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2 HERNANDEZ-PAJARES ET AL.: DIRECT MSTID MITIGATION IN PRECISE GPS

In this paper, the authors summarize one simple and efficient approach de-3

veloped to mitigate the problem in precise GNSS positioning caused by the4

most frequent ionospheric wave signatures: the Medium Scale Travelling Iono-5

spheric Disturbances (MSTIDs). The direct GNSS Ionospheric Interferom-6

etry technique (hereinafter dGII), presented in this paper, is applied for cor-7

recting MSTID effects on precise Real Time Kinematic (RTK) and tropo-8

spheric determination. It consists on the evolution of the former climatic Dif-9

ferential Delay Mitigation Model for MSTIDs (DMTID), for real-time con-10

ditions, using ionospheric data from a single permanent receiver only. The11

performance is demonstrated with networks of GNSS receivers in Poland,12

treated as users under real-time conditions, during two representative days13

in winter and summer seasons (days 353 and 168 of year 2013). In range do-14

main, dGII typically reduces the ionospheric delay error up to 10-90%. The15

main dGII impact on precise positioning is that we can obtain reliable RTK16

position faster. In particular the ASR (ambiguity success rate) parameter17

increases , from 74% to 83%, with respect to the original uncorrected obser-18

vations. The average of time to first fix is shortened from 30s to 13s.. The19

improvement in troposphere domain was most difficult to demonstrate.20
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1. Introduction

The Medium Scale Travelling Ionospheric Disturbances (MSTIDs) are the iono-21

spheric signatures of waves, which are the ones most frequently affecting the precise22

Global Navigation Satellite Systems (GNSS) processing (see for instance Hernández-23

Pajares et al. 2006). The MSTIDs present up to few TECUs of amplitude in24

solar cycle maximum conditions (1 Total Electron Content Unit = 1 TECU =25

1016m−2 ' 16cm delay in L1 signal) with typical periods from several minutes to26

less than one hour, and velocities from 50 to 300 m/s, typically equatorward during27

daytime in fall and winter seasons, and westward during night in spring and summer28

seasons (see for instance Hernández-Pajares et al. 2012).29

The MSTID modelling has become feasible thanks to the availability of dual-30

frequency GNSS, like the Global Positioning System (GPS), which has become31

likely the main ionospheric sounder in terms of both temporal and spatial resolution32

and precision (Shagimuratov et al. 2002, Hernández-Pajares et al. 2011, Krypiak-33

Gregorczyk et al. 2013). Indeed, GNSS is able to provide clear views of the same34

MSTID amplitude and propagation, either in receivers placed up to few tens of kilo-35

meters in local networks (see Figure 1), or from extense dense networks of hundreds36

of receivers, such as those in Japan or California (see Figure 2), corresponding to the37

same region and time interval as in the previous figure.38

Although different techniques and applications are affected by MSTIDs (like pre-39

cise GNSS positioning and Very Large Base Interferometry, VLBI), it would be too40

difficult to determine in real time the exact cause behind each individual instances41
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4 HERNANDEZ-PAJARES ET AL.: DIRECT MSTID MITIGATION IN PRECISE GPS

of TIDs, and several potential sources are contemplated by different authors (see42

Table 1 in Hernández-Pajares et al. 2012 for additional details and references), such43

as, in decreasing order of feasibility or potential influence:44

1. The Solar Terminator.45

2. The Perkins instability (in order to explain the preferred westward propagation46

of local winter MSTIDs at night).47

3. Particle precipitation at the auroral zone, which seems associated to the -48

sporadic- Large Scale TIDs (LSTIDs), with wavelengths around 1000 km and ve-49

locities within the range of 400- 1000 m/s.50

4. Meteorological activity.51

New or evolved physical and data-driven models have been proposed recently to52

reproduce MSTID features: the simultaneous occurrence of nighttime MSTIDs at the53

magnetic conjugate stations, in Yokoyama (2014); or in Deng et al. (2013), where54

the detrended Total Electron Content (TEC) from the German national network is55

interpolated to try to show up MSTID wave fronts, and then compared with the56

corresponding planar wave model in some given events. In another recent work (Pen-57

ney and Jackson-Booth 2015) the authors detrend the Slant Total Electron Content58

(STEC) and correct the ionospheric pierce point movement, in a novel way.59

Although the MSTID amplitude in not very important in relative terms, compared60

with the typical background electron content, MSTID’s ondulatory nature makes61

them likely the main non-linear error affecting precise GNSS processing, for instance62

in RTK or Wide Area Real Time Kinematic (WARTK) techniques (see Wielgosz63
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et. 2005, Hernandez-Pajares et al. 2006), or in Coster and Tsugawa (2015) and64

in Paziewski (2016). Regarding their mitigation a new approach has been recently65

proposed by Sieradzki & Paziewski 2016. By means of the observed TEC rate, the66

user is able to estimate a single initial double-differenced STEC per phase continuous67

arch.68

Moreover, in the last few years, an increase of research in additional aspects of the69

Medium Scale Travelling Ionospheric Disturbances can be appreciated as well:70

• Estimating its 3D structure by means of the Computerized Tomography applied71

to wide very dense GNSS ground networks like GEONET (Ssessanga et al. 2015,72

Chen et al. 2016).73

• Signatures of natural and artificial events like major earthquakes and nuclear74

explosions (Jin et al. 2014, Zhang & Tang 2015),75

• Recent works formed on the potential mechanisms to form the MSTIDS are76

Jonah et al. (2016) where the strong troposphere convection as seed mechanism of77

the Atmospheric Gravity Waves to trigger MSTTDS, is illustrated with collocated78

turbulence, temperature and electron content data.79

• Observations of MSTIDS with different techniques beyond GPS: LOFAR80

(Mevius et al. 2016), OI 630.0nm all-sky image (Stefanello et al. 2015) and AM ra-81

dio transmissions (confirmed by simultaneous GPS total electron content, Digisonde,82

and Super Dual-Auroral Radar Network coherent backscatter radar measurements,83

Chilcote et al. 2015).84
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6 HERNANDEZ-PAJARES ET AL.: DIRECT MSTID MITIGATION IN PRECISE GPS

However the MSTID determination and application to precise GNSS positioning85

typically faces the lack of enough populated local GNSS networks over many regions,86

in order to apply the state of the art MSTID propagation techniques. Is in this87

context where the direct GNSS Ionospheric Interferometry (dGII) is introduced and88

applied as a simple way of mitigating the MSTID effect on GNSS positioning.89

The layout of the manuscript is the following: After this introduction, the pros90

and cons of the main existing MSTID modelling techniques are described in section91

2. In section 3, dGII is introduced and illustrated by means of a case study. The92

two experiments in winter and summer time conditions will be described in section93

4, including the dGII assessments in terms of MSTID mitigation in range, precise94

positioning and tropospheric domains Finally, section 5. summarizes the conclusions.95

2. Main existing MSTID modelling techniques

We can divide the main approaches to characterize the propagation of MSTIDs96

with GNSS within two families:97

1. The GNSS Massive Ionospheric Detrending (GMID) method: the propagation98

of the MSTIDs (or any ionospheric perturbation with power in the spectral domain99

retained after the detrending, typically between 300s and 3000s) can be directly seen100

from the detrended VTEC, when, first, the separations between ground receivers is101

less than half wavelength (also referred to as semi-wavelength); and, second, when,102

moreover, such close permanent receivers are distributed over regions of hundreds103

of kilometers of extension (at least two wavelengths, see for instance Tsugawa et al.104
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2007b), in order to properly identify the wavefronts. One advantage of this approach105

is that it is not restricted to the most frequent case of ionospheric waves (a single train106

of planar waves) as it can be seen in Figure 3 and in Liu et al. 2011, for co-seismic107

circular ionospheric waves.108

The great practical disadvantage is that such local and extended GNSS networks are109

available on just few sites, where they were mainly deployed for seismicity monitoring110

(such as GEONET network in Japan, or Sourth California GNSS Integrated Network,111

SCIGN, in USA, see Figure 4). One of the first applications of the GMID approach,112

including data of such networks, can be found in Tsugawa et al. 2007a-b. One113

example for SCIGN has been previously introduced (see Figure 2, from Hernández-114

Pajares et al. 2012).115

2. The GNSS Ionospheric Interferometric (GII) techniques derive the MSTID116

propagation velocity from the difference of MSTID phase and associated phase delay117

among reference receivers. It is computed from the detrended and bandwidth filtered118

(Fourier transform) VTEC, obtained from the ionospheric (geometry-free) combina-119

tion of dual-frequency GNSS data. The MSTID time delay is computed basically120

in two different ways, for each given GNSS satellite in view from a GNSS ground121

network, with a diameter less than the half of the typical MSTID wavelength (e.g. ¡122

50 km):123

(i) By direct correlation of the detrended and bandwidth filtered VTEC, cor-124

responding to each given satellite observed from a given receiver, regarding to the125

reference receiver (Hernández-Pajares et al. 2006b, Husin et al. 2011).126
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(ii) By substracting the complex phase for the reference receiver from the corre-127

sponding complex phase of the dominant mode (after the Fourier transform) for the128

given receiver (Hernández-Pajares et al. 2012).129

One important advantage of this approach is that just few tens of GNSS receivers130

within local networks with a diameter of less than half of the wavelength, i.e. less131

than few tens of kilometers, are enough to give support to large regions of many132

hundreds of kilometers, due to the large extent of the MSTID planar wave behavior133

(Tsugawa et al. 2007b). Therefore:134

• There are more GNSS facilities already suitable for GII in different regions of135

the world, compared with GMID (like available networks in Venice, New Zealand,136

California, Alaska or Hawaii, see Hernández-Pajares et al. 2012).137

• The deployment of Local Networks is in any case much cheaper than the deploy-138

ment of extense dense networks, like GEONET or SCIGN.139

However GII presents some significant drawbacks:140

• Such local networks are not easily available worldwide, like in most part of Eu-141

rope, including Poland and other Central European countries, impeding or difficulting142

the nowcasting of MSTIDs (one main issue found in this research).143

• It is based on the assumption of a single dominant planar wave, and this is not144

the case during some infrequent events commented above. Indeed, although two145

or more planar waves in different directions could be considered by extending the146

analysis to several dominant frequencies in parallel, the circular waves (Figure 3)147

cannot be properly characterized by GII.148
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We have taken into account the main goal of this work: to model and mitigate149

the the effect of the MSTID propagation in estimation for large regions of the150

world, such as East Europe, where no simultaneously extended and dense enough151

networks are available. In this context we have taken GII as baseline (see scenario at152

Figure 5). The main characteristics of the reference GII implementation (hereinafter153

called “comprehensive” GII, cGII) are summarized in the next section.154

3. Comprehensive GNSS Ionospheric Interferometry (cGII)

The initially selected implementation of the MSTID detection and propagation155

estimation algorithm, cGII, is the evolved version presented in Hernández-Pajares156

et al. (2012) (regarding previous versions, see Hernández-Pajares et al. 2006b and157

Husin et al. 2011, where more details can be found). The method is based in the158

cross-correlation of the detrended Vertical Total Electron Content (VTEC) values159

observed for a given GPS satellite within a local network (see Hernández-Pajares160

et al. 2006b), but done directly in the frequency domain. Indeed, the MSTID time161

delay is obtained from the user-reference receiver subtraction of the complex phase of162

the dominant Fourier Transform terms, which allows to determine the propagation163

velocities, with a significant computation offloading (adequate for processing vast164

amounts of data), while being able to deal with several planar waves at different165

frequencies and with different velocities. cGII consists on the following steps:166

1. Preprocessing, consisting on two phases:167
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(i) The TEC detrending, performed to make clear the MSTID signatures (for168

each given GNSS satellite), which can be done at least in two different ways:169

a. Double difference in time of the ionospheric (geometry-free) combination170

of dual-frequency carrier phases, LI=L1-L2, and under the absence of cycle slips,171

with time separations of 300 s (see Hernández-Pajares et al. 2012).172

b. Subtracting STEC from a smooth ionospheric model, exemplified in this173

work by the UPC GIM “UQRG” computed with tomographic and kriging techniques174

(see Hernández-Pajares et al 1999, Orús et al. 2004), at spatial and temporal scales175

of few hundreds of kilometers and 900 seconds (i.e. of the order of the MSTID176

wavelengths and periods).177

(ii) The Fourier transform (in fact the Fast Fourier transform algorithm, FFT),178

which is applied to the detrended VTEC to show up the main modes, in particular179

the predominant frequency f (which can vary on time).180

2. The MSTID propagation delay, ∆t, from the reference to the given permanent181

receiver is given by the difference of complex phase of the dominant Fourier term in182

both the user and reference receivers (Φf )user-(Φf )ref (see again Hernández-Pajares183

et al. 2012).184

3. Finally the MSTID velocity is estimated and provided to the users:185

(i) From all the values ∆t observed from all the permanent network receivers, the186

MSTID velocity is computed for each given satellite, taking consistently into account187

the ionospheric pierce point movement (see above mentioned reference).188
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(ii) With such MSTID velocity vector (estimated every epoch, i.e. each 30 sec-189

onds), the time delay is consistently computed and applied by the user to the GNSS190

network ionospheric corrections.191

Nevertheless the application of the comprehensive GNSS Ionospheric Interferome-192

try approach -cGII- is limited by the small number of GNSS receivers in the available193

European Local Networks, within diameters up to ∼50 km. This network size (less or194

about half of typical MSTID wavelength) is suitable for applying unambiguously the195

GNSS Ionospheric Interferometry for characterizing MSTID. This problem affects in196

particular to Poland and other Central European countries, as it can be seen in the197

limited number density of available receivers (Figure 6).198

4. Direct GNSS Ionospheric Interferometry (dGII)

The direct GNSS Ionospheric Interferometry (dGII) approach is introduced to solve199

the limitation of the cGII technique related to the lack of close enough receivers over200

many countries in Europe. dGII is directly based on real-time conditions, generalizing201

the climatological DMTID model presented in Hernandez-Pajares et al. 2006, in a202

simple and optimized way. It can be summarized as follows:203

1. The VTEC detrended, δV, showing up the MSTID signatures for each given204

GNSS satellite s, is computed directly based on single difference in time of consecu-205

tive measurements, for the same pair transmitter-receiver, of the geometry-free com-206

bination of dual-frequency GNSS carrier phase measurements LI=L1-L2 (similarly207

to Deng et al. 2013), and with a time interval of dt=60 sec (an optimal compromise208
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12 HERNANDEZ-PAJARES ET AL.: DIRECT MSTID MITIGATION IN PRECISE GPS

between MSTID signal level and time-space localization): δV = δLI / M, being M209

the ionospheric mapping function, which relates the slant TEC with the vertical TEC210

(see for instance Hernández-Pajares et al. 2011). We consider in this problem the211

typical simplification of a spherical thin layer placed at 450 kilometers height (used212

for instance in the global VTEC ionospheric maps provided in IONEX format, see213

Schaer et al. 1998).214

2. We assume that, for a given GPS satellite, the MSTID is affecting first to the215

reference receiver, and, a certain time ∆t later, to the user. Then the MSTID time216

delay ∆t can be estimated by cross-correlating δLIref with δLIuser, assuming initially217

a slidding window, depending on the distance distribution in the network (i.e. from218

600 sec, up to 1 hour, being then this period the di-facto minimal initial user cold-219

start time in dGII approach for real-time applications). Indeed, this can be always220

done by selecting as reference receiver one in the network located in Polarward / East221

direction during fall-winter / spring-summer seasons (see typical MSTID velocities222

occurrences in terms of season and local time in Hernandez-Pajares et al. 2012).223

And the distance between them can be still longer than the predominant MSTID224

wavelength when the unfiltered amplitude signatures, varying on time, allow the225

proper implicit distinction of the MSTID phase ambiguity.226

3. Thanks to the static and precisely known position of permanent receivers dis-227

tributed in Wide Area GPS networks, it has been demonstrated that it is possible228

to compute very precise STEC values, Sref, in real-time (see for instance Hernández-229

Pajares et al. 2000). In this point, we have considered a simple proxy of Sref, from the230
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L1-L2 measurements calibrated with the VTEC GIM (see Hernández-Pajares et al.231

2011), by using the likely most accurate GIM presently available: the tomographic-232

kriging UPC GIM ”UQRG” (see Hernández-Pajares et al. 2016). Then the precise233

slant ionospheric delay, Sref, provided by the permanent reference receiver for each234

given GNSS transmitter in view, is taken as a proxy of the user value, Suser, in the235

following simple RTK-like way: Suser(t)= Vref(t-∆t) Muser(t) where Vref(t-∆t) is236

the corresponding VTEC measured at the reference receiver ∆t seconds before and237

Muser(t) is the mapping function (see first point above) at the user location and238

observations time. It has been shown that this approach is more accurate than other239

simple proxies of Suser(t) such as Sref(t-∆t) –see right-hand plot in Figure 11. In240

other words, we are assuming that the main VTEC change due to the movement241

of Ionospheric Pierce Point (IPP) and the MSTID propagation time between the242

reference receiver and the user is basically due to the wave signature.243

4.1. Case study

To clarify the problem and the technique performance we have analyzed in depth244

the result of applying dGII to the following case study: the GPS satellite PRN15,245

observed during first day of year 2001, from two receivers belonging to SCIGN, p294246

(reference) and p532 (user), see Figure 7.247

It can be seen in Figure 8 the typical MSTID southward propagation signature on248

STEC, during a winter day-time, which is compared with the spatially and tempo-249

rally smoothed STEC provided by the GIM. It is fully in agreement with the expected250

velocities for such local-time and season. The result of the preprocessing detrending251
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14 HERNANDEZ-PAJARES ET AL.: DIRECT MSTID MITIGATION IN PRECISE GPS

(point 1 of dGII algorithm, see above) can be seen in Figure 9. In particular it can be252

seen the periodic contribution of the GIM model discretization (see additional details253

in corresponding caption). This suggested us not using it for detrending, keeping just254

the derivative of the direct observation as an smoother detrender. In this way any255

contamination associated to the GIM gridding in the spectrum, and corresponding256

artifact in the results, is avoided. In upper-left plot of Figure 10, we show the di-257

rectly observed detrended STEC for reference and user receivers, thus making visible258

again the propagation delay between them, so that the delay can be computed by259

cross-correlation (with a sliding window of about 15 minutes, see upper-left plot of260

Figure 10). We have mainly considered two different ways of applying dGII: (i) to use261

the instantaneous MSTID time delay maximizing the real-time correlation between262

the user and the reference receiver detrended STEC; and (ii) to use the common pre-263

dominant MSTID time delay, available in near real-time or post-processing, which264

maximizes all correlations, available right after all the observations in each given265

continuous phase arch of each given satellite have been taken, from both user and266

reference receivers. By applying to the detrended VTEC (VTEC derivative) of the267

reference receiver, the instantaneous MSTID time delay on the one hand, and on268

the other hand the common predominant MSTID time delay (150 s in this case, see269

the upper-left and upper-right plots of Figure 10), we obtain the bottom-left and270

bottom-right plots of Figure 10.271

The typical comparison of performance of the detrended VTEC (taking as proxy the272

VTEC derivative) measured from the user side, with the original (no time-shifted),273
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instantaneous and common shifted reference site time series, can be seen at the left-274

hand side of Figure 11. The corresponding comparison for STEC, translated directly275

from the reference receiver, or from translated VTEC by means of the on-time user276

ionospheric mapping function, can be seen at the right-hand side of Figure 11. The277

following features can be observed:278

1. The STEC of the reference receiver synchronously applied (directly, without279

time shift) performs worse, as expected.280

2. We observe the necesity of using consistently the user mapping function, in281

order to get the best results with this direct approach.282

3. The reference STEC synchronized with the predominant common dGII MSTID283

time delay works slightly better (especially at 22-22.8h) than the instantaneous one284

(which is less smooth), except for very low elevation (likely related with the highly285

varying pierce point velocity, see Penney and Jackson-Booth 2015).286

4. Error reduction of up to 50-85% of the initial error in MSTID peaks: from +1.5287

TECU when the simple simultaneous RTK ionospheric correction is applied, reduced288

to 0.2-0.7 TECU, when the expected MSTID time delay is applied.289

Finally the comparison of the real versus the estimated user STEC, which is com-290

puted with the reference site STEC under four different treatments as proxy of291

user STEC (reference site STEC original, common-time shifted, and common and292

instantaneous-time shifted with the user mapping function), can be seen in Fig-293

ure 12, confirming the previous findings. In particular the suitability of the reference294

site VTEC, which is delayed by the constant MSTID time delay, estimated inde-295
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16 HERNANDEZ-PAJARES ET AL.: DIRECT MSTID MITIGATION IN PRECISE GPS

pendently for each phase-continous arch receiver-transmitter, is shown and used in296

combination with the user mapping function (Figure 12, bottom-right hand side).297

Finally, in the next section, we summarize an extensive application of dGII on298

different realistic scenarios over Poland, in particular its main impact on precise299

positioning and tropospheric determination is discussed.300

5. dGII assessment over Poland in winter and summer conditions

The direct GII MSTID mitigation technique has been applied, emulating real-301

time conditions, to three different networks over Poland at NE and SW regions,302

and overall northern part of Poland (RTKfinal SW-large, RTKfinal NE-large and303

BERNESE final, respectively), during fall/winter and spring/summer experiments304

(days 353 and 168, 2013) in order to assess the RTK and tropospheric results.305

5.1. Assessment on Range Errors

In figures 13 and 14 the network with the corresponding available receivers (left-306

hand columns), as well as the summary of the dGII performance in range domain for307

each user reference baseline (right-hand columns), is represented. A winter day (353,308

2013) corresponds to Figure 13 and a summer day (168, 2013) to Figure 14.309

These results confirm the best performance of dGII based on an estimated common310

MSTID time delay per satellite phase-continuous arch of data, plus the actual user311

mapping function (compared with the other three approaches shown in Figure 12),312

with daily reductions up to 10-90% of the initial range error when the syncronous313

ionospheric correction of the reference site is taken (which can be interpreted as a314

D R A F T August 23, 2016, 8:06am D R A F T



HERNANDEZ-PAJARES ET AL.: DIRECT MSTID MITIGATION IN PRECISE GPS 17

proxy of the MSTID range error mitigation in a basic RTK-like approach), under315

a simple technique and without the need of estimating the MSTID velocity. The316

cases with worse performance only happen a few times during the winter day, with317

a maximum increase of error of 8%, and coinciding mostly with baselines almost not318

affected (i.e. mainly perpendicular) by the MSTID propagation.319

5.2. Assessment on Precise GNSS Positioning Performance

The performance of the RTK positioning was evaluated with different strategies and320

corresponding files of observations (see Table 1 and Table 2) and based on processing321

several test baselines, in both winter and summer time.322

There are some examples below of the application of dGII-derived corrections to323

kinematic processing over 57 and 81 km baselines. Table 3 presents the indicators of324

the RTK positioning performance on day of year (DOY) 168 of year 2013. It is clearly325

visible for both processed baselines that the application of the MSTID corrections326

(ModRNX(Prop.STEC)) causes the improvement in the ambiguity resolution (AR)327

domain. In particular, there can be seen the increase of the ambiguity succes rate328

(ASR) and the significant drop in the time to first fix. Indeed the daily performance329

can be seen in fourth column in Table 3, with comprises an still strongest time330

to first fix reduction under the MSTID modelling when the period with MSTID331

activity is considered only (from 22 epochs to 8 epochs, and from 16 to 9 epoch,332

for both BOR-KONI and GNIE-KONI baselines). Additional details can be seen in333

Figure 15. The ambiguity resolution success rate (ASR) is defined here as the ratio334

of epochs with correctly resolved ambiguities to total number of processed epochs.335
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18 HERNANDEZ-PAJARES ET AL.: DIRECT MSTID MITIGATION IN PRECISE GPS

TTFF is defined as the number of epochs required for obtaining correct ambiguity336

resolution in a processed session. By using MSTID corrections we can obtain reliable337

RTK position much faster. For BOR1-KONI baseline the ASR (ambiguity success338

rate) parameter increased from 63 to 78 % for ModRNX(Prop.STEC) observations339

in respect to the original uncorrected observations. For the second baseline the340

same parameter increased by 9 % to a value of 83 %. The value of time to first fix341

shortened from almost 30 s to 13 s, and from, 18 s to 16 s, for BOR1 and GNIE342

rover baselines respectively (Table 1). The repeatability of the kinematic coordinates343

on 168 DOY are on similar levels for both the strategies. The standard deviation of344

the mean coordinates varies in the range 11-13 mm, 6-9 mm and 25-36 mm, for N,345

E, U components respectively.346

5.3. Assessment on Tropospheric Delay Estimates

The dGII impact in troposphere domain was verified with 24 daily solutions for ex-347

perimental network: 6 different sets of RINEX files were processed using two baseline348

defnition strategies (SHORTEST, STAR) in each experimental campaign (summer349

and winter). These strategies, as well as OBS-MAX and DEFINED are used for base-350

line definition in Bernese GNSS Software v. 5.2 (Dach et al., 2015). The SHORTEST351

strategy leads to create the set of shortest baselines in given setup of processed sta-352

tions. The STAR strategy creates the set of baselines connecting one reference sta-353

tion with all remaining stations.. The results of the RMS of post-fit residuals of unit354

weight, station coordinate errors, number of ambiguity resolution (in four ambiguity355

resolution, AR, strategies), error of estimated Zenith Tropospheric Delay (ZTD) and356
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ZTD residuals with respect to Regional Reference Frame Sub-Commission for Eu-357

rope (EUREF) GNSS Positioning Network (EPN) final solution, were investigated in358

detail.359

Negligible differences between solutions were found among the RMS of unit weight,360

station coordinate errors, and estimated ZTD errors. This is because we used 24-361

hour sessions for troposphere estimation where MSTID effects affecting a few per362

cent of observations in a session, vanish out due to large amount of the processed363

data compared to RTK.364

The differences were significant for AR results (Figure 16). In SHORTEST baseline365

definition strategy, the significant improvement was noticed in Quasi Ionosphere-366

Free method (QIF) for all developed ionosphere models, while for the remaining367

AR strategies the results, comparing to RedRNX+CodeION, are very similar, ex-368

cept Prop.STEC model in winter campaign. In STAR strategy, that is consistent369

with the methodology of MSTID model determination, all three developed mod-370

els increased the percent of resolved ambiguities with respect to the solution with-371

out any ionosphere model ModRNX(Truth.STEC) solution was better than Re-372

dRNX+CodeION in every AR strategy, and ModRNX(Prop.STEC) was better that373

RedRNX+CodeION in QIF strategy (very long baselines). Similar results were ob-374

tained with Narrow Lane and Wide Lane strategies.375

Significant differences were found in estimated ZTD values. The application of376

developed models resulted in ZTD biased with respect to EPN final solution and377

with respect to the solution with the Global Ionospheric VTEC Maps provided by378
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the Center for Orbit Determination in Europe (CODE) to the International GNSS379

Service, IGS (Figure 17). This bias is caused by the reduced number of observa-380

tions in RINEX files, as well as by inconsistency with the reference solution, that is381

based on the CODE ionosphere model. The obtained bias showed that the solutions382

with ionosphere model including MSTID are different than the EPN final solution383

(the differences were even larger during the periods of expected MSTID maximum384

activity), however there is no possibility to assess which one is better.385

6. Conclusions

We present in this work an MSTID modeling that overcomes shortcomings of the386

existing methods. The modelling technique that we present is more suitable for387

sparse GNSS networks. The direct GNSS Ionospheric Interferometry (dGII) is ap-388

plied in real-time conditions, and depends only on reference ionospheric data from a389

single permanent receiver. The performance in range domain can reduce the error390

up to 10-90%, with only a worsening in some cases up to 8%. Subsequent applica-391

tion of MSTID corrections to relative kinematic positioning resulted in reduction of392

size and variability of between-pair-of-transmitter-and-receivers Double Differenced393

(DD) ionospheric residuals during MSTID occurrence. In particular, ambiguity suc-394

cess rate was improved, and the number of epochs required to obtain precise position395

decreased.396
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Figure 1. Example of MSTID signature in the detrended Vertical Electron Content

(VTEC), directly obtained from the ionospheric combination of GPS carrier phases

(see section 3) corresponding to an MSTID affecting GPS satellite PRN 22, advanc-

ing from receiver VDCY (E241.8,N34.0) toward LBC1 (E241.9,N33.7) in California

network, January 1st, 2011 (reproduced from Hernández-Pajares et al. 2012).
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Figure 2. Daytime winter MSTID propagation fronts directly seen from detrended

VTEC V (in TECUs; GMID method) over the whole dense network in California and

West USA (first day of 2011, for GPS time epochs 83400 and 83700 s, reproduced

from Hernández-Pajares et al. 2012).
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Figure 3. Detrended VTEC obtained from GEONET GPS data, coinciding with

the Tohoku earthquake and tsunami (GPS second 26220 of day 70, 2011), where the

circular ionospheric waves centered at the earthquake epicenter are evident (extracted

from Hernández-Pajares 2013).
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Figure 4. Main part of GEONET GNSS network (left-hand plot, corresponding

to deployed receivers during day 68, 2014) and South California Integrated GNSS

Network (SCIGN, for day 1, 2011, right-hand plot).
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Figure 5. MSTID detection Model from GNSS Networks: The baseline vector

between any static receiver and the reference one, ∆x, the velocity of the Ionospheric

Pierce Point, IPP, and the corresponding movement, ∆xp, during the time ∆t, are

represented.
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Figure 6. Distribution of GNSS receivers available in Eastern Europe for the study,

during day 353, 2013 (left-hand plot, with zoom on the right-hand plot).

Figure 7. [Left] Location of two GNSS SCIGN receivers (p294 taken as reference

-REF- and p532 treated as user -USER-), selected due to its southward-oriented

baseline, for the GII test case studies. [Right] The elevation of satellite PRN15 is

represented as function of the time from user receiver (PRN15, day 001, 2011).
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Figure 8. Correspondence of the MSTID signature in calibrated Slant Total Elec-

tron Content (STEC) in meters of LI=L1-L2 (left) with the estimated velocity with

cGII (right) -SCIGN, day 001, 2011-.
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Figure 9. Derivative of the GIM detrended STECs and GIM STECs in dGII case

study, projected vertically (dVTEC/dt computed for dt = 60 seconds) where the

GIM model noise, with a temporal and spatial resolution too low to capture the

MSTID propagation, is evident in the peaks shown in magenta (receivers p294 and

p532, satellite PRN15, day 1, 2011).
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Figure 10. Top-left, bottom-left and bottom-right plots: Plain observed, instanta-

neously and common dGII-time shifted STEC derivative, respectively, following the

estimated MSTID time delay obtained by direct cross correlation (top-right plot)

–SCIGN, p294, p532 rec., PRN15, day 001, 2011-.
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Figure 11. [Left] User VTEC derivative error vs. time, taking as modelled value

the zero (red), instantaneous (green) and common (blue) dGII-time-shifted reference

site STEC values. [Right] Similar comparison, but for the user STEC, and including

as well the VTEC interpolation with the user mapping function for both instanta-

neous (magenta) and common (light blue) cases (receivers p294 [user] and p532 [ref.],

PRN15, day 001, 2011).
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Figure 12. Comparison of original user’ STEC with the reference site’ STEC:

original (LI calibrated with UPC UQRG GIM, top-left), common-time shifted (by

the common dGII MSTID time delay, top-right), common-time shifted VTEC +

user mapping function (bottom-left) and instantaneous-time shifted VTEC + user

mapping function (bottom-right) –receivers p294 [user] and p532 [ref.], PRN15, day

001, 2011-.
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Figure 13. Map of dGII analyzed receivers in RTKfinal-NE-large, RTKfinal-SW-

large and BERNESE-final networks (left column), and corresponding performance

of dGII for different baselines, with northern reference sites elbl, wrki and wlad,

respectively (right column, Poland, winter day of 353, 2013).The performances in

the right-hand plots are shown, vs the user receiver name following an alphabetic

order, under, i), zero time-shift (red), and time shifts determined by: ii) maximum

correlation with the reference receiver ionospheric delay performed instantaneously

(green), and, iii), the best value in the continuous arch commonly applied to it (blue).D R A F T August 23, 2016, 8:06am D R A F T
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Figure 14. Map of dGII analyzed receivers in RTKfinal-NE-large, RTKfinal-SW-

large and BERNESE-final networks (left column), and corresponding performance of

dGII for different baselines, with eastern reference sites krol, koni and sokl, respec-

tively (right column, Poland, summer day of 168, 2013). The performances in the

right-hand plots are shown similarly to previous figure.
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Table 1. Different ionospheric strategies compared on precise GNSS processing

Acronym Brief description

noSTEC Observations uncorrected from any ionospheric model

Prop.STEC Observations corrected with MSTID dGII corrections only

CodeION Observations corrected with CODE VTEC GIMs

Truth.STEC Reference STEC values (carrier phase obs. calibrated with UQRG VTEC GIMs)

Table 2. Different type of observation RINEX files considered on precise GNSS

processing

Acronym Brief description

OrgRNX RINEX file containing original observations

ModRNX Modified RINEX file containing observations corrected with available ionospheric information

RedRNX RINEX file with original observations when ionospheric corrections are available only
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Table 3. RTK positioning performance statistics, including the standard deviation

of the component (std), at central west Poland network on day 168 of year 2013.

Baseline Strategy ASR TTFF N std E std U std

[%] [epochs] [m] [m] [m]

BOR1-KONI RedRNX(noSTEC) 63 29.9 0.011 0.006 0.029

ModRNX(Prop.STEC) 78 12.8 0.012 0.007 0.035

GNIE-KONI RedRNX(noSTEC) 74 18.3 0.013 0.008 0.025

ModRNX(Prop.STEC) 83 15.7 0.013 0.009 0.036

Figure 15. Time To First Fix (TTFF), baseline BOR1-KONI on 168 DOY (top

panel- RedRNX(noSTEC), bottom panel- ModRNX(Prop.STEC))
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Figure 16. Percent of QIF resolved ambiguities in SHORTEST (top) and STAR

(bottom) baseline definition strategies, during summer (left) and winter (right) cam-

paign, for 6 different network solutions.
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Figure 17. Mean value (top) and standard deviation (bottom) of post-fit residuals

between 6 different network solutions with SHORTEST baseline definition and EPN

final solution
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