
Requirements Patterns for COTS Systems

Oscar Mendez-Bonilla
Dept. LSI. UPC

Barcelona, Spain
omendez@lsi.upc.edu

Xavier Franch
Dept. LSI. UPC

Barcelona, Spain
franch@lsi.upc.edu

Carme Quer
Dept. LSI. UPC

Barcelona, Spain
cquer@lsi.upc.edu

Abstract

The reuse of knowledge obtained during the
elicitation of requirements for different COTS projects
is a subject that still needs more research to be done.
In this work we propose the use of Patterns of
Requirements for the first steps of the COTS selection
processes and the software life cycle.

1. Introduction

The idea of giving help to the requirements elicitor
in its work is not new. Among the existent approaches,
we can point out the Volere shell [1] that provides the
elicitor with common sections that usually appear in a
requirements document, serving the elicitor to do not
forget any of these sections. However, we think more
help could be given to unify, standardize and create
useful requirements specifications. In this paper we
present our proposal of having requirement patterns
that could be applied to different projects.

The existence of requirements patterns would help
the elicitors to do not start from scratch and to reduce
the time necessary for the requirements elicitation and
the creation of effective requirement specifications,
which hold the entire software cycle. The use of these
patterns in particular projects would consist in the
identification of the patterns and its instantiation to the
concrete project; generating the requirements
specifications and the bases for the call for tenders
documents.

2. A catalogue of requirements patterns

The requirements in a software project may be
classified [2] as: functional, non-functional, and non-
technical requirements. After working in different
projects corresponding to different domains (e.g. mail
server systems, e-learning software, web content
management systems, and others), we observed that
most non-functional and non-technical requirements

can be reused with small variations independently of
the system’s domain for which the elicitation is done.

This does not occur in case of functional
requirements, that are quite similar when projects
address the same domain, and as more distance exists
among domains, less percent of requirements are
similar in projects.

For this reason, we propose (figure 1) the existence
of a general catalogue of non-functional and non-
technical requirements patterns that will be common
and useful for any project, and other specific patterns
catalogues that would be suitable in projects for
specific domains.

Figure 1. Requirements Patterns catalogs

As in any kind of pattern, our idea is the

construction of requirement patterns from the
experience in many projects, from the observation of
similarities in requirements already used. When exist
similar requirements that state the same goal, and this
is identified in different software or COTS selection
projects, we propose to observe and study if there
exists patterns that generalize them. Our intention is to
obtain a catalogue of patterns from requirements
documents of finished projects; we plan to use this first
version catalogue, generating the original requirements
documents in an inverse process, and then test the

Seventh International Conference on Composition-Based Software Systems

0-7695-3091-5/08 $25.00 © 2008 IEEE
DOI 10.1109/ICCBSS.2008.34

232

catalogue usefulness with starting COTS selection
projects, and with other kind of software development
and life cycle.

We do not think on closed catalogues, but in
evolving catalogues that will grow from the experience
of past and new projects. In the patterns life cycle, new
ones will arrive from new necessities and desires of the
stakeholders, and this ones will be evaluated in every
use of the catalog.

3. The requirement patterns
3.1. The structure of a pattern
The structure of a pattern will be the following:
• The pattern goal, which will drive the elicitor in the
selection of the patterns to be applied in the project.
The goal will also be used in a goal-based dependency
network, which will help the elicitor in the selection
and validation of new requirements, and with the
generation of new ideas about the relationships
between patterns.
• A pattern description, a short text that introduce the
pattern, in the sense of an abstract.
• A fixed part that will be necessary to be included in
any application of the pattern. A sentence that express
the pattern itself, the general purpose of the pattern and
his identification.
• Several extensions of the general part, which is the
technical body of the pattern. These extensions are
optional, since will not be necessary in any case where
the general part is applied. They could also be included
in the catalogues as different patterns. However we
think it is better to have them together since all of them
contribute to express a same goal for the COTS
component that will be selected, or the necessity or
requirement to be fulfilled.

Both, the fixed part and the extensions are
composed of text that express the whole pattern, plus a
set of parameters that will take specific values during
the pattern application in a project.

In order to state clearly the semantics of the
parameters, a metric will be defined for each
parameter. We care that each metric accomplish the
requisites to exist and be considered metric, and also
we express the metric name, type and correctness
conditions.

As it occurs in requirements documents and
specifications, some requirements depend on others, in
purpose or in their definitions. There are relationships
among requirements patterns. We will take one of the
existent relation scales proposed in the literature in
order to classify these dependencies.

We present an example of one non-functional
requirement pattern in figure 2.

Figure 2. Requirement pattern example

3.2. The classification of patterns
 In order to classify the patterns in a catalogue, we
propose to use the quality features in the Extended
ISO/IEC 9126-1 quality model [3].

The Extended ISO/IEC 9126-1 quality model is an
extension of the ISO/IEC 9126-1 quality model [4] that
includes the decomposition of some subcharacteristics
of the original ISO model (60 new sub characteristics
and attributes), and includes a complete catalogue of
non-technical features (134 new characteristics, sub
characteristics and attributes). The quality features in
the extension (characteristics, subcharacteristics and

Pattern Goal: Reporting system failures.
Pattern description: This pattern expresses the
necessity of the stakeholders to know when a
system crash or failure happens, independently of
the stakeholder role. Is required to take into
account the new information system needs about
reporting transactions and operations. The options
of the pattern express different ways of alerting to
responsible persons. Other pattern to take into
account is: After crash report.
Fixed part: The solution shall give an alert in case
of a system failure.
Extension part1: The alerts shall be of type AL.
Extension part2: The failures that shall produce
the alert shall be of type FL.
Parameters:
 AL: is a non-empty set of valid alerts
 AL = SetOf (Alert)
 Alert = Nominal [E-mail, SMS, Page, Fax, ...]
 Correctness conditions: SizeOf(AL) > 0

 FL: is a non-empty set of valid failures
 FL = SetOf (Failure)
 Failure = Nominal [Low space (hardware,
software), Crash (server, network), ...]
 Correctness conditions: SizeOf(FL) > 0

Classification:

Functionality –
Suitability –
Fault Suitability –
Crash Suitability

and
 Reliability –
 Maturity –
 Robustness –
 Operation robustness

233

attributes) are general to any business application
software.

When the requirements patterns will be classified
it, is possible that we will need to extend the departing
Extended ISO/IEC quality model with new features.
This is an aspect already considered during the
extended quality model proposal [3]. This is what has
occurred during the classification of the pattern in
figure 2, when we wanted to classify them in the
suitability quality feature; we needed to extend this
subcharacteristic with two more levels of
subcharacteristics, which are fault suitability and crash
suitability.

On the other hand, it is important to point out, that
one requirement pattern can be classified in more than
one place in the extended quality model. This has also
occurred with our pattern example that could also be
classified below Reliability – Maturity – Robustness –
Operation robustness.

4. Requirement pattern application

Our idea is that the requirements patterns could be
used in software development processes, e.g. in an
automatic conceptual model based software
development, or in a traditional software life cycle.
The idea of have structured, pre-builded necessities is
to base the software design in this necessities
customized to the stakeholders, that is, software
customized to the measure of the stakeholders desires.
The patterns can also be useful in commercial
components selection processes, especially in the first
steps of COTS selection, which means the definition of
software characteristics, required for stakeholders, this
definition could be linked to COTS software attribute
taxonomies for an accelerated selection process. The
patterns are also useful in the delicate step of call for
tenders, helping to evaluate the different options from
the tenders, against the requirements patterns selected
by the stakeholders, the patterns could also help to
generate quickly, the first documents with all the

characteristics required in a call for tenders document,
and then could also help to validate the offers.

5. Conclusions and future work

The existence of tool support would be important.
We currently plan to define requirements patterns by
means of DesCOTS-QM [5], a tool developed by our
research group, which already provides a requirements
patterns manager, and also allows its classification by
means of an ISO/IEC 9126-1 based quality model.

We are developing a complete catalog of patterns,
based in postmortem analysis of requirements books
from real software projects, which will give us our
initial catalogue of non-functional requirement
patterns. After this, we will validate the patterns during
the elicitation of requirements of upcoming projects.

6. References
 [1] Robertson, S., and Robertson, J., Mastering the
Requirements Process. ACM Press/Addison-Wesley
Publishing Co. New York, NY, USA, 1999.

[2] Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J.B., Non-
Functional Requirements in Software Engineering, Springer-
Verlag, New York, 1999.

[3] J.P. Carvallo, X. Franch, C. Quer, "Defining a Quality
Model for Mail Servers", 2nd International Conference on
COTS-Based Software Systems (ICCBSS), LNCS 2580,
Ottawa Canada, 2003.

[4] ISO/IEC 9126-1-2001 Software Engineering Product
Quality Part 1: Quality Model, International Standards
Organization, Geneva Switzerland, 2001.

[5] Juan Pablo Carvallo, Xavier Franch, Gemma Grau &
Carme Quer. "QM: A Tool for Building Software Quality
Models". In Proceedings of the 12th IEEE Requirements
Engineering International Conference RE 2004.Kyoto, Japan.
IEEE Computer Society. 2004.

234

