
Heuristics for Register-constrained Software Pipelining *

Josep Llosa, Mateo Valero and Eduard Ayguadk

Departament d’Arquitectura de Computadors
Universitat Polithcnica de Catalunya

Campus Nord, Mhdul D6, Gran Capit& s/n
08071, Barcelona, SPAIN

{ j osepll ,mat eo,eduard} @ac.upc.es

Abstract

Software Pipelining is a loop scheduling technique
that extracts parallelism from loops by overlapping the
execution of several consecutive iterations. There has
been a significant eflort to produce throughput-optimal
schedules under resource constraints, and more re-
cently to produce throughput-optimal schedules with
minimum register requirements. Unfortunately even a
throughput-optimal schedule with minimum register re-
quirements is useless if it requires more registers than
those available in the target machine.

This paper evaluates several techniques for produc-
ing register-constrained modulo schedules: increasing
the initiation interval (11) and adding spill code. We
show that, in general, increasing the 11 performs poorly
and might not converge for some loops. The paper also
presents an iterative spilling mechanism that can be ap-
plied to any software
several heuristics in
process.

pipelining technique and proposes
order to speed-up the scheduling

1. Introduction

Software pipelining [lo] is an instruction scheduling
technique that exploits the ILP of loops by overlap-
ping the execution of successive iterations of a loop.
There are different approaches to generate a software
pipelined schedule for a loop [l]. Modulo schedul-
ing is a class of software pipelining algorithms that
rely on generating a schedule for an iteration of the
loop such that when this same schedule is repeated

*This work has been supported by the Ministry of Education
of Spain under contract TIC 429/95, and by CEPBA (European
Center for Parallelism of Barcelona).

at regular intervals, no dependence is violated and
no resource usage conflict arises. Modulo scheduling
was proposed at the beginning of the 80s [25]. Since
then, many research papers have appeared on the topic
[19, 18, 17, 29, 27, 31, 221, and it has also been incor-
porated into some production compilers (e.g. [24, 121).

Exploiting more ILP results in a significant increase
in the register pressure [23, 211. The register require-
ments of a schedule are of extreme importance for com-
pilers since any valid schedule must fit in the avail-
able number of registers of the target machine. Some
practical modulo scheduling approaches use heuristics
to produce near-optimal schedules with reduced reg-
ister requirements [17, 221. Other approaches try to
reduce the register requirements of the schedules by
applying a post-pass process [13, 281. However, even
a throughput-optimal schedule with minimum register
requirements is useless if it requires more registers than
the target machine has. In addition, as shown in [all,
loops with high register requirements represent a sig-
nificant amount of the execution time of the programs.
When there is a limited number of registers and the
register allocator fails to find a solution with the num-
ber of registers available, some additional action must
be taken. Different alternatives to fit the register re-
quirements of a modulo scheduled loop in the available
number of registers were outlined in [26].

One of the options, used by the Cydra 5 compiler
[l2], is to reschedule the loop with an increased 11.
If, after several trials, the compiler is unable to find
a valid schedule requiring less registers than available,
the compiler schedules the loop using local scheduling
techniques, i.e. without performing modulo scheduling.
Rescheduling the loop with a bigger initiation interval
(see Figure la) usually leads to schedules with less it-
eration overlapping, and therefore with less register re-
quirements. Unfortunately, the register reduction is at

250
1072-4451/96 $5.00 0 1996 IEEE

I Scheduling Scheduling
I I

Re ister Allocation * I
Add Spill Code F=&

U success

Figure 1. Flow diagram of the scheduling process with
register reduction by: a) Increasing the I I . b) Adding
spill code.

the expense of a reduction in performance (less paral-
lelism is exploited).

Another option is to spill some variables to memory,
so that they don't waste registers for a certain num-
ber of cycles. For acyclic schedules, graph coloring [9]
has been widely used to perform register allocation and
adding spill code. Most subsequent research in the field
of register allocation and spilling has mainly focused
on improving heuristics for graph coloring [4, 6, 8, 71.
However, software pipelining has some constraints that
hinder the use of traditional techniques for register al-
location and spilling. For instance, lifetimes may cross
the boundary of iterations and even can be longer than
the 11, interfering with themselves (in next iterations).
Finally, modulo schedules are very compact -the goal
is to saturate the most used resource- which compli-
cates the addition of spill load/store operations without
affecting the whole schedule.

Cyclic interval graphs [16] can deal with lifetimes
that cross loop boundaries. Other register allocation
heuristics have been proposed [26, 141, that deal with
lifetimes larger than the 11 (in the presence of hardware
support). However, none of these works deal with the
addition of spill code (and its scheduling) for software
pipelined loops. Software pipelining and spill code has
been first considered (to the best of our knowledge) in
[30], where spill load/store operations are added before
scheduling the loop if, and only if, doing so does not
increases the initiation interval.

In this paper, we treat the scheduling problem in
a more general framework: generate modulo sched-
ules with register constraints (as well as resource con-
straints). The above outlined alternatives (increasing
the I1 and adding spill code) to schedule a loop with a
limited number of registers are considered.

We show that increasing the II produces, in general,
worse schedules (in terms of 11) than adding spill code.

In addition, we show that increasing the 11 might not
converge to a solution (i.e. find a schedule requiring
less than the available registws) for some loops. Also,
it turns out that these loops represent a significant part
of the execution time.

We propose an iterative algorithm for adding spill
code to modulo schedules (sec: Figure lb). If a loop re-
quires more registers than available, we add spill code
and reschedule the loop until a schedule requiring no
more registers than available is found. Rescheduling
is necessary, since the added load/stores might not fit
in the schedule. The spilling method we propose, uses
several heuristics in order to be a general method use-
ful for any software pipelining mechanism (including
methods that do not care about register requirements).
In addition we also propose several heuristics to accel-
erate the iterative algorithm, 30 that the computational
time required to produce the (register and resource con-
strained) schedules is small.

To evaluate the proposals of this paper, we use a
register sensitive scheduling technique (HRMS [22]) as
the core scheduler. In any case the techniques pre-
sented can also be used with other scheduling tech-
niques. The evaluation has been performed using more
than one thousand loops frorn the Perfect Club [5].

In Section 2 we make a brief overview of modulo
scheduling, register allocation for modulo scheduling,
and divide the lifetimes into two components that be-
have differently. Then we present the two approaches
for register-constrained software pipelining: increase
the 11 (Section 3) and add spill code (Section 4) in-
troducing several heuristics for selecting the variables
to spill, to schedule the spill operations and to accel-
erate the whole process. In Section 5 the different al-
ternatives and heuristics are evaluated in terms of per-
formance of the loops and scheduling time. Finally
Section 6 states our conclusions.

2. Modulo Scheduling

2.1. Definitions

A loop is represented by a dependence graph G =

0 V is the set of vertices Df the graph G. A vertex
(node) w E V represents an operation of the loop
body.

DG(V, E , 6) where:

0 E is the dependence edge set. An edge e = (U , U) E
E represents a dependence between two operations
U , 'U.

dependence distance or dependence weight.
0 6 is a mapping 6 : E I 4 N that represents the

251

There is a dependence of distance 5, associated to

tion U at iteration i + 5, depends on the execution
of operation U at iteration i .

a) each edge e = (U , U) E E if the execution of opera- x (i) = y (i) * a + y (i - 3)

b)

The dependences can be of several types.

' Control dependences indicate that the target op- ' * !

eration is executed (or not) depending on the out- 4

come of the source operation.

' Data dependences between operations indicate ac-
cesses to the same storage location. For the pur-
poses of this work, they have been further di-
vided into memory (M e m E E E) and register
(RegE E E) data dependences. Memory data
dependences are caused by accesses to the same
memory location. Register data dependences are
caused by accesses to the same registers. Since reg-
ister allocation is performed after scheduling, only
flow register data dependences are considered.

2.2. Overview of Modulo Scheduling

In a software pipelined loop, the schedule for an it-
eration is divided into stages so that the execution of
consecutive iterations that are in distinct stages is over-
lapped. The number of stages in one iteration is termed
stage count(SC). The number of cycles per stage is
the initiation interval (U) .

The execution of a loop can be divided into three
phases: a ramp up phase that fills the software pipeline,
a steady state phase where the software pipeline
achieves maximum overlap of iterations, and a ramp
down phase that drains the software pipeline. During
the steady state phase of the execution, the same pat-
tern of operations is executed in each stage. This is
achieved by iterating on a piece of code, termed the
kernel, that corresponds to one stage of the steady
state phase.

The initiation interval I I between two successive it-
erations is bounded either by loop-carried dependences
in the graph (RecMIg or by resource constraints of
the architecture (ResMII). This lower bound on the I I
is termed the Minimum Initiation Interval (M I k
max (RecMII, ResMII)). The reader is referred to
[12, 271 for an extensive dissertation on how to cal-
culate ResMII and RecMII.

As an example consider the loop body of Figure 2a,
whose optimized data dependence graph is shown in
Figure 2b. For simplicity we assume (in this example)
that all operations have a latency of two cycles, there
are 4 general purpose functional units, and that each
operation is fully pipelined and executes in one func-
tional unit. Figure 2c shows a schedule for an iteration

Figure 2. Example loop: a) Fortran code of the loop body.
b) Optimized data dependence graph. c) Schedule of the
loop. d) Lifetimes of one iteration. e) Kernel code. f)
Register requirements (the shaded part is the scheduling
component of the lifetimes).

with an initiation interval II = 1. In this case, the
schedule is constrained only by resources (since it has
no recurrences). We can initiate an iteration every cy-
cle, since the loop requires 4 resources per iteration,
and we have 4 available resources. Figure 2e shows the
kernel code of the loop. In the kernel code, subindex
of operations indicate the stage they belong to in the
schedule of a single iteration of the original loop.

2.3. Register Requirements

Values used in a loop correspond either to loop-
invariant variables or to loop-variant variables. Loop-
invariants are repeatedly used but never defined during
loop execution. Loop-invariants, have a single value for
all the iterations of the loop and therefore they require
one register each regardless of the scheduling and the
machine configuration.

For loop-variants, a value is generated in each itera-
tion of the loop and, therefore, there is a different value
corresponding to each iteration. Because of the nature
of software pipelining, lifetimes of values defined in an
iteration can overlap with lifetimes of values defined in
subsequent iterations. Figure 2d shows the lifetimes
for the loop-variants corresponding to every iteration
of the example loop. Lifetimes of loop-variants can be
measured in different ways depending on the execution
model of the machine. We assume (either in the ex-
amples and in the experiments) that a variable is alive
from the beginning of the producer operation, until the
start of the last consumer operation.

252

By overlapping the lifetimes of the different itera-
tions, a pattern of length 11 cycles that is indefinitely
repeated is obtained. This pattern (Figure 2f) indi-
cates the number of values that are live at any given
cycle (11 in this example).

As it is shown in [as], the maximum number of si-
multaneously live values (M a d i v e) is an accurate ap-
proximation of the number of registers required by the
schedule '. In all the examples of this paper, the regis-
ter requirements of a given schedule are approximated
by M a d i v e , for simplicity. However, in Section 5 we
measure the actual register requirements after register
allocation.

Values with a lifetime greater than 1I pose an addi-
tional difficulty since new values are generated before
previous ones are used. One approach to fix this prob-
lem is to provide some form of register renaming so that
successive definitions of a value use distinct registers.
Renaming can be performed at compile time by using
modulo variable expansion (MVE) [20], i.e., unrolling
the kernel and renaming at compile time the multiple
definitions of each variable that exist in the unrolled
kernel. A rotating register file can be used to solve this
problem without replicating code by renaming differ-
ent instantiations of a loop-variant a t execution time
[ll]. In this paper we assume the presence of rotating
register files.

2.4. Components of Lifetimes

Two components can be distinguished in the lifetime
LT, of a loop-variant U:

0 A scheduling component LTSch, = t , - tu is
caused by the scheduling distance in cycles be-
tween the producer U and the last consumer U.

A distance component LTDist , = 6(u,v) x I1
caused by the dependence distance 6(u ,v) between
the producer U and the last consumer U. This com-
ponent appears only in loop carried dependencess
(i.e. when 6(u,v) > 0).

For instance in loop-variant V1 (Figure 2d) the
shaded part corresponds to the scheduling compo-
nent, LTSchv l = t+ - tLd = 4, of the lifetime and
the dark part corresponds to the distance component
LTDis t v l = S (L ~ , +) x II = 3. Notice that not all
the parts must be present in the lifetime, for instance,

lFor an extensive discussion on the problem of allocating reg-
isters for software-pipelined loops refer to [26]. The strategies
presentedin that paper almost always achieve the MuzLLive lower
bound. In particular, the wands-only strategy using end-fit with
adjacency ordering almost never required more than MazLive + 1
registers.

the lifetime of loop-variants V2 and V3 has only the
scheduling component. These two components will
have different effects when reducing the register re-
quirements of loops.

3. Increasing the Initiation Interval

One of the approaches considered in this paper, is
to reschedule the loop with an increased II. Register
pressure is, to some extent, proportional to the num-
ber of concurrently executed iterations. Increasing the
II, in general, reduces the number of stages in which
the schedule is divided, and therefore, the number of
simultaneously overlapping iterations. In addition, the
scheduling component of the lifetimes can be shorter
because a larger 11 imposes less resource constraints
than a smaller one. Unfortunately, increasing the I1
reduces the register requirements at the expense of re-
ducing the throughput of the schedule.

As an example, consider the loop of Figure 2 that,
when scheduled with II = 1, required 11 registers for
loop-variants. Figure 3a shows the same loop scheduled
(for the same architecture) with 11 = 2. Notice that
the scheduling components of the lifetimes (Figure 3b)
have the same length in cycles as in the schedule of
Figure 2 but due to the smaller number of overlapping
iterations (4 instead of 7) t lese components require
less registers. Unlike the scheduling component, the
distance component of the lifetimes increases with the
11 since it is proportional to it. For instance LTDis t v l
has increased from 3 cycles to 6 cycles. Figure 3d shows
the register requirements of the schedule with I1 =
2. The new schedule requires 7 registers instead of
11. Notice that only the scheduling component of the
lifetimes has reduced the register requirements, while
the distance component requires the same number of
registers.

3.1. Behavior of Loops when Increasing the
Initiation Interval

Increasing the I1 might produce an extremely inef-
ficient code, especially if the loops require many more
registers than available, since the register requirements
are reduced at the expense of increasing the number of
cycles per iteration. Figure 4a shows the register re-
quirements of a loop from the Perfect Club when the
11 is increased. This loop requires 54 registers when
scheduled with an optimal I1 of 7 cycles. To schedule
the loop with 32 registers the must be increased from
7 to 13 cycles, and performance is reduced to 53% of
the original loop. If the loop is scheduled with 16 reg-
isters the initiation interval has to be increased up to

253

O 1 i"I-111
*

-+ 2
3 I

4 Ii-1 ~ ~

5

Figure 3. Example loop of Figure 2a scheduled with I1 =
2 to reduce register pressure: a) Schedule of the loop. b)
Lifetimes of one iteration. c) Kernel code. d) Register
requirements.

31 cycles, reducing performance to 22% of the original
loop.

An additional problem with this technique is that,
for some loops, it might not converge to the available
number of registers. Figure 4b shows the behavior of a
loop that, even though requiring only 55 registers (one
more than the previous loop), it can not be scheduled
with 32 registers. The loop achieves a permanent situ-
ation requiring 41 registers.

There are several reasons, mainly related with the
"topology" of the DG, why a loop might not decrease
the register requirements when the initiation interval
is increased:

0 The distance component of the loop-variants, since
their lifetime increases with the initiation interval
and the registers required never decrease however
much the I I is increased. For instance in loop 50
of APSI the distance component of loop variants
acounts for 22 registers.

0 The lifetime of loop-invariants is always I1 cycles.
Therefore, they require one register each, indepen-
dently of the schedule.

The dependence graph might require more regis-
ters than available even using acyclic scheduling
techniques (i.e. without overlapping iterations).

2The first loop of subroutine CPADE of the program APSI

3The second loop of subroutine PADEC of the program APSI
(ADM).

(ADM) .

5 "i 16

1 3
0- 0-

a) b)

10 15 20 25 30 30 35 40 45 50
Jnitiation interval Initiation interval

Figure 4. Behavior of the register requirements of two real
loops when increasing the 11: a) A loop that converges
(loop 47 of APSI). b) A loop that does not converge
(loop 50 of APSI).

4. Adding Spill Code

The other approach considered in this paper con-
sists of spilling some lifetimes to reduce the register
requirements. Due to some characteristics of software
pipelining, traditional spilling techniques are difficult
to apply. For instance, interference graphs cannot be
used if the lifetimes are larger than the II (unless MVE
is performed). Also, the addition of the spill code is
difficult, since the schedules are very compact, requir-
ing a heavy rescheduling of the loop. The option we
investigated consists of the following steps:

0 Select the appropriate lifetimes to spill.

0 Add the required spill code for them.

0 Perform modulo scheduling again.

Repeat the register allocation.

Figure l b shows the flow diagram of the scheduling
process, adding spill code to reduce register pressure
when required.

Rescheduling is necessary because the addition of
loads and stores produces a different dependence graph
requiring a different schedule. Unfortunately, it is pos-
sible in the new schedule that a different set of lifetimes
might need to be spilled than those that have already
been spilled.

4.1. Selecting Lifetimes to Spill

We have investigated two heuristics for selecting the
lifetimes to be spilled.

254

Spill the longest lifetime regardless of the cost (in
terms of additional operations required to add the as-
sociated spill code). The intuition is that large life-
times free more registers. This criterion for selecting
lifetimes is dubbed Maz(LT) . In general, the largest
lifetime will be larger than the 11, so spilling the largest
lifetime will free several registers at every cycle includ-
ing the cycle with maximum register pressure.

Spill the largest Li fe t imelCost is similar to the pre-
vious one, but with the improvement that the cost (in
terms of load and store instructions) of adding spill
code is contemplated when selecting the lifetime to be
spilled out. The value selected is the one with the high-
est relation * where Cost is determined by the
number of additional memory operations. This crite-
rion for selecting lifetimes is dubbed Maz(LT/Traf).

The number of additional memory operations de-
pends on the number of consumers the value has, on
whether the value is a loop-variant or a loop-invariant,
and if some of the additional memory operations are
redundant and can be removed from the dependence
graph.

4.2. Adding Instructions for Spilling Life-
times

Once a lifetime has been selected for being spilled,
it is required to add the appropriate load and store in-
structions in the dependence graph, so that the selected
lifetime is stored in memory after being produced, and
reloaded before being consumed.

For each lifetime being spilled the following actions
are performed:

0 The set of edges C RegE akin to the spilled life-
time is removed.

0 One store is added just after the producing opera-
tions and a new edge e E RegE is added from the
producer to the new store.

0 One load is added just before each use of the
spilled result and a new edge e E RegE is added
between each one of the loads and the related con-
sumer.

A new edge E M e m E is added between the store
and each of the loads.

0 The weights 6, of each of the edges e E RegE
added between the producer operation or between
the loads and their respective consumer operations
are set to zero. Likewise, the weights of the added
edges from the store to the loads is set to the origi-
nal weights that had the associated removed edges.

As an example, Figure 5b shows the resulting graph
when spilling out value V1. Notice that the original
edges have been removed. A new store, 'Ss', spills the
value to memory and two new loads, 'Lsl' and ' L s ~ ' ,
reload the value when required. Observe that by as-
signing the distance of the original edge (Ld,+) to the
new memory edge (Ss,Ls2) the new values V11, V12,
and V13 do not have a dist<snce component in their
life times.

Up to now we have outlinlsd the general process of
adding spill operations, but there are cases where it is
not required to add all the operations. Several partic-
ular cases have been taken into account:

0 If the producer operatioii is a load (as in the ex-
ample of Figure 5), adding spill code in the former
way yields to suboptimal code with redundant op-
erations. It is not necessary to store the result of
the load since the corresponding value is already
in a memory location and it can be loaded when
required. In our example the resulting graph is
depicted in Figure 5c.

0 If at least one of the successors of the producer is
a store, it is not necessary to add a new store to
spill out the result.

0 Finally, loop-invariants c m also be selected for be-
ing spilled. In this case it is assumed that the store
to spill out the value is executed before entering
the loop.

4.3. Scheduling Spill Operations

Once the spill code has bel2n added (including opti-
mizations) the loop has to be re-scheduled. The objec-
tive of the spill code is to decrease the register require-
ments regardless of the scheduling method.

A situation that must be resolved is the likelihood
of deadlocks. For instance, consider the Figure 5c.
In a register insensitive scheduler, loop-variant V13
might have the largest lifetime and be selected for be-
ing spilled out. Notice that if spill code is added for
this loop-variant, and the graph is optimized it results
in a graph equivalent to the one of Figure 5c, which still
requires spill code, leading to a deadlock situation.

To avoid this kind of deadlocks, the new loop-
variants that appear because of spill operations are
marked as non-spillable. For instance loop-variants
V12 and V13 in the example of Figure 5c will be non-
spillable. Therefore if the register requirements must be
further reduced, a different lifetime must be selected.

Another situation that can appear is that, for a par-
ticular scheduling method, {,he register requirements

255

9-
Figure 5. Adding spill code to the example loop of Figure
2a to reduce register pressure: a) DG of the original loop.
b) DG after spilling lifetime V1. c) DG after optimiz-
ing redundant loads and stores. d) Operations scheduled
closely to guarantee convergence.

are not decreased, but increased. For instance, in the
resulting graph of Figure 5c the scheduling step can
schedule nodes ’Lsl’ and ’Ls2’ too far away from their
respective successors, increasing the lifetime of loop-
variants V12 and V13. This situation can result in
a combined register pressure of loop-variants V12 and
V13 bigger than the original loop-variant V1.

To prevent this case, operations connected by a non-
spil lable edge are forced to be simultaneously scheduled
as a single ”complex operation”. Figure 5d shows the
operations that must be scheduled as a ”complex oper-
ation”. According to this, operation * must be sched-
uled exactly 2 cycles after operation ’Lsl’ and opera-
tion ’+’ 2 cycles after operation ’Ls2’.

Figure 6a shows the resulting schedule. Notice that,
even though operation ’Ls2’ alone can be scheduled at
cycle 0, operation ’+’ cannot be scheduled at cycle 2
-where it is forced to be scheduled if operation ’Ls2’
is scheduled at cycle 0. An analogous situation occurs
if ’Ls2’ is scheduled at cycle 1. Consequently, ’Ls2’ is
forced to be scheduled at cycle 2 because operation ’+’
cannot be scheduled before cycle 4.

Figure 6b shows the lifetimes of loop-variants and
Figure 6d shows the register requirements of this sched-
ule. Notice that only 5 registers are required in contrast
to 7 registers required if the I1 is increased by one. The
lower register requirements are mainly due to the fact
that the spill code has eliminated the distance com-
ponent of the lifetime of loop-variant V1. It is also
remarkable that the additional operations provoke an

c) d, , V 1 2 , V 1 3 , V2 , V3 I

Figure 6. Schedule of loop of Figure 2a after adding spill
code (Figure 5d): a) Schedule of the loop. b) Lifetimes of
one iteration. c) Kernel code. d) Register requirements.

increase of the initiation interval (in this example the
I1 of the spilled loop is also 2 cycles), which is a supple-
mentary contribution to the reduction of the register
requirements.

4.4. Behavior of Loops when Spilling Values

The addition of spill code to a dependence graph
along with a reduction of the register requirements has
the following negative effects:

The memory traffic grows due to the additional
memory operations.

The MI1 can also augment if memory busses are
saturated -or roughly saturated.

Even for an optimal technique, it is difficult -and
sometimes imposs ib l e that the initiation inter-
val reaches MII. The way in which spill operations
are scheduled -i.e. like complex operations- pre-
vents the scheduler from obtaining better sched-
ules.

Figure 7 shows the evolution of the register require-
ments, II, MI1 and % of memory traffic as loop-variants
are spilled, for the loops APSI 47 and APSI 50. For
this example lifetimes have been selected using the
M a z (L T) criterion.

For instance, notice in Figure 7a, that to schedule
the loop APSI 47 with 32 registers, four lifetimes must
be spilled out, and the I1 increases up to 14 cycles.

256

0 5 IO 0 2 0 4 0 6 0

Number of spilled lifetimes Number of spilled Lifetimes

a) b)

Figure 7. Behavior of the register requirements, MII , II
and memory traffic of real loops when adding spill code:
a) Loop 47 of APSI. b) Loop 50 of APSI.

Notice that, in this case, merely increasing the II
allows this loop to be scheduled with 32 registers and
an II of 13 cycles. Despite that in some particular cases
increasing the II can be as good, or even better, as
adding spill code, in general, adding spill code produces
better schedules. For instance, by adding spill code, the
loop APSI 47 can be scheduled with 16 registers and
II = 26 cycles. In contrast, merely increasing the I I ,
requires 31 cycles to schedule the loop with the same
number of registers. Moreover, spill allows the loop
APSI 50 to be scheduled with 32 and even 16 registers,
while the technique of increasing the II failed to obtain
a schedule even with 32 registers.

There are some results that need an additional com-
ment. For instance, notice that the busses are never
used loo%, and that in some cases spilling additional
lifetimes decreases the bus usage. This is because, due
to the "complex operations" added, the II increases
faster than the MII, leaving some free bus slots. An-
other effect is that in some cases spilling additional
lifetimes increases the register requirements. This is
because the resulting graph is scheduled in a way that
it requires slightly more registers. In addition in some
cases the new graph might be scheduled with an smaller
I1 (as in Figure 7b with 16 lifetimes spilled) leading to
a noticeable increase in the register requirements (and
also in memory traffic).

In this section, we propose s0rr.e simple techniques for
boosting the performance of the scheduler to add spill
code.

Spilling several lifetimes at once

The most obvious shortcut is to spill several lifetimes
before rescheduling the loop. F x this purpose, the de-
crease in register requirements of the new dependence
graph must be estimated in orcer not to add an exces-
sive amount of spill.

The register requirements arc: estimated by subtract-
ing the lifetime selected from che schedule-dependent
lower bound (M a d i v e) . Lifetimes will be selected un-
til the lower bound is below the available number of
registers.

Notice that this is an optimistic estimation since
a lower bound is used instead of the actual register
requirements. Furthermore, the decrease in register
requirements caused by spillin,: a variable is not pro-
portional to its lifetime becaus,e new -shorter- life-
times are added to communicate the results to/from
the added loads and stores.

Being so optimistic ensures that spill code is not
added in excess. Loops with high register requirements
will need several iterations to (achieve the desired reg-
ister requirements. Nevertheless, the number of times
loops will be re-scheduled is extremely low compared
with re-scheduling for each vaxiable spilled out. For
instance, if 32 registers are available, loops 47 and 50
from APSI are re-scheduled only once.

Pruning the search

Another area for performance improvement appears
from the observation of the behavior of the MU and
II in Figures 7a and 7b. Notice, that when several vari-
ables have been spilled the II tends to be higher than
the MII. This effect is caused by the complex oper-
ations that appear when spill code is added. So, in
practice, for each time the loop is rescheduled, several
schedules are tried with TI'S ranging from MII to the
final II.

It can also be observed that most of the time the
MII is smaller than the I1 for which a valid schedule
has been found in the previous re-scheduling iteration.
It is also interesting to notice 1,hat the II almost never
decreases from one iteration to the following.

Most time spent on unsuccessful scheduling at-
tempts can be saved if, instead of exploring all the
initiation intervals from M I I , we explore from the max-
imum of the current MI1 and the previous II.

4.5. Increasing Efficiency

The main disadvantage of our approach to add spill
code is that, for each variable spilled, the loop has to
be rescheduled. This results in very low scheduling
performance (i.e. the time to produce the schedules).

257

5. Experimental Evaluation

The effectiveness of the mechanisms to decrease the
register requirements -in order to obtain valid sched-
ules with a fixed number of registers- has been evalu-
ated using HRMS [22] as the base scheduling technique.
HRMS has been used because it is a fast, register-
sensitive, software pipelining method. Nevertheless the
techniques and heuristics proposed in this paper can be
applied to any software pipelining method.

The techniques have been evaluated for a benchmark
suite composed of a large number of innermost DO
loops from the Perfect Club [5]. We have selected all
loops composed of a single basic block. Loops with
conditionals in their body have been previously con-
verted to single basic block loops using IF-conversion
[a]. We have not included loops with subroutine calls
or with conditional exits. The dependence graphs have
been obtained using the experimental ICTINEO com-
piler [3]. A total of 1258 loops, which account for 78%
of the total execution time4 of the Perfect Club, have
been used.

We have used three functional unit configurations
in order to provide a wider evaluation of the distinct
techniques to reduce register pressure.

0 Configuration P1L4 has 1 load/store unit, 1
Div/Sqrt unit, 1 adder and 1 multiplier. The
adder and the multiplier have a latency of 4 cy-
cles.

0 Configuration P2L4 has 2 functional units of each
kind with exactly the same latencies as PlL4.

0 Finally, configuration P2L6 is like P2L4, but the
adders and the multipliers have a latency of 6 cy-
cles.

All configurations have in common a unit latency for
store instructions, a latency of 2 for loads, a latency of
17 for divisions and a latency of 30 for square roots. For
all configurations, all units are fully pipelined except
the Div/Sqrt units which are not pipelined at all.

Functional unit configurations have been tested with
32 and 64 register files. This results in a set of ex-
periments that ranges from moderate architectures (in
terms of exploitable functional unit parallelism) with
a large register supply to very aggressive architectures
with a relatively limited register supply.

In Section 3 we have seen that increasing the I1 until
a valid schedule (requiring no more than the available
number of registers) is found, might not converge for
some loops. Table 1 shows for all three configurations,

4Executed on an HP 9000/735 workstation.

Table 1. Loops that never converge to a given number of
registers, and % of cycles they represent.

how many loops never converge to 32 and to 64 reg-
isters. We have observed that the loops are the same
(except in one case), independently of the configura-
tion. In [all, using a register insensitive scheduler, the
same loops (in fact one more loop) never converged to
the desired number of registers for configuration P2L4.
This behavior shows that, as suggested in Section 3,
the main factor that determines the convergence of a
loop is its topology.

Notice that only a few loops never converge to a so-
lution. Unfortunately, the loops that cannot be sched-
uled with 64 and 32 registers represent about 20% and
30%, respectively, of the cycles of all 1258 loops when
executed for the corresponding configurations assum-
ing an infinite number of registers. From these results
we conclude that increasing the I1 cannot be considered
as a general purpose technique for register-constrained
software pipelining.

The alternative technique we investigated is to add
spill code. In Section 4 we have introduced two heuris-
tics for selecting the lifetimes to spill. Figure 8a shows
the overall performance of all the Perfect loops when
using the two proposed spilling heuristics: Max(LT)
and Mat(LT/Traf). The heuristic that takes into ac-
count the cost of adding the spill code leads to sched-
ules that have (for all configurations) better perfor-
mance.

Notice that, when 64 registers are available there is
almost no performance degradation due to the addi-
tion of spill code (even for the most aggressive config-
uration). Nevertheless, for all the 64-register configu-
rations, the M m (L T / T r a f) heuristic produces sched-
ules that (as expected) generate noticeable less mem-
ory traffic. Figure 8b shows the total memory traffic
required by the loops when executed.

In Section 4 we also proposed two techniques for
speeding-up the scheduling process (i.e. to reduce the
compilation time). Figure 8c shows the time required
to construct all the schedules. The scheduling time de-
pends mainly on the quantity of spill to add (which is
bigger for small register files). This is because for each
variable to spill the loop is rescheduled. For the config-
urations with 64 registers, the scheduling time is about
15 minutes. Unfortunately, when only 32 registers are
available (as in many of the existing microprocessors)

258

I Increasing the I1

c3 Best of all
Adding spi I1 code

I Ideal (infinite registers)

I Max(LTmraf)

0 Max(LT/Traf) + multiple lifetimes selected + last I1 tried

Max(LT)

Max(LT/Traf) + multiple lifetimes selected

64 registers 32 registers

h a

3 I PlL4 EL4 P2L6
64 registers

P2L4 P2L6
32 registers

% 2.5 hours 8 1 hour
2 15min
* 5min

'3 l m i n

.-

.- z
B
5
v1

64 registers 32 registers

C)

Figure 8. Evaluation of the spilling heuristics for several
machine configurations: a) Cycles required to execute all
the loops (in units of lo9 cycles) b) Number of dynamic
memory references (in units of 10') c) Time to schedule
all the loops (log,, scale)

the scheduling time grows to more than 1 hour (1:40
for the worst case evaluated).

A technique for reducing the scheduling time is to
spill several variables before re-scheduling the loop. As
can be seen in Figure 8 the " M a z (L T / T r a f) + multi-
ple lifetimes selected bar shows a small performance
degradation (both in terms of execution time and mem-
ory traffic) in most of the cases. Nevertheless, for con-
figuration P1L4 the heuristic produces a performance
improvement. The small difference in performance is
because a different set of variables is spilled if they are
selected all together, or in separate steps (the loop has
been rescheduled and the length of lifetimes varies).
Since the selection is based on simple heuristics, se-
lecting a slightly different set of variables can produce

I P I U P2L4 P2L6 I PlL4 P2L4 EL6 I
64 registers 32 registers

Figure 9. Increasing the II versu!; adding spill code: total
execution time (in units of lo9 cycles) of the loops that
(1) require a reduction of the register requirements to fit
in the available number of registers, and (2) converge to
a solution by increasing the II.

either slightly better results or slightly worse results.
Notice that this improvement reduces the scheduling
time of the loops (for the configurations with 32 regis-
ters) from more than 1 hour to about 5 minutes.

In Figure 7 it can be observed that the I1 of loops
with a high amount of spill code can be several cycles
bigger than the MI1 because of the scheduling complex-
ity introduced by the "comple:~" operations generated.
As a consequence, the scheduler has to explore several
schedules (from MI1 to the final IT) before producing
a valid schedule. If the loop mist be rescheduled (with
additional spills) and the new MI1 is lower than the
previous II some time can be saved by skipping the ex-
ploration of the schedules from the current MI1 to the
previous 11. It can be noted thiit this optimization (bar
" M a z (L T / T r a f) + multiple lifetimes selected + last II
tried" in Figure 8) reduces the scheduling time without
any noticeable performance degradation. We consider
that this combination of heurirkics has the best behav-
ior in terms of both execution time of the loops and
compilation time.

Since increasing the I1 doe:: not converge for some
loops it is difficult to compare the spilling heuristics
versus increasing the 11. There€ore we performed a lim-
ited comparison using only the subset of loops that re-
quire more registers than avail able and that converges
to a solution when the II is increased. Figure 9 com-
pares the execution time of this subset of loops for the
best set of heuristics ("Maz(LT /Tra f)+ multiple life-
times selected + last II tried" bar in Figure 8) versus
increasing the 11. It must be said that the subset of
loops compared varies depend] ng on the machine con-
figuration. Notice that, in all configurations, spilling

259

produces schedules that, on average, have better per-
formance than increasing the 11. Even for some con-
figurations (P2L6 with 64 registers) the advantage of
spilling over increasing the I1 is astonishing.

Despite of this fact, we have observed that for a few
loops spilling performs worse than increasing the 11.
Figure 9 also shows the performance of a combination
of both techniques. The bar labeled "best of all" shows
the total execution time of the loops when each loop is
scheduled using the best technique for it. Notice that
in some cases it produces a small reduction on the ex-
ecution time of the loops. We have not implemented
this improvement, but it would require a minor com-
putational cost, if implemented as follows:

0 If the loop requires additional registers, schedule it
by adding spill code until a valid schedule is found.

Once a valid schedule is found, schedule the loop
with the same II but without the added spill code.
If the schedule is valid for the available number of
registers, then a better or equal schedule can be
found by increasing the I1

0 Instead of exploring all the possible I1 configura-
tions from MI1 until a valid schedule is found we
can perform a binary search of the schedules be-
tween MI1 (lower bound) and the I1 obtained by
adding spill code (upper bound).

With this implementation we only require to perform
an additional schedule for the loops that require spill
code. In addition this schedule will be performed fast,
since it will be performed with a bigger II than re-
quired, having more available slots for the operations.
Some loops will require additional scheduling steps, but
we have observed that in most of the configurations this
situation only arises for less than 10 loops (out of 1258).
The worst case appears for configuration P2L6 with 32
registers, where 30 loops have better performance in-
creasing the I1 than adding spill code.

6. Conclusions

In this paper, we have investigated several options to
perform software pipelining with register constraints.
Two options have been investigated in order to de-
crease register requirements when required: increasing
the initiation interval (If), and adding spill code.

We have demonstrated that merely increasing the
11 does not converge to a solution for all loops. Even
though it happens for a few loops, we have observed
that they represent a significant amount of the execu-
tion time. For instance, if only 32 registers are avail-

able, the loops that never converge represent about
30% of the execution time.

When adding spill code, we have introduced heuris-
tics to guarantee convergence independently of the
scheduling technique: scheduling the spill loadsjstores
grouped with the predecessor/successor as 'a single
"complex" operation and marking all variables whose
producers/consumers are a spill load/store. We have
also studied two heuristics for selecting the appropri-
ate lifetimes: Selecting the largest lifetime and select-
ing the largest lifetime divided by the number of ad-
ditional memory operations required. The last option
proved to be more effective both, in terms of memory
traffic and execution time (in cycles) of the resulting
schedules.

We proposed two complementary heuristics to speed
up the spill process. These heuristics caused a small
performance degradation, but dramatically reduced
the time required to produce a valid schedule with reg-
ister constraints (from more than 1 hour to less than 5
minutes for the 1258 loops we used).

Finally, for the loops that achieve a valid schedule by
increasing the 11, we have compared the performance of
these schedules with the schedules obtained by adding
spill code. Adding spill code has proven, in general, to
be more effective. Nevertheless, for a few loops, a bet-
ter schedule was obtained by increasing the 11. From
this results we proposed a combination of both tech-
niques that can be implemented without a noticeable
increase in the compilation time. We have shown that
this combination can produce better schedules than
any of the techniques alone.

As future work, it remains to be studied other
heuristics to select the variables to be spilled. For in-
stance, if no hardware support (rotating register files)
is provided for lifetimes larger than the 11, cyclic in-
terval graphs [16] can be used to perform the register
allocation and to select the lifetimes to be spilled. Also
in [14], even though they didn't dealt with the addition
of spill code, there where heuristics proposed to select
the variables to spill. Another possibility is to spill
uses instead of variables, in any case, we do not expect
a significant improvement, since most of the variables
are used only once [15].

References

[I] V. Allan, R. Jones, R. Lee, and S. Allan. Software
pipelining. ACM Computing Surveys, 27(3):367-432,
September 1995.

[Z] J. Allen, K. Kennedy, and J. Warren. Conversion of
control dependence to data dependence. In Proc. lUth
annual Symposium on Principles of Programming Lan-
guages, January 1983.

260

[3] E. AyguadC, C. Barrado, J. Labarta, D. Lbpez,
S. Moreno, D. Padua, and M. Valero. A uniform repre-
sentation for high-level and instruction-level transfor-
mations. Technical Report UPC-CEPBA 95-01, Uni-
versitat Politkcnica de Catalunya, January 1995.

[4] D. Bernstein, D. Goldin, M. Golumbic, H. Krawczyk,
Y. Mansour, I. Nahshon, and R. Pinter. Spill code
minimization techniques for optimizing compilers. In
Proc. of the ACM SIGPLAN’89 Conf. on Program-
ming Languages Design and Implementation, pages
258-263, July 1989.

[5] M. Berry, D. Chen, P. KOSS, and D. Kuck. The Perfect
Club benchmarks: Effective performance evaluation of
supercomputers. Technical Report 827, Center for Su-
percomputing Research and Development, November
1988.

[6] P. Briggs, K. Cooper, K. Kennedy, and L. Torczon.
Coloring heuristics for register allocation. In Proc. of
the ACM SIGPLAN’89 Conf. on Programming Lan-
guage Design and Implementation, pages 275-284,
June 1989.

[7] P. Briggs, K. Cooper, and L. Torczon. Improve-
ments to graph coloring register allocation. ACM
Transactions on Programming Languages and Sys-
tems, 16(3):428-455, May 1994.

[8] D. Callahan and B. Koblenz. Register allocation via
hierarchical graph coloring. In Proc. of the ACM SIG-
PLAN’S1 Conf. on Programming Language Design and
Implementation, pages 192-203, June 1991.

[9] G. Chaitin. Register allocation and spilling via graph
coloring. In Proc., ACM SIGPLAN Symp. on Com-
piler Construction, pages 98-105, June 1982.

[lo] A. Charlesworth. An approach to scientific array pro-
cessing: The architectural design of the AP120B/FPS-
164 family. Computer, 14(9):18-27, 1981.

[Il l J. Dehnert, P. Hsu, and J. Bratt. Overlapped loop
support in the Cydra 5. In Proc. of the 3rd Int. Conf.
Architectural Support for Programming Languages and
Operating Systems (ASPLOS-III), pages 26-38, April
1989.

[12] J. Dehnert and R. Towle. Compiling for the Cydra 5.
The Journal of Supercomputing, 7(1/2):181-228, May
1993.

[13] A. Eichenberger and E. Davidson. Stage scheduling:
A technique to reduce the register requirements of a
modulo schedule. In Proc. of the 28th Annual Int.
Symp. on Microarchitecture (MICRO-28), pages 338-
349, November 1995.

[14] C. Eisenbeis, S. Lelait, and B. Marmol. The meeting
graph: a new model for loop cyclic register allocation.
In Proc., Fifth Workshop on Compilers for Parallel
Computers (CPC95), pages 503-516, June 1995.

[15] M. Franklin and G. Sohi. Register traffic analysis for
streamlining inter-operation communication in fine-
grain parallel processors. In Proc., 25th Annual Inter-
nat. Symp. on Microarchitecture (MICRO-25), pages
236-245, December 1992.

[16] L. Hendren, G. Gao, E. Altman, and C. Mukerji. Reg-
ister allocation using cyclic interval graphs: A new
approach to an old problem. ACAPS Tech. Memo 33,

1

Advanced Computer Architecture and Program Struc-
tures Group, McGill University, 1992.

[17] R. Huff. Lifetime-sensitive modulo scheduling. In
6th Conference on Programming Language, Design and
Implementation, pages 258-267, 1993.

[18] S. Jain. Circular schedulirg: A new technique to
perform software pipelining In Proceedings of the
ACM SIGPLAN ’91 Conference on Programming Lan-
guage Design and Implemvntation, pages 219-228,
June 1991.

1191 M. Lam. Software pipelining: An effective schedul- ~. - - -

ing technique for VLIW machines. In Proceedings of
the SIGPLA ”88 Conference on Programming Lan-
guage Design and Implemmtation, pages 318-328,
June 1988.

[20] M. Lam. A Systolic Array Optimizing Compiler.
Kluwer Academic Publishers, 1989.

Reducing the Impact of Register Pressure
on Software Pipelining. PhD thesis, UPC. Universi-
t a t Polithcnica de Catalunya, January 1996.

[22] J. LLosa, M. Valero, E. AyguadS, and A. Gonza-
lez. Hipernode reduction modulo scheduling. In Proc.
of the 28th Annual Int. Symp. on Microarchitecture
(MICRO-28), pages 350-360, November 1995.

[23] W. Mangione-Smith, S. Abraham, and E. Davidson.
Register requirements of pipelined processors. In Int.
Conference on Supercompuling, pages 260-246, July
1992.

Softwarc: pipelining in PA-RISC
compilers. Hewlett-Packard Journal, pages 39-45, July
1992.

[25] B. Rau and C. Glaeser. Some scheduling techniques
and an easily schedulable horizontal architecture for
high performance scientific computing. In Proceed-
ings of the 14th Annual Micvoprogramming Workshop,
pages 183-197, October 19811.

[26] B. Rau, M. Lee, P. Tirumalai, and P. Schlansker.
Register allocation for software pipelined loops. In
Proceedings of the ACM SIGPLAN’92 Conference on
Programming Language Design and Implementation,
pages 283-299, June 1992.

[27] B. R. Rau. Iterative modulo scheduling: An algorithm
for software pipelining loops. In Proceedings of the
27th Annual International S ymposium on Microarchi-
tecture, pages 63-74, November 1994.

[28] F. Sinchez. Loop Pipelining with Resource and Timing
Constraints. PhD thesis, UF’C Universitat Politecnica
de Catalunya, October 1995.

[29] P. Tirumalai, M. Lee, and hi. Schlansker. Parallelisa-
tion of loops with exits on Fipelined architectures. In
Proc., Supercomputing ’90, pages 200-212, November
1990.

1301 J. Wang, A. Krall, M. A. Ertl, and C. Eisenbeis. Soft-
ware pipelining with register allocation and spilling. In
Proc. of the 27th Annual Id. Symp. on Microarchitec-
ture, pages 95-99, Novembei. 1994.

[31] N. Warter and N. Partamian. Modulo scheduling with
multiple initiation intervals. In Proc. of the 28th In-
ternat. Symp. on Microarchitecture, pages 111-118,
November 1995.

[21] J. Llosa.

[24] S. Ramakrishnan.

261

