
An MPEG-4 Performance Study for non-SIMD, General Purpose
Architectures

Sally A. McKee Zhen Fang Mateo Valero
Electrical and Computer Engineering School of Computing Depmament d Arquitectura de Computadors

Comell University University of Utah Universitat Politt-cnica de Catalunya
Ithaca, NY 14853 SaltL&eCity,UT84112 E-08071 Barcelona, Spain

Abstract

MPEG-4 is an important international standard with
wide applicabilily. niis paper focuses on MPEG-4’s
main pmfile, video, whose approach allows more efl-
ciency in coding and more Jexibilily in managing het-
erogeneous niedia objects than previous MPEG sfan-
dards. This study presents evidence to support the (IS-

sertion that for non-SIMD amhitecrures and conrputa-
tional models, most memory-systeni optimizations will
huve little effect on MPEG-4 perforniance. This paper
niakes two contributions. First, it senes as an irtdepen-
dent confirnlation that for current, general-purpose ar-
chitectures, MPEG-4 video is conrputation bound (just
like most other niedia processing applications). Second,
our findings should prove uspful to other researchers
andpractitioners considering how to (or how not to) op-
timize MPEG-4 performance.

1 Introduction

ISO/IEC 14496 191, generally known as MPEG-
4 [14, 101, is an important international standard whose
immediate applications range from digital television
and internet streaming video to mobile multimedia and
games. MPEG-4 defines four main layers or pmfiles:
control, still image, video and audio. We focus on the
main profile, video, whose approach allows more effi-
ciency in coding and more flexibility in managing het-
erogeneous media objects than its predecessors.

Two features distinguish MPEG-4 from MPEG- 1 and
MPEG-2: interactivity and streaming. Scene consmc-
tion can be overlapped with image download. The de-
composition of media data into objects provides two
main advantages. First, it maximizes the efficiency of
compression and encryption by introducing the poten-
tial to extract uncorrelated media content from the same
source (and to apply the best media processing strat-

egy for different types of content). Second, it allows
a single protocol to manage a broad range of heteroge-
neous media content. Uncorrelated objects are coded,
encrypted, and transmitted separately. At the reception
site, powerful transformations (including zooming, rota-
tion, or translation of image objects) may be performed
over each object to recompose the audiovisual scene.

This new media standard thus enables interesting new
functionalities, hut poses difficult challenges with re-
spect to computational capabilities. The “conventional
wisdom” holds that the large working sets of stream-
ing multimedia applications do not make effective use of
large caches [6, 18, 191, which leaves such applications
hungry for bus bandwidth. Kuroda and Nishitani [15]
show that the large data volumes for MPEG-2 motion
compensation cause cache misses and main memory
bandwidth to be severe performance problems. They
hold that the memoryhus bottleneck is a prohibitive
obstacle for MPEG on general-purpose architectures.
Note that there is little difference between MPEG-2 and
MPEG-4 in motion compensation. It follows that tradi-
tional cache- and bus-based memory hierarchies must be
insufficient for this new application domain.

Many have found media processing to be compu-
tationally intensive on modem platforms 124, 12, 18,
3, 111, but most of this work focuses on MPEG-1
or MPEG-2 kernels. With its new, real-time stream-
ing feature, MPEG-4 poses a potential nightmare for
a traditional memory hierarchy with shared memory
buses. Media ISA extensions (e.g., Intel’s@ MMX
and SSE, AMD’sQ 3DNOW!, Sun’s VISTM, and Mo-
torola’s AltiVec”) can improve media-processing per-
formance. * SIMD-tuned compilers to exploit these ex-
ist, but getting the best performance often requires that
programmers insert calls to assembly code libraries, use

‘The literature can be confusing on these points - authors who
recognize the high data locality of multimedia kernels still assume that
cache and bandwidth utilization will be problematic.

’lennings and Come provide a succinct overview of many of
these [l l] .

0-7803-7756-7/03/$17.00 02003 IEEE 49

special data smctures, or hand-instrument source or as-
sembly code. In fact, the “lagging compilers” lead Conte
ef al. [Z] to assert that adding multimedia extensions to
a general-purpose processor may not be an appropriate
solution for multimedia workloads, while others main-
tain that these ISA extensions will make general-purpose
processors more efficient and affordable than ciistom
media accelerators [6]. Appropriate or not, most com-
mercial multimedia applications now run on platforms
that support these extensions, and thus have been be
tuned to take advantage of them. These applications can
also be of interest in other contexts [26] . For instance,
we study how MPEG-4’s real-time streaming feature af-
fects memory performance on high-performance graph-
ics machines. The original motivation was to assess
the opportunity for improving performance via memory-
system optimizations, but we find that the code behaves
contrary to our expectations.

This paper is intended to help overcome cer-

MPEG-4 performance. The contributions of this paper
are thus twofold. First, it serves as independent confir-
mation that for current, general-purpose architectures,
MPEG-4 video is computation hound, just like most
other media-processing applications. MPEG-4’s stream-
ing functionality does not affect this property of multi-
media codes. Second, OUT findings should prove useful
to other researchers and practitioners who may consider
how to (or how not to) optimize MPEG-4 performance.

2 Background

This section first provides a brief tutorial on the
video profile of the MPEG-4 standard, and then surveys
the conclusions drawn from related MPEG performance
characterization and architectural studies.

2.1 Overview

tain misconceptions about MPEG-4behavior with re-

performance platforms lacking ISA extens,ions).
While perliaps-not prevalent in the literature, we have
often heard these misconceptions often in informd dis-
cussions on MPEG-4, and had held them ourselves prior
to conducting this study.

We provide an introduction to the MPEG-4 visual

detailed information elsewhere [101, For reference, Jen-
nings and Conte provide a concise overview of
MPEG-2 operation. The MPEG-4 object-
based approach hinges on the central concept of the vi-
sual objecf, or VO. A visual object corresponds to a par-
ticular 2-D ohiect in the scene, and is characterized by

spect to main-memoly-utilization (particularly for high- profile, but the interested reader may find much more

We find the following assumptions to be false:

MPEG-4 is a memory-streaming application.
MPEG-4‘s performance is limited by bus-

MPEG-4‘s performance is limited by latency.
MPEG-4‘s performance is adversely affected by

MPEG-4‘s performance is adversely affected by a

bandwidth.

larger image sizes.

greater number of images or layers.

We target the Computer Architecture research com-
munity to help others avoid proposing architectural en-
hancements not needed for multimedia. We focus on
a single profile, and we study a single implementation
of MPEG-4. We do not experiment with MPEG-4 au-
dio here, but our experience suggests it will present
no problem to cache performance: MP3 audio applica-
tions [20], GSM long-term frequency vocoders [I], and
similar codes are cache-friendly, since they also work at
the frame level (one dimension, in this case), and since
filtering and convolution operations (common in audio)
have high temporal and spatial data locality.

This work is not intended to be exhaustive, but we
believe our preliminary evidence sufficiently compelling
to support the assertion that for non-SIMD architectures
and computational models, most memory-system opti-
mizations will fail to deliver significant improvement on

temporal and spatial information in the form of shape,
motion, and texture. VOs are sampled in time, and each
can be encoded in scalable (multi-layer) or non-scalable
(single layer) form.

Each time sample of a video object constitutes a video
object plane, or VOP, containing motion parameters,
shape information, and texture data. VOPs are encoded
using 16 x 16 or 8 x 8 macrohlocks, where a mac-
roblock contains a section of the luminance component
and the spatially subsampled chrominance components.
Texture is coded separately by a discrete cosine trans-
form (DCT) scheme. Arbitrary shapes are coded us-
ing a context-based arithmetic encoding scheme and are
compressed via a bitmap-based method. Motion esti-
mation and compensation are used in video compres-
sion to exploit temporal redundancies between frames.
Whereas MPEG-1 and MPEG-2’s motion estimation
uses block-based techniques, MPEG-4‘s motion estima-
tion has been adapted to VOPs.

Figure 1 illustrates how motion estimation is used in
coding visual object planes, with mows indicating in-
terframe dependences. An Infra VOP, or I-VOP, is en-
coded independently and contains a complete image that
is compressed for spatial redundancy only. A forward
Predicted VOP, or P-VOP, is built from the nearest pre-
viously coded VOP. A Bidirecfional VOP, or E-VOP,
is interpolated based on I-VOPs and P-VOPs. Pulling

50

I-VOP

Figure 1. Three Modes of VOP Coding in MPEG-4

data from both past and future frames offers excellent
opportunities for compression, but introduces data de-
pendences. The decoder reads a stream of bits looking
for the unique bit patterns called startcodes that mark the
divisions between different sections of data in the hierar-
chical stmcture described above. The decoder must fol-
low the operation-order dependences decided by the en-
coder. The VOPs are thus processed in the non-temporal
order (I-VOP, P-VOP, B-VOP1, B-VOP2, . . .). In other
words, when the display order is I, B1, B2, P, the en-
coding and decoding orders are both I, P, BI, B2. This
out-of-order decoding (with respect to temporality) in-
creases the performance and storage requirements for
real-time playback.

2.2 Related Work

Since we approach MPEG-4 from a memory-
performance perspective, we briefly survey related work
in the same vein. Space limitations prevent us from pro-
viding a comprehensive survey of background work -
rather, we strive to convey the flavor of prior work ex-
amining media application performance and contribut-
ing to our former misconceptions. We wish to stress that
the claims and findings of those cited here are not neces-
sarily incorrect in other contexts (e.g., with older work-
loads and processor models, or with SIMD ISA exten-
sions), but instead that it may be inappropriate to infer
that these conclusions also apply to MPEG-4 on general-
purpose platforms.

Many researchers, the authors included, have claimed
that streaming access patterns and large working sets
in multimedia applications make ineffective use of
caches [6, 18, 19,251.

Prefetching is one method commonly advocated to
attack the DRAM latency problem for media applica-
tions [16, 6, 17,261. For example, in their IA32 SIMD
Streaming Extensions, Raman [17] et al. maintain that
software prefetching will be important in supporting fu-
ture streaming media applications. The rationale be-
hind this is that these applications, especially MPEG-

4, are memory-latency bound. Zucker er al. [26] make
this assumption in their trace-based study of hardware
and software prefetching for MPEG benchmarks on the
PA-RISC architecture. We assume their results are for
traces generated by MPEG-2 applications, but this is
not explicitly stated. This need for prefetching contra-
dicts our findings for MPEG-4. In other contexts, e.g.,
systems that exploit SIMD multimedia instruction sets,
prefetcbing can be profitable [19, 211. Extrapolating to
assume prefetching works well on general-purpose com-
puters lacking such ISA extensions or on applications
not linked with SIMD libraries is potentially erroneous,
as we show below.

Bus bandwidth is almost unanimously considered a
bottleneck for multimedia [6, 131. The general claim
is that the demand for continuous media data in appli-
cations like MPEG-4 makes their performance severely
limited by bus bandwidth (internally and externally). We
find that for our experiments on readily available sys-
tems, only a small fraction of the available bus band-
width is needed. Ironically, this is due to good cache
performance. Zucker et al. [261 assume bus bandwidth
will not be a problem in future processors, but they do so
based on an economic argument, not based on an analy-
sis of cache performance.

Another closely related, popular misconception is
that higher resolution in video will significantly in-
crease memory usage, thus exacerbating the memory-
wall problem. For example, Ranganathan [18] et al..
conclude that a 1024 x 1024 image requires a factor of
12x increase in L2 cache size over that needed for a
352 x 240 image. We find that even at extremely high
resolution images (2048 x 1024 pixels, for example),
the cache performance of MPEG-4 video remains at ap-
proximately the same level. Our findings agree with the
later MPEG-2 working set studies of Hughes et al.. [SI,
in which they scale image input sizes as part of their re-
search on the variability of multimedia application per-
formance. This independence from image size is coun-
terintuitive.

3 Experimental Results

In this section, we first describe our experimental
setup. Then we address each of the misconceptions
about performance that we initially held, and explain
how our experience refutes them.

3.1 Experimental Methodology

We experiment on three machines: an SGI 0 2 (MIPS
RI2000 with 1MB L2 cache), an SGI Onyx VTX (MIPS
RlOOOO with 2MB L2 cache) and an SGI Onyx2 In-
finiteReality (MIPS R12000 with 8MB L2 cache). Ta-

51

17R hvta+iiine I RI1 WR
~ 1 (size variesbr each machine)

system bus 1 64 bib, 133 MHI, spln transaction
main memow I 4-way interleaved SDRAM

I 680MBls;uslained. BWMBIs
operating system I IRIX64 V6.5

Table 1. Common Platform Highlights

ble 1 highlights the relevant, common features of these
three systems. The Irix kemel implements 32 virtual
performance counters via multiplexing two actual hard-
ware counters. We use the SGI SpeedShop E231 per-
formance analysis package and the Irix Perfex [22] pro-
filing tool library to access these counters. We use the
publicly available MPEG-4 visual encoder and decoder
from the IS0 reference software developed by the Eu-
ropean Union ACTS project MoMuSys (Mobile Mul-
timedia Systems) [7]. We compile with the MIPS cc
compiler at optimization level -03.

Our experiments manipulate a 30-frame video at two
resolutions: the 720 x 576 used for PAL [SI, and a
1024 x 768 size that exceeds NTSC but is leiis than
HDTV [SI. Pixel depth is eight bits. The frame rate
is 30 Hz, as in HDTV (note that PAL uses a 25 Hz rate),
and the target bitrate is 38400.

Table 2 and Table 3 summarize our MPEG-4. visual
encoding and decoding experiments, respectively. The
numbers for instruction cache and TLB misses are neg-
ligible, and are omitted. Cache line reuse is the mean
number of times a cache line is used after being loaded
and before being evicted. For example, LIC line reuse
is the graduated loads plus graduated stores, minus L1
data cache misses, all divided by L1 data cache misses.
Likewise, LZC line rewe is L1 data cache misses minus
L2 data misses, all divided by L2 data misses. DRAM
time refers to the cycles during which the processor is
stalled due to secondq data cache misses; this is the
latency that out-of-order execution hardware and com-
pilation techniques fail to hide. L2-DRAM b h is the
amount of data moved between the seconday cache and
main memory, divided by the total program execution
time. The amount of data moved is calculated as the
sum of the L2 cache misses multiplied by the L:l cache
line size, plus the number of bytes written back from L2.
LI-L2 b h is similar. Prefetch LI Cmiss refers to the pro-
portion of prefetch instructions that do not become nops.
A high prefetch miss rate (near one) is desirable, since
prefetch hits waste instruction bandwidth and decoding
resources. The MIPS RlOOOO cannot track the .number
of prefetches that hit in LI cache; this statistic is only
available on our MIPS R12000-based machines.

3.2 Fallacies and Paradoxes

We now examine in turn each of the popular assump-
tions described in Section 1.

Fallacy: MPEG-4 Exhibits Streaming References.
Primary cache performance is nearly optimal across all
hardware configurations and input sizes. Even at 1024
x 768 pixels/fratne, the L1 data cache hit rate is up to
99.91%. Of the many data accesses that constitute the
load streams and store streams dispatched by tbe pro-
cessor, only 0.1% and 0.4% go beyond LI cache for en-
coding and decoding, respectively. These high hit ra-
tios make L1 data misses account for less than 0.50%
and 1.76% of execution time in encoding and decoding,
respectively. On average, each L1 cache line is reused
about 1000 times before eviction in encoding, and more
than 200 times in decoding. The intuition that streaming
MPEG-4 is a poor match for small caches is therefore
false in this context: the data references in “streaming
MPEG-4” do not really stream.

This phenomenon occurs because, in spite of the
streaming nature of the kernels used, their composi-
tion into multimedia programs generates locality in two
ways: (a) streams have high degrees of data overlap, and
(b) different stages of the application’s “pipeline” pro-
cess the same data resident in L1 cache. Furthermore,
the MPEG-4 protocol itself dictates that data be orga-
nized in chunks (e.g., 16 x 16 elements in motion esti-
mation or 8 x 8 in discrete cosine transform).

Consider the encoder’s motion estimation (responsi-
ble for the majority of the program execution time). Mo-
tion estimation detects movement of objects along dif-
ferent video frames, searching for an image block best
matching a reference block. The “resemblance” crite-
rion is the minimum sum of absolute di&rences(SAD)
between pixels of the two blocks. From the computation
kernel’s perspective, processing data streams across dif-
ferent blocks exhibits little data locality. MPEG-4 per-
forms this search sequentially over restricted windows
inside the image, with an offset between searches ofjust
one pixel. The overlap among streams for searching an
image subset yields high locality both in the z axis, due
to the data layout in memory, and in they axis, due to the
restricted size of the window. Simply put, the protocol-
dictated blocking structure naturally creates locality.

Fallacy: MPEG-4 is Bound by DRAM Latency.
Memory requirements for MPEG-4 video processing are
indeed large. This fact gives rise to the common assump-
tion that memory latency is critical to MPEG-4 perfor-
mance, especially since much MPEG-4 data is time-
sensitive. In our experiments, over 99.5% of the data
references hit the primary cache, and even a small 1MB
secondary cache catches more than 60% of the rest. Very
few references reach main memoq Out-of-order issue

52

Table 2. Video Encoding: One Visual Object, One Layer

metrics

L lC miss lime
LIC line reuse
L2C miss rate
L2c line reuse
DRAM lime
L1-L2 tdw (MB/s)
L2-DRAM b/w (MWs)

720x576 pix
CPU and L2C

11.6% 6.6%
16.9 16.3
24.3 14.9

36.4% n/a

-
re

R12K
8MB

1 .16%
288.1

10.72%
6.3

1.5%
22.4

9.8
45.2%

0.35x

-

-
1 a

R12K
1 MB
0.40%
1 .U%
251.7

36.48%
1.7

11.3%
20.3
24.0

41.6%

~

-

1x766 pixels

Table 3. Video Decoding: One Visual Object, One Layer

and the MIPS optimizing compiler hide another portion
of the latency of these main-memory references. For en-
coding on a system with a large L2 cache, the processor
stalls as low as 0.2% of the time for medium-sized 720
x 576 frames. Even for a small L2C and large 1024 x
768 frames, the processor stalls only about 4.0% of the
time. Decoding spends slightly more time on processor
stalls while waiting for DRAM accesses. In the worst
case, we observe a processor stall time of no more than
12%. In spite of initial claims that multimedia codes do
not use caches well, Ranganathan et al. [lS, 191 observe
similarly small percentages of memory stall time (less
than 10%) for their studies of MPEG-2 and other multi-
media codecs.

With compiler-generated software prefetching, the
number of executed prefetches is around 117000 the
number of graduated loads in encoding and 111000 in
decoding (not shown in the tables). Even for this conser-
vative use of prefetching, over half of the prefetches hit
the primary cache, and thus constitute a waste of system
resources. Prefetching is therefore unlikely to improve
MPEG-4 performance on the systems we study.

Fallacy: MPEG-4 is Hungry for Bus Bandwidth.
In terms of sustained bandwidth, traffic is less than 2%
between the L1 and L2 caches, and less than 4% be-
tween L2 cache and main memory, Again, this comes
from high reuse and high primary cache hit rates. Given
the high LlC hit rate, bandwidth between the ALUs and
the primary cache might be a limiting factor, but the
RlOOOO and R12000 counters prevent exploration of this

Figure 2. Memory Statistics for Growing Image Sire
(Decoding, 1MB L2C)

conjecture. Simulation studies [4] indicate that a non-
SIMDhon-vector MPEG-4 code with a dual-ported LIC
is not limited by bandwidth constraints, while a vector
version is, even with a four-ported cache.

Fallacy: MPEG-4 Memory Performance De-
grades with Growing Image Size. At first glance, this
extrapolated assumption from image processing experi-
ences seems plausible, even likely. Nonetheless, our re-
sults suggest otherwise. Despite the fact that memory
requirements grow about linearly with respect to im-
age size, performance remains almost the same when
the image size is almost doubled (from 720 x 576 to
1024 x 768, a factor of 1.9). Even with extremely large
frames (2048 x 1024 pixels) we see equally good mem-
ory performance (data not shown here). The blocking
nature of the algorithms makes the image size largely

53

statistics for processing three visual objects. Each of the
three objects is encoded and decoded for the same con-
figuration as in the single object experiments, with the
single-object input becoming a subset of the multiple-
object input. Table 6 and Table 7 present the numbers for
three visual objects with two visual object layers each.
Table 4, Table 5, Table 6, and Table 7 with Table 2 and
Table 3 show that cache performance does not change 3 VOs, 1 layer each

a 3vos. 2 layers each noticeably as the number of VOs and VOLs increases.
Figure 3 and Figure 4 visually depict part of this compar-
ison, showing L1C and L2C data m i s s rates on an RlOK

0.4

.P - 0.3
m
.E 0.2
E
0
1 0.1 I# 1 VO. 1 layer

II)

0.0
ending 720 x 576 pixels decoding encoding 1024 x 768 pixels dwoding

machine with an L2 cache of 2MB (note the different or-
ders of magnitude in they axis scales). More interesting
is the change in uerformance for the decodine. vrocess

Figure 3. L1C Miss Rates for Varying Numberr: of
Objects and Layers

20

._ 0 l 5 - m

.8 10
E
II)

ta 1 vo. 1 layer
5 5

0 3 VOs, 1 layer each
0 3 VOs. 2 layers each

emding decoding encoding decoding
0

720 x 576 pixels 1024 I 768 pixels

Figure 4. L2C Miss Rates for Varying.Numbers of
Objects and Layers

irrelevant. Interestingly, in several cases memoiy per-
formance actually improves as the image size increases.
For example, for decoding on a system with a 1MB L2,
as the image size grows, the L2 miss rate, memoy band-
width consumption and DRAM stall time all decrease,
as shown in Figure 2. Counterintuitively, cache perfor-
mance of MPEG-4 video proves to be independent of
frame size.

Fallacy: MPEG-4 Memory Performance De-
grades as the Number of Visual Objects ant1 Lay-
ers Grows. Thus far, we have concentrated on memory
statistics for a single visual object with one layer. In-
creasing the number of visual objects (VOs) and visual
object layers (VOLs) increases memory requirtments
accordingly. For example, on a workload of (1 VO, 1
VOL, 1024 x 768), encoding uses about 120 MB.of sta-
ble, resident memory. At (3 VOs, 2 VOLs, 1024 x 768)
encoding requires 400 MB. Intuition might suggest that
cache perfohance would degrade as multiple VOs and
VOLs compete for system resources. Surprisingly, we
find this not to be the case. Table 4 and Table 5 contain

-~ -.
as the number of VOs increases. Cache performance ac-
tually impmves as we go from single object/single layer
(Table 3), to multiple objectslsingle layer (Table 5) , and
up to multiple objectslmultiple layers (Table 7). Con-
sider the 1024 x 768 case. The L1 cache miss rates
drop from 0.41% to 0.36% and 0.34%. L2 cache m i s s
rates drop from 19.10% to 18.12% and 18.02%. And as
a result, DRAM stall time drops from 7.1% to 5.9% and
5.6%. A similar trend occurs for the 720 x 576 case.
This paradoxical behavior of “improving under pres-
sure’’ reinforces our conclusions about MPEG-4 peIfor-
mance on the platforms we study.

3.3 Burstiness

To detect the inherent burstiness of MPEG-4 mem-
ory traffic, we instrument two of the most important
functions - VopCode(J in the encoder and DecodeVop-
CombMotionShapeTexture() in the decoder - by wrap-
ping them in petformance counter operations. Specifi-
cally, we want to determine if these two functions ex-
hibit burstier memory behavior compared to the rest of
MPEG-4 video. VopCode(J performs shape, textnre and
motion coding of the input visual object plane, gener-
ating an encoded VOP. Motion estimation is the most
time-consuming function in the VOP encoding process.
DecodeVopCombMotionShapeTexrure(J is the reverse of
VopCode(J, decoding a VOP from the input bitstream.
2D DCT is the primary technique used in the decod-
ing process. In the literature, motion estimation and
DCT are the most frequently used examples for MPEG-
4 memory optimizations. We do not apply instrumen-
tation to the macrohlock level of motion estimation or
DCT, since at such fine granularity the inserted system
calls would affect the execution noticeably and the ac-
cumulated error would have been unacceptable.

In Table 8, the functions VopCode() and
DewdeVopCombAdotionShapeTextuTe() are
renamed VopEncode and VopDecode, respectively.
Data are collected on a (R12K. 8MB L2C) machine.

54

1 miss rate 0.09%
L1C misslime 0.35%
L l C line reuse 1172.9
U C miss rate 32.24%
U C line reuse
DRAM lime 2.4%
Ll-L2 b/w (MEW 4.5
U-DRAM biw (MB/s) 4.9
preletch L l C miss 39.6%

Table 4. Video Encoding: Three Visual Objects, One Layer Each

metrics

L1C miss rate
L1C miss time
L1C line reuse
U C miss rate
U C line reuse
DRAM lime
L1-U b/w (MBls)
U-DRAM blw (ME/$
prefetch L lC miss

720x576 pix& 1024x766 pixels

R12K RlOK R12K R12K RlOK R12K
1MB 2MB 8MB 1MB 2 M B 6MB
0.31% 0.34% 0.26% 0.33% 0.36% 0.30
1.20% 1.46% 0.96% 1.27% 1.52% 1.06%
318.6 291.5 356.6 299.3 280.3 327.9

36.56% 16.09% 12.41% 35.22% 16.12% 14.92%
1.7 4.5 7.1 1.6 4.5 5.7

9.5% 5.6% 1.4% 9.7% 5.9% 1.9%
16.8 16.7 17.6 17.9 17.3 19.7
20.2 12.3 9.5 20.6 13.0 12.0

444% n/a 40.3% 41.2% nia 41.5%

CPJ and L2C size CPU and L2C size

Table 5. Video Decoding: Three Visual Objects, One Layer Each

melrics

L1C miss time
LlC line reuse
L2C miss rate
L2C line reuse
DRAM time

2.6

0.06% 0.11%
0.29% 0.45%
1249.4 910.5
9.97% 40.83%

CiimiG
ixm

Tix

RlOK
ZMB

0.51%
966.9

14.14%
6.1

1.5%
5.2
3.2
nia -

-
r re

R12K
8MB

010%
0.35%
1026.3
10.15%

6.9
0.4%

5.9
2.6

40.6% -
Table 6. Video Encoding: Three Visual Objects, Two Layers Each

metrics

L1 C miss time

LZC line muse
DRAM time 9.1%

16.9

Table 7. Video Decod

x576 pixels
and L2C size

12.4
nia 41.1%

,: Three Visual 0

55

~

1 c
R12K
1MB
0.33%
1.21%
304.8

34.42%
1.9

9.0%
17.1
19.3

40.4%

~

~

1x768 pixels
snd LZC size

5.6% 1 .8%
16.8 19.2
12.5 11.6
n/a 36.7q0

xts , Two Layers Each

3 visual objects
1 laver each

3 visual objects 3 visual objects 3 visual objects
2 lavers Bach 1 laver each 2 lavers each

For convenient comparison, we include in brackets the
whole-program statistics taken from previous cables.
Inspection reveals that the memory performance of
these two functions is consistent with overall trends.
The L2C miss rate and LZ-DRAM traffic are both
smaller than in the whole program. VopEncoda sees
better memory performance than overall encoding
for all meuics shown in Table 8. For VopDecode,
LI cache references m i s s about twice as often as the
whole-program average, increasing LIC-L2C traffic.
Even with this degraded L1C performance, the L1
cache still captures over 99.2% of all accesses in
the load streams and store streams dispatched by the
processor. Improved L2C hit rate further filters the
memory references, reducing traffic to DRAM. This
test of burstiness for key encoding/decoding phases
tells. us that, although each of the kemels (e.g. SAD
and DCT) references data in a streaming manner, at the
VOP level the comprehensive effect of multiple streams
is a working set that fits well into cache.

4 Conclusions and Future Work

-1 C m s s iaie
2 C m ss me 309'011004°01
. l . 2 b b l M E s 1 5 714 71

We find that for the experiments we condul:t, the
MPEG-4 video profile has good memory performance:
high primary cache hit ratios, high cache-line reuse,
low main-memory stall times, and low bus-bandwidth
requirements. Although we experiment with general-
purpose processors lacking MMX-like SIMD exten-
sions, our experience has shown that even in the pres-
ence of these ISA extensions, the performance bottle-
neck is still the f e t chhue rate [3]. Only in the pres-
ence of longer vector SIMD instructions does L1 band-
width surpass fetch rate as a limiting performance fac-
tor. Given our experiences, we caution against gener-
alizing results from older workloads, different proces-
sorRSA models, and different domains (e.g., image pro-
cessing) to modem multimedia workloads on general-
purpose platforms. On the other hand, care should be
taken when generalizing observations made in this paper
to other platforms or MPEG-4 implementations. For-
tunately, the increasing availability and accessibility of
hardware performance counters in such platforms makes
it easier to examine application behavior to understand
where the performance bottlenecks are (or are not).

40490.10 15's) 980°011241Do~ 11 33Do1150400)
5 615 9) 38 311 7 81 38 111921

This work represents our preliminary findings. While
performance numbers from commercial hardware us-
ing a commercial compiler have the advantage of being
more realistic than those generated via software simula-
tion, the parameters of our experiments are necessarily
rigid. In order to investigate how MPEG-4 behaves with
different architectural configurations, we are extending
our experiments to a spectrum of representative plat-
forms (including IA32, IA64, and Power4). Our intu-
ition is that the memory performance of the MPEG-4
visual profile is unlikely to change qualitatively on any
mainstream workstation with a conventional cache hier-
archy. These studies will also incorporate the effect of
SIMD ISA extensions, evaluating the appropriateness of
adding such extensions to general-purpose processors.
Previous work [4] finds that vector versions of MPEG-
4 become L1 cache bandwidth-limited. Investigating the
behavior of a non-vectorized MPEG-4 that exploits mul-
timedia ISA extensions on general-purpose machines is
a next step, and the following one is gathering data for
other MPEG-4 profiles. Finally, we will conduct sim-
ulation studies to determine at what ratio of processor-
to-memory speed and at what bandwidths among vari-
ous levels of the memory hierarchy the performance of
M E G - 4 does finally become memory limited.

5. Acknowledgments

We thank Jesus Corbal for comments on drafts of this
paper.

References

(11 S. Bonnett. MP3 technical information.
" ~ t D : , ~ w . iara".i-idasiiechn,~~, . J h _ l , 2001.

[Z] T. Conte, P. Dubey, M. Jennings, R. Lee, A. Peleg,
S . Rathnam, M. Schlansker, P. Song. and A. Wolfe.
Challenges to combining general-purpose and multime-
dia processors. IEEE Computer, 30(12):33-37, Dec.
1997.

[31 1. Corbal, R. Espasa and M. Valero. DLP + TLP proces-
sors for the next generation of media workloads. In Pro-
ceedings of the Seventh Annual Symposium on High Per-
fonnance Computer Architecture, pages 219-228, Jan.
2001.

56

I41 J. Corbal, R. Espasa, and M. Valero. Three-dimensional
memory vectorization for high bandwidth media mem-
ory systems. In Proceedings of IEEWACM 35th Intem-
tional Symposium on Micmarchirecrure, pages 149-160,
Nov. 2002.

(51 CVC Productions. World TV standards.
hT~p:/l."ca"rer~.c-ir.deolxaribrel~~.~~~" afnndnrd..h"l, 2001.

161 K. Diefendorff and P. Dubey. How multimedia work-
loads will change processor design. IEEE Computer,
30(9):4345, Sept. 1997.

L71 European Union ACTS Programme. Mo-
bile Multimedia Systems Project (MoMuSys).

[XI C. Hughes, P. Kaul,'S. Adve, R. lain, C. Park, and
1. Srinivasan. Variability in the execution of multimedia
applications and implications for architecture. In Pro-
ceedings of the 28rh Annual International Symposium on
Computer Architecture, pages 254265, June 2001.

191 ISOflEC 14496-2. Codingof audio-visual objectwisual,
final draft international standard, Oct. 1998.

[I O] ISO/IEC Moving Picture Expens Group. The MPEG
Webpage. hrlliii;npec.reieranir.l..~.b.c-i , 2002.

[I l l M. Jennings and T. Conte. Subword extensions for
video processing on mobile systems. IEEE Concurrency,
6(3): 13-16, July-September 1998.

[I21 B. Khailany, W. Dally, S. Rixner, U. Kapasi, P. Maa-
son, I. Namkoong, I. Owens, B. Towles, and A. C. hang.
Imagine: Media processing with streams. IEEE Micm,
21(2):3546, March/April2001.

[I31 J. Kneip, B. Schmale, and H. Moller. Applying and im-
plementing the MPEG-4 multimedia standard. IEEE Mi-
cro, 19(6):64-74, Nov. 1999.

1141 R. Koenen. Mpeg-4: Multimedia for our time. IEEE
Specrmm, 36(2):26-34, Feb. 1999.

1151 I. Kuroda and T. Nishitani. Multimedia processors. Pro-
ceedings ofthe IEEE, 86(6):1203-1221, June 1998.

1161 A. Prati. Exploring multimedia applications locality to
improve cache performance. In ACM Mulrimedia, pages
509-510,2000.

[171 S. Raman, V. Pentkovski, and J. Keshava. Implementing
streaming SIMD extemsions on the Pentium IU proces-
sor. IEEE Computer, 33(7):47-57, July 2000.

[I81 P. Ranganathan, S. Adve, and N. Jouppi. Performanceof
image and video processing with general-purpose pro-
cessors and media isa extensions. In Pmceedings of rhe
26th Annual lntemalional Symposium on Computer Ar-
chitecture, pages 124-135, June 1999.

[191 P. Ranganathan, S. Adve, and N. Jouppi. Reconfigurable
caches and their application to media processing. In Pro-
ceedings of rhe 27th Annual Inrernarional Symposium on
Computer Archirecrure, pages 214-224, June 2000.

mindCl.ht.i. 1999.

hrc.: iiiru. l n I o x l n . ~ r 9 , l r l Z I P ; Y E I P R m E C T ~ , ~ = ~ ~ ~ . ~ ~ ~

I201 J. Scourias. GSM. h~LP.il-.snorn.n.uuarerl~.ca/

[211 I. Sebot and N. Drach. Memory bandwidth The m e bot-
tleneck of simd multimedia performance on a superscalar
processor. In Pmceedings of the 2001 Eumpean Confer-
ence on Parallel Compuring, pages 439447, Aug. 2001.

1221 Silicon Graphics, Inc. Origin 2000 and Onyx2 Perfor-
mance Tuning and Optimization Guide (document num-
ber: 007-3430-003). hrrp.ii~echpYbr.59'.Co. , 2001.

[23] Silicon Graphics, Inc. Speedshop User's
Guide , (document number: 007-331 1-007).
h ~ l . : i i ~ e r h . " h . a g l . c - : ~ ~ ~ , ~ ~ = ~ ~ ~ , ~ ~ , , ~ ~ ~ ~ ~ I " l . O L L . C 9 1 , 2001.

1241 N. Slingerland and A. Smith. Cache performance for
multimedia applications. In Pmceedings of the 2001 In-
tenlarional Corference on Supercomputing, pages 204-
217,June 2001.

L251 L. Zhang, 2. Fang, M. Parker, B. Mathew, L. Schaelicke,
J. Carter, W. Hsieh, and S . McKee. The impulse
memory controller. IEEE Transactions on Computers,
50(I I): 11 17-1 132, Nov. 2001.

1261 D. Zucker, R. Lee, and M. Flynn. Hardware and software
prefetching techniques for MPEG benchmarks. IEEE
Transactions on Circuits and Systems for Video Technol-
ogy, 5(10):782-796, August 2000.

57

