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Abstract

The transient neutron star (NS) low-mass X-ray binary MAXI J0556—332 provides a rare opportunity to study NS
crust heating and subsequent cooling for multiple outbursts of the same source. We examine MAXI, Swift,
Chandra, and XMM-Newton data of MAXI J0556—332 obtained during and after three accretion outbursts of
different durations and brightnesses. We report on new data obtained after outburst IIl. The source has been tracked
up to ~1800 days after the end of outburst I. Outburst I heated the crust strongly, but no significant reheating was
observed during outburst II. Cooling from ~333eV to ~146eV was observed during the first ~1200 days.
Outburst III reheated the crust up to ~167 eV, after which the crust cooled again to ~131 eV in ~350 days. We
model the thermal evolution of the crust and find that this source required a different strength and depth of shallow
heating during each of the three outbursts. The shallow heating released during outburst I was ~17 MeV nucleon '
and outburst III required ~0.3 MeV nucleon'. These cooling observations could not be explained without shallow
heating. The shallow heating for outburst II was not well constrained and could vary from ~0 to 2.2 MeV
nucleon ', i.e., this outburst could in principle be explained without invoking shallow heating. We discuss the
nature of the shallow heating and why it may occur at different strengths and depths during different outbursts.
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1. Introduction

Transient neutron stars (NSs) in low-mass X-ray binaries
(LMXBs) are excellent laboratories to study dense matter
physics. These systems experience accretion outbursts sepa-
rated by periods of quiescence. During outbursts, the accreted
matter compresses the NS surface, inducing heat-releasing
nuclear reactions deep in the crust (Haensel & Zdunik
1990, 2008; Steiner 2012) that disrupt the crust—core thermal
equilibrium. Once the source transitions into quiescence the
crust cools to restore equilibrium with the core. Tracking this
crustal cooling and fitting theoretical models to study its
evolution allows us to infer NS crust properties (e.g., Brown &
Cumming 2009). So far, eight NS LMXBs that show crustal
cooling have been studied (see Wijnands et al. 2017 for a
review). In addition to the standard deep crustal heating
(o ~ 012 10" gcm ), a shallow heat source (p ~ 108-10'°
gcm ) is required to explarn the observed cooling curve of
many of these sources. The origin of this shallow heat source is
unknown and is important to resolve because the cooling curve
can be used to constrain a number of different aspects of crust
physics (such as conductivity of the crust and pasta, and the
core specific heat; Brown & Cumming 2009; Horowitz
et al. 2015; Cumming et al. 2017). Most systems need
~1-2MeV nucleon™' of shallow heating to explain their

cooling curves (e.g., Degenaar et al. 2014; Parikh et al. 2017;
Wijnands et al. 2017).

The transient NS LMXB MAXI J0556—332 (hereafter
JO556) was discovered on 2011 January 11 (Matsumura
et al. 2011) and exhibited a ~16 month outburst. The source
showed a second outburst in 2012 that lasted ~2 months
(Sugizaki et al. 2012) and a third ~3 month outburst in 2016
(Negoro et al. 2016). In Figure 1 (top panel), we show the
MAXI light curve with all three outbursts. Sugizaki et al. (2013)
examined the spectral data obtained using the MAXI, Swift, and
RXTE when the source was in outburst, and constrained the
source distance to be >17kpc. Homan et al. (2014,
hereafter Ho14) studied the Swift, Chandra, and XMM-Newton
spectra of the source after its outbursts and found a distance of
~45 kpc. Such a large distance was further supported by the
46 + 15 kpc distance the same authors obtained when compar-
ing the X-ray color—color and hardness—intensity diagram of
JO556 with those observed for other, similarly bright
(~Eddington limited) NS LMXBs (i.e., the so-called Z
sources).

Ho14 studied JO556 in quiescence after outburst I and II and
found it to have a very hot NS crust. They showed that outburst
IT did not seem to reheat the NS crust. Deibel et al. (2015)
showed that JO556 released a very large amount of shallow
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Figure 1. Long-term light curves of J0556 from MAXI/GSC (top panel; 24 keV) and Swift/XRT (middle panel; 0.5-10 keV). In the bottom panel, we show the
temperature evolution of the source during its quiescent periods (the green, black, and red points indicate the Swift/XRT, Chandra, and XMM-Newton data,
respectively). The dotted gray lines indicate the time of transition to quiescence after each outburst.

heating during outburst I of ~10 MeV nucleon™' to explain its
crust cooling evolution, the largest required by any NS LMXB
source studied so far. During outburst II, the shallow heating
mechanism was inactive or at a much reduced level compared
to outburst I. Here, we present cooling observations of J0556
after outburst III demonstrating that the source was reheated
during this outburst, requiring a small but significant amount of
shallow heating. Therefore, the shallow heating mechanism is
not just active or inactive but can indeed be active at different
strengths.

2. Observations, Data Analysis, and Results

JO556 has been observed in quiescence by the Swift,
Chandra, and XMM-Newton observatories. We use MAXI and
the X-ray Telescope (XRT; Burrows et al. 2005) on board Swift
to track the variability of the source during its outbursts. We
report on eight new Chandra and XMM-Newton observations
of this source. For uniformity, we also reanalyze all observa-
tions reported by Hol4. Table 1 shows the log of quiescent
observations.

2.1. MAXI

The outburst evolution of J0556 was observed using the
MAXI/Gas Slit Camera (GSC; Mihara et al. 2011). We
downloaded the light curve from the MAXI archive'® for the
2-4 keV range as Hol4 suggest that this energy range results in
the highest signal-to-noise ratio. Similar to their analysis, we

13 http: / /maxi.riken.jp/top /slist.html

remove data that have error bars larger than 0.025 counts s~

and apply a three-day rebinning.

2.2. Swift/XRT

Swift/XRT was also used to monitor the evolution of J0556.
The raw data were processed with HEASOFT (version 6.17)
using xrtpipeline. The light curve and spectra were
extracted using XSelect (version 2.4c). A circular source
extraction region with a radius of 40” was used. For the
background extraction region we used an annulus of inner and
outer radii 50” and 80", respectively.

Four observations after outburst I were combined into one
interval to obtain constraints on the earliest crust cooling phase
(observation ID [obsID]: 00032452004—-00032452007; from 2012
May 7 to 2012 May 11). The Photon Counting mode data from
these observations were stacked into a single event file, and the
spectrum was extracted using the same source and background
regions as those used for the light curve. The ancillary response file
was generated using xrtmkarf, and the appropriate response
matrix file “swxpcOtol12s6_20110101v014.rmf” was used. The
0.3-10keV spectrum was binned to have a minimum of 5 counts
per bin using grppha.

2.3. Chandra

J0556 was observed 10 times with the Chandra/ACIS-S
(Garmire et al. 2003) in the FAINT mode using the 1/8
subarray. Two observations (ObsID: 14429 and 14227; see
Table 1 of Hol4) took place during episodes of temporary
increases in accretion rate during the first ~100 days after the
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Table 1
Log of the Quiescent Observations®
Instrument ObsID Days since Exposure kTS Fx Lx
End of Time" (eV) (<1071 (x10%
Outburst I (ks) erg cm 2 s’]) erg s h
After Outburst 1
1 Swift Interval 1° 5.4 10.1 3331 +55 109.7 £ 6.6 2495 + 15.1
2 Chandra 14225 16.0 9.2 3241 £25 106.3 £+ 3.6 2419 +£83
3 Chandra 14226 233 9.1 3054 £ 2.5 79.7 £ 2.8 1812+ 6.3
4 Chandra 14433 51.0 18.2 286.9 + 1.9 624 + 1.8 142.0 + 4.0
5 XMM-Newton 0700380901 104.3 28.2, 27.6, 21.5 2552 £ 0.9 379 £ 0.6 86.2 £ 1.3
6 XMM-Newton 0700381201 134.9 244,237,175 247.1 £ 1.0 32.6 £ 0.7 741+ 14
7 Chandra 14434 150.8 18.2 246.8 + 2.1 335+ 13 762 + 2.8
After Outburst 11
8 Chandra 14228 291.7 22.7 2158 +£2.2 19.1 £ 0.8 435+19
9 XMM-Newton 0725220201 496.8 443,423, 349 186.8 = 1.0 102 £ 0.2 232+ 0.6
10 XMM-Newton 0744870201 850.1 717.3, 78.6, 59.9 161.5 £ 0.8 55+0.1 12.6 £ 0.3
11 XMM-Newton 0762750201 1222.6 83.9, 72.3,57.5 1454 £ 1.0 35 +0.1 79+£03
After Outburst 111
12 XMM-Newton 0784390301 1450.7 204, 18.6, 18.6 166.9 + 1.8 6.9+ 0.5 15.7 £ 1.1
13 Chandra 18335 1483.2 273 155.1 +£2.8 4.8 £04 109 + 1.0
14 Chandra 18336 15443 27.1 1429 + 3.3 344+05 7.8+ 1.0
15 XMM-Newton 0784390401 1570.6 459,413, 395 1399 + 14 3.0+ 0.1 6.7+ 0.3
16 Chandra 18337 1675.5 27.3 135.6 £ 3.5 26+03 6.0 £0.7
17 XMM-Newton 0782670201 1793.1 61.0, 58.3, 36.7 1309 = 1.5 23+0.1 51+03
Notes.

 All errors are 10. The distance and Ny were fixed to 43.6 kpc and 3.2 x 102° cm ™2 The unabsorbed fluxes and luminosities are quoted for 0.5-10 keV.
® The XMM-Newton effective exposure times have been displayed as “MOS1, MOS2, pn.”

¢ See Section 2.2.

end of outburst I. Since we are only interested in the crust
cooling behavior we do not discuss these data (see Hol4 for
more information about these observations). CIAO (version
4.9) was used to process the raw data of the remaining eight
observations. We examined the source light curves for possible
episodes of background flaring, but none were found. We used
circular source extraction regions with a radius of 2”-3”
(depending on source brightness). The background extraction
region used was an annulus with inner and outer radii 10” and
20", respectively. The spectra were extracted using specex-
tract. The point-source aperture-corrected arf files, as
generated by specextract, were used. The 0.3—-10keV
spectra were grouped using dmgroup to have a signal-to-noise
ratio of 4.5.

2.4. XMM-Newton

XMM-Newton (Striider et al. 2001) was used to observe
JO556 eight times using all three European Photo Imaging
Cameras (EPIC)—MOS1, MOS2, and pn. The raw data were
reduced using the Science Analysis System (SAS; version 16.0)
and processed using emproc and epproc for the MOS and
pn detectors, respectively. The observations were checked for
background flaring by examining the light curves for the
>10keV range for the MOS detectors and 10-12 keV range for
the pn detector. Depending on the average source brightness
during an observation, we removed data of >0.08-0.16 counts
s~' and data of >0.32-0.4countss ' for the MOS and pn
detectors, respectively. Circular source and background
extraction regions were used for the spectral extraction. The
optimal source region to be used was determined with
eregionanalyse. Depending on the source brightness,
regions of radii 19”-45" were used for the MOS detectors and
regions of radii 19”-37" were used for the pn detector. A

background region of radius 50” was used for each observation,
placed on the same CCD that the source was located on. The
position of the background region as suggested by the
ebkgreg tool was used. The redistribution matrix file and
ancillary response function were generated using rmfgen and
arfgen. The 0.3-10keV spectra were binned using
specgroup, with the signal-to-noise ratio set to 4.5.

2.5. Spectral Fitting

All Chandra and XMM-Newton 0.3—-10keV spectra were fit
simultaneously in XSpec (version 12.9; Arnaud 1996) using >
statistics. We used the NS atmosphere model nsa (Zavlin
et al. 1996). The nsatmos model cannot be used as the source
was very hot at the start of the cooling phase (see Hol4 for
details). The temperature was left free for each individual
XMM-Newton and Chandra observation. However, this para-
meter was tied between the MOS and pn cameras for a given
XMM-Newton observation. All of the temperatures were
converted into the effective temperature measured by an
observer at infinity. The mass and radius of the NS were fixed
to 1.4 M, and 10 km (since in the nsa model the surface
gravity has only been calculated for this combination and does
not give accurate results for other mass and radius values;
Zavlin et al. 1996; Heinke et al. 2006). The magnetic field
parameter was set to zero (indicating a non-magnetized star).
The normalization (1 /D2; D is the distance) and the Ny were
free parameters but were tied between all observations. The Ny
was modeled using tbnew_feo!* with WILM abundances
(Wilms et al. 2000) and VERN cross-sections (Verner

14 http:/ /pulsar.sternwarte.uni-erlangen.de / wilms /research /tbabs /
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et al. 1996). The oxygen and iron abundances for tbnew_feo
were fixed to 1.

We use the pileup component to model the pileup in the
Chandra data.'> We set the maximum number of photons
considered for pileup in a single frame to 3, the grade
correction for single photon detection to 1, the PSF fraction is
fixed to 0.95, and the number of regions and the FRACEXPO
keyword are both set to 1. We find that the fits are not very
sensitive to the alpha parameter (see also Ho14), and we fix this
value to 0.6. The frame time, an input parameter for pileup,
was set to 0.4 s for the Chandra observations. To prevent the
pileup model from affecting the XMM-Newton data, we set the
frame time for these observations to a very small value
(1076 s). We also use the multiplicative model constant to
allow for normalization offsets between the Chandra and
XMM-Newton observatories. For the Chandra data we used a
constant of 1 and for the various XMM-Newton detectors—
MOSI1, MOS2, and pn the constants were calculated from
Table 5 of Plucinsky et al. (2017; Gyos1 = 0.983, Gviosz = 1,
Con = 0.904).

The simultaneous fit of all the Chandra and XMM-Newton
data resulted in a column density of Ny = (3.2 &+ 0.5) x 10%
cm 2 and a distance of 43.67¢ kpc. While calculating the
error on the temperature, we fixed the best-fit Ny and distance
values as they are not expected to vary between observations
(see also, e.g., Wijnands et al. 2004, Ho14). The parameters
from the obtained fit (Xi /d.o.f. =1.02/715) are shown in
Table 1. Changing the mass, radius, Ny, and distance will
change the absolute kTg;, but the trend, which helps us
understand crust physics, will not change significantly (e.g.,
Cackett et al. 2008). The brightest Chandra observations had a
pileup fraction of ~2%.

Due to the small number of counts per bin in the Swift/XRT
spectra (0.3—10 keV), they were fit separately with W-statistics
(background-subtracted Cash statistics) using the same Ny and
distance as used for the Chandra and XMM-Newton spectral
fitting. We allow for a normalization offset of Cxgr = 0.872
(Plucinsky et al. 2017).

Figure 1 shows the MAXI (top panel) and Swift/XRT
(middle panel) light curves of JO556. The bottom panel of
Figure 1 shows the cooling evolution of J0556, suggesting a
strong decrease in the kTg; after the end of outburst I. Outburst
II did not reheat the crust significantly, and the cooling
appeared to continue along its previous trend (see also Hol4).
Overall, the crust cooled from ~333eV to ~146¢eV, after
outbursts I and II. Outburst III caused the crust to be reheated
significantly (to ~167eV) and was followed by subsequent
cooling (to ~131 eV approximately 350 days after the end of
this recent outburst).

2.6. Modeling the Quiescent Thermal Evolution

We model the outbursts and quiescence of J0556 using the
crustal heating/cooling code NSCool (Page & Reddy 2013;
Page 2016). We account for the accretion rate variability during
the outbursts and model all three outbursts collectively (using
the methods of Ootes et al. 2016, 2017). The transition to
quiescence after outburst I occurred on MJD 56052.1
(see Hol4). We use the methodology described by Fridriksson
et al. (2010) to calculate the time of transition to quiescence by

15 We use values suggested by the Chandra pileup guide: http://cxc.harvard.
edu/ciao/download/doc/pileup_abc.pdf.
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fitting an exponential to the rapidly decaying trend at the end of
the outburst and a straight line to the quiescent points soon after
the end of the outburst. We used the MAXI and Swift/XRT
light curve, respectively, for this calculation after outbursts I
and II and determined the transition time to be MID 56277.4
and MJD 57494.2.

We account for accretion rate variability during the outbursts
by tracking the daily average rate, which is determined from
the daily averaged MAXI and Swift/XRT count rates. If data
from both instruments are available on the same day, the Swift/
XRT data are used. Sugizaki et al. (2013) report the bolometric
flux (Fy) from JO556 at six different instances during the first
outburst (no such reports are available for the other two
outbursts). We use these values to calculate a count rate to the
Fyo1 conversion constant for the MAXI and Swift/XRT data
using count rates from the same days as the six reported Fy,,
values. This constant was calculated for each of the six
observations for both instruments, and the final constant used
for each instrument was the averaged value. The obtained
constants are Cyuy; = 2.353 x 10 8erg cm 2 count”! and
Cowir = 4.957 x 10" ergcm ™2 count . The individual count
rates to Fyo conversion constants differ at most by a factor of
~2 from each other. We tested our NSCool model results by
using these minimum or maximum calculated individual
conversion constant values (instead of the averaged ones) for
all three outbursts as well as by using different values for
different outbursts. We find that this only inconsequentially
changes our inferred NS parameters without affecting our main
conclusions. The Fy,, was used to calculate the daily average
accretion rate using

o Fb0]47TD2

M
n c?

)

where 7) (=0.2) indicated the efficiency factor and c is the speed of
light. Using this we obtained the fluences of the three outbursts to
be ~43 x 1072 erg cmfz, ~2.1 x 1073 erg cmfz, and ~4.4 x
1077 erg cm 2, respectively.

The NS mass and radius used for the NSCool models are
the same as those used for the spectral fits. The distance used is
that calculated from the best fit to the spectra (Section 2.5). The
NSCool adjustable parameters are the impurity factor in the
crust (Qimp), the column depth of light elements in the envelope
(Viighe)» the core temperature prior to the first outburst (75), and
the strength (Qq,) and depth (p,) of the shallow heating. We
model the shallow heating with different parameters during
each outburst. Furthermore, we also allow the envelope
composition of the crust to vary for each outburst (Ootes
et al. 2017). The best fit is found using a x?-minimization
algorithm, and all errors are calculated for the 1o confidence
range.

Our modeling shows that heating only by deep crustal
reactions (in combination with changes in the envelope
composition) cannot explain the observations of J0556. A
significant amount of shallow heating is necessary to explain
the data. Qg, ~ 17 MeV nucleon™! is needed to explain the
high temperatures after outburst 1. The best-fit model
(x2/d.o.f.=2.8/9) is shown by the solid black line in
Figure 2, and the parameters are listed in Table 2. Outbursts
IT and IIT cannot be explained with the same shallow heating as
required for outburst I, not even if the envelope composition is
allowed to change (Brown et al. 2002). The dotted gray line in
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Table 2
Shallow Heating Parameters from NSCool

Outburst O Psh
(MeV nucleon™) x10° gem ™)
I 17.0%32 53502
i 0
22 4+0.7 335 £ 0.8
I 0.33 £ 0.03 1.6 + 1.3
Note.

# The parameters for outburst II are given for a range of values.

Figure 2 shows a model that assumes that during all three
outbursts the shallow heating mechanism released
Qg ~ 17MeV nucleon ', clearly showing that this would
result in much hotter crusts than what we have observed.
Outburst I1I could be modeled with Oy, ~ 0.3 MeV nucleon !
at shallower depths than that required for outburst I. Outburst
I could not be modeled without shallow heating. This is
shown by the dotted red line in Figure 2, which indicates a
model for which we assumed that the shallow heating
mechanism was not active during outbursts II and III. This
model shows that outburst II can be explained without shallow
heating. However, the uncertainties on the shallow heating
parameters after outburst II are large, ranging from (a) no
shallow heating (Qg, ~ 0 MeV nucleon ') when this heating
source is at relatively shallow depths (i.e., the pgy corresp-
onding to outburst I or outburst III) as well as (b) a large
Og ~ 22MeV nucleon”' very deep in the crust (at
Py ~ 33.5 x 10 gem ™). This is because Qg, and p, are

Parikh et al.

correlated and the modeled curve from these two possibilities
have a very similar shape.

In addition to constraining the shallow heating parameters,
we found a core temperature of Ty = (5.5 +0.4) x 107 K.
Assuming a Qjn, = 1 throughout the crust fit the data well.
Increasing the Qjmp to ~20 as suggested by Horowitz et al.
(2015), in the pasta layer (which extends from p ~ 10"* gem™
to the crust—core boundary), reduced the fit quality, indicating
that the crust of this source has a high thermal conductivity
throughout.

Our best-fit model indicates that a relatively light envelope is
necessary after outburst I (yjgn ~ 3.1 X 10° g cm ™ ?). The data
after outburst I cannot be adequately fit using a heavy element
envelope as the light elements are necessary to raise the
effective temperature to that which we observe. The envelope
composition systematically raises or drops the observed trend,
whereas a change in the shallow heating changes the slope of
the trend itself; therefore, they are only partially degenerate in
determining the cooling trend. The best fit indicates that a
similar envelope composition ([2.1-3.1] x 10° gcmfz) is
present after all three outbursts. Further extensive investigation
into the NSCool parameters is not the aim of this Letter.

3. Discussion

We studied the NS LMXB J0556 in quiescence. Since the
NS mass, radius, and distance remain the same between
outbursts, studying the source after multiple outbursts allows us
to investigate which parameters affecting the heating and
cooling behavior of the crust may change. As reported
by Hol4, we found a strongly heated crust after outburst I.
The amount of shallow heating during outburst I was very large
at Qg, ~ 17 MeV nucleon . During outburst II the shallow
heating mechanism may have been inactive (see also Deibel
et al. 2015 for similar results of outbursts I and II). However, it
should be noted that the first pointing was obtained long after
the end of outburst II (~70 days) and Qg could not be
constrained well. Up to ~2.2 MeV nucleon™ " was still allowed
during this outburst if the heating occurred at much larger
depths. We present new quiescent observations after the end of
outburst III. Shallow heating (at ~0.3 MeV nucleonfl) needs
to have been active during outburst III to explain the reheating
we observed after the end of the outburst since the deep crustal
reactions alone cannot account for this reheating. Based on the
well-constrained shallow heating parameters found after out-
bursts I and IIT we find that this heating mechanism may release
different amounts of heat per accreted nucleon during different
outbursts and may not be simply active or inactive (as could
still be the case after the study by Deibel et al. 2015).

The origin of shallow heating remains unknown and thus
also why its strength varies during different outbursts. One
possibility (as suggested by Inogamov & Sunyaev 2010) is that
the shallow heating originates from the dissipation of the
accretion-generated g-modes in the ocean (i.e., the melted
crust). Based on kT, we find that the ocean is deeper during
outburst II than outburst III. If the shallow heat source is placed
at this ocean—solid crust interface then our models indicate that
more shallow heat is required during outburst III than outburst
II, suggesting that the strength of heat deposition is unlikely to
vary with the depth of the ocean (as suggested by Deibel 2016).

It is interesting to note that the strength of the shallow
heating seems to correlate with the outburst fluences (Qy,
decreases from ~17 MeV nucleon™ ' to ~0.3 MeV nucleon '
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when the fluence decreases from ~4.3 x 10 2ergem > to
~44 x 1073 erg cmfz). However, even if true for J0556, this
cannot be extrapolated to other sources. Another NS LMXB,
XTE J1701—462, experienced an outburst in 2006,/2007 with a
similar fluence to outburst I of J0556 (Fridriksson
et al. 2010, 2011; see Hol4 for details), but JO556 needs Qq,
~17 MeV nucleon" to explain its cooling data, whereas XTE
J1701—462 needs only Qg ~ 0.1 MeV nucleon ™! (Page &
Reddy 2013). Therefore, across sources there is another,
unknown parameter that sets the strength of the shallow
heating.

Using our NSCool models we attempted to discern if the
observed crust cooling currently follows the cooling trend
defined by outburst I or if the reheating from outburst III still
influences the crust temperature. We find that a model that only
includes heating from outburst I slightly undershoots our most
recently obtained data point, suggesting that the crust might not
have yet returned to the original cooling trend. However, due to
uncertainties in the data and the modeling we cannot
conclusively say if this is indeed the case. Future Chandra
observations will clarify this as well as probe the pasta layer
present deeper in the crust.
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