Co-Al spinel-based nanoparticles synthesized by flame spray pyrolysis for glycerol conversion

A. Lähde1,§, R. J. Chimentão2,3,§, T. Karhunen1, M. G. Álvarez3, J. Llorca4, F. Medina3, J. Jokiniemi1, L.B. Modesto-López5,*

1Department of Environmental Science, University of Eastern Finland, FI-70211, Kuopio, Finland

2Department of Physical Chemistry, Faculty of Chemical Science, Universidad de Concepción, Casilla 160-C, Concepción, Chile

3Department of Chemical Engineering, Universitat Rovira i Virgili, Av. Països Catalans 26, ES-43007, Tarragona, Spain

4Institut de Tècniques Energètiques, Universitat Politècnica de Catalunya, Spain

5Department of Aerospace Engineering and Fluid Mechanics, University of Seville, Camino de los Descubrimientos s/n, ES-41092, Seville, Spain

§ These authors contributed equally.

* Corresponding author: lmodesto@us.es

Phone number: +34 (954)48-7224
Abstract

The catalytic properties of Co-Al spinel nanoparticles prepared by flame spray pyrolysis (FSP) were investigated in the glycerol conversion in gas phase in an atmosphere of hydrogen. Reduction under hydrogen atmosphere at 1123 K of the as-synthesized spinel nanoparticles induced the formation a new phase containing metallic cobalt species. Although, the reducibility of cobalt oxides is greatly decreased due to interaction with aluminium species, this strong interaction may prevent the aggregation of Co particles under the harsh reduction conditions. X-ray photoelectron spectroscopy (XPS) of the reduced spinel nanoparticles at 1123 K revealed that the Co/Al atomic ratio has decreased from 0.27 to 0.11, which represents a significant reduction in the exposed cobalt. This is in accordance with the reduction of CoAl₂O₄ into metallic Co and partial agglomeration (sintering) of Co. X-ray diffraction (XRD) and high resolution electron microscopy (HRTEM) also reinforced the formation of metallic cobalt species after reduction of cobalt from the spinel nanoparticles at 1123 K. The main products obtained from the conversion of glycerol in the gas phase were hydroxyacetone, pyruvaldehyde, lactic acid and lactide. FSP successfully gave insights to ensure uniform dispersion of the active metal on a support material.

Keywords: flame spray pyrolysis, catalyst, cobalt, nanoparticles, glycerol conversion
1. Introduction

Glycerol is an extremely versatile building block within biorefineries as it offers many opportunities for chemical production. Nearly two-thirds of the world’s glycerol production comes as by-product from biodiesel. Furthermore, biodiesel production increased rapidly from 1 million tons in 2000 to 25 million tons in 2015 [1 - 3]. Thus, the availability of glycerol is expected to increase as the demand of biodiesel continues to rise globally. Hence, the transformation of glycerol into valued-added products and commodity chemicals has been intensively studied over the last decade [2].

The transformation of glycerol by catalytic conversion is often carried out using noble metal-based catalysts for hydrogen activation. Conversely, transition metal-based catalysts are alternative materials for glycerol transformation [5-7]. Despite their lower activity for hydrogenation compared to noble metals they present other advantages, such as much lower prices and higher resistance to poisoning [8].

In addition to the kind of metal for the catalyst other features must be considered when selecting a material namely, the size of the metal particle, the type and morphology of the support, and the homogeneity of the catalyst and the metal dispersion. Numerous studies have shown that the particle size and dispersion of the metal plays a major role in the selectivity of the catalysts in catalytic reactions [7]. The dispersion, defined as the fraction of the atoms in a cluster present in the catalyst surface, depends on the conditions of preparation, approaching unity when these metallic clusters are extremely small, of the order of 1 nm in size [8]. Control of the size of metal nanostructures may thus be a powerful tool to enhance the catalytic activity of metal particles [9].
Cobalt is one of the most attractive transition metals used in catalytic reactions owing to its availability and relatively low cost [10]. Typically, for heterogeneous catalysis, Co/alumina particles are prepared by using either solid state reactions of their parent oxides (Co₃O₄ and γ-Al₂O₃) or by wet methods (e.g. impregnation, sol-gel process) followed by their thermal treatment in air [11, 12]. However, Co₃O₄ and γ-Al₂O₃ have isotype crystal structures which enable the migration of ions from cobalt oxide into the underlying alumina support, thus forming aluminate spinels (e.g., Co₂AlO₄, CoAl₂O₄) when heated. It has been suggested that cobalt ions occupying surface octahedral sites of γ-Al₂O₃ are reducible while cobalt ions occupying tetrahedral sites are not reducible at least at temperatures ≤ 900°C [13]. Such preparation methods demand optimization of the metal dispersion on the catalyst and the degree of reduction [14, 15]. It is known that Co⁴⁺ of Co₃O₄ can be gradually replaced by Al⁴⁺ to produce the series of Co₃₋ₙAlₙO₄ (0<n<2) spinels. These series include CoAl₂O₄, Co₂AlO₄, and Co₃O₄ among others. The interaction between Co₃O₄ and alumina could result in partial substitution of Co⁴⁺ ions in Co₃O₄ spinel by Al⁴⁺ ions, thereby hindering the reduction of cobalt species. Cobalt reducibility is known to depend on particle size [16]. The interaction of cobalt species with aluminium should also be considered [17]. Alternatively, gas phase methods for cobalt-based catalyst production have been explored.

Gas phase approaches such as the so-called liquid-feed flame spray pyrolysis (LF-FSP) method have been previously used to prepare CoOₓ-Al₂O₃ particles [12]. In a FSP system, an organometallic liquid precursor is dispersed into droplets and ignited with a premixed methane-oxygen flame. The organic part burns into carbon dioxide and water vapor while the metallic component forms metal oxides particles. The entire process takes place in a time range of the order of micro-seconds. Particles of varying morphologies (solid, hollow, porous, etc.) and sizes can be produced by controlling process parameters [18 - 20]. Particularly, the flame temperature, the residence time in the flame, and the
droplet evaporation time play a key role in the particle formation. In a typical FSP, the droplets may undergo complete evaporation. In such case, the organometallic precursor's vapor reacts and transforms into metal oxide vapor, which then forms small nanoparticles by homogeneous nucleation. Conversely, if the droplets do not evaporate completely the organometallic precursor may precipitate within them and form large, spherical particles [18 - 20]. Nanoparticles synthesized via FSP exhibit typically small crystalline size and high surface area. Particularly, in the synthesis of metal catalysts, aerosol methods ensure uniform dispersion of the active metal on a support material, unlike conventional wet-based methods. As the size of the metal nanoparticles is sufficiently small, the fraction of its surface atoms increase, thus improving catalyst performance.

In this work, Co-Al spinel nanoparticles were readily synthesized by a one-step FSP method. The approach allows the production of oxide nanoparticles at a relatively high rate. The particles were subsequently reduced to obtain metallic cobalt species and investigated in the conversion of glycerol in gas phase. Although, the reducibility of cobalt oxides is greatly decreased due to interaction with aluminium species, this strong interaction may prevent the aggregation of Co particles under the harsh reduction conditions. Reduction of cobalt species is determinant for its catalytic performance in the conversion of glycerol.

2. Experimental

2.1 Catalyst preparation

2.1.1 Flame Spray Pyrolysis

Aluminium acetylacetonate (99%, Sigma-Aldrich) and cobalt acetate (99.995%, Sigma-Aldrich) were used as received. The precursor solution consisted of a mixture of aluminium acetylacetonate (0.078
mol/l) and cobalt acetate (0.017 mol/l) dissolved in a solution containing 73 %-v of methanol (J.T. Baker) in ion-exchanged water. The Co:Al ratio in the precursor solution was approximately 0.22.

The flame spray pyrolysis system used for particle preparation has been described previously [21] and is shown in Figure 1. Briefly, the precursor solution was fed through a capillary at a rate of 5 mL/min and atomized with a high-pressure dispersion gas, O₂, at a flow rate of 5 L/min. A premixed methane-oxygen flamelet with gas flow rates of 1 and 2 L/min, respectively, ignited the atomized precursor solution, resulting in the formation of a high-temperature flame, with temperatures in excess of 2000 K. The produced particles were collected on a Teflon filter (Zefluor, Pall Corporation). Finally, the resultant cobalt sample obtained by flame spray pyrolysis was submitted to reduction treatment. Two reduction temperature treatment were investigated: 723 K and 1123 K. The sample were reduced in a flow of 5% H₂/Ar gas flowing at 20 mL/min for 4 hours.

2.2 Catalyst Characterization

The morphology and structure of the particles were characterized with a transmission electron microscope (TEM, JEM-2100F, JEOL Ltd.) equipped with a field emission electron source and operated at 200 kV. For the analyses, samples were dispersed in an alcohol and a drop of the suspension was placed over a TEM grid with holey-carbon film. Surface structure and elemental composition of the particles were analyzed with a scanning electron microscope (SEM, JEOL JSM-35 C) and an energy dispersive X-ray spectroscopy (EDX).

The surface characterization was carried out with X-ray photoelectron spectroscopy (XPS) on a SPECS system equipped with an Al anode XR50 source operating at 150 mW and a Phoibos 150 MCD-9 detector. The pressure in the analysis chamber was always below 10⁻⁷ Pa. The area analyzed was approximately 2 mm × 2 mm. The pass energy of the hemispherical analyzer was set at 25 eV and the
energy step was set at 0.1 eV. Data processing was performed with the Casa XPS program (Casa Software Ltd., UK). Binding energy (BE) values were centered using the C 1s peak at 284.8 eV. The atomic fractions (%) were calculated using peak areas normalized based on acquisition parameters after background subtraction, experimental sensitivity factors and transmission factors provided by the manufacturer. The X-ray diffraction (XRD) analysis of the cobalt samples was recorded using a Siemens D5000 diffractometer (Bragg-Brentano for focusing geometry and vertical θ-θ goniometer) with an angular 2θ-diffraction range between 5º and 70º. The sample was dispersed on a Si (510) sample holder and spectra were collected with an angular step of 0.03º at 5 s per step of sample rotation. Cu Kα radiation (λ=1.54056 Å) was obtained from a copper X-ray tube operated at 40 kV and 30 mA. The specific surface areas, cumulative pore volumes, and average pore diameters of the samples were measured by the Brunauer–Emmett–Teller (BET) method using N₂ adsorption/desorption at 77 K in a Quantachrome Autosorb-1. Before measurement, each sample was degassed under vacuum at 393 K overnight. The BET specific surface area was calculated from the range P/P₀ = 0.05 - 0.35 in the adsorption branch while the pore size distribution was calculated from the desorption branch.

Temperature-programmed reduction (TPR) experiments were performed in a ThermoFinnigan (TPORD110) apparatus equipped with a thermal conductivity detector (TCD). The samples were then purged with an argon flow prior to the TPR. The analysis was carried out using a 5% H₂/Ar gas flowing at 20 mL/min by heating from room temperature up to 1123 K with a heating rate of 10 K/min. The chemical composition of the samples was studied with a Thermo Nicolet 8700 FT-IR spectrometer using Attenuated Total Reflection (ATR) method.

2.3 Catalytic Activity
The catalytic conversion of glycerol was carried out in gas phase in a quartz fixed-bed down flow reactor at 573 K for 6 h. An aqueous solution of glycerol (3 v/v %) was fed by a syringe pump with a flow of 3.5 mL/h into the reactive gas. A hydrogen/glycerol molar ratio of 10 was used in all experiments. Typically, 100 mg of sample in the form of pellets, with size ranging 2 - 3 mm, were loaded in the quartz reactor. The condensed products were trapped in an ice bath condenser and analyzed by HPLC every 20 minutes of reaction in a high-performance liquid chromatograph (HPLC, Agilent technologies 1100 series) equipped with a ICSep ICE-COREGEL 87H3 column (serial number 12525124), a diode-array detector (DAD), and a refractive index (RID) detector. The mobile phase was deionized and filtered with water at a controlled pH of 2.2 by addition of sulfuric acid with at a flow of 0.6 mL/min and a pressure of 50 bar. The temperature of the HPLC column was 313 K. 50 minutes of analysis was used for each chromatogram.

The gaseous products were continuously analyzed by an on-line gas chromatograph equipped with a flame ionization detector (FID) and a HP Poraplot column (30 m×0.53 mm×0.6 m). Finally, a total organic carbon (TOC) analyzer was used to verify the carbon balance. The TOC analysis was performed on a Shimadzu TOC-5000A using high purity air (pressure of 400 - 500 kPa and flow rate of 150 mL/min) and a furnace temperature of 953 K. The conversion of the glycerol was defined as follows:

\[\text{Conversion of glycerol} \quad (\%) = \frac{\text{Mol of glycerol reacted}}{\text{Initial mol of glycerol}} \times 100 \]

The selectivity to each product was defined as selectivity based on carbon, where:

\[\text{Selectivity} \quad (\%) = \frac{\text{Mol of carbon in specific product}}{\text{Mol of carbon in all products}} \times 100 \]
3. Results and Discussion

3.1 Properties and structure of as-synthesized particles

The N₂-physisorption results indicated that the as-synthesized Co-Al spinel nanoparticles have a surface area of 174 m²/g with a mean pore diameter of 10 nm. Figure 2 shows HRTEM images of the as-synthesized particles. Visual inspection of the images reveals that the size of the as-synthesized material is bimodal, containing abundant spherical particles with sizes ranging from 50 nm to 200 nm and much smaller particles with sizes between 3 nm - 6 nm. Figure 2a shows a low-magnification image of one large, spherical particle. Figures 2b and 2c correspond to HRTEM images of the spherical particles together with the nanoparticles. The analyses also indicate that all the particles are crystalline.

The lattice fringes measured in the particle depicted in Figure 2b at 2.86 Å correspond to the (220) crystallographic planes of Co₂AlO₄; and several crystallographic domains are present. The lattice fringes at 4.67 and 2.86 Å in the Fourier Transform (FT) image of the spherical particle in Figure 2c correspond to the (111) and (220) crystallographic planes of Co₂AlO₄, respectively. In this particular case, the spherical particle is a single crystal. Figure 2d shows another HRTEM image of a spherical particle with its corresponding FT image. The spots at 2.44 Å belong to the (311) crystallographic planes of Co₂AlO₄. A HRTEM image of a nanoparticle next to a larger particle (only a part of it is shown) is depicted in Figure 2e. In both cases, the lattice fringes at 2.86 Å correspond to the (220) crystallographic planes of Co₂AlO₄. The analyses thus show that both the large, spherical particles and the nanoparticles have the same composition. Note that the crystallographic parameters of Co₂AlO₄, CoAl₂O₄, and Co₃O₄ are nearly the same, so it is rather difficult to distinguish them by HRTEM or XRD. The observed bimodality in the size distribution of the Co-aluminate particles likely arises from an incomplete combustion of the atomized precursor droplets [18].
In the typical flame spray synthesis when the organometallic precursors decompose, the organic part undergoes complete combustion to carbon dioxide and water vapor while the metallic components form metal oxide nanoparticles by homogeneous nucleation [18, 22]. However, the addition of water to the precursor solution (see Experimental section) decreases the flame temperature. Such drop leads to an incomplete burning of droplets leading to formation of large metal oxide particles and organics. Nevertheless, the fraction of precursor evaporated from the droplets undergoes homogeneous nucleation thus producing metal oxide nanoparticles. The presence of traces of organic compounds in FTIR analyses (Figure 3) suggest the occurrence of incomplete combustion. FTIR spectra of as-synthesized Co/Al/O spinel and Al₂O₃ powder produced with FSP are presented in Figure 3. The band observed around 3400 cm⁻¹ can be assigned to the -OH stretching mode due to the surface absorbed water [23]. The bands in the 1600 -1400 cm⁻¹ region are most likely due to traces of organic species (e.g. COO⁻) on the particle surface that are formed in the flame synthesis process. The peak observed around 1345 cm⁻¹ has been previously reported as stretching vibration of Al=O bond [23]. The bands between 555 - 1020 cm⁻¹ are likely to be related to the spinel structure of the powder [24 - 26]. In addition, the shoulder observed at 797 cm⁻¹ in the spectra of Co/Al/O spinel has been previously reported to arise from Co²⁺ ions occupying octahedral sites of the spinel [27].

Figure 4 shows SEM images and its corresponding EDX analysis of the particles (Table 1). The green dots indicate that Co is uniformly distributed in the alumina matrix. The XRD patterns of the as-synthesized nanoparticles in Figure 5 reveal the presence of the cobalt aluminum oxide phase (Co₂AlO₄) -Fd-3m-(227). However, Co₂AlO₄, CoAl₂O₄ and Co₃O₄ have similar peak positions in the diffraction pattern, thus making difficult the identification of Co-containing phases with XRD [28 - 30]. Based on the phase diagram of the CoO-Al₂O₃ systems the formation of off-stoichiometric spinel, i.e.
22 mol % of Co together with Al₂O₃, is expected [12]. Such value correlates well with the weight percentages obtained from EDX analyses (see Table 1).

The fresh sample has a clean surface with only bands due to Co, Al and O as well as adventitious C. The surface atomic ratio Co/Al is 0.27, which is lower than that of nominal CoAl₂O₄ (0.5), meaning that the surface is enriched relatively in Al (Table 2). The analysis of the Co 2p photoelectrons is shown in Table 2. The band is rather complex and contain core level photoelectrons as well as satellite lines. The relative intensity of the satellite lines and the binding energy of the core level photoelectrons correspond well to CoAl₂O₄.

3.2 Reduction of the as-synthesized material

The XRD pattern of the as-synthesized Co-Al spinel nanoparticle is presented in Figure 5 and revealed the presence of cobalt aluminum oxide species (CO₂AlO₄, Fd-3m-(227)). The cobalt sample reduced under hydrogen at 723 K presents also Co₂AlO₄ species (Figure 5). However, when the sample was reduced at 1123 K part of the cobalt oxide species get reduced to cobalt bearing face centered cubic structure (Fd-3m-(225)) [31, 32] as indicated in Figure 5. Thus, catalyst reduction at 1123 K produces a new metallic cobalt-containing phase.

The reduced sample has two fundamental differences with respect to the as-synthesized catalyst. These are: (i) the appearance of nanoparticles of about 3-8 nm in size with higher electron contrast than Co₂AlO₄, and (ii) the appearance of agglomerates of shells that resemble empty spherical particles. Figure 6a shows a low-magnification HRTEM view where, in addition to the spherical particles and nanoparticles found in the as-synthesized material, a dispersion of nanoparticles with a markedly high electron contrast is observed. Figure 6b shows a complex structure consisting of an agglomerate of
shells. An HRTEM image of a shell is shown in Figure 6c. Contrarily to the existence of large crystalline domains that are observed in the as-synthesized sample, in the reduced catalyst the shells are constituted by numerous nanocrystals randomly oriented. This is clearly seen in the electron diffraction pattern shown in Figure 6c, where the existence of diffraction rings is a direct consequence of the presence of numerous crystallites with random orientation. The crystallographic spacing recorded at 4.7 Å, 2.8 Å, 2.4 Å and 2.0 Å correspond to the Co$_2$AlO$_4$ structure. The nanoparticles with high electron contrast correspond to metallic Co as deduced from the HRTEM analysis. Figure 6d shows a Co nanoparticle along with its FT image. Spots at 2.02 Å and 1.91 Å correspond to the (002) and (101) planes of the hexagonal structure of metallic cobalt, respectively. In addition, the lattice fringes at 2.46 Å recorded at the periphery of the Co nanoparticle is ascribed to the (111) crystallographic planes of CoO, which may constitute an intermediate of the reduction process of Co$_2$AlO$_4$ into metallic Co. The Co metal nanoparticles are encountered both in the hexagonal and cubic structures. Figure 7a shows a cubic Co nanoparticle of 2 nm - 3 nm in size; spots at 2.05 Å and 1.77 Å correspond to the (111) and (200) crystallographic planes of cubic Co, respectively. Another example is shown in Figure 7b, where lattice fringes of both Co$_2$AlO$_4$ at 2.86 Å and cubic Co at 2.05 Å are identified.

TPR of the as-synthesized Co-Al spinel nanoparticles was performed to follow the transformation of the cobalt species in the aluminate material towards active metal cobalt for catalyzing the glycerol conversion. The TPR profile of the catalyst powders showed two major fingerprints (Figure 8). A broad peak between 493 K and 763 K that can be related to a two-step reduction as follows Co$_3$O$_4$→CoO→Co. The peaks between 773 K and 1193 K can be assigned to the reduction of cobalt oxides species (Co$^{2+}$ and Co$^{3+}$), which strongly interact with the support (Co$_x$O$_y$/Al$_2$O$_3$→ Co°) [33]. It can be suggested that the lower broad temperature peak may be due to easily reduced bulk oxide or near surface crystallites [34], whereas the high temperature peak may be due to less easily reduced bulk
oxide or eventually to the presence of the strong interactions of the cobalt oxide species with aluminium species [35]. It should be noted that the high temperature peak exhibited an asymmetric form suggesting the presence of at least two distinct high temperature reduction peaks.

The reduced sample (1123 K) has a different surface composition as compared to the as-synthesized material as shown by the XPS results on Table 3. The Co/Al atomic ratio has decreased to Co/Al=0.11, which represents a significant reduction in the exposed cobalt (Table 3). This is in accordance with the reduction of CoAl$_2$O$_4$ into metallic Co and partial agglomeration (sintering) of Co. However, the high resolution Co 2p spectrum does not show any feature of metallic Co (Figure 6). Considering that HRTEM evidenced the existence of metallic Co, the absence of such feature in the XPS is interpreted as re-oxidation of the surface. Accordingly, the spectrum has a different proportion of bands and, in particular, the satellite lines have decreased their intensity strongly, which implies that the structure of CoAl$_2$O$_4$ has transformed into a new metallic Co-containing phase.

3.3 Catalytic activity

The conversion of glycerol at 573 K under atmospheric pressure and in the presence of hydrogen was used to investigate the performance of the Co-Al reduced at 1123 K. The as-synthesized Co-Al spinel nanoparticle was not active in the glycerol conversion. The reduction step at 1123 K of the Co-Al spinel nanoparticles was determinant to form highly dispersed metallic cobalt species and modulate the catalytic activity.

The major products in the condensable phase were: compounds with three carbon atoms (dehydration and dehydrogenation products) such as hydroxyacetone, pyruvaldehyde, lactide and lactic acid. The
major product detected in the gas phase was methane (CH$_4$), originated from the C-C bond cleavage by hydrogenolysis, and traces of acetone.

Figure 9 shows the catalytic activity of Co-based catalyst as a function of time. The catalytic test with the reduced Co-Al spinel nanoparticles at 1123 K preferentially promotes dehydration and dehydrogenation of glycerol, yielding hydroxyacetone, pyruvaldehyde, pyruvic acid, lactid acid and methane as main products. The selectivity to CH$_4$ increased from 10 % (20 minutes of reaction) to 20 % after 4 h of reaction. The selectivity of lactic acid is initially at about 30 % and then decreases progressively to approximately 5% after 4 h of reaction. The decrease in lactic acid selectivity is accompanied by an increase of lactide. Hydroxyacetone selectivity decreased from 30 % to 20 % with raising time of reaction. Acetone selectivity is the lowest, rising to approximately 4 % with reaction time.

One possible production route for lactic acid is through a cascade reaction whereby firstly glycerol is dehydrated to hydroxyacetone. Hydroxyacetone is thus dehydrogenated to pyruvic aldehyde on the metal catalyst and the aldehyde is then converted to lactic acid through intramolecular disproportionation (Cannizzaro reaction) [36]. Lactide is a cyclic dimer obtained from the lactic acid. This route is indeed in close agreement with previous results reported in the literature [37].

Based on our previous work [38] a large portion of the product was pyruvaldehyde, lactic acid, lactide and methane when the reactant was hydroxyacetone instead of glycerol. Methane can be obtained from the catalytic C-C bond cleavage of the hydroxyacetone. Therefore, we consider that the production route of lactic acid from hydroxyacetone may also be occurring here in our experimental condition. Traces of acetone was also observed which probably comes from the hydrogenation of hydroxyacetone
to 1, 2 propanediol and acetone finally is formed from the dehydration of 1, 2 propanediol. A plausible reaction route is shown in Figure 9c. The effect of bifunctional metal–acid properties of the catalysts can be visualized in two main routes: (i) hydrogenolysis of glycerol to methane and (ii) dehydration–dehydrogenation to the production of hydroxyacetone, pyruvaldehyde and lactic acid and acetone.

A decrease in the glycerol conversion from 80 % at the beginning to ~ 35 % after 4 h of reaction suggests catalyst deactivation (see Figure 9). The formation of carbon deposits during the dehydration of glycerol presumably contributes to catalyst deactivation. The carbon deposits may result from side reactions between dehydrated products of glycerol such as deep conversion of hydroxyacetone to produce methane [39]. The formation of carbonaceous deposits, known as cooking of the catalyst, is an undesired side reaction, on which, especially the reaction temperature and the kind of reactant feed, have a great influence. Coke deposition appears to be correlated with the total acidity of a catalyst [40]. Catalyst characterization by adsorption of carbon monoxide using FTIR has been addressed in many publications to study the nature of surface sites in cobalt catalysts. Carbon monoxide species adsorbed on Co^{2+} and CO^{3+} on Lewis acid sites were detected in previous studies [41, 42] and coke deposits are formed on the acid sites of the catalyst leading to the deactivation. It must be added also that the reduction at 1123 K of Co-Al spinel nanoparticles to produce metallic cobalt species is determinant for glycerol conversion.

4. Conclusions

Cobalt aluminate nanoparticles were prepared by flame spray pyrolysis. Co-Al spinel nanoparticles reduced at 1123 K revealed to be catalytically active in the conversion of glycerol in gas phase. The reduction process of Co-Al spinel nanoparticles promoted the formation of a new metallic Co-containing phase. The presence of metallic cobalt species is crucial for the glycerol conversion. XPS
analysis revealed that the Co/Al atomic ratio has decreased from 0.27 to 0.11 as the reduction temperature which represents a significant reduction in the exposed cobalt. This is in accordance with the reduction of CoAl₂O₄ into metallic Co and partial agglomeration (sintering) of Co. HRTEM also reinforced the formation of metallic cobalt species after Co-Al spinel nanoparticles reduction at 1123 K. The main products obtained from the conversion of glycerol using the reduced Co-Al spinel based nanoparticles were hydroxyacetone, pyruvaldehyde, actic acid and lactide. Flame spray pyrolysis successfully gave insights to ensure uniform dispersion of the active metal on a support material.

5. Acknowledgements

R. J. Chimentão and L.B. Modesto-López acknowledge financial support from the Ministry of Economy and Competitiveness of Spain through the Juan de la Cierva Program (JCI-2010-07328 for RJC and JCI-2012-12037 for LBML).

6. References

Figure Captions

Figure 1. Schematics of the Flame Spray Pyrolysis system.
Figure 2. HRTEM images of the Co-Al spinel nanoparticles synthesized by flame spray pyrolysis.
Figure 3. FTIR spectra of as-synthesized Co-Al spinel nanoparticles and Al₂O₃ powder produced with FSP (A) and the close up of the region between 800 and 1700 cm⁻¹ (B).
Figure 4. SEM images of the particles (top) and its corresponding elemental mapping of total components (bottom); color code: red: oxygen, green: cobalt, blue: aluminum. The low resolution of the SEM image results from the low-vacuum conditions required for EDX analyses.
Figure 5. XRD patterns of the cobalt catalyst: (a) as-synthesized, (b) reduced at 723 K, and (c) reduced at 1123 K. * = cobalt aluminum oxide species (CO$_2$AlO$_4$, Fd-3m-(227)). ♦ = cobalt bearing face centered cubic structure (FD-3m-(225)).
Figure 6. HRTEM images of the Co-Al spinel nanoparticles reduced at 1123 K for 4 hours.
Figure 7. HRTEM of cobalt nanoparticles encountered both in hexagonal and cubic structures.
Figure 8. TPR profile of the Co-Al spinel nanoparticles.
Figure 9. Conversion of glycerol and product selectivity as a function of time of reaction.
Table 1. Elemental composition of the as-synthesized Co-Al spinel nanoparticles determined with energy dispersive X-ray spectroscopy (EDX)

<table>
<thead>
<tr>
<th>Element</th>
<th>Weight %</th>
<th>Atomic %</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>5.32</td>
<td>10.09</td>
</tr>
<tr>
<td>O</td>
<td>33.46</td>
<td>47.67</td>
</tr>
<tr>
<td>Al</td>
<td>37.03</td>
<td>31.28</td>
</tr>
<tr>
<td>Co</td>
<td>20.39</td>
<td>7.89</td>
</tr>
<tr>
<td>Si</td>
<td>3.79</td>
<td>3.08</td>
</tr>
</tbody>
</table>

Table 2. Composition of the fresh and reduced particles determined with XPS. CoAl₂O₄ as-syn: as-synthesized material; CoAl₂O₄ red: material reduced at 1123 K for 4 h.

<table>
<thead>
<tr>
<th>Sample Id</th>
<th>Name</th>
<th>% Atomic fractions</th>
</tr>
</thead>
<tbody>
<tr>
<td>CoAl₂O₄ as-syn</td>
<td>O 1s</td>
<td>68.5</td>
</tr>
<tr>
<td>CoAl₂O₄ as-syn</td>
<td>Al 2p</td>
<td>24.9</td>
</tr>
<tr>
<td>CoAl₂O₄ as-syn</td>
<td>Co 2p</td>
<td>6.6</td>
</tr>
<tr>
<td>CoAl₂O₄ red</td>
<td>O 1s</td>
<td>72.5</td>
</tr>
<tr>
<td>CoAl₂O₄ red</td>
<td>Al 2p</td>
<td>24.8</td>
</tr>
<tr>
<td>CoAl₂O₄ red</td>
<td>Co 2p</td>
<td>2.7</td>
</tr>
</tbody>
</table>

Table 3. The list of the binding energies (in eV) of Co2p obtained for the fresh and reduced particles with XPS. CoAl₂O₄ as-syn: as-synthesized material; CoAl₂O₄ red: material reduced at 1173 K for 4 h.

<table>
<thead>
<tr>
<th>Sample Id</th>
<th>Name</th>
<th>Position</th>
<th>% Atomic fractions</th>
</tr>
</thead>
<tbody>
<tr>
<td>CoAl₂O₄ as-syn</td>
<td>Co 2p3/2</td>
<td>782.3</td>
<td>20.4</td>
</tr>
<tr>
<td>CoAl₂O₄ as-syn</td>
<td>Co 2p3/2</td>
<td>784.1</td>
<td>11.6</td>
</tr>
<tr>
<td>CoAl₂O₄ as-syn</td>
<td>Co 2p3/2</td>
<td>789.9</td>
<td>6.1</td>
</tr>
<tr>
<td>CoAl₂O₄ as-syn</td>
<td>Co 2p3/2</td>
<td>787.1</td>
<td>12.1</td>
</tr>
<tr>
<td>CoAl₂O₄ as-syn</td>
<td>Co 2p1/2</td>
<td>798.1</td>
<td>19.8</td>
</tr>
<tr>
<td>CoAl₂O₄ as-syn</td>
<td>Co 2p1/2</td>
<td>800.1</td>
<td>11.3</td>
</tr>
<tr>
<td>CoAl₂O₄ as-syn</td>
<td>Co 2p1/2</td>
<td>804.0</td>
<td>11.6</td>
</tr>
<tr>
<td>CoAl₂O₄ as-syn</td>
<td>Co 2p1/2</td>
<td>806.5</td>
<td>7.1</td>
</tr>
<tr>
<td>CoAl₂O₄ red</td>
<td>Co 2p3/2</td>
<td>781.8</td>
<td>22.2</td>
</tr>
<tr>
<td>CoAl₂O₄ red</td>
<td>Co 2p3/2</td>
<td>783.8</td>
<td>11.9</td>
</tr>
<tr>
<td>CoAl₂O₄ red</td>
<td>Co 2p3/2</td>
<td>790.6</td>
<td>5.3</td>
</tr>
<tr>
<td>CoAl₂O₄ red</td>
<td>Co 2p3/2</td>
<td>787.0</td>
<td>10.1</td>
</tr>
<tr>
<td>CoAl₂O₄ red</td>
<td>Co 2p1/2</td>
<td>797.6</td>
<td>21.5</td>
</tr>
<tr>
<td>CoAl₂O₄ red</td>
<td>Co 2p1/2</td>
<td>799.8</td>
<td>11.5</td>
</tr>
<tr>
<td>CoAl₂O₄ red</td>
<td>Co 2p1/2</td>
<td>804.4</td>
<td>11.8</td>
</tr>
<tr>
<td>CoAl₂O₄ red</td>
<td>Co 2p1/2</td>
<td>807.5</td>
<td>5.8</td>
</tr>
</tbody>
</table>