reference to the function and then we simply call the Equations (3) and (5) equivalents. Therefore,
two homogeneous equations are equivalents iff they have the same solutions.

Clearly, if for any γ ∈ `(K∗) we define â = γa, b̂ = γb and ĉ = γ1c, then the Equations (3) and (5) are
equivalents (below we prove that the converse is true). In particular, choosing γ = a−1 we obtain that any
homogeneous second order difference equation is equivalent to other one in which the first coefficient is
equal to 1. We call explicit this kind of equations.

Since the main objective of this section is to study under which conditions the Equations (3) and (5)
are ν–equivalents, we first prove that the coefficients of any explicit homogeneous equation are determined
by its solutions, or equivalently by any basis of the space of its solutions.

Proposition 5.1. Consider z, w ∈ `(K) such that ω[z, w] ∈ `(K∗). Given c ∈ `(K∗) and b ∈ `(K), then z
and w are solutions of the equation

x(k + 1)− b(k)x(k) + c(k − 1)x(k − 1) = 0, k ∈ N∗

iff it is satisfied that

b(k) =
w(k + 1)z(k − 1)− z(k + 1)w(k − 1)

ω[z, w](k − 1)
, k ∈ N∗ and c(k) =

ω[z, w](k + 1)

ω[z, w](k)
, k ∈ N.

Proof. Clearly z and w are solutions of the given equation iff[
z(k + 1)
w(k + 1)

]
=

[
z(k) −z(k − 1)
w(k) −w(k − 1)

] [
b(k)

c(k − 1)

]
, for any k ∈ N∗

and hence iff[
b(k)

c(k − 1)

]
=

1

ω[z, w](k − 1)

[
−w(k − 1) z(k − 1)
−w(k) z(k)

] [
z(k + 1)
w(k + 1)

]
, for any k ∈ N∗

and the result follows.

Theorem 5.2. Given ν ∈ `(K∗), the Equation (5) is ν–equivalent to Equation (3) iff there exists γ ∈ `(K∗)
such that

â = γ a, b̂ = γν1ν
−1b, ĉ = γ1ν2ν

−1c.

In particular, the Equation (5) and (3) are equivalents iff there exists γ ∈ `(K∗) such that â = γ a, b̂ = γb
and ĉ = γ1c.
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Proof. Let {z, w} a basis of S. Since {νz, νw} is a basis of Ŝ, applying the above Proposition we get that

b̂(k)

â(k)
=
ν(k + 1)ν(k − 1)

[
w(k + 1)z(k − 1)− z(k + 1)w(k − 1)

]
ν(k)ν(k − 1)ω[z, w](k − 1)

=
ν(k + 1)

ν(k)

b(k)

a(k)
,

ĉ(k − 1)

â(k)
=

ν(k + 1)ν(k)ω[z, w](k)

ν(k)ν(k − 1)ω[z, w](k − 1)
=

ν(k + 1)ω[z, w](k)

ν(k − 1)ω[z, w](k − 1)
=
ν(k + 1)

ν(k − 1)

c(k − 1)

a(k)
,

for any k ∈ N∗. The result follows taking γ = a−1â.

We remark that in the proof of the above Theorem we have actually established the identity
b̂(k) = γ(k)ν(k + 1)ν(k)−1b(k) for any k ∈ N∗. Since the values b(0) and b̂(0) does not have influence
on the solutions of the corresponding equations, we can extend the identity to 0. We always adopt this
criteria, when necessary.

Proposition 5.3. Given ν ∈ `(K∗), the equations (3) and (5) are ν–equivalent iff

ĝ(k, s) =
ν(k)a(s)

ν(s+ 1)â(s)
g(k, s), k, s ∈ N.

Proof. If the identity holds, then Ŝ = νS since {ĝ(·, s), ĝ(·, s + 1)} and {g(·, s)γ(s), g(·, s + 1)γ(s + 1)},
where γ(s) = ν(s+ 1)−1â(s)−1a(s) are basis of Ŝ and S, respectively.

Conversely, given {z, w} a basis of S, applying Corollary 4.6 we have

ĝ(k, s) =
ν(k)ν(s)

â(s)ν(s)ν(s+ 1)ω[z, w](s)

[
w(k)z(s)− z(k)w(s)

]
=

ν(k)a(s)

â(s)ν(s+ 1)
g(k, s),

where we have taken into account that ω[νz, νw] = νν1ω[z, w].

In the very special case when â = c, b̂ = b and ĉ = a, equation (5) is called the adjoint equation to (3) and
the space of its solutions and its Green function are denoted by S∗ and g∗, respectively. Moreover, when
a = c, equation (3) is called self–adjoint, since that (3) and (5) coincide. We also define the companion
sequence of Equation (3) as ρ ∈ `(K∗) given by

ρ(k) =

k−1∏
j=0

a(j)

c(j)
, k ∈ N.

The equation (3) is self–adjoint iff ρ = 1. Moreover, since ρ1c = ρa, we obtain that equation (3) is equivalent
to the self–adjoint equation with coefficients ρa and ρb.

With the companion function we can nicely express the result of Proposition 4.4: For any z, w ∈ S the
function ρaω[z, w] is constant and moreover this constant is non null iff {z, w} is a basis of S.

The relationship between solutions of a given homogeneous equations and its adjoint equation is shown
in the following result.

Proposition 5.4. Given a, c ∈ `(K∗) and b, b̂ ∈ `(K) if z, w ∈ `(K) satisfy that

a(k)z(k + 1)− b(k)z(k) + c(k − 1)z(k − 1) = c(k)w(k + 1)− b̂(k)w(k) + a(k − 1)w(k − 1) = 0, k ∈ N∗,
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then for any m,n ∈ N such that m < n we have,∫ n

m
b̂(s)z(s)w(s)∇s =

∫ n

m
b(s)z(s)w(s)∇s+ a(n)ω[z, w](n)− c(m)ω[z, w](m)

−
(
a(n)− c(n)

)
z(n)w(n+ 1) +

(
a(m)− c(m)

)
z(m+ 1)w(m).

Proof. We have the following identities∫ n

m
b(s)z(s)w(s)∇s =

n∑
s=m+1

b(s)z(s)w(s) =

n∑
s=m+1

a(s)z(s+ 1)w(s) +

n∑
s=m+1

c(s− 1)z(s− 1)w(s)

=

n∑
s=m+1

a(s− 1)z(s)w(s− 1) +

n∑
s=m+1

c(s)z(s)w(s+ 1)

+ a(n)z(n+ 1)w(n)− a(m)z(m+ 1)w(m) + c(m)z(m)w(m+ 1)− c(n)z(n)w(n+ 1)

=

n∑
s=m+1

(
b̂(s)z(s)w(s)

)
+ c(m)ω[z, w](m)− a(n)ω[z, w](n)

+
(
c(m)− a(m)

)
z(m+ 1)w(m) +

(
a(n)− c(n)

)
z(n)w(n+ 1).

Notice that when b̂ = b and the equation is self–adjoint, then the identity in the above Proposition
simply say that for any z, w ∈ S, the sequence aω[z, w] is constant.

Proposition 5.5. The Equation (3) is ρ–equivalent to its adjoint and moreover g∗(k, s) = −g(s, k) for
any k, s ∈ N. In addition, ρ(k)g(k, s) = −ρ(s)g(s, k) for any k, s ∈ N and hence a given equation is
self–adjoint iff its Green function is skew–symmetric.

Proof. If z ∈ `(K), defining u = ρz, then z ∈ S iff

0 = ρ(k)
(
a(k)z(k + 1)− b(k)z(k) + c(k − 1)z(k − 1)

)
= c(k)ρ(k + 1)z(k + 1)− b(k)ρ(k)z(k) + a(k − 1)ρ(k − 1)z(k − 1)

= c(k)u(k + 1)− b(k)u(k) + a(k − 1)u(k − 1)

and hence iff u ∈ S∗, which implies that S∗ = ρS. Applying now the Proposition 5.3 we have

g∗(k, s) =
ρ(k)a(s)

c(s)ρ(s+ 1)
g(k, s) =

ρ(k)

ρ(s)
g(k, s), k, s ∈ N.

On the other hand, if {z, w} is a basis of S, then {ρz, ρw} is a basis of S∗ and hence applying Corollary
4.6

g∗(k, s) =
ρ(k)ρ(s)

c(s)ω[ρz, ρw](s)

[
w(k)z(s)− z(k)w(s)

]
=

ρ(k)

c(s)ρ(s+ 1)ω[z, w](s)

[
w(k)z(s)− z(k)w(s)

]
=

ρ(k)

a(s)ρ(s)ω[z, w](s)

[
w(k)z(s)− z(k)w(s)

]
=

1

a(k)ω[z, w](k)

[
w(k)z(s)− z(k)w(s)

]
= −g(s, k),

where we have taken into account that ρaω[z, w] is constant. Finally, combining the two obtained expres-
sions for g∗, we have that −ρ(s)g(s, k) = ρ(s)g∗(k, s) = ρ(k)g(k, s) for any k, s ∈ N. Therefore, if the
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equation is self–adjoint; that is if ρ = 1, then g is skew–symmetric. Conversely, if g is skew–symmetric,
then we have that a(s)−1 = g(s + 1, s) = −g(s, s + 1) = c(s)−1 for any s ∈ N and hence the equation is
self–adjoint.

The coefficients of the Equation (3) completely determine the space of its solutions S and hence its Green
function and the solutions of any initial value problem for any data. Since the Green function determines
the first coefficient of the equation and also the space S we conclude that Equation (3) and hence the
solution of the Equation (2) for any data are completely determined by the Green function. Moreover,
structural properties of the equation, such as its self–adjointness can be also read from its Green function.

We end this section glueing most of the above results to provide a characterization of those double
sequences g : N× N −→ K that are the Green function for some linear difference equation of second order.
Moreover, we explicitly determine the coefficients of that equation from g.

Theorem 5.6. A double sequence g : N× N −→ K is the Green function of some second order difference
equation iff it satisfies the following properties:

(i) g(k + 1, k) 6= 0, for any k ∈ N.

(ii) ω[g(·, 0), g(·, 1)] ∈ `(K∗).

(iii) g(k, s) =
g(s+ 1, s)

ω[g(·, 0), g(·, 1)](s)

[
g(k, 1)g(s, 0)− g(k, 0)g(s, 1)

]
, for any k, s ∈ N.

If g satisfies the above properties, then g(k, k) = 0 and g(k, k + 1) 6= 0 for any k ∈ N and moreover, g
is the Green function of the equation a(k)x(k + 1) − b(k)x(k) + c(k − 1)x(k − 1) = 0, k ∈ N∗, where the
coefficients a, b, c ∈ `(K) are given by

a(k) =
1

g(k + 1, k)
, b(k) =

g(k + 1, k − 1)

g(k + 1, k)g(k, k − 1)
, c(k) =

−1

g(k, k + 1)
, k ∈ N.

Proof. Assume that g is the Green function of the equation a(k)x(k+1)−b(k)x(k)+c(k−1)x(k−1) = 0,
k ∈ N∗. Then, g(k + 1, k), g(k, k + 1) 6= 0 and moreover from (4) we have the expression for a, b and c in
terms of the Green function. In addition from Corollary 4.5, {g(·, s), g(·, s + 1)} is a basis for any s ∈ N,
and hence (ii) is also true and moreover we get (iii) from Corollary 4.6.

Conversely, if properties (i) to (iii) are satisfied, then taking s = k in (iii) we obtain that g(k, k) = 0,
whereas taking s = k + 1 we obtain that

g(k, k + 1) = −g(k + 2, k + 1)ω[g(·, 0), g(·, 1)](k)

ω[g(·, 0), g(·, 1)](k + 1)
6= 0.

In addition, if we consider x = g(·, 0) and y = g(·, 1) since for any k ∈ N∗ from (iii) we have that

b(k)

a(k)
=

[
y(k + 1)x(k − 1)− x(k + 1)y(k − 1)

]
ω[x, y](k − 1)

and
c(k − 1)

a(k)
=

ω[x, y](k)

ω[x, y](k − 1)

then

x(k + 1)− b(k)

a(k)
x(k) +

c(k − 1)

a(k)
x(k − 1) = y(k + 1)− b(k)

a(k)
y(k) +

c(k − 1)

a(k)
y(k − 1) = 0.

Therefore, if we consider the sequence z(k) = g(k, s), k ∈ N, where s ∈ N is fixed, then from (iii) z is a
linear combination of x and y and hence it satisfies that

a(k)z(k + 1)− b(k)z(k) + c(k − 1)z(k − 1) = 0, k ∈ N∗.
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The result follows bearing in mind that z(s) = 0 and moreover z(s+ 1) = a(s)−1.

6. Reduction of order

In this section we develop a simple technique that allows us to obtain the Green function of a linear second
order difference equation when an always non-null solution of the homogeneous equation is known. Since
we only need to known another linearly independent solution, we call this method reduction of order, that
in fact consists in a transformation of the given homogeneous equation into the discrete version of a linear
ODE of the form

(
α(t)x′(t)

)′
= 0, that can be solved by integrating twice.

Given a, c ∈ `(K∗) and b ∈ `(K), assume that a solution, say ν, of the Equation (3) is known and
moreover that ν ∈ `(K∗). Therefore, we have that

b(k) =
1

ν(k)

[
a(k)ν(k + 1) + c(k − 1)ν(k − 1)

]
, k ∈ N∗

and then, z ∈ `(K) is a solution of (3) iff

0 = a(k)z(k + 1)− z(k)

ν(k)

[
a(k)ν(k + 1) + c(k − 1)ν(k − 1)

]
+ c(k − 1)z(k − 1)

= a(k)ν(k + 1)

(
z(k + 1)

ν(k + 1)
− z(k)

ν(k)

)
+ c(k − 1)ν(k − 1)

(
z(k − 1)

ν(k − 1)
− z(k)

ν(k)

)
, k ∈ N∗.

If we consider now ρ the companion sequence and multiply both sides of the above identity by νρ, we
obtain that z is a solution of (3) iff ν−1z is a solution of the self–adjoint equation

0 = ρ(k)a(k)ν(k)ν(k + 1)
(
x(k + 1)− x(k)

)
+ ρ(k − 1)a(k − 1)ν(k)ν(k − 1)

(
x(k − 1)− x(k)

)
.

So, we have proved the following result.

Lemma 6.1. Given a, c ∈ `(K∗) and b ∈ `(K), if the equation

a(k)z(k + 1)− b(k)z(k) + c(k − 1)z(k − 1) = 0, k ∈ N∗

has a solution ν ∈ `(K∗), then it is ν-equivalent to the self–adjoint equation

â(k)x(k + 1)− (â(k) + â(k − 1)
)
x(k) + â(k − 1)x(k − 1) = 0, k ∈ N∗,

where â = ρaνν1.

Next, we describe the reduction of order technique. Given x ∈ `(K) and defining X ∈ `(K) as

X(k) = â(k)
(
x(k + 1)− x(k)

)
, k ∈ N,

we have that x satisfies that â(k)x(k + 1)− (â(k) + â(k − 1)
)
x(k) + â(k − 1)x(k − 1) = 0, k ∈ N∗ iff

X(k)−X(k − 1) = 0, k ∈ N∗,

which implies thatX is constant. So, x satisfies that â(k)x(k+1)−(â(k)+â(k−1)
)
x(k)+â(k−1)x(k−1) = 0,
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k ∈ N∗ iff there exists β ∈ K such that

x(k)− x(k − 1) =
β

â(k − 1)
, k ∈ N∗.

Applying the Fundamental Theorem of Calculus we conclude that x is a solution of the above equation iff
there exist α, β ∈ K such that

x(k) = α+ β

∫ k

0

∇s
â(s− 1)

, k ∈ N.

Theorem 6.2. Consider a, c ∈ `(K∗), b ∈ `(K) and the difference equation

a(k)z(k + 1)− b(k)z(k) + c(k − 1)z(k − 1) = 0, k ∈ N∗.

If ν ∈ `(K∗) is a solution, then the Green function is given by

g(k, s) = ν(k)ν(s)ρ(s)

∫ k

s

∇r
ν(r)ν(r − 1)ρ(r − 1)a(r − 1)

, for any k, s ∈ N.

Proof. If ζ ∈ `(K) is defined as

ζ(k) = ν(k)

∫ k

0

∇s
ν(s)ν(s− 1)ρ(s− 1)a(s− 1)

, k ∈ N,

then ζ(0) = 0, ζ(1) = a(0)−1ν(0)−1 and hence, ω[ν, ζ](0) = a(0)−1. Therefore, the previous reasoning
shows that ζ is a solution of the equation a(k)z(k + 1)− b(k)z(k) + c(k − 1)z(k − 1) = 0, k ∈ N∗, and we
obtain that {ν, ζ} is a basis of the space of its solutions. Then, the result follows applying Corollary 4.6
and taking into account that ρaω[z, ζ] is constant and hence equal to 1, since ρ(0)a(0)ω[z, ζ](0) = 1.

We remark that we can use the above technique to solve a wide class of equations. Specifically, if we fix
a, c ∈ `(K∗) and consider the map Ba,c : `(K∗) −→ `(K) defined by

Ba,c(ν)(0) =
a(0)ν(1)

ν(0)
, Ba,c(ν)(k) =

1

ν(k)

[
a(k)ν(k + 1) + c(k − 1)ν(k − 1)

]
, k ∈ N∗,

we can obtain the Green function for any equation a(k)z(k+ 1)− b(k)z(k) + c(k− 1)z(k− 1) = 0, k ∈ N∗
such that b ∈ ImgBa,c. This happens, for instance when b(k) = a(k) + c(k − 1) for any k ∈ N∗, since
then b = Ba,c(1). It is clear that the map Ba,c is not injective: If λ ∈ K, then Ba,c(λν) = Ba,c(ν) for any
ν ∈ `(K∗).

More generally, let b ∈ ImgBa,c and ν ∈ `(K∗) such that b = Ba,c(ν). Then, µ ∈ `(K∗) satisfies that
b = Ba,c(µ) iff a(0)ν(0)−1ν(1) = b(0) = a(0)µ(0)−1µ(1) and it is a solution of the homogeneous equation
a(k)z(k + 1)− b(k)z(k) + c(k − 1)z(k − 1) = 0, k ∈ N∗.

Therefore, with the previous notation, if b = Ba,c(µ), then there exist α, β ∈ K such that µ = αν + βζ
which, since ζ(0) = 0 implies that µ(0) = αα(0) and hence µ(1) = ν(0)−1µ(0)ν(1) = αν(1). In conclusion,
µ ∈ `(K∗) satisfies that b = Ba,c(µ) iff there exists α ∈ K∗ such that µ = αν.

To avoid this lack of injectivity, we consider the set L(K∗) = {ν ∈ `(K∗) : ν(0) = 1}. Then, we have
proved the following result.

Proposition 6.3. For any a, c ∈ `(K∗) the map Ba,c is injective on L(K∗).
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As a non trivial example of reduction of order we consider the Hermite difference equation

z(k + 1)− 2xz(k) + 2kz(k − 1) = 0, k ∈ N∗, (6)

where x ∈ R, a(k) = 1, b(k) = 2x and c(k) = 2(k + 1) for any k ∈ N. It is known that

Hk(x) =

b k
2
c∑

s=0

(−1)s
k!(2x)k−2s

s!(k − 2s)!
, k ∈ N,

is a solution of the Hermite equation (6), see for instance [10, 17], that as a function of the variable x, Hk

is known as k-th Hermite polynomial. Since the set of zeroes of the sequence {H0(x)}∞k=0 is countable, we
can choose x ∈ R such that Hk(x) 6= 0, for any k ∈ N∗ (x = 1 is a value with this property).

The companion function for the Hermite equation (6) is ρ(s) =
1

2ss!
and hence the Green function for

the Hermite equation is

g(k, s) = sign(k − s)
max{k,s}+1∑
r=min{k,s}

2rr!
Hk(x)Hs(x)

Hr(x)Hr+1(x)
, for any k, s ∈ N.

We conclude this section by introducing a very particular case. The difference Equation (3) is called
exact when any constant sequence is a solution. Equivalently, Equation (3) is exact iff b(k) = a(k)+c(k−1)
for any k ∈ N.

Corollary 6.4. The Equation (3) is exact iff its Green function is given by

g(k, s) = ρ(s)

∫ k

s

∇r
ρ(r − 1)a(r − 1)

, for any k, s ∈ N.

Proof. If the equation is exact, the expression for the Green function is consequence of Theorem 6.2.
Conversely, from Identity (4) we have

b(k) = a(k)a(k− 1)g(k+ 1, k− 1) = a(k)a(k− 1)ρ(k− 1)

[
1

ρ(k − 1)a(k − 1)
+

1

a(k)ρ(k)

]
= a(k) + c(k− 1),

for any k ∈ N.

As a simple example we can consider the case of exact equation with linear coefficients, that appears in
enumerative combinatorics, see [10]. So, if a(k) = α(k+n), c(k) = β(k+m) where α, β 6= 0 and n,m ∈ N∗,
then the Green function of the difference equation

α(k + n)z(k + 1)−
(
(α+ β)k + αn+ β(m− 1)

)
z(k) + β(k +m− 1)z(k − 1) = 0

is given by

g(k, s) = α−1sign(k − s) (s+ n− 1)!

(s+m− 1)!

max{k,s}+1∑
r=min{k,s}

(
α

β

)s−r (r +m− 1)!

(r + n)!
, for any k, s ∈ N.
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The fact that we know the solutions of any exact equation allows us to obtain, from Proposition 5.4, a
nice and useful identity about the weighted integral of a solution of a homogeneous difference equation.

Proposition 6.5. Given z ∈ S, for any m,n ∈ N such that m < n the following identities are satisfied:∫ n

m

[
a(s− 1) + c(s)− b(s)

]
z(s)∇s = c(n)z(n)− a(n)z(n+ 1) + a(m)z(m+ 1)− c(m)z(m)∫ n

m

[
a(s− 1) + c(s)− b(s)

]
z(s)ζ∗(s)∇s = a(n)ω[z, ζ∗](n)− c(m)ω[z, ζ∗](m)

−
(
a(n)− c(n)

)
z(n)ζ∗(n+ 1) +

(
a(m)− c(m)

)
z(m+ 1)ζ∗(m),

where

ζ∗(k) =

∫ k

0

ρ(s− 1)∇s
c(s− 1)

, k ∈ N.

7. Chebyshev Functions

Fixed a, c ∈ `(K∗) and b ∈ `(K), Theorem 4.3 establishes that to solve any initial value problem with any
data for a difference equation with coefficients a, b and c it suffices to compute the corresponding Green
function. To achieve this goal, it is useful to introduce some previous concepts and notations with the
same spirit than in [7] but with slight modifications, since the Green function does not depend on a(0)
and b(0).

Given p ∈ N∗, a multi–index of order p is a p–tuple α = (α1, . . . , αp) ∈ Np. Given α = (α1, . . . , αp) ∈

Np its length is defined as |α| =
p∑
j=1

αj and its shift is α̃ the multi–index of order p defined as α̃ =

(0, α1, . . . , αp−1). Moreover 0p and πp denote the multi–indexes of order p defined as 0p = (0, . . . , 0) and
as πp = (1, . . . , 1), respectively.

A binary multi–index of order p is a p–tuple α = (α1, . . . , αp) ∈ {0, 1}p. The set of binary multi–indexes
of order p is denoted by `p. Clearly, 0p, πp ∈ `p, card(`p) = 2p, for any p ∈ N∗and moreover, given α ∈ `p
then α̃ ∈ `p.

Given α ∈ `p, then 0 ≤ |α| ≤ p and |α| = m iff exactly m components of α are equal to 1 and exactly
p − m components of α are equal to 0. Therefore, 0p is the unique binary multi–index of order p and
null length, whereas the unique binary multi–index of order p and length equals to p is πp. Moreover,
if |α| = m ≥ 1, we denote by i1, . . . , im the indexes such that 1 ≤ i1 < · · · < im ≤ p and αij = 1,
j = 1, . . . ,m.

For any p ∈ N∗, we are interested only on those binary multi–indexes of order p whose length is bp2c at
most. Next, we define these sets of binary multi-indexes:

(i) For p ∈ N∗, `0p =
{
α ∈ `p : |α| = 0

}
=
{

0p
}

=
{

(0, . . . , 0)
}

.

(ii) For p ≥ 2, `1p =
{
α ∈ `p : αp = 0 and |α| = 1

}
.

(iii) For p ≥ 4 and m = 2, . . . , bp2c, `
m
p =

{
α ∈ `p : αp = 0, |α| = m and ij+1− ij ≥ 2, j = 1, . . . ,m−1

}
.

Note that for any m ∈ N∗, we have `m2m =
{

(1, 0, 1, . . . , 0, 1, 0)
}

. Moreover, if p ∈ N∗ and m = 0, . . . , bp2c,
then |α̃| = m for any α ∈ `mp .

Clearly, card(`0p) = 1 for any p ∈ N∗ and card(`1p) = p − 1 for any p ≥ 2. On the other hand if p ≥ 4,
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since choosing m locations for the ones in α ∈ `mp , m = 2, . . . , bp2c, implies fix other m− 1 locations with
zeroes between i1 an im, we can choose m locations among p− 1− (m− 1) available, which implies that
card(`mp ) =

(
p−m
m

)
. Moreover, this formula also works for card(`0p), p ∈ N∗, and for card(`1p), p ≥ 2.

Given p ∈ N∗ and m = 0, . . . , bp2c, for any α ∈ `mp , its complementary is ᾱ = (ᾱ1, . . . , ᾱp) ∈ `p, the
binary multi–index of order p defined as

ᾱij = ᾱij+1 = 0, j = 1, . . . ,m and ᾱi = 1, i = 1, . . . , p, i 6= ij , ij + 1, j = 1, . . . ,m.

It is clear that |ᾱ| = p − 2m. In particular, if α = 0p, p ∈ N∗, then ᾱ = πp, whereas for any m ∈ N∗ if
α ∈ `m2m, then ᾱ = 0p. More generally, given p ∈ N∗ and m = 0, . . . , bp2c, we have the following relation
between a binary multi–index in `mp and its complementary:

πp = α+ ᾱ+ α̃, for any α ∈ `mp .

The relation between the sets `mp+1, `mp and `m−1
p−1 is given in the following result, whose proof is straight-

forward.

Lemma 7.1. The following identities hold:

(i) For any p ≥ 2 and any m = 1, . . . , bp2c then

`mp+1 =
(
`mp × {0}

)
∪
(
`m−1
p−1 × {(1, 0)}

)
=
(
{0} × `mp

)
∪
(
{(1, 0)} × `m−1

p−1

)
.

(ii) If p ≥ 1 is odd, then `
b p+1

2
c

p+1 = `
b p−1

2
c

p−1 × {(1, 0)} = {(1, 0)} × `b
p−1

2
c

p−1 .

(iii) If α = (β, 0) with β ∈ `mp , then ᾱ = (β̄, 1), whereas if α = (β, 1, 0) with β ∈ `m−1
p−1 , then ᾱ = (β̄, 0, 0).

Analogously, if α = (0, β) with β ∈ `mp , then ᾱ = (1, β̄), whereas if α = (1, 0, β) with β ∈ `m−1
p−1 , then

ᾱ = (0, 0, β̄).

Given x ∈ `(K), for any p ∈ N∗ and any multi-index α = (α1, . . . , αp) ∈ Np we define

xα =

p∏
j=1

x(j)αj .

In particular x0p = 1 and xπp = x(1) · · ·x(p). For the sake of completeness, we also define xπ0 = 1 and
when x(0) 6= 0, xπ−1 = x(0)−1.

If x, y ∈ `(K) and α ∈ Np, then (xy)α = xαyα. Moreover, xα+β = xαxβ for any α, β ∈ Np and

xα̃ = (x1)α, for any α ∈ `mp , m = 0, . . . , bp2c.

If x ∈ `(K∗), for any multi-indexes α, β ∈ Np we also define

xα−β =

p∏
j=1

x(j)αj−βj = xα(xβ)−1

and, in particular, x−β = (xβ)−1 = (x−1)β, which implies that xα−β = xαx−β. Therefore, for any 1 ≤ s ≤ p
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we have that xπp−πs−1 =
p∏
j=s

x(j) and hence, the solutions of any homogeneous first order difference equation

and its Green function can be easily expressed with this notation.
Observe that given α ∈ Np, for x ∈ `(K) and y ∈ `(K∗), xα and y−α do not take into account the values

x(0) and y(0). With this notation, the companion function associated to the coefficients a, c ∈ `(K∗) can
be expressed as

ρ(k) =

k−1∏
j=0

a(j)

c(j)
= a(0)c(0)−1aπk−1c−πk−1 , k ∈ N. (7)

For any k ∈ N∗, we define the k-th Chebyshev function on `(K), the function Pk : `(K)× `(K) −→ K
given by

Pk(x, y) =

b k
2
c∑

m=0

(−1)m
∑
α∈`mk

xᾱyα, x, y ∈ `(K). (8)

We also define P0(x, y) = 1 and P−1(x, y) = 0. In addition, for any x ∈ `(K) and y ∈ `(K∗) we define
P−2(x1, y1) = −y(0)−1.

As we will show in the next section, the name of Chebyshev function for (8) is justified because its
relation with the usual (one variable) Chebyshev polynomials of second kind.

Notice that for any k ∈ N the function Pk does not take into account the values of the sequences at 0
and hence if x̂, ŷ ∈ `(K) are such that x̂1 = x1, ŷ1 = y1, then Pk(x̂, ŷ) = Pk(x, y).

Since for any k ∈ N∗ we know that 0̄p = πk and that if α = (0, . . . , 0, 1︸︷︷︸
j

, 0, . . . , 0), j = 1, . . . , k − 1,

then ᾱ = (1, . . . , 1, 0︸︷︷︸
j

, 0, 1, . . . , 1) the k-th Chebyshev function can be re–write as

Pk(x, y) =

k∏
i=1

x(i)−
k−1∑
j=1

y(j)

k∏
i=1

i6=j,j+1

x(i) +

b k
2
c∑

m=2

(−1)m
∑
α∈`mk

xᾱyα, x, y ∈ `(K)

and hence P1(x, y) = x(1), P2(x, y) = x(1)x(2)− y(1), Pk(x, 0) = xπk , for any k ∈ N and moreover

P2k−1(0, y) = 0 and P2k(0, y) = (−1)k
k∏
j=1

y(2j − 1), (9)

since when k ≥ 1 then, α ∈ `mk , m = 0, . . . , bk2c is such that ᾱ = 0p iff k is even and m = k
2 .

Lemma 7.2. Given x, y ∈ `(K) and z ∈ `(K∗), then

Pk(zx, zy) = zπkPk(x, z
−1
1 y), for any k ∈ N.

Proof. The identity is trivial for k = 0. Moreover, for any k ∈ N∗, any m = 0, . . . , bk2c and any α ∈ `mk ,
then

(zx)ᾱ(zy)α = zᾱzαxᾱyα = zᾱ+αxᾱyα = zπk−α̃xᾱyα = zπkz−α1 xᾱyα = zπkxᾱ(z−1
1 y)α
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and the result follows.

Proposition 7.3. The Chebyshev functions are characterized by either of the two three–terms recurrences:

Pk+1(x, y) = x(k + 1)Pk(x, y)− y(k)Pk−1(x, y), k ∈ N, P−1(x, y) = 0, P0(x, y) = 1,

Pk+1(x, y) = x(1)Pk(x1, y1)− y(1)Pk−1(x2, y2), k ∈ N, P−1(x, y) = 0, P0(x, y) = 1,

for any x, y ∈ `(K).

Proof. We prove that if {Pk}∞k=0 is given by any of the two recurrences, then Pk(x, y) =
b k

2
c∑

m=0
(−1)m

∑
α∈`mk

xᾱyα, for any k ∈ N∗. Moreover we only analyze the first recurrence, since the proof

of the second one is similar.
For k = 0, the right hand side of the recurrences gives x(1)P0(x, y) = x(1) and hence for k = 1, the

right side of the recurrence gives x(2)P1(x, y)−y(1)P0(x, y) = x(1)x(2)−y(1). Therefore, the claim is true
for k = 1, 2 and we prove the result by induction. If we assume the identities are true for any 1 ≤ j ≤ k,
k ≥ 2, then

x(k + 1)Pk(x, y)− y(k)Pk−1(x, y) = A0(x, y) +Ak(x, y) +Bk(x, y),

where

A0(x, y) = x(k + 1)
∑
β∈`0k

xβ̄yβ,

Ak(x, y) = x(k + 1)

b k
2
c∑

m=1

(−1)m
∑
β∈`mk

xβ̄yβ =

b k
2
c∑

m=1

(−1)m
∑
β∈`mk

x(k + 1)xβ̄yβ,

Bk(x, y) = y(k)

b k−1

2
c+1∑

m=1

(−1)m
∑

β∈`m−1
k−1

xβ̄yβ =

b k−1

2
c+1∑

m=1

(−1)m
∑

β∈`m−1
k−1

xβ̄y(k)yβ.

First, since for any k ≥ 1, if β ∈ `0k = {(0, . . . , 0)} then β̄ = πk, we have

A0(x, y) = x(1) · · ·x(k)x(k + 1) =
∑

α∈`0k+1

xᾱyα.

On the other hand, from part (iii) of Lemma 7.1, we have that

Ak(x, y) =

b k
2
c∑

m=1

(−1)m
∑

α∈`mk ×{0}

xᾱyα and Bk(x, y) =

b k−1

2
c+1∑

m=1

(−1)m
∑

α∈`m−1
k−1 ×{(1,0)}

xᾱyα.

When k is even then, bk2c = bk−1
2 c+ 1 = bk+1

2 c and then, applying part (i) of Lemma 7.1 we have

Ak(x, y) +Bk(x, y) =

b k+1

2
c∑

m=1

(−1)m
∑

α∈`mk+1

xᾱyα.
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When k is odd then, bk2c = bk−1
2 c = bk+1

2 c − 1 and then, applying parts (i) and (ii) of Lemma 7.1,

Ak(x, y) +Bk(x, y) =

b k
2
c∑

m=1

(−1)m
∑

α∈`mk+1

xᾱyα + (−1)b
k+1

2
c
∑

α∈`b
k+1
2
c

k+1

xᾱyα =

b k+1

2
c∑

m=1

(−1)m
∑

α∈`mk+1

xᾱyα.

In any case, the result follows.

Now we are ready to establish the main result in this section.

Theorem 7.4. Given a, c ∈ `(K∗) and b ∈ `(K), then the Green function for the difference equation
a(k)z(k + 1)− b(k)z(k) + c(k − 1)z(k − 1) = 0, k ∈ N∗, is

g(k, s) = (−1)sign(k−s)a−πk−1c−πs−1(ac)πmin{k,s}−1P|k−s|−1

(
bmin{k,s}, (ac)min{k,s}

)
= a−πk−1c−πs−1

[
Pk−2

(
b1, (ac)1

)
Ps−1(b, ac)− Pk−1(b, ac)Ps−2

(
b1, (ac)1

)]
, k, s ∈ N.

Proof. Fixed s ∈ N, consider z ∈ `(K), the sequence defined as

z(k) =

{
aπs−1a−πk−1Pk−s−1

(
bs, ascs

)
, k ≥ s,

−c−πs−1cπk−1Ps−k−1

(
bk, akck

)
, k ≤ s.

Then, z(s) = P−1

(
bs, (ac)s

)
= 0 and z(s + 1) = a(s)−1P0

(
bs, (ac)s+1

)
= a(s)−1. Moreover, if k > s, then

k − 1 ≥ s and hence, applying Proposition 7.3

a(k)z(k + 1) = aπs−1a−πk−1Pk−s
(
bs, (ac)s

)
= aπs−1a−πk−1bs(k − s)Pk−s−1

(
bs, (ac)s

)
− aπs−1a−πk−1(ac)s(k − s− 1)Pk−s−2

(
bs, (ac)s+1

)
= b(k)z(k)− c(k − 1)z(k − 1).

Therefore, if s = 0, then z is a solution of the given homogeneous equations.
On the other hand, when s ≥ 1 we also have

z(s− 1) = −c−πs−1cπs−2P0

(
bs−1, (ac)s−1

)
= −c(s− 1)−1,

which implies that a(s)z(s+ 1)− b(s)z(s) + c(s− 1)z(s− 1) = 0. Therefore, if s = 1, then z is a solution
of the given homogeneous equation. In addition, when s ≥ 2 and 1 ≤ k < s, then k + 1 ≤ s and hence,
applying Proposition 7.3

c(k − 1)z(k − 1) = −c−πs−1cπk−1Ps−k
(
bk−1, (ac)k−1

)
= −b(k)c−πs−1cπk−1Ps−k−1

(
bk, (ac)k

)
+ (ac)(k)c−πs−1cπk−1Ps−k−2

(
bk+1, (ac)k+1

)
= b(k)z(k)− a(k)z(k + 1),

and the first expression for the Green function follows.
Alternatively, if we consider x = g(·, 0) and y = g(·, 1), then ω[x, y](0) = a(0)−1c(0)−1. Since {x, y} is a

basis of S, taking into account that a(s)ω[x, y](s) = ρ(s)−1a(0)ω[x, y](0) and Identity (7), from Corollary
4.6 we obtain that

g(k, s) =
ρ(s)

a(0)ω[x, y](0)

[
y(k)x(s)− x(k)y(s)

]
= a(0)aπs−1c−πs−1

[
y(k)x(s)− x(k)y(s)

]
.
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Since

x(k) = a(0)−1a−πk−1Pk−1

(
b, ac

)
, y(k) = a−πk−1Pk−2

(
b1, (ac)1

)
, k ∈ N∗,

we obtain the second identity for the Green function.

As an straightforward consequence of the above result we have the following identities for the Chebyshev
functions

Corollary 7.5. Given x ∈ `(K) and y ∈ `(K∗), we have

Pk−2

(
x1, y1

)
Ps−1

(
x, y
)
− Pk−1

(
x, y
)
Ps−2

(
x1, y1

)
= (−1)sign(k−s)yπmin{k,s}−1P|k−s|−1

(
xmin{k,s}, ymin{k,s}

)
,

for any k, s ∈ N.

When b = 0, the Equation (3) is named uncoupled. From the Equalities (9) we obtain the following
result, that also we could have obtained directly.

Corollary 7.6. If a, c ∈ `(K∗), the Green function for the uncoupled equation

a(k)z(k + 1) + c(k − 1)z(k − 1) = 0, k ∈ N∗,

is given by

g(2k + 1, 2s) = (−1)|k−s|a(2s)−1

[
max{k,s}∏

j=min{k,s}+1

a(2j)−1c(2j − 1)

]sign(k−s)

, k, s ∈ N,

g(2k, 2s+ 1) = (−1)|k−s|−1c(2k)−1

[
max{k,s}∏

j=min{k,s}+1

a(2j − 1)−1c(2j)

]sign(k−s)

, k, s ∈ N

g(m,n) = 0, otherwise.

Corollary 7.7. Given a ∈ `(K∗) and b ∈ `(K), the Green function for the self–adjoint equation

a(k)z(k + 1)− b(k)z(k) + a(k − 1)z(k − 1) = 0, k ∈ N∗,

it is given by

g(k, s) = (−1)sign(k−s)
(

max{k,s}−1∏
j=min{k,s}

a(j)

)−1

P|k−s|−1

(
bmin{k,s}, a

2
min{k,s}

)
= a−πk−1a−πs−1

[
Pk−2

(
b1, a

2
1

)
Ps−1(b, a2)− Pk−1(b, a2)Ps−2

(
b1, a

2
1

)]
, k, s ∈ N.

The equation z(k+1)−b(k)z(k)+z(k−1) = 0, k ∈ N∗, where b ∈ `(R) is known as Harper equation with
coefficient b. In particular, when b(k) = E − λ cos(2πωk + φ), E, λ, ω ∈ R, φ ∈ [0, 2π) it is called quasi–
Mathieu equation, whereas when ω ∈ Q it is named Mathieu equation, see [3, 8]. There, the parameters
E, λ, ω and φ are called energy, coupling, frequency and phase, respectively. Therefore, the Green function
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for the Harper equation with coefficient b ∈ `(K) is

g(k, s) = (−1)sign(k−s)
b |k−s|−1

2
c∑

m=0

(−1)m
∑
α∈`mk

m∏
j=1

b(j + min{k, s})ᾱj , k, s ∈ N.

In particular, the Green function for the quasi–Mathieu equation with null energy is

g(k, s) = (−1)sign(k−s)
b |k−s|−1

2
c∑

m=0

λm
∑
α∈`mk

m∏
j=1

cos
(
ᾱj(2πωj + 2πωmin{k, s}+ φ)

)
, k, s ∈ N.

8. Difference equations with constant coefficients and Chebyshev polynomials

In this section we apply the results of Section 4 and Section 7 to the case in which the coefficients of the
Equation (3) are constant. So, given a, c ∈ K∗ and b ∈ K, we consider the homogeneous difference equation
with constant coefficients

ax(k + 1)− bx(k) + cx(k − 1) = 0, k ∈ N∗ (10)

and as usual, denote by S the space of its solutions. Notice that the companion function for the Equation

(10) is given by ρ(k) =
(
c−1a

)k
, k ∈ N.

Equations with constant coefficients have deserved a lot of attention in recent times, see for in-
stance [19] and references therein. There, given α, β, τ, ξ ∈ R, ξ 6= 0, the generalized Horadam numbers,{
Hk(τ, ξ;α, β)

}∞
k=0

, were defined as the solution of the recurrence

Hk+1 = τHk + ξHk−1, k ∈ N∗, H0 = α, H1 = β.

So the solutions of Equation (10) correspond to the Horadam sequences
{
Hk(a

−1b,−a−1c;α, β)
}∞
k=0

. When
α = 0 and β = 1 we drop the corresponding arguments in the expressions of the generalized Horadam
numbers.

Generalized Horadam numbers, encompasses many special second order sequences as generalized Fi-
bonacci, Lucas, Pell, Jacobsthal and Jacobsthal–Lucas numbers, that appear for specific values of the
parameters τ, ξ, α and β, see for instance [2, 19]. The properties and relations of these sequences have
been extensively treated elsewhere, see for instance [2, 12, 19], and they are not the objective of this work.
Here, we pay attention on the special kind of self–adjoint equations with constant coefficients, usually not
considered between the above sequences. In this case, a = c, and hence the Equation (10) is equivalent to

z(k + 1)− 2qz(k) + z(k − 1) = 0, k ∈ N∗,

where q = b
2a , that is known as the Chebyshev equation with parameter q. Notice that this case corresponds

to the Horadam sequences {Hk(2q,−1;α, β)}∞k=0. Although in the framework of number sequences, Cheby-
shev equations have received only scarce attention, they have an ubiquitous presence in many areas of
applied mathematics, through the associated Chebyshev polynomials. Quoting the well known claim, com-
monly attributed to P. Davis and G. Forsythe, Chebyshev polynomials are everywhere dense in numerical
analysis the first lines of the book [16] assert [. . .] there is scarcely any area of numerical analysis where
Chebyshev polynomials do not drop in like surprise visitors, and indeed there are now a number of sub-
jects in which these polynomials take a significant position in modern developments, including orthogonal
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polynomials, polynomial approximation, numerical integration, and spectral methods for partial differential
equations.

Our objective in this section is to compute the Green function of the Equation (10). We start our analysis
with the usual technique based on the relationship of the solutions and the roots of the Characteristic
Polynomial of the equation, that is defined as Q(x) = ax2 − bx+ c ∈ K[x]. Note that always Q(0) = c 6= 0
and hence if Q(r) = 0, necessarily r ∈ K∗.

Lemma 8.1. Given ν ∈ K, consider ν̂ = a−1b− ν and z, w, u ∈ `(K) the sequences defined respectively as
z(k) = νk, w(k) = ν̂k and u(k) = kνk, k ∈ N. The following results are satisfied:

(i) z ∈ S iff Q(ν) = 0. In this case, Q(ν̂) = 0 and moreover {z, w} is a basis of S iff b 6= 2aν.
(ii) u ∈ S iff Q(x) = a(x− ν)2; that is iff Q(ν) = 0 and b = 2aν. In this case, {z, u} is a basis of S.

Proof. (i) For any k ∈ N∗ we obtain that

az(k + 1)− bz(k) + cz(k − 1) = aνk+1 − bνk + cνk−1 = Q(ν)νk−1.

Therefore, if Q(ν) = 0, then z is a solution of the equation and conversely, if z is a solution, taking k = 1
in the above identity, we obtain that Q(ν) = 0. Moreover, since Q(ν̂) = Q(ν) we also have that w ∈ S and
ω[z, w](0) = ν̂ − ν. Therefore, {z, w} is a basis of S iff ν̂ 6= ν; that is, iff b 6= 2aν.

(ii) For any k ∈ N∗ we have that

au(k + 1)− bu(k) + cu(k − 1) = k[aνk+1 − bνk + cνk−1] + (aν2 − c)νk−1 = kQ(ν) + (aν2 − c)νk−1

and hence reasoning u is a solution iff kQ(ν) + (aν2 − c)νk−1 = 0 for any k ∈ N∗. Since for k = 1 we have
aν2−c = −Q(ν), we obtain that u is a solution of the equation iff Q(ν)(k−νk−1) = 0 for any k ∈ N∗. Since
the equations 2 = ν and 3 = ν2 form an inconsistent system, the above equality is true for any k ∈ N∗
iff Q(ν) = 0, which implies also that c = aν2 and hence that b = 2aν. Equivalently, Q(x) = a(x − ν)2.
Finally, since ω[z, u](0) = ν 6= 0, we conclude that {z, u} is a basis of S.

Proposition 8.2 (Binet Formula). If there exists µ ∈ K such that µ2 = b2− 4ac, then the Green function
for the Equation (10) is given by one of the following expressions:

(i) g(k, s) = µ−1
[(b+ µ

2a

)k−s
−
(b− µ

2a

)k−s]
, k, s ∈ N when µ 6= 0.

(ii) g(k, s) = a−1(k − s)
( b

2a

)k−s−1
, k, s ∈ N, when µ = 0.

Corollary 8.3. The Equation (10) is exact iff b = a + c and then its Green function is given by one of
the following expressions:

(i) g(k, s) =
1

a− c

[
1−

( c
a

)k−s]
, k, s ∈ N when a 6= c.

(ii) g(k, s) = a−1(k − s), k, s ∈ N, when a = c.

Notice that according Corollary 6.4, the Green function for (10) when b = a+ c is given by

g(k, s) = a−1
(a
c

)s ∫ k

s

( c
a

)r−1
dr = a−1

(a
c

)s k∑
r=s+1

( c
a

)r−1
, for any k, s ∈ N,

that clearly coincides with the identities in the above Corollary.
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The Binet Formula determines a simple procedure to obtain the Green function. Therefore, it applies
to any equation equivalent to (10). The following result characterize when this happens.

Proposition 8.4. Consider â, ĉ ∈ `(K∗), b̂ ∈ `(K), the difference equation

â(k)z(k + 1)− b̂(k)z(k) + ĉ(k − 1)z(k − 1) = 0, k ∈ N∗

and Ŝ the space of its solutions. Then, the equation is equivalent to an equation with constant coefficients
iff Ŝ is shift-invariant and then it is equivalent to the equation

â(1)z(k + 1)− b̂(1)z(k) + ĉ(0)z(k − 1) = 0, k ∈ N∗.

Proof. From Theorem 5.2, the equation is equivalent to another one with constant coefficients, say a, c ∈
K∗ and b ∈ K iff there exists γ ∈ `(K∗) such that â = γ a, b̂ = γ b and ĉ = γ1c, or equivalently iff it

is equivalent to the equation with coefficients â(1), b̂(1) and ĉ(0), since â(1) = γ(1)a, b̂(1) = γ(1)b and
ĉ(0) = γ(1)c.

Moreover, if z ∈ Ŝ, then satisfies the above equality for any k ∈ N∗ and hence also satisfies it for any
k + 1, k ∈ N∗; that is

0 = â(1)z(k + 2)− b̂(1)z(k + 1) + ĉ(0)z(k) = â(1)z1(k + 1)− b̂(1)z1(k) + ĉ(0)z1(k − 1), for any k ∈ N∗.

In other words, z1 is also a solution; that is Ŝ is shift–invariant. Conversely, if we assume that Ŝ is
shift–invariant and consider z ∈ Ŝ, for any k ∈ N∗ we have

z1(k + 1) = z(k + 2) =
b̂(k + 1)

â(k + 1)
z(k + 1)− ĉ(k)

â(k + 1)
z(k)

z1(k + 1) =
b̂(k)

â(k)
z1(k)− ĉ(k − 1)

â(k)
z1(k − 1) =

b̂(k)

â(k)
z(k + 1)− ĉ(k − 1)

â(k)
z(k)

and subtracting both identities, we have

0 = z(k + 1)

(
b̂(k + 1)

â(k + 1)
− b̂(k)

â(k)

)
+ z(k)

(
ĉ(k − 1)

â(k)
− ĉ(k)

â(k + 1)

)
, k ∈ N∗.

Fixed m ∈ N∗, if we consider the unique z ∈ Ŝ such that z(m) = 1 and z(m + 1) = 0, then the above

identity implies that
ĉ(m− 1)

â(m)
=

ĉ(m)

â(m+ 1)
, whereas if we consider the unique z ∈ Ŝ such that z(m) = 0

and z(m+ 1) = 1, then
b̂(m)

â(m)
=
b̂(m+ 1)

â(m+ 1)
. Therefore, a−1

1 c is constant and a−1b is constant in N∗. Since

the values a(0) and b(0) do not have relevance, we can assume that a−1b is constant in N.

Notice that the reiteration of the above result establishes that if z ∈ S, then zs ∈ S for any s ∈ N. This
simple property generates some well known identities involving the sequences in S, see [2, Formula (2.5)]
or [19, Theorems 5 and 6].

Proposition 8.5. Given z ∈ S, then for any s ∈ N∗ we have

z(k + 1)z(k + s)− z(k)z(k + s+ 1) =
( c
a

)k(
z(1)z(s)− z(0)z(s+ 1)

)
, k ∈ N
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or, equivalently

az(k+1)z(k+s)−bz(k)z(k+s)+cz(k)z(k+s−1) =
( c
a

)k(
az(1)z(s)−bz(0)z(s)+cz(0)z(s−1)

)
, k ∈ N.

In particular,

z(k + 1)2 − z(k)z(k + 2) =
( c
a

)k(
z(1)2 − z(0)z(2)

)
, k ∈ N

or, equivalently

az(k + 1)2 − bz(k)z(k + 1) + cz(k)2 =
( c
a

)k(
az(1)2 − bz(0)z(1) + cz(0)2

)
, k ∈ N.

Proof. Bearing in mind that zs ∈ S for any s ∈ N, the first identity is a direct consequence of being
aρω[z, zs] a constant function. The second identity follows applying that z(k + s + 1) = a−1

(
bz(k + s) −

cz(k + s− 1)
)

for any k ∈ N∗.

To obtain the Green function of a second order difference equation with constant coefficients from the
Binet Formula we need the characteristic polynomial be reducible in K[x]. So, to obtain the generalized
Horadam numbers with this method, it is necessary that τ2 + 4ξ ≥ 0, that is the hypothesis in [19].
Otherwise, we can solve the equation on the algebraic closure of K or even in the quadratic extension
K(
√
b2 − 4ac), or K(

√
τ2 + 4ξ) for Horadam numbers, see [2].

In this paper, we follow a route different to the usual to find the Green function, since we use the results
of previous sections that do not need any supplementary hypothesis on the coefficients. To do this, we
adapt to this scenario the results about Chebyshev functions.

For any k ∈ Z, k ≥ −1, we define the k-th Chebyshev polynomial of second kind in two variables, say
x, y, as the polynomial uk(x, y) = Pk(x, y) ∈ Z[x, y] ⊂ K[x, y], where Pk is the k-th Chebyshev function
on `(K) and x, y are identified with constant sequences. Therefore, u0(x, y) = 1 and u−1(x, y) = 0 and

moreover, since card(`mk ) =
(
k−m
m

)
for any k ∈ N∗, we obtain that

uk(x, y) =

b k
2
c∑

m=0

(−1)m
(
k −m
m

)
xk−2mym.

Clearly, u1(x, y) = x, u2(x, y) = x2− y and uk(x, 0) = xk, u2k−1(0, y) = 0 and u2k(0, y) = (−1)kyk for any
k ∈ N. On the other hand, for any k ≥ −1 we have

Uk(x) = uk(2x, 1) =

b k
2
c∑

m=0

(−1)m
(
k −m
m

)
(2x)k−2m,

that is known as the standard (one variable) k–th Chebyshev polynomial of second kind, see [2] and also
[5, 7]. This is the reason to name Chebyshev functions and polynomials to Pk and uk, k ∈ N. Since
U−1(x) = 0, the equality is also true for k = −1. In fact, we can extend the definition of Chebyshev
polynomials to negative integer indexes. Specifically, when y ∈ K∗, we define

u−k(x, y) = −y1−kuk−2(x, y), k ∈ N. (11)
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Note that for for k = 0 or k = 2 the above identity simply says that u−2(x, y) = −y−1 = P−2(x1, y1),
whereas for k = 1, we recover the definition of u−1, since from (11), u−1(x, y) = 0.

As a by–product of the above identity, we have the following version of Lemma 7.2.

Lemma 8.6. Given x ∈ K, y, z ∈ K∗, then uk(zx, zy) = zkuk(x, z
−1y), k ∈ Z. In particular,

uk(2x, y
2) = ykUk(y

−1x), k ∈ Z

and hence, uk(2x, x
2) = xkUk(1) = (k + 1)xk.

Proposition 8.7. The Chebyshev polynomials of second kind in two variables are characterized by the
three–terms recurrence

un+1(x, y) = xun(x, y)− yun−1(x, y), n ∈ N, u−1(x, y) = 0, u0(x, y) = 1.

More generally, for any r ≥ −1,

ur(x, y)un+r+1(x, y) = ur+1(x, y)un+r(x, y)− yr+1un−1(x, y), n ∈ N

and when y ∈ K∗, then the recurrences also are satisfied for n, r ∈ Z.

Proof. For n ∈ N, the first recurrence relation is a straightforward consequence of Proposition 7.3. To
prove the second claim, for any n ∈ N and any r ≥ −1 we define

Wn,r(x, y) = ur+1(x, y)un+r(x, y)− ur(x, y)un+r+1(x, y)

and then we have to prove that Wn,r(x, y) = yr+1un−1(x, y). Clearly, Wn,−1(x, y) = un−1(x, y), whereas

Wn,0(x, y) = u1(x, y)un(x, y)− un+1(x, y) = xun(x, y)− un+1(x, y) = yun−1(x, y),

where we have used the above three terms recurrence. If r > 0, then

Wn,r(x, y) =
[
xur(x, y)− yur−1(x, y)

]
un+r(x, y)− ur(x, y)

[
xun+r(x, y)− yun+r−1(x, y)

]
= y
[
ur(x, y)un+r−1(x, y)− ur−1(x, y)un+r(x, y)

]
= yWn,r−1(x, y)

and hence, Wn,r(x, y) = yrWn,0(x, y) = yr+1un−1(x, y).
When y ∈ K∗, then for n = −1, the right side of the first equality reads as xu−1(x, y)− yu−2(x, y) = 1

that coincides with u0(x, y). When n = −k where k ≥ 2, applying the three–terms recurrence for non
negative integers, we obtain that

xu−k(x, y)− yu−(k+1)(x, y) = −xy1−kuk−2(x, y) + y1−kuk−1(x, y) = y1−k[uk−1(x, y)− xuk−2(x, y)
]

= −y2−kuk−3(x, y) = u−k+1(x, y),

which implies that first claimed recurrence also holds for negative integers.
Finally, considering Wn,r(x, y) for n, r ∈ Z, we easily obtain that Wn,r(x, y) = yWn,r−1(x, y). Therefore,

when r ≥ 0 we get that Wn,r(x, y) = yrWn,0(x, y) = yr+1un−1(x, y). On the other hand, when r = −k
where k > 0, then Wn,r(x, y) = Wn,−k(x, y) = y−1Wn,1−k(x, y) and hence Wn,r(x, y) = y−kWn,0(x, y) =
yrWn,0(x, y) = yr+1un−1(x, y).
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Choosing n = 1 in the second recurrence, we obtain that

ur+1(x, y)2 − ur+2(x, y)ur(x, y) = yr+1, r ≥ −1.

In addition, when y ∈ K∗, this identity is also satisfied for any r ∈ Z. Note that as a by–product we obtain
the following well–known identities involving Chebyshev polynomials of second kind,

Ur+1(x)Un+r(x)− Ur(x)Un+r+1(x) = Un−1(x), n, r ∈ Z

and, in particular, Ur+1(x)2 − Ur(x)Ur+2(x) = 1, for any r ∈ Z.

Proposition 8.8. The Green function for the Equation (10) is

g(k, s) = as−kuk−s−1(b, ac), k, s ∈ N.

Proof. Taking into account that for any constant sequence any shift coincides with it, according with
Theorem 7.4 we have

g(k, s) =

{
as−kuk−s−1

(
b, ac

)
, k ≥ s,

−ck−sus−k−1

(
b, ac

)
, k ≤ s.

Moreover, since ac ∈ K∗, the Identity (11) implies that when k ≤ s

uk−s−1(b, ac) = u−(s+1−k)(b, ac) = −(ac)k−sus−k−1(b, ac)

and the expression for the Green function follows.

Corollary 8.9. When Equation (10) is uncoupled; that is, when b = 0, its Green function is given by

g(2k + 1, 2s) = (−1)k−sa−1
( c
a

)k−s
, k, s ∈ N,

g(2k, 2s+ 1) = (−1)k−s−1c−1
( c
a

)k−s
, k, s ∈ N,

g(m,n) = 0, otherwise.

The case of exact equations, leads to the following property of the Chebyshev polynomials.

Corollary 8.10. For any x, y ∈ K it is satisfied that

b k
2
c∑

m=0

(−1)m
(
k −m
m

)
(x+ y)k−2m(xy)m =

k∑
j=0

yk−jxj , k ∈ N.

Notice that for x ∈ K∗ and y = x−1 the above identity becomes the well-known expression

Uk
(
2−1(x+ x−1)

)
=
xk+1 − x−k−1

x− x−1
, k ∈ N,

see for instance [16, Identity 1.51].
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If φ(k) = g(k, 0) = a−kuk−1(b, ac), k ∈ N, then φ(0) = 0, φ(1) = a−1 and moreover we can evaluate
φ at negative integers, since we have extend the definition of the Chebyshev polynomials to this kind of
indexes. In fact, we could have extend the definition of the equation az(k + 1) − bz(k) + cz(k − 1) = 0
to any k ∈ Z. Since ac ∈ K∗, Proposition 8.7 shows that g(·, s) satisfies this equation for fixed s ∈ Z.
Therefore, φ is the unique solution of the above equation, k ∈ Z, satisfying φ(0) = 0 and φ(1) = a−1 and
is called the fundamental or the primary solution, see [2], because g(k, s) = φ(k− s) for any k, s ∈ N. This
is also a characteristic of second order difference equation with constant coefficients: their Green function
depends only on the difference between its arguments.

The ubiquitous presence of Chebyshev polynomials and its relation with difference equations with con-
stant coefficients is described in the following result, see [2, Theorem 1]. It represents an alternative to
Binet Formula.

Corollary 8.11. Given a, c ∈ K∗ and b ∈ K, assume that there exists θ ∈ K such that θ2 = ac. Then the
Green function for the homogeneous difference equation az(k + 1)− bz(k) + cz(k − 1) = 0, k ∈ N∗, is

g(k, s) = a−1(a−1θ)k−s−1Uk−s−1( b
2θ ), for any k, s ∈ N.

Proof. Taking x = b
2 , since θ ∈ K∗, applying the second part of Lemma 8.6, we obtain that,

uk−s−1(b, ac) = uk−s−1(2x, θ2) = θk−s−1Uk−s−1(θ−1x) = θk−s−1Uk−s−1

(
(2θ)−1b

)
.

The result follows from the above Proposition.

As in the case of Binet Formula, if x2 − ac is not reducible in K[x] the identity in the above Corollary
has meaning in the algebraic closure of K or even in the quadratic extension K(

√
ac). However, unlike

Binet Formula, we can apply another property of the solutions of second order difference equations with
constant coefficients to avoid using K(

√
ac).

Lemma 8.12. Given z ∈ S, for any m ∈ N the sequence w ∈ `(K) defined as w(k) = z(2k + m) is a
solution of the equation

a2w(k + 1)− (b2 − 2ac)w(k) + c2w(k − 1) = 0, k ∈ N∗.

Proof. Since z ∈ S, for any k ∈ N∗ we have

a2w(k + 1) = a2z(2k +m+ 2) = baz(2k +m+ 1)− acz(2k +m)

= b
[
bz(2k +m)− cz(2k +m− 1)

]
− acz(2k +m)

= (b2 − ac)z(2k +m)− cbz(2k +m− 1)

= (b2 − ac)z(2k +m)− c
[
az(2k +m) + cz(2k +m− 2)

]
= (b2 − 2ac)z(2k +m)− c2z(2k +m− 2) = (b2 − 2ac)w(k)− c2w(k − 1).

Proposition 8.13. Given a, c ∈ K∗ and b ∈ K, the Green function for the homogeneous difference equation
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az(k + 1)− bz(k) + cz(k − 1) = 0, k ∈ N∗, is determined by

g(2k, 2s) = g(2k + 1, 2s+ 1) = b a−2(a−1c)k−s−1Uk−s−1( b2

2ac − 1), k, s ∈ N,

g(2k + 1, 2s) = a−3(a−1c)k−s−1
[
(b2 − ac)Uk−s−1( b2

2ac − 1)− acUk−s−2( b2

2ab − 1)
]

k, s ∈ N,

g(2k, 2s+ 1) = a−3(a−1c)k−s−2
[
(b2 − ac)Uk−s−2( b2

2ac − 1)− acUk−s−3( b2

2ac − 1)
]
, k, s ∈ N.

Proof. If φ is the primary solution of the equation, we know that g(k, s) = φ(k − s) for any k, s ∈ N.
Moreover, φ(0) = 0 and φ(1) = a−1 which implies that φ(2) = a−2b and φ(3) = a−3(b2 − ac)

On the other hand, if we consider u, v ∈ `(K) defined as u(k) = φ(2k) and v(k) = φ(2k + 1), k ∈ N the
above Lemma assures that u and v are solutions of the equation

a2z(k + 1)− (b2 − 2ac)z(k) + c2z(k − 1) = 0, k ∈ N∗.

Therefore, if g̃ is the Green function of the above equation, then from Proposition 4.3 we have

u(k) = a2u(1) g̃(k, 0)− c2u(0)g̃(k, 1) = b g̃(k, 0),

v(k) = a2v(1) g̃(k, 0)− c2v(0)g̃(k, 1) = a−1(b2 − ac) g̃(k, 0)− a−1c2g̃(k, 1).

Since θ = ac is a root of the polinomial x2 − a2c2, from Corollary 8.11 we know that

g̃(k, s) = a−2(a−1c)k−s−1Uk−s−1( b2

2ac − 1), k, s ∈ N

and hence,

u(k) = b a−2(a−1c)k−1Uk−1( b2

2ac − 1),

v(k) = a−3(a−1c)k−1
[
(b2 − ac)Uk−1( b2

2ac − 1)− acUk−2( b2

2ac − 1)
]
.

Taking into account that Uk(−x) = (−1)kUk(x) for any k ∈ Z and any x ∈ C, we have the following
expressions for the generalized Horadam numbers, see [6].

Corollary 8.14. Given τ, ξ ∈ R and ξ 6= 0, we have the following results:

(i) If ξ < 0, then Hk(τ, ξ) = (
√
−ξ)k−1Uk−1

(
τ

2
√
−ξ
)
, k ∈ N.

(ii) If ξ > 0, then Hk(τ, ξ) = (−i)k−1(
√
ξ)k−1Uk−1

(
i τ

2
√
ξ

)
, k ∈ N and also

H2k(τ, ξ) = τξk−1Uk−1

(
1 + τ2

2ξ

)
, k ∈ N,

H2k+1(τ, ξ) = ξk−1
[
(τ2 + ξ)Uk−1

(
1 + τ2

2ξ

)
− ξUk−2

(
1 + τ2

2ξ

)]
, k ∈ N.

In the Lemma 8.12 we have directly proved a result that, in fact, represents an specialization of a deeper
property of solutions of second order homogeneous difference equation with constant coefficients. To show
this property, we need to introduce another kind of Chebyshev polynomials in two variables, see [7] for a
more complete motivation. Prior to do this, we introduce the following notation: Given P (x, y) ∈ K[x, y]
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such that

P (x, y) =

n∑
j=0

Rj(y)xj , where Rj ∈ K[y], j = 0, . . . , n,

then P ′ denotes the polynomial

P ′(x, y) =

n∑
j=1

jRj(y)xj−1 =

n−1∑
j=0

(j + 1)Rj+1(y)xj .

In particular, if P (x) =
n∑
j=0

rjx
j ∈ K[x], where rj ∈ K, j = 0, . . . , n then P ′(x) =

n−1∑
j=0

(j + 1)rj+1x
j .

Lemma 8.15. If P ∈ K[x] satisfies that P (b) = 0 for b ∈ K, then P (x) = R(x)(x − b) where R ∈ K[x]
and moreover R(b) = P ′(b).

The k-th Chebyshev polynomial of first kind in two variables x, y, is the polynomial tk(x, y) ∈ Z[x, y] ⊂
K[x, y], defined as t0(x, y) = 2 and for any k ∈ N∗ as

tk(x, y) = k

b k
2
c∑

m=0

(−1)m

k −m

(
k −m
m

)
xk−2mym.

Clearly, t1(x, y) = x, t2(x, y) = x2−2y and moreover tk(x, 0) = xk, t2k−1(0, y) = 0 and t2k(0, y) = 2(−1)kyk

for any k ∈ N. On the other hand, for any k ∈ N we have

Tk(x) = 2−1tk(2x, 1) =
k

2

b k
2
c∑

m=0

(−1)m

k −m

(
k −m
m

)
(2x)k−2m,

that is known as the standard (one variable) k–th Chebyshev polynomial of first kind, see [2] and also [5, 7].
Notice that when y 6= 0,

tk(2x, y
2) = 2ykTk(y

−1x), k ∈ N, (12)

and hence, tk(2x, x
2) = 2xkTk(1) = 2xk. As in the case of Chebyshev polynomials of second kind, we can

extend the definition of Chebyshev polynomials of first kind to negative integer indexes. Specifically, when
y ∈ K∗, we define

t−k(x, y) = y−ktk(x, y), k ∈ N.

As in the standard setting, the two kind of Chebyshev polynomials in two variables are closely related.
Next, we describe this relation and show a characterization of the first kind polynomials that in fact implies
that they generate solutions of the Equation (10), see Corollary 8.17 below.

Proposition 8.16. For any x, y ∈ K we have that

tk(x, y) = uk(x, y)− yuk−2(x, y) and t′k(x, y) = kuk−1(x, y), k ∈ N.
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In particular, the Chebyshev polynomials of first kind in two variables are characterized by the three–
terms recurrence

tk+2(x, y) = xtk+1(x, y)− ytk(x, y), k ∈ N∗, t0(x, y) = 2, t1(x, y) = x.

Moreover if y ∈ K∗ then all the identities are also satisfied for k ∈ Z.

Proof. Since u−2(x, y) = −y−1, u−1(x, y) = 0 and t′0(x, y) = 0, the first identity is true for k = 0, 1 and
the second one is true for k = 0. On the other hand, bearing in mind that bk+1

2 c = bk−1
2 c+1, when k ∈ N∗

we have

uk+1(x, y)− yuk−1(x, y) =

b k+1

2
c∑

m=0

(−1)m
(
k + 1−m

m

)
xk+1−2mym − y

b k−1

2
c∑

m=0

(−1)m
(
k − 1−m

m

)
xk−1−2mym

=

b k+1

2
c∑

m=0

(−1)m
(
k + 1−m

m

)
xk+1−2mym +

b k−1

2
c+1∑

m=1

(−1)m
(
k −m
m− 1

)
xk+1−2mym

= xk+1 +

b k+1

2
c∑

m=1

(−1)m
[(
k + 1−m

m

)
+

(
k −m
m− 1

)]
xk+1−2mym

=
(k + 1)

k + 1
xk+1 +

b k+1

2
c∑

m=1

(−1)m
(k + 1)

k + 1−m

(
k + 1−m

m

)
xk+1−2mym = tk+1(x, y),

and also that

t′k(x, y) = k

b k−1

2
c∑

m=0

(−1)m(k − 2m)

k −m

(
k −m
m

)
xk−2m−1ym = k

b k−1

2
c∑

m=0

(−1)m
(
k − 1−m

m

)
xk−2m−1ym

= kuk−1(x, y).

When y ∈ K∗, then for any k ∈ N∗ and taking into account that u−k(x, y) = −y1−kuk−2(x, y), we have

t−k(x, y) = y−ktk(x, y) = y−k
[
uk(x, y)− yuk−2(x, y)

]
= y−k

[
− yk+1u−k−2 + yyk−1u−k(x, y)

]
= u−k(x, y)− yu−k−2,

t′−k(x, y) = y−kt′k(x, y) = ky−kuk−1(x, y) = −ky−kyku−k−1 = −ku−k−1

and hence the identities are also true for negative indexes.
Finally, the three-term characterization, and its extension to negative indexes when y ∈ K∗, appears

then as a consequence of the Proposition 8.7 together with the first identity.

Corollary 8.17. If z ∈ `(K) is defined as z(k) = a−ktk(b, ac), k ∈ Z, then z ∈ S.

We are ready to show the mentioned generalization of Lemma 8.12 that is based in that constant
sequences are periodic sequences with period p for any p ∈ N.

Theorem 8.18. Given z ∈ S, for any p,m ∈ N the sequence w ∈ `(K) defined as w(k) = z(pk +m) is a
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solution of the equation

apw(k + 1)− tp(b, ac)w(k) + cpw(k − 1) = 0, k ∈ N∗.

Proof. Consider θ =
√
ac a solution of the equation x2 = ac in the quadratic extension K(

√
ac). Then

γ = a−1θ ∈ K(
√
ac) and hence from [7, Theorem 2.4], see also [2, Theorem 3.1], u(k) = γ−kz(k), where u

is a solution of the Chebyshev equation with parameter q =
b

2θ
.

From [7, Corollary 4.6], we know that for any p,m ∈ N the sequence defined as v(k) = u(pk + m) is a
solution of the Chebyshev equation with parameter Tp(q); which implies that

0 = v(k + 1)− 2Tp(q)v(k) + v(k − 1) = γ−(pk+m)
[
γ−pw(k + 1)− 2Tp(q)w(k) + γpw(k − 1)

]
, k ∈ N∗.

From the identity (12) we obtain that

2Tp(q) = θ−ptp(b, θ
2) = a−pγ−ptp(b, ac), p ∈ N∗

and hence,

0 = γ−pw(k + 1)− a−pγ−ptp(b, ac)w(k) + γpw(k − 1), k ∈ N,

or equivalently,

0 = apw(k + 1)− tp(b, ac)w(k) + apγ2pw(k − 1), k ∈ N,

and the result follows from the equality apγ2p = apa−2p(ac)p = cp.

The reiteration of the above result, leads to the following property about the composition of Chebyshev
polynomials of first kind.

Corollary 8.19. For any n,m ∈ N we have that

tm
(
tn(x, y), yn

)
= tmn(x, y)

and, in particular Tmn(x) = Tm
(
Tn(x)

)
.

Proof. It suffices to take into account that tk(2x, 1) = 2Tk(x) for any k ∈ N.

As a nice by-product of the above Theorem we have the following characterization of the existence of
periodic solutions, see [7, Corollary 4.8] for the general case. Previously, associated with Equation (10) we
define the sequence κ ∈ `(K) as

κ(k) = ak + ck − tk(b, ac) = ak + ck − k
b k

2
c∑

m=0

(−1)m

k −m

(
k −m
m

)
bk−2m(ac)m, k ∈ N.

Notice that κ(0) = 0, κ(1) = a+ c− b and κ(2) = (a+ c)2 − b2.

Corollary 8.20. The Equation (10) has non–null periodic solutions with period p ∈ N∗ iff κ(p) = 0

Proof. It suffices to observe that if z ∈ S, then z is periodic with period p ∈ N iff for any 0 ≤ m < p the
sequence w ∈ `(K) given by w(k) = z(pk+m), k ∈ N, is constant and then, apply the above Theorem.

33



We remark that when κ(p) = 0, p ≥ 2, to obtain a periodic solution for the equation (10) it suffices to
consider α, β ∈ K,

z(k) = a1−k
[
βuk−1(b, ac)− cαuk−2(b, ac)

]
, k = 0, . . . , p− 1

and then define z(pk + m) = z(m) for any k ∈ N∗ and 0 ≤ m < p − 1. Notice that the choice α = β
determines a periodic solution which two first value are equal. Clearly this happens when p = 1, since then
the constant sequences are solution of (10).

The above corollary characterizes the existence of periodic solutions of the Equation (10). Since periodic
sequences of period p are periodic with period mp for any m ∈ N∗ the identity ap+cp = tp(b, ac) also implies
that amp + cmp = tmp(b, ac) for any m ∈ N∗. In particular, the case p = 1 reads that am + cm = tm(b, ac).

Corollary 8.21. For any x, y ∈ K it is satisfied that

k

b k
2
c∑

m=0

(−1)m

k −m

(
k −m
m

)
(x+ y)k−2m(xy)m = xk + yk, k ∈ N.

Notice that for x ∈ K∗ and y = x−1 the above identity becomes the well-known expression

Tk
(
2−1(x+ x−1)

)
=
xk + x−k

2
, k ∈ N,

see for instance [16, Identity 1.47].

When a = c, then (10) is equivalent to a Chebyshev equation with parameter q = b
2a . Then the above

results establishes that the equation has non–null periodic solutions with period n ∈ N∗ iff

2an = tn(b, a2) = 2anTn(q)

and hence, iff Tn(q) = 1. When K = R, this happens iff q = cos
(2jπ
n

)
, j = 0, . . . , dn−1

2 e.

We end this work applying the results of Propositions 5.4 and 6.5 to the case of equations with constant
coefficients. To do this, remember that for any x ∈ K all the solutions of the homogeneous equation

cw(k + 1)− xw(k) + aw(k + 1) = 0, k ∈ N∗

can be written as

w(x; k) = c−k
[
αuk−1(x, ac) + βuk−2(x, ac)

]
, k ∈ N,

where α, β ∈ K. Then, we can consider w(x; k) as a polynomial and hence it has sense w′(x; k).

Proposition 8.22. Consider α, β, x ∈ K and w(x; k) = c−k
[
αuk−1(x, ac) + βuk−2(x, ac)

]
, k ∈ N. Then,

for any z ∈ S and any m,n ∈ N such that m ≤ n we have∫ n

m
z(s)w(x; s)∇s =

1

x− b

[
a
(
z(m+1)w(x;m)−z(n+1)w(x;n)

)
+ c
(
z(n)w(x;n+1)−z(m)w(x;m+1)

)]
,
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when x 6= b, whereas∫ n

m
z(s)w(b; s)∇s = a

(
z(m+ 1)w′(b;m)− z(n+ 1)w′(b;n)

)
+ c
(
z(n)w′(b;n+ 1)− z(m)w′(b;m+ 1)

)
.

In particular, when a = c if we consider α = az(1) and β = −a2z(0), then w(b; k) = z(k) and hence∫ n

m
z(s)2∇s = a

[
z(m+ 1)z′(b;m)− z(n+ 1)z′(b;n) + z(n)z′(b;n+ 1)− z(m)z′(b;m+ 1)

]
.

Given p ∈ N, if x = ap+cp, the equation cpw(k+1)−xw(k)+apw(k+1) = 0, k ∈ N∗ is exact and hence

from Corollary 8.3, {1, ζ} is a basis of the space of its solutions, where for any k ∈ N, ζ(k) =
(a
c

)pk
when

ap 6= cp whereas ζ(k) = k when ap = cp. Then, the above Proposition together Theorem 8.18 provides the
following summation formulas, see [19, Theorem 4].

Corollary 8.23. Consider n,m, p, k ∈ N such that m ≤ n and κ(p) 6= 0. Then, for any z ∈ S we have
that ∫ n

m
z(ps+ k)∇s =

1

κ(p)

[
ap
(
z(p(m+ 1) + k)− z(p(n+ 1) + k)

)
+ cp

(
z(pn+ k)− z(pm+ k)

)]
.

In addition, when ap 6= cp, then∫ n

m

(a
c

)ps
z(ps+ k)∇s =

ap

κ(p)

[
z(p(m+ 1) + k)

(a
c

)pm
− z(p(n+ 1) + k)

(a
c

)pn]
+

cp

κ(p)

[
z(pn+ k)

(a
c

)p(n+1)
− z(pm+ k)

(a
c

)p(m+1)]
,

whereas if a = c, then∫ n

m
sz(ps+ k)∇s =

ap

κ(p)

[
mz(p(m+ 1) + k)− n z(p(n+ 1) + k) + (n+ 1) z(pn+ k)− (m+ 1) z(pm+ k)

]
.
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