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Departament de Ciències de la Computació
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Abstract

The syntactic structure of a sentence can be modelled as a tree, where vertices

correspond to words and edges indicate syntactic dependencies. It has been

claimed recurrently that the number of edge crossings in real sentences is small.

However, a baseline or null hypothesis has been lacking. Here we quantify the

amount of crossings of real sentences and compare it to the predictions of a series

of baselines. We conclude that crossings are really scarce in real sentences. Their

scarcity is unexpected by the hubiness of the trees. Indeed, real sentences are

close to linear trees, where the potential number of crossings is maximized.
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1. Introduction

Central to network theory is the definition of null models that shed light

on the nature and the significance of network properties [1, 2]. A prototypical

example of measure is T , the clustering coefficient of a network (the average

proportion of pairs of neighbours of a vertex that are connected) [3]. It is

well known that real networks typically exhibit T � TER, where TER is the

clustering coefficient of an Erdős-Rényi graph with the same density of links [3].

In this setup, TER = δ where δ is the density of links of the real network. As

real networks are sparse, δ is a small number while T is typically a large number

(a number close to 1). Hence T is much greater than expected by chance.

As a null hypothesis, the Erdős-Rényi graph involves minimal information

from a real network: its number of vertices and its number of links. In an

attempt to understand the origins of the properties of real networks, researchers

have been defining null hypotheses that are stronger than the Erdős-Rényi graph

in the sense that they involve more information from a real network. Perhaps the

most popular example are random graphs with a degree sequence that matches

that of the real graph. Various models that differ in how they sample the space of

possible graphs have been designed. One is the configuration model or pairing

model, a model that has been very successful from a theoretical perspective

[4, 5, 6] but has very limited applicability as a baseline for real networks due to

its inefficiency [2]. The configuration model samples uniformly on the space of

configurations (pairings of stubs) [2]. Another example is the switching model,

a model that produces a random graph from a given graph preserving the degree

sequence as in the configuration model [7, 8, 9]. The switching model can be

configured to sample uniformly over the space of possible graphs with the same

degree sequence [10, 11].

Here we focus on baselines and null hypotheses for a particular kind of

network, i.e., the syntactic structure of sentences, where nodes correspond to

words and connections indicate syntactic dependencies between elements, e.g.,

the dependency between the subject of a sentence and the corresponding verb
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Yesterday a woman who I knew arrived.

Yesterday a woman arrived who I knew.

Figure 1: Top: The syntactic dependency structure of a sentence without crossings. Bottom:

The syntactic dependency structure of the same sentence with an ordering that produces one

crossing. Borrowed from [18].

(Fig. 1) [12]. Syntactic dependency networks are typically trees [13, 14, 12]

and constitute a particular case of spatial or geographical network [15, 16, 17]

in one dimension, the dimension defined by the linear order of the words in the

sentence. The specific measure which we aim to compare against null hypotheses

is the number of crossings, which we will denote by C in general. Suppose

that vertices are arranged sequentially and that π(v) is the position of vertex

v in the sequence (π(v) = 1 for the first vertex of the sequence, π(v) = 2

for the second vertex of the sequence, and so on). Suppose that we have two

edges u ∼ v and s ∼ t such that π(u) < π(v) and π(s) < π(t). We say

that u ∼ v and s ∼ t cross if and only if π(u) < π(s) < π(v) < π(t) or

π(s) < π(u) < π(t) < π(v). With this definition one can count Ctrue, the

observed number of crossings for a given sentence. The top of Fig. 1 shows

a planar sentence, i.e., a sentence without crossings (Ctrue = 0), whereas the

bottom shows an ordering of the same sentence with one dependency crossing

(Ctrue = 1), involving the dependency between “Yesterday” and “arrived” and

the dependency between “woman” and “who”.
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It is well known that crossing dependencies, those that cross each other

when drawn above the words of a sentence, are relatively uncommon in natural

language [19, 14]. It is widely accepted that the number of crossings of real

sentences is small [19, 14, 12, 20, 21, 22, 23]. A challenge for the belief that

the number of crossings is really small is that the proportion of sentences of a

corpus that are not planar, namely, they have at least one crossing, can be very

large. For instance, about 30% of sentences in German and Dutch corpora are

not planar (Table 1 of [24]). Another challenge is that the scarcity of crossings

is not supported with a baseline or null hypothesis. For instance, a star tree (a

tree where all connections are formed with a hub vertex as on top of Fig. 2)

cannot have crossings [25]. Therefore, reaching the theoretical minimum number

of crossings does not suffice to conclude that the number of crossings is smaller

than expected by chance: for a star tree, it could not be otherwise. In other

words, the number of crossings of a star tree is really small (it is minimum) but

not scarce with respect to all possible linear orderings of its vertices.

In this article, we aim to quantify the actual number of crossings of real

sentences and to clarify the issue of the presumable scarcity of crossing de-

pendencies. More specifically, we will calculate the actual number of crossings

in large collections of sentences and compare them against the predictions of

baselines and null hypotheses that vary in the amount of information that they

involve about a real tree, as it happens with null hypotheses for real networks.

The remainder of the article is organized as follows. Section 2 presents a

series of baselines that will be used to assess if the actual number of crossings in

sentences is really scarce. Some baselines are borrowed from previous research

[26, 27] while others are introduced here. It also presents a measure of hubiness

(a normalized measure of the similarity between a dependency tree and a star

tree) and shows the relationship between that measure and the potential number

of crossings of a tree. Section 3 presents the collections of dependency networks

from different languages that will be used in Section 4 to compare the actual

number of crossings of real dependency trees against the random baselines of

Section 2. Section 4 also analyzes the degree of hubiness of real dependency
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Figure 2: Linear arrangements of trees with n = 7 vertices. Top: A star tree. Center: A

linear tree. Bottom: A quasi-star tree.

trees. Section 5 discusses the results.

2. Baselines for the number of crossings

2.1. Absolute baselines for the number of crossings

Star trees and linear trees are crucial to understand the limits of the variation

of C. A star tree is a tree where a vertex has maximum degree (namely n− 1,

an thus all other vertices have degree 1) [25]. A linear tree is a tree where vertex

degrees do not exceed 2 (and therefore all vertices have degree 2 except a couple

that have degree 1) [25]. See examples of star and linear trees in Fig. 2.

When looking for a reference for the actual number of crossings of a sentence,

a first step is to calculate the potential number of crossings. In a syntactic

dependency tree of n nodes, the number of edges is n−1 and therefore the total

number of crossings cannot exceed(
n− 1

2

)
=

(n− 1)(n− 2)

2
. (1)
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However, this is a rough estimate as edges that share a vertex cannot cross.

Taking account this fact, one may define Q, the size of the set of pair of edges

that may potentially cross. |Q|, the cardinality of this set, depends on n and〈
k2
〉
, the second moment of degree about zero, defined as

〈
k2
〉

=
1

n

n∑
i=1

k2i , (2)

with ki being the degree of the i-th vertex of the network. In particular, one

has [25]

|Q| = n

2

(〈
k2
〉
star
−
〈
k2
〉)
, (3)

where 〈
k2
〉
star

= n− 1 (4)

is the value of
〈
k2
〉

for a star tree of n vertices [25]. Indeed, |Q| reaches extreme

values in star trees and linear trees.An overview of the arguments follows (see

[27] and the Appendix of [28] for further mathematical details).

The variation of |Q| obeys

|Qstar| ≤ |Q| ≤ |Qlinear|, (5)

where |Qlinear| and |Qstar| are the value of |Q| in a linear tree and a star tree,

respectively. Obviously, the minimum |Q|, namely, |Q| = 0 is achieved by a

star tree because
〈
k2
〉

=
〈
k2
〉
star

in that case. The maximum value of |Q| is

achieved by a linear tree because that tree yields the minimum value of
〈
k2
〉
,

namely 〈
k2
〉
linear

= 4− 6/n (6)

(when n ≥ 2). Notice that〈
k2
〉
star
−
〈
k2
〉
linear

=
(n− 2)(n− 3)

n
(7)

Therefore, the maximum value of |Q| is

|Qlinear| =
n
(〈
k2
〉
star
−
〈
k2
〉
linear

)
2

=
1

2
(n− 2)(n− 3) (8)
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for n ≥ 3 (|Qlinear| = 0 for n < 3).

Obviously, C = |Qstar| = 0 for any linear arrangement of the vertices of

a star tree. We wish to check if there are orderings of the vertices of a linear

tree where actually C = |Qlinear|. Suppose that the vertices of a linear tree

with n ≥ 2 are labelled following a depth-first traversal from one of the leaves.

This is equivalent to labelling vertices according to their position in a minimum

linear arrangement [29]. Fig. 3 shows linear arrangements of small linear trees

with maximum C, namely C = |Qlinear|. These arrangements can be built by

placing all vertices with odd labels in ascending order followed by all vertices

with even labels in ascending order. By symmetry, it is possible to build other

arrangements where C = |Qlinear|, e.g., placing all vertices with odd labels in

descending order followed by all vertices with even labels in descending order.

Appendix Appendix A presents arrangements that reach C = |Qlinear| for a

linear tree of an arbitrary size n (n ≥ 3). As

|Qlinear| =
(
n− 2

2

)
, (9)

(recall Eq. 8), it is easy to see how crossing theory replaces the naive upper

bound of C in Eq. 1 with a tight one.

Given the results above, the actual number of crossings of a star tree is

not surprising at all according to |Q|. In contrast, achieving a low number of

crossings in a linear tree is unexpected if the tree is sufficiently large.

2.2. A hubiness coefficient

We have seen above that
〈
k2
〉

is a fundamental structural property of a

tree: it determines |Q|. As
〈
k2
〉

determines the range of variation of |Q|,
〈
k2
〉

also determines the solution to the minimum linear arrangement problem: the

solution is minimum for linear trees and maximum for star trees [29].
〈
k2
〉

is a

measure of the hubiness of a tree [25] and we have seen that its range of variation

is 〈
k2
〉
linear

≤
〈
k2
〉
≤
〈
k2
〉
star

, (10)
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1 3 5 2 4 6 5 3 1 6 4 2

Figure 3: Arrangements of small linear trees with maximum C according to Eq. 8. Top:

n = 4 and C = |Qlinear| = 1. Center: n = 5 and C = |Qlinear| = 3. Bottom: n = 6 and

C = |Qlinear| = 6.

where
〈
k2
〉
linear

and
〈
k2
〉
star

are the value of
〈
k2
〉

in a linear tree and a star

tree respectively. The latter allows one to define a hubiness coefficient h as

h =

〈
k2
〉
−
〈
k2
〉
linear

〈k2〉star − 〈k2〉linear
(11)

for n ≥ 4 (for n < 4, the only trees that can be formed are both linear and star

trees). It is easy to show that 0 ≤ h ≤ 1. On the one hand, the fact that

〈
k2
〉
−
〈
k2
〉
linear

≥
〈
k2
〉
linear

−
〈
k2
〉
linear

= 0 (12)

gives

hlinear = 0 ≤ h. (13)

On the other hand, the fact that

〈
k2
〉
−
〈
k2
〉
linear

≤
〈
k2
〉
star
−
〈
k2
〉
linear

(14)

gives

h ≤ hstar = 1. (15)
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Therefore, h measures the similarity between a tree and a star tree (or the

dissimilarity with respect to a linear tree) from the perspective of
〈
k2
〉
. Applying

Eqs. 4 and 6 to Eq. 11, one obtains

h =
n
(〈
k2
〉
− 4
)

+ 6

n2 − 5n+ 6

=
n
(〈
k2
〉
− 4
)

+ 6

(n− 2)(n− 3)
. (16)

Note that h is a normalized degree variance. To see it, recall that the degree

variance is

V [k] =
〈
k2
〉
− 〈k〉2 (17)

and that V [k] is fully determined by
〈
k2
〉

because 〈k〉 = 2 − 2/n [30] for any

tree such that n ≥ 1. Therefore,

V [k]linear ≤ V [k] ≤ V [k]star (18)

and

h =
V [k]− V [k]linear

V [k]star − V [k]linear
. (19)

h is 1 when the degree variance is maximum and 0 when variance is minimum.

It is also easy to show that h is the complementary of the normalized po-

tential number of crossings, i.e.,

h = 1− |Q|
|Qlinear|

. (20)

Therefore, h is 1 when the potential number of crossings is minimum and 0

when it is maximum. Applying the definition of |Q| in Eq. 3 and |Qlinear| in

Eq. 8 to

h =
|Qlinear| − |Q|
|Qlinear|

, (21)

one recovers Eq. 16 after some algebra.

2.3. Random baselines for the number of crossings

We consider C, the number of crossings of a sentence, in a uniformly ran-

dom linear arrangement (URLA) of its elements. In this baseline, the expected
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number of crossings is [26, 27]

EURLA[C] =
|Q|
3
. (22)

Another baseline can be obtained assuming that the tree is a uniformly random

labelled tree (URLT). This choice improves previous research where random

trees that deviate from a uniform distribution were used [20] as a control for

Ctrue.

The expected value of
〈
k2
〉

in a URLT is [26]

EURLT

[〈
k2
〉]

=

(
1− 1

n

)(
5− 6

n

)
=

(n− 1)(5n− 6)

n2
(23)

and then the expected number of crossings in a URLA of an URLT is

EURLT
URLA [C] = EURLA

[
|Q|
3

]
=

n

6

(
n− 1− E

[〈
k2
〉])

(24)

=
(n− 1)(n− 2)(n− 3)

6n
. (25)

Notice that EURLT
URLA [C] is related with the unrestricted baseline of the previous

subsection. Combining Eqs. 8 and 25, one obtains

EURLT
URLA [C] =

n− 1

3n
|Qlinear| (26)

≈ 1

3
|Qlinear| (27)

for sufficiently large n. This implies that the expected number of crossings in a

random linear arrangement of a URLT is very close to the expected number of

crossings in a URLA of a linear tree.

2.4. Random baselines for the hubiness coefficient

Recalling Eqs. 7 and 6, it is easy to see that the expected value of the

hubiness coefficient in a uniformly random labelled tree is

EURLT [h] = E

[ 〈
k2
〉
−
〈
k2
〉
linear

〈k2〉star − 〈k2〉linear

]

=
n
(
EURLT

[〈
k2
〉]
−
〈
k2
〉
linear

)
(n− 2)(n− 3)

. (28)
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Recalling 23 and noting that

EURLT

[〈
k2
〉]
−
〈
k2
〉
linear

=
(n− 2)(n− 3)

n2
, (29)

we finally obtain

EURLT [h] =
1

n
. (30)

The latter implies that, as n tends to infinity, the expected hubiness of URLTs

vanishes while the similarity between URLTs and linear trees is maximized.

Linear trees swallow practically all probability mass, in agreement with the

finding that the expected number of crossings in a URLA of a URLT tends to

that of a linear tree as n tends to infinity (Eq. 27). Furthermore, the finding

that EURLT [h] = 1/n suggests that the harmonic mean (or its inverse) could be

used to evaluate the hubiness of real sentences with respect to URLTs.

2.5. Network theory revisited

In Section 1, we have reviewed various null hypotheses that are used in

network theory. The Erdős-Rényi model takes the number of vertices and the

number of links of a real network and discards the structure of the real network.

The configuration or pairing model and the switching model go a step further

incorporating the degree distribution. Our baselines and null hypotheses also

parallel this increasing amount of information about the real network that they

incorporate.

Recall the two kinds of upper bounds for Ctrue in Section 2. If we consider

the structure of the tree under consideration irrelevant (e.g.,
〈
k2
〉
), the upper

bound is |Qlinear| (Eq. 8), the maximum value that |Q| can achieve. This

bound parallels the Erdős-Rényi model (notice that in a tree the number of

edges is n− 1 and thus not relevant). If we consider the tree structure relevant,

then the upper bound is |Q| (Eq. 3) with
〈
k2
〉

calculated on the tree under

consideration. This bound parallels the configuration or pairing model and the

switching model: it involves the degree sequence but knowing
〈
k2
〉

suffices.

Recall also the two kinds of random baselines for Ctrue in Section 2.3. Ne-

glecting the structure of the tree under consideration (e.g.,
〈
k2
〉
), a potential
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baseline is EURLT
URLA [C] (Eq. 25), the expected number of crossings in a uniformly

random tree. This null hypothesis parallels the Erdős-Rényi model. Condition-

ing on the tree structure, then the potential baseline is EURLA[C] (Eq. 3) with〈
k2
〉

taken from the tree under consideration. This null hypothesis parallels the

configuration or pairing model and the switching model for involving the degree

sequence or a function of it.

Our hubiness coefficient is a normalized
〈
k2
〉

and we have seen that
〈
k2
〉

plays a fundamental role in trees: its extremal values determine the limits of the

variation of Q and thus also the expected number of crossings in a random linear

arrangement of a tree. These values also determine the limits of the variation

of Dmin, the minimum sum of edge lengths in a linear arrangement of a given

tree (Dmin is minimum for linear trees and maximum for star trees) [29]. Such

a role is reminiscent of the role played by
〈
k2
〉
/ 〈k〉 in large complex networks

concerning, for instance, the spread of epidemics on a network (e.g. a virus on

the Internet): if
〈
k2
〉
/ 〈k〉 diverges the pandemics cannot be stopped [31]. As

〈k〉 = 2−2/n in trees [30], our work extends the importance of
〈
k2
〉
/ 〈k〉 to the

domain of trees.

3. Materials and methods

We aim to compare Ctrue against the different baselines with the help of

dependency treebanks. A dependency treebank is a collection, or corpus, of sen-

tences where a dependency graph is provided for every sentence. Our treebanks

come from version 2.0 of the HamleDT collection of treebanks [32, 33]. This col-

lection harmonizes previously existing treebanks for 30 different languages into

two widely-used annotation guidelines: Universal Stanford dependencies [34]

and Prague dependencies [35]. Therefore, this resource allows us to evaluate

the baselines not only across a wide range of languages of different families, but

also across two well-known annotation schemes. This is useful because obser-

vations like the number of dependency crossings in a sentence not only depend

on the language, as they are also influenced by annotation criteria ([28] review
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some examples of how C can be affected by annotation criteria).

As preprocessing, we removed nodes corresponding to punctuation from the

analyses in the treebanks, following common practice in research related to

statistical properties of dependency structures (e.g. [36, 37]), which is only con-

cerned with dependency relations between actual words. Null elements, which

are present in the Bengali, Hindi and Telugu corpora, were also removed as

they do not correspond to words. To preserve the structure of the rest of the

tree after removing these nodes, non-deleted nodes that had a deleted node as

their head were reattached as dependents of their nearest non-removed ancestor.

The size of the tree that is obtained corresponds to the length of the sentence

in words.

After this preprocessing, we included in our analyses those syntactic depen-

dency structures that (1) defined a tree with at least 4 nodes, and such that

(2) the tree was not a star tree. The reason for (1) is that our baselines assume

a tree structure [27, 26] and that we wished to avoid the statistical problem of

mixing trees with other kinds of graphs, e.g., the potential number of crossings

depends on the number of edges [25, 38, 27]. We focus on trees of at least 4

nodes because for n < 4, the number of crossings is always zero. The reason

for (2) is that a star tree cannot have crossing dependencies [25]. Ratios with

C in the numerator and |Q| in the denominator, e.g., the relative number of

crossings, C/|Q| [26], are not defined because C = |Q| = 0. Tables 5 and 6 show

p(star), the proportion of trees that are star trees (this proportion is calculated

after applying condition (1)). On average, this proportion is smaller than 5%.

As star trees are excluded, the random baselines on uniformly random trees

must be adapted (see Appendix Appendix B for further details). EURLT
URLA [C] is

replaced by the same expectation conditioning on the fact that star trees are

excluded, i.e.

EURLT
URLA [C|¬star] =

(n− 1)(n− 2)(n− 3)

6(n− n4−n)
. (31)

It is easy to see that

EURLT
URLA [C|¬star] ≈ EURLT

URLA [C] (32)
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for sufficiently large n (compare Eqs. 25 and 31).

The same applies to EURLT [h], that has to be replaced by

EURLT [h|¬star] =
nn−4 − 1

nn−3 − 1
. (33)

It is easy to see that

EURLT [h|¬star] ≈ EURLT [h] =
1

n
(34)

for sufficiently large n.

The corrected versions of the random baselines are expected to matter es-

pecially in treebanks with a sufficient concentration of sentences near n = 4.

To assess if the number of crossings in our dataset is significantly small, we

conducted two Monte Carlo tests for each treebank, corresponding to each of

the two random models of trees. In the first test, we evaluated the significance

of the observed values of 〈Ctrue〉 for each treebank with respect to URLTs, by

generating randomized versions of the corpora where each tree is replaced by an

URLT with the same number of nodes. To generate each URLT, we produced

a uniformly distributed Prüfer code [39] and then converted it to a tree (as an

implementation with the Aldous-Broder algorithm [40, 41] proved too slow).

The Monte Carlo procedure is used to estimate left-P , the probability that a

randomized corpus yields a value of 〈Ctrue〉 that is at least as small as the

original one. One concludes that 〈Ctrue〉 is significantly small if left-P is small

enough. In the second test, we evaluated the significance of 〈Ctrue〉 with respect

to URLAs of the trees in the treebank, by generating randomized versions of

the treebanks where each syntactic tree is replaced by an URLA of itself. left-P

is estimated as in the 1st test. Each test is based on 104 randomizations of the

treebank. Notice that these tests preserve the distribution of tree sizes of the

original treebank, that is required to evaluate the significance of a measurement

over a whole treebank accurately [42].

We also performed the same couple of tests to evaluate the significance of

p(Ctrue = 0), the proportion of planar sentences of a treebank. To evaluate the

significance of 〈h〉, we used URLTs as in the 1st test to estimate left-P and also

14
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Figure 4: p(Ctrue = 0), the proportion of planar sentences (black), as a function of n, the tree

size. The proportion of treebanks having at least one tree of size n is also shown (orange).

In the left plots, points and error bars indicate, respectively, mean values and ±1 standard

deviation over proportions in a collection of treebanks. In the right plots, error bars are

omitted. Tree sizes represented by less than two treebanks are excluded. Therefore the

smallest proportion of treebanks above is 1/15. Top: Stanford annotations. Bottom: Prague

annotations.
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right-P (the latter being the probability that the randomized corpus yields a

value of 〈Ctrue〉 that is at least as large as the original one).

4. Results

The claim that dependency crossings are scarce in real sentences can be

evaluated with at least two statistics. Firstly, p(Ctrue = 0), the proportion of

planar sentences (sentences without crossings). p(Ctrue = 0) tends to decrease

as n increases on average for all treebanks (Fig. 4). A detailed analysis over all

tree sizes shows that this number varies substantially across treebanks (Tables

1 and 2). It is minimum in Ancient Greek with p(Ctrue = 0) ≈ 0.3 while it

reaches its theoretical maximum value (p(Ctrue = 0) = 1) for Japanese and

Romanian with Prague dependencies. The second smallest proportion of planar

sentences is achieved by Latin with p(Ctrue = 0) ≈ 0.5, followed by German and

Dutch with p(Ctrue = 0) slightly below 0.7. Our findings are consistent with a

previous report of 30% of sentences in German and Dutch that are not planar

(Table 1 of [24]).

Secondly, one can look at the behavior of the actual number of crossings.

Ctrue tends to increase as n increases over all treebanks (Fig 5). Interestingly,

the plots in double logarithmic scale reveal the presence of a breakpoint at

n = 13 that separates an initial regime of fast growth of Ctrue from a second

regime of slower growth (Fig 5). Hereafter, we will use 〈...〉 over a tree measure

to indicate a mean over the whole ensemble of sentences of a treebank included

in our analysis. Although the proportion of planar sentences can be very low

when putting all tree sizes together, the number of crossings is apparently small:

〈Ctrue〉 does not reach 3.4 in any of the treebanks (Tables 1 and 2). 〈Ctrue〉

is above 1 in only three languages: Ancient Greek, Latin and Dutch for Stan-

ford dependencies; and only Ancient Greek and Latin for Prague dependencies.

These average numbers of observed crossings are really small when compared

against the average potential number of crossings of a linear tree of the same

size (〈|Qlinear|〉) or the average potential number of crossings of the same tree
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Figure 5: 〈Ctrue〉, the mean number of dependency crossings (black) as a function of n, the

tree size. As a guide to the eye, a vertical line (green) for n = 13 is also shown. Top: Stanford

annotations. Bottom: Prague annotations. The format is the same as in Fig. 4.
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(〈|Q|〉). In order of magnitude, the difference between 〈|Qlinear|〉 and 〈Q〉 is

small, suggesting that real trees are close to linear trees, namely, their hubiness

is low.

A deeper evaluation of the scarcity of crossing dependencies can be made

with the help of ratios between Ctrue and the different baselines: Ctrue/|Qlinear|,

Ctrue/|Q|, Ctrue/EURLA[C] and Ctrue/E
URLT
URLA [C|¬star]. Ctrue/|Q| has already

been used in research on crossings in random trees [26]. Bear in mind that

• All these ratios are positive but only Ctrue/|Qlinear| and Ctrue/|Q| are

bounded above by 1.

• Each ratio defined on random baselines is proportional or approximately

proportional to a deterministic baseline. On the one hand,

Ctrue

EURLA[C]
= 3

Ctrue

|Q|
(35)

thanks to Eq. 22. On the other hand,

Ctrue

EURLT
URLA [C|¬star]

=
3(n− n4−n)

n− 1

Ctrue

|Qlinear|
(36)

thanks to Eqs. 8 and 31. Then

Ctrue

EURLT
URLA [C|¬star]

≈ 3
Ctrue

|Qlinear|
(37)

for sufficiently large n.

• Although
Ctrue

|Qlinear|
≤ Ctrue

|Q|
(38)

thanks to |Q| ≤ |Qlinear, the relationship between

Ctrue

EURLA[C]
(39)

and
Ctrue

EURLT
URLA [C|¬star]

(40)

is uncertain.
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Figure 6: Ctrue/|Q|, the relative number of crossings with respect to the potential number of

crossings of the tree (black) and Ctrue/|Qlinear|, the relative number of crossings with respect

to the potential number of crossings of a linear tree (blue), as a function of n, the tree size.

As a guide to the eye, a vertical line (green) for n = 13 is also shown. The format is the same

as in Fig. 4.
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Ctrue/|Qlinear| and Ctrue/|Q| tend to decrease as tree size increases (Fig. 6)

and the same is expected to happen to their corresponding random baselines

thanks to the proportionality relationships above (Eqs. 35 and 37). Therefore,

the evidence of the scarcity of crossings increases as tree size increases.

The ratios in Tables 3 and 4 show that, on average, the actual number

of crossings is smaller than that of the baseline for all treebanks and for all

baselines: all average ratios are below 0.3. These ratios allow one to analyze

with more detail the difference in magnitude between Ctrue and the different

baselines (Tables 3 and 4):

• 〈Ctrue/|Qlinear|〉 indicates that, on average, Ctrue is at least 10 times

smaller than |Qlinear| and |Q| across languages. The smallest differ-

ences are achieved by Ancient Greek, where 〈Ctrue/|Qlinear|〉 ≈ 0.07 and

〈Ctrue/|Q|〉 ≈ 0.09. The relative number of crossings with respect to the

same tree, i.e., Ctrue/|Q|, is expected to be about 1/3 in a random linear

arrangement of vertices [26] but indeed it is much smaller.

• 〈Ctrue/|Qlinear|〉 ≤ 〈Ctrue/|Q|〉 as expected but the difference between

〈Ctrue/|Qlinear|〉 and 〈Ctrue/|Q|〉 is small, suggesting that real trees are

closer to linear trees than to star trees.

•
〈
Ctrue/E

URLT
URLA [C|¬star]

〉
indicates that, on average, Ctrue is at least 10

times smaller than EURLT
URLA [C|¬star]] across treebanks except for Ancient

Greek and Latin. For Ancient Greek,
〈
Ctrue/E

URLT
URLA [C|¬star]

〉
≈ 0.23 on

average with Stanford dependencies and
〈
Ctrue/E

URLT
URLA [C|¬star]

〉
≈ 0.24

with Prague dependencies. For Latin,
〈
Ctrue/E

URLT
URLA [C|¬star]

〉
≈ 0.14 on

average with Stanford dependencies and
〈
Ctrue/E

URLT
URLA [C|¬star]

〉
≈ 0.13

with Prague dependencies.

• 〈Ctrue/EURLA[C]〉 indicates that, on average, Ctrue is at least 10 times

smaller than EURLA[C] across treebanks except for Ancient Greek and

Latin. For Ancient Greek, 〈Ctrue/EURLA[C]〉 ≈ 0.27 on average with both

Stanford and Prague dependencies. For Latin, 〈Ctrue/EURLA[C]〉 ≈ 0.15
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with Stanford dependencies and 〈Ctrue/EURLA[C]〉 ≈ 0.14 with Prague

dependencies.

• The difference between
〈
Ctrue/E

URLT
URLA [C|¬star]

〉
and 〈Ctrue/EURLA[C]〉

is small. The condition
〈
Ctrue/E

URLT
URLA [C|¬star]

〉
≤ 〈Ctrue/EURLA[C]〉

holds for all treebanks with Stanford annotations, as well as for all tree-

banks with Prague annotations except for Japanese and Persian.

The significance of the gap that separates the actual number of crossings

and the predictions of random baselines must be evaluated statistically. Indeed,

p(Ctrue = 0) and 〈Ctrue〉 are smaller than expected by URLTs and URLAs:

the Monte Carlo test described in Section 3 yields left-P < 10−4 for all the

treebanks and both random baselines.

Fig. 7 shows that the hubiness of trees tends to decrease as n increases.

Tables 5 and 6 also show that 〈h〉 never exceeds 0.24 and is ≈ 0.1 across tree-

banks, suggesting that real trees are closer to linear trees than to star trees.

The similarity between linear trees and real trees supports the little difference

reported above between 〈Ctrue/|Qlinear|〉 and 〈Ctrue/Q〉. Indeed, recall the al-

ternative definition of h in Eq. 20. Concerning URLTs, Fig. 7 shows that the

average hubiness of real sentences tends to be above the average hubiness that

is expected in a URLT over the ensemble of treebanks. A detailed analysis re-

veals that the average hubiness of real sentences is above the average hubiness

that is expected in a URLT for all treebanks with Stanford dependencies (Table

5). However, this does not hold for the Arabic, Japanese and Persian treebank

with Prague dependencies (Table 6) but the difference is small. The system-

atic deviation between 〈h〉 and 〈EURLT [h|¬star]〉 suggests that the hubiness of

real dependency trees cannot be explained by sampling of URLTs, especially

for Stanford dependencies. The gap between URLTs and real syntactic depen-

dency trees is smaller for Prague dependencies, as Fig. 7 suggests. Notice that

〈h〉 is about twice 〈EURLT [h|¬star]〉 with Stanford dependencies whereas 〈h〉

is about 1.4 times 〈EURLT [h|¬star]〉 with Prague dependencies. The Monte

Carlo tests indicate that 〈h〉 is significantly large in all treebanks with Stanford
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Figure 7: h, the hubiness coefficient (black), and EURLT [h|¬star] ≈ 1/n, the expected hubi-

ness coefficient of a uniformly random labelled tree excluding star trees (blue), as a function

of n, the tree size. The format is the same as in Fig. 4. When n = 4 a tree can only be a star

tree or a linear tree. As our analysis excludes star trees (Section 3), h = 0 for n = 4. For this

reason n = 4 is included in normal scale but excluded in log-log scale.
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annotations (right-P < 10−4). The results are less homogeneous for Prague

annotations: 〈h〉 is significantly small in Arabic, Japanese and Persian (left-

P < 10−4) but significantly large for the remainder (right-P < 10−4 in all cases

except right-P = 10−4 for Portuguese).

5. Discussion

We have clarified the issue of the scarcity of crossing dependencies. We

have provided the first evidence that the actual number of crossings is signifi-

cantly small. From the perspective of planarity, the proportion of non-planar

sentences can be ”high” in certain languages (e.g., Dutch) but still significantly

low. On the other hand, the mean number of crossings per sentence is a small

number, consistently with the claim that crossings in real sentences are scarce

[19, 14, 12, 20, 21, 23] even in languages where non-planar sentences abound.

However, whether a number is small or large is a matter of the scale or the

units of measurement [43]. Therefore, statistical testing and a theory of cross-

ings (Section 2) are vital. The former shows that crossings are significantly low.

The latter helps to understand why and how.

The low number of crossings of real sentences could be trivially explained

by a high hubiness, which would immediately lead to a low value of |Q|, the

potential number of crossings. Fig. 7 indicates that this is unlikely to be

the case for sufficiently large trees: the hubiness of trees tends to decrease as n

increases and so the relative number of crossings does (Fig. 6). The contribution

of hubiness to keeping the number of crossings low decreases as n increases.

Furthermore, the hubiness coefficient never exceeds 25% and is about 10% on

average, although it is significantly high with respect to URLTs in the majority

of treebanks. The point: is this number large enough to expect a low number

of crossings? Thanks to Eq. 20, the relative potential of crossings with respect

to a linear tree turns out to be at least 75%, and 90% on average. This strongly

suggests that hubiness has a secondary role in explaining the scarcity of crossing

dependencies. Indeed, we have seen above that various baselines indicate that
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Table 1: A summary of the analysis of the number of crossings in treebanks from different

languages, annotated under the Stanford guidelines. First, p(Ctrue = 0), the proportion of

planar sentences of the treebanks. Second, mean and standard deviation over the whole tree-

bank for a series of measures: Ctrue, the actual number of crossings, |Qlinear|, the maximum

potential number of crossings and |Q|, the potential number of crossings. For every metric

(except p(Ctrue = 0)), we show µ ± σ, where µ is the average value of the measures over all

the trees of the treebank included in our analysis and σ is their standard deviation.

Language p(Ctrue = 0) Ctrue |Qlinear| |Q|

Arabic 0.690 0.981± 2.059 505.0± 967.9 486.2± 949.1

Basque 0.932 0.139± 0.684 56.4± 63.8 48.3± 58.2

Bengali 0.944 0.106± 0.627 16.9± 24.4 13.4± 21.4

Bulgarian 0.843 0.360± 1.024 90.1± 150.0 80.9± 143.3

Catalan 0.790 0.642± 1.606 394.0± 476.7 366.9± 460.1

Czech 0.780 0.528± 1.277 135.7± 193.3 124.0± 184.5

Danish 0.734 0.680± 1.482 155.6± 223.4 141.6± 212.8

Dutch 0.654 1.398± 2.690 95.6± 148.1 86.0± 139.9

English 0.787 0.524± 1.370 233.8± 243.1 213.7± 231.0

Estonian 0.974 0.038± 0.267 19.6± 41.3 15.9± 36.8

Finnish 0.891 0.318± 1.215 62.4± 79.0 54.6± 73.4

German 0.684 0.783± 1.593 150.9± 229.4 138.2± 219.9

Greek (Anc.) 0.312 3.262± 4.880 89.1± 176.0 77.0± 147.1

Greek (Mod.) 0.752 0.654± 1.513 289.2± 374.2 269.7± 361.0

Hindi 0.858 0.304± 0.988 202.8± 222.5 183.3± 211.0

Hungarian 0.728 0.972± 2.426 190.8± 245.4 173.7± 232.5

Italian 0.851 0.415± 1.309 199.0± 341.3 183.9± 329.2

Japanese 0.884 0.164± 0.523 51.2± 95.3 46.3± 90.6

Latin 0.505 2.179± 3.920 115.1± 179.8 102.7± 168.3

Persian 0.785 0.591± 2.833 130.8± 361.8 121.2± 351.9

Portuguese 0.751 0.634± 1.452 252.8± 401.2 236.2± 388.8

Romanian 0.953 0.102± 0.474 52.6± 96.5 46.8± 91.1

Russian 0.810 0.417± 1.131 119.8± 194.0 109.5± 185.9

Slovak 0.819 0.456± 1.267 109.9± 234.2 99.3± 225.4

Slovenian 0.775 0.775± 2.068 143.4± 257.1 127.6± 244.2

Spanish 0.794 0.622± 1.594 397.4± 432.6 371.2± 416.8

Swedish 0.824 0.487± 1.764 133.2± 209.8 120.7± 199.6

Tamil 0.979 0.024± 0.174 100.3± 141.8 89.6± 133.3

Telugu 0.986 0.014± 0.117 5.5± 7.7 4.3± 6.3

Turkish 0.945 0.098± 0.524 74.5± 134.4 66.9± 126.8

Macro avg 0.800 0.622± 1.495 152.4± 231.5 140.0± 221.3
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Table 2: A summary of the analysis of the number of crossings in treebanks from different

languages, annotated under the Prague guidelines. The format and data shown are as in Table

1.

Language p(Ctrue = 0) Ctrue |Qlinear| |Q|

Arabic 0.945 0.088± 0.458 507.6± 968.3 496.0± 956.1

Basque 0.933 0.125± 0.641 55.6± 63.3 49.3± 59.3

Bengali 0.939 0.124± 0.693 15.9± 21.4 12.6± 18.8

Bulgarian 0.905 0.125± 0.426 88.3± 147.5 83.0± 143.7

Catalan 0.955 0.087± 0.532 392.9± 476.4 376.4± 466.9

Czech 0.785 0.373± 0.920 132.2± 191.4 124.7± 186.0

Danish 0.880 0.164± 0.519 154.3± 222.2 146.3± 216.1

Dutch 0.673 0.990± 1.928 94.1± 147.4 88.6± 142.9

English 0.941 0.107± 0.811 233.2± 248.3 220.4± 241.2

Estonian 0.992 0.013± 0.157 19.0± 41.0 16.0± 37.9

Finnish 0.908 0.128± 0.476 61.6± 78.8 56.1± 75.2

German 0.671 0.723± 1.489 148.3± 227.9 140.0± 221.8

Greek (Anc.) 0.323 3.353± 4.446 89.5± 181.7 79.1± 151.6

Greek (Mod.) 0.867 0.206± 0.660 286.6± 368.4 274.2± 360.1

Hindi 0.769 0.387± 0.958 201.8± 221.7 189.4± 215.0

Hungarian 0.738 0.867± 2.143 185.9± 247.8 172.3± 237.6

Italian 0.959 0.062± 0.364 196.8± 343.3 187.5± 335.7

Japanese 1.000 0.000± 0.014 49.4± 93.9 46.8± 91.3

Latin 0.499 1.850± 3.171 114.8± 180.2 106.2± 172.5

Persian 0.817 0.402± 2.122 125.3± 355.5 120.2± 349.8

Portuguese 0.860 0.247± 0.780 250.6± 400.9 241.6± 394.1

Romanian 1.000 0.000± 0.000 51.8± 95.9 48.0± 92.5

Russian 0.907 0.157± 0.585 118.9± 193.7 112.6± 188.8

Slovak 0.853 0.269± 0.829 102.9± 197.6 96.3± 191.3

Slovenian 0.822 0.312± 0.802 128.1± 224.0 118.4± 216.4

Spanish 0.945 0.110± 0.625 395.4± 432.7 380.2± 423.8

Swedish 0.935 0.195± 1.476 129.1± 202.8 120.0± 195.6

Tamil 0.988 0.014± 0.130 100.1± 141.8 92.2± 135.8

Telugu 0.992 0.008± 0.089 5.3± 7.5 4.1± 6.2

Turkish 0.914 0.137± 0.540 67.1± 123.4 63.2± 119.6

Macro avg 0.857 0.388± 0.959 150.1± 228.2 142.0± 221.5
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Table 3: A summary of the normalized number of crossings in treebanks from differ-

ent languages (Stanford annotation): Ctrue/|Qlinear|, Ctrue/|Q|, Ctrue/EURLT
URLA [C|¬star],

Ctrue/EURLA[C]. The format is as in Table 1.

Language
Ctrue
|Qlinear|

Ctrue
|Q|

Ctrue

EURLT
URLA

[C|¬star]
Ctrue

EURLA[C]

Arabic 0.00464± 0.01769 0.00534± 0.02118 0.01523± 0.06006 0.01602± 0.06353

Basque 0.00300± 0.02141 0.00357± 0.02519 0.01006± 0.07237 0.01070± 0.07558

Bengali 0.01023± 0.07418 0.01237± 0.08446 0.03350± 0.23144 0.03711± 0.25339

Bulgarian 0.00566± 0.02778 0.00685± 0.03605 0.01883± 0.09411 0.02054± 0.10816

Catalan 0.00231± 0.01062 0.00267± 0.01463 0.00739± 0.03577 0.00800± 0.04388

Czech 0.00644± 0.03073 0.00767± 0.03880 0.02123± 0.10251 0.02301± 0.11639

Danish 0.00731± 0.03158 0.00924± 0.04160 0.02398± 0.10346 0.02771± 0.12481

Dutch 0.01867± 0.05240 0.02274± 0.07002 0.06225± 0.18013 0.06821± 0.21005

English 0.00263± 0.00983 0.00301± 0.01226 0.00839± 0.03256 0.00904± 0.03677

Estonian 0.00213± 0.01835 0.00276± 0.02492 0.00743± 0.06480 0.00827± 0.07476

Finnish 0.00615± 0.02993 0.00756± 0.04028 0.02056± 0.10358 0.02269± 0.12084

German 0.00745± 0.03075 0.00870± 0.03777 0.02440± 0.10243 0.02611± 0.11331

Greek (Anc.) 0.06789± 0.11445 0.08954± 0.15792 0.22852± 0.38975 0.26861± 0.47376

Greek (Mod.) 0.00303± 0.00991 0.00343± 0.01171 0.00969± 0.03249 0.01029± 0.03512

Hindi 0.00148± 0.00650 0.00174± 0.00943 0.00472± 0.02186 0.00522± 0.02828

Hungarian 0.00651± 0.02523 0.00768± 0.03247 0.02107± 0.08304 0.02305± 0.09741

Italian 0.00354± 0.02341 0.00429± 0.03274 0.01172± 0.08253 0.01288± 0.09822

Japanese 0.00674± 0.05244 0.00760± 0.05628 0.02213± 0.16395 0.02279± 0.16883

Latin 0.04057± 0.09173 0.05094± 0.12026 0.13626± 0.31224 0.15281± 0.36077

Persian 0.00639± 0.03244 0.00765± 0.04100 0.02116± 0.10850 0.02294± 0.12300

Portuguese 0.00438± 0.02073 0.00506± 0.02530 0.01433± 0.06949 0.01519± 0.07589

Romanian 0.00182± 0.01237 0.00208± 0.01443 0.00606± 0.04228 0.00625± 0.04330

Russian 0.00657± 0.03949 0.00782± 0.04703 0.02165± 0.12800 0.02347± 0.14108

Slovak 0.00787± 0.04410 0.00959± 0.05430 0.02617± 0.14497 0.02878± 0.16291

Slovenian 0.00901± 0.04283 0.01112± 0.05502 0.02984± 0.14335 0.03335± 0.16507

Spanish 0.00233± 0.01151 0.00266± 0.01462 0.00745± 0.03934 0.00797± 0.04384

Swedish 0.00485± 0.02292 0.00569± 0.02809 0.01591± 0.07725 0.01708± 0.08427

Tamil 0.00044± 0.00365 0.00053± 0.00437 0.00145± 0.01211 0.00158± 0.01310

Telugu 0.01049± 0.09766 0.01088± 0.09861 0.03216± 0.29508 0.03263± 0.29583

Turkish 0.00298± 0.03280 0.00363± 0.03662 0.00987± 0.10351 0.01090± 0.10985

Macro avg 0.00878± 0.03465 0.01081± 0.04291 0.02911± 0.11443 0.03244± 0.12873
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Table 4: A summary of the normalized number of crossings in treebanks from different lan-

guages (Prague annotation). The format and data shown are as in Table 3.

Language
Ctrue
|Qlinear|

Ctrue
|Q|

Ctrue

EURLT
URLA

[C|¬star]
Ctrue

EURLA[C]

Arabic 0.00024± 0.00317 0.00026± 0.00362 0.00077± 0.01022 0.00078± 0.01085

Basque 0.00282± 0.02033 0.00328± 0.02366 0.00945± 0.06834 0.00984± 0.07097

Bengali 0.01024± 0.07027 0.01291± 0.08603 0.03417± 0.22580 0.03873± 0.25808

Bulgarian 0.00364± 0.03441 0.00407± 0.03688 0.01208± 0.10910 0.01221± 0.11063

Catalan 0.00024± 0.00226 0.00027± 0.00269 0.00077± 0.00743 0.00081± 0.00806

Czech 0.00536± 0.02856 0.00605± 0.03273 0.01774± 0.09367 0.01816± 0.09818

Danish 0.00164± 0.00817 0.00192± 0.01094 0.00538± 0.02749 0.00575± 0.03281

Dutch 0.01585± 0.05088 0.01858± 0.06694 0.05325± 0.17535 0.05573± 0.20081

English 0.00060± 0.00594 0.00066± 0.00697 0.00194± 0.01991 0.00199± 0.02090

Estonian 0.00077± 0.01239 0.00114± 0.01914 0.00268± 0.04353 0.00343± 0.05742

Finnish 0.00254± 0.01391 0.00300± 0.01759 0.00850± 0.04832 0.00901± 0.05277

German 0.00659± 0.02447 0.00738± 0.02824 0.02157± 0.08079 0.02213± 0.08473

Greek (Anc.) 0.07030± 0.11966 0.09050± 0.16363 0.23676± 0.40801 0.27151± 0.49088

Greek (Mod.) 0.00103± 0.00515 0.00112± 0.00574 0.00331± 0.01716 0.00337± 0.01723

Hindi 0.00261± 0.00915 0.00295± 0.01148 0.00846± 0.03122 0.00885± 0.03443

Hungarian 0.00597± 0.02448 0.00691± 0.02964 0.01930± 0.07972 0.02075± 0.08891

Italian 0.00046± 0.00461 0.00053± 0.00587 0.00149± 0.01538 0.00159± 0.01762

Japanese 7.45·10−6 ± 0.00052 7.73·10−6 ± 0.00053 2.48·10−5 ± 0.00172 2.32·10−5 ± 0.00160

Latin 0.03938± 0.09014 0.04750± 0.11558 0.13298± 0.30915 0.14250± 0.34675

Persian 0.00436± 0.02215 0.00469± 0.02414 0.01444± 0.07363 0.01408± 0.07242

Portuguese 0.00181± 0.01537 0.00200± 0.01733 0.00592± 0.05020 0.00601± 0.05199

Romanian 0.00000± 0.00000 0.00000± 0.00000 0.00000± 0.00000 0.00000± 0.00000

Russian 0.00308± 0.02864 0.00349± 0.03244 0.01017± 0.09206 0.01046± 0.09731

Slovak 0.00632± 0.04273 0.00740± 0.05023 0.02111± 0.13945 0.02220± 0.15069

Slovenian 0.00531± 0.03492 0.00639± 0.04142 0.01771± 0.11419 0.01918± 0.12426

Spanish 0.00039± 0.00376 0.00049± 0.00632 0.00125± 0.01222 0.00146± 0.01896

Swedish 0.00146± 0.01263 0.00168± 0.01503 0.00477± 0.04341 0.00504± 0.04510

Tamil 0.00036± 0.00351 0.00042± 0.00412 0.00118± 0.01168 0.00125± 0.01237

Telugu 0.00804± 0.08932 0.00804± 0.08932 0.02413± 0.26796 0.02413± 0.26796

Turkish 0.00571± 0.04363 0.00640± 0.04716 0.01923± 0.14104 0.01921± 0.14148

Macro avg 0.00714± 0.02750 0.00862± 0.03318 0.02381± 0.09061 0.02587± 0.09954
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Table 5: A summary of the hubiness in treebanks from different languages (Stanford anno-

tation): n, the size of the tree,
〈
k2
〉

, the 2nd moment of degree about zero, h, the hubiness

coefficient and EURLT [h|¬star], the expected h in a uniformly random labelled tree excluding

star trees, and p(star) the proportion of trees of the treebank that are star trees. The format

is as in Table 1.

Language n h EURLT [h|¬star] p(star)

Arabic 26.3± 21.0 0.089± 0.076 0.064± 0.045 0.005

Basque 11.8± 5.2 0.191± 0.120 0.095± 0.040 0.044

Bengali 7.5± 3.0 0.239± 0.160 0.121± 0.049 0.163

Bulgarian 13.6± 7.6 0.167± 0.114 0.089± 0.044 0.033

Catalan 26.9± 13.8 0.113± 0.082 0.049± 0.030 0.009

Czech 16.5± 8.8 0.135± 0.092 0.075± 0.040 0.018

Danish 17.2± 9.8 0.155± 0.109 0.074± 0.040 0.032

Dutch 13.6± 8.3 0.175± 0.124 0.090± 0.046 0.033

English 21.7± 9.9 0.127± 0.084 0.057± 0.031 0.011

Estonian 7.3± 4.0 0.231± 0.169 0.111± 0.061 0.237

Finnish 12.2± 5.6 0.173± 0.113 0.093± 0.039 0.026

German 17.2± 9.3 0.131± 0.089 0.072± 0.039 0.034

Greek (Anc.) 13.3± 7.8 0.216± 0.138 0.093± 0.044 0.043

Greek (Mod.) 23.0± 12.6 0.116± 0.081 0.057± 0.034 0.008

Hindi 20.4± 9.2 0.140± 0.083 0.060± 0.029 0.004

Hungarian 19.0± 10.4 0.141± 0.098 0.068± 0.038 0.013

Italian 18.6± 11.8 0.144± 0.106 0.071± 0.042 0.025

Japanese 10.5± 6.2 0.155± 0.121 0.102± 0.050 0.072

Latin 14.9± 8.8 0.169± 0.113 0.083± 0.044 0.028

Persian 14.5± 10.9 0.148± 0.103 0.088± 0.048 0.026

Portuguese 20.9± 12.9 0.122± 0.091 0.065± 0.041 0.019

Romanian 10.7± 6.2 0.181± 0.124 0.102± 0.048 0.056

Russian 15.4± 8.6 0.140± 0.103 0.080± 0.041 0.025

Slovak 14.3± 9.0 0.173± 0.117 0.087± 0.045 0.044

Slovenian 16.1± 10.1 0.200± 0.126 0.082± 0.044 0.052

Spanish 27.1± 13.8 0.111± 0.085 0.050± 0.033 0.012

Swedish 16.2± 8.9 0.145± 0.090 0.076± 0.039 0.013

Tamil 14.6± 7.4 0.159± 0.103 0.084± 0.037 0.008

Telugu 5.4± 1.6 0.161± 0.166 0.100± 0.075 0.305

Turkish 11.8± 7.9 0.177± 0.130 0.097± 0.052 0.078

Macro avg 16.0± 9.0 0.157± 0.110 0.081± 0.043 0.049
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Table 6: A summary of the hubiness in treebanks from different languages (Prague annota-

tion). The format and data shown are as in Table 5.

Language n h EURLT [h|¬star] p(star)

Arabic 26.4± 21.0 0.050± 0.055 0.064± 0.045 0.002

Basque 11.7± 5.2 0.163± 0.115 0.095± 0.041 0.043

Bengali 7.4± 2.8 0.232± 0.160 0.121± 0.049 0.168

Bulgarian 13.4± 7.6 0.104± 0.101 0.089± 0.045 0.021

Catalan 26.9± 13.9 0.073± 0.067 0.049± 0.031 0.006

Czech 16.2± 8.7 0.092± 0.081 0.075± 0.040 0.013

Danish 17.1± 9.8 0.096± 0.089 0.074± 0.041 0.018

Dutch 13.5± 8.3 0.110± 0.103 0.090± 0.047 0.019

English 21.7± 10.0 0.086± 0.069 0.058± 0.032 0.007

Estonian 7.2± 4.0 0.211± 0.173 0.111± 0.062 0.236

Finnish 12.1± 5.6 0.133± 0.104 0.094± 0.040 0.021

German 17.0± 9.3 0.091± 0.076 0.072± 0.039 0.030

Greek (Anc.) 13.3± 7.9 0.193± 0.141 0.093± 0.044 0.040

Greek (Mod.) 22.9± 12.5 0.077± 0.065 0.057± 0.035 0.006

Hindi 20.4± 9.2 0.095± 0.077 0.060± 0.029 0.002

Hungarian 18.7± 10.4 0.123± 0.097 0.070± 0.039 0.015

Italian 18.4± 11.8 0.094± 0.088 0.071± 0.042 0.015

Japanese 10.3± 6.2 0.084± 0.102 0.100± 0.052 0.037

Latin 14.9± 8.8 0.124± 0.103 0.083± 0.044 0.024

Persian 14.2± 10.7 0.078± 0.084 0.088± 0.049 0.012

Portuguese 20.8± 12.9 0.067± 0.067 0.065± 0.041 0.009

Romanian 10.6± 6.2 0.128± 0.118 0.101± 0.048 0.042

Russian 15.3± 8.6 0.092± 0.086 0.080± 0.042 0.018

Slovak 13.9± 8.7 0.121± 0.108 0.088± 0.045 0.037

Slovenian 15.4± 9.5 0.150± 0.122 0.084± 0.044 0.041

Spanish 27.0± 13.8 0.069± 0.066 0.050± 0.033 0.008

Swedish 16.0± 8.8 0.112± 0.085 0.077± 0.039 0.011

Tamil 14.6± 7.4 0.134± 0.101 0.084± 0.037 0.007

Telugu 5.4± 1.6 0.156± 0.167 0.103± 0.075 0.342

Turkish 11.3± 7.6 0.111± 0.117 0.097± 0.054 0.056

Macro avg 15.8± 9.0 0.115± 0.099 0.081± 0.044 0.043
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real trees are close to linear trees. We have also seen that the gap between real

trees and URLTs reduces with Prague annotations. The statistical similarity

between real dependency trees and linear trees is what makes the low number

of crossing dependencies to be really scarce: linear trees maximize the potential

number of crossings, as we have shown above.

The challenge for future research is to determine the true reason for the low

number of crossings in sentences. A long standing hypothesis is that the low

number of crossings of real sentences is a side effect of the principle of depen-

dency length minimization, namely, the minimization of the distance between

linked vertices in the linear sequence [20, 38, 26, 44]. The low hubiness of real

sentences suggests that hubiness may have a secondary role in reducing cross-

ing dependencies. We hope that our quantification of the number of crossing

dependencies with respect to baselines stimulates further research on the actual

origin of their scarcity and the weight of different factors.

We have observed a breakpoint in the decay of the average number of cross-

ings across treebanks at n = 13 (Fig. 5) that is also suggested by the decay

of the average relative number of crossings (Fig. 6). We suspect that it could

be related to increasing pressure for dependency length minimization for longer

sentences. However, the real nature of the breakpoint should be investigated

further.

Although the conclusion that crossings in sentences are really scarce does

not depend on the annotation format, our analyses indicate that Stanford and

Prague dependencies are not statistically equivalent. For instance, we have seen

that real trees are closer to URLTs with respect to hubiness when Prague depen-

dencies are considered. This is in line with recent results highlighting various

other relevant quantifiable differences between annotation criteria, e.g. in their

suitability for automatic parsing [45, 46] or in the prevalence of certain patterns

of crossing dependencies [47]. Thus, considering more than one annotation for-

mat is useful to analyze underlying properties of syntax, and distinguish them

from properties of a specific annotation.

It is worth bearing in mind that syntactic annotation schemes are typically
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designed based on linguistic considerations [48], as well as technical consider-

ations to facilitate the work of parsers and other language processing systems

[49], independently from statistical considerations [50]. Our findings suggest

that statistical implications should be involved when improving current annota-

tion formats or developing new ones. Identifying the most appropriate statistical

ensemble for syntactic dependency trees is an important problem that should

be the subject of future research.

6. Conclusion

We have shown that the number of crossings of real sentences is really scarce

with the help of different baselines. Although that scarcity could be easily ex-

plained by a high hubiness, the hubiness of real sentences is rather low suggesting

that it has a secondary role in the low number of crossings of real sentences.

Statistically, syntactic dependency trees seem to be closer to linear trees than

to star trees. Our findings provide support for the hypothesis that dependency

length minimization is the main force responsible for the scarcity of crossing

dependencies.

Appendix A. The maximum number of crossings of a linear tree

Figure A.8 shows arrangements with maximum number of crossings for a

series of linear trees of n nodes, with 3 ≤ n ≤ 7. Each tree of n nodes is obtained

by adding the vertex n to the tree of n−1 nodes. In all cases, the linear ordering

of the vertices consists of the odd vertex labels in increasing order, followed by

the even vertex labels also in increasing order. We will show that this kind

of arrangements achieves the maximum possible number of crossings for linear

trees of n nodes. Formally, these orderings can be defined as the sequence of

vertices

1, 3, · · · , n+ n mod 2− 1, 2, 4, · · · , n− n mod 2. (A.1)

Let C(n) be the corresponding number of crossings. Notice that C(n) = 0 for

0 ≤ n ≤ 3 [27].
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1 3 2

1 3 2 4

1 3 5 2 4

1 3 5 2 4 6

1 3 5 7 2 4 6

Figure A.8: Arrangements of linear trees that maximize the number of crossings. Top to

bottom: linear trees of 3, 4, 5, 6 and 7 nodes that have 0, 1, 3, 6 and 10 crossings, respectively.

It is easy to check that C = |Qlinear| in all cases (recall Eq. 8).
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In Figure A.8, we adopt the convention that the edge 3 ∼ 4 is always red,

4 ∼ 5 is always blue, 5 ∼ 6 is always green and 6 ∼ 7 is always brown for

all linear trees. Thus, it is easy to check the contribution to C(n) of the edge

(n − 1) ∼ (n) with respect to C(n − 1); when n = 4, the edge 3 ∼ 4 adds one

crossing; when n = 5, the edge 4 ∼ 5 adds two crossings; when n = 6, the edge

5 ∼ 6 adds three crossings and, when n = 7, the edge 6 ∼ 7 adds four crossings.

After this introduction now comes the proof.

We aim to show that C(n) = |Qlinear| (Eq. 8) for n ≥ 3. First, C(3) =

|Qlinear| = 0, setting the base case. Second, we aim to show that C(n) =

∆(n) + C(n − 1) with ∆(n) = n − 3 for n ≥ 4. Suppose that a tree of n − 1

vertices becomes a tree of n vertices adding vertex n and the edge (n− 1) ∼ n.

If n is odd, the edge (n − 1) ∼ n crosses any two edges formed with node i,

namely edges (i − 1) ∼ i and i ∼ (i + 1), for i even and 2 ≤ i ≤ n − 3. This

yields ∆(n) = n − 3. Note that (n − 1) ∼ n cannot cross (n − 2) ∼ (n − 1) as

they share vertex n − 1. If n is even, then (n − 1) ∼ n crosses 1 ∼ 2 and any

two edges formed with node i such that i is odd and 3 ≤ i ≤ n− 3, giving again

∆(n) = n− 3. Therefore,

C(n) =

n∑
i=4

∆(i)

=

n−3∑
i=1

i

=
1

2
(n− 2)(n− 3) (A.2)

and finally C(n) = |Qlinear| (Eq. 8), as we wanted to prove.

Appendix B. Expectations on uniformly random labelled trees ex-

cluding star trees

There are n labelled star trees: each can be constructed by choosing one of

the n vertices as the hub. Since there are nn−2 labelled trees in total [51], the

probability that a URLT is a star tree is

p(star) =
n

nn−2
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= n3−n. (B.1)

We define the sum of squared degrees of a tree as [25]

K2 = n
〈
k2
〉

(B.2)

and define p(K2|¬star) as the probability that a URLT has K2 as sum of squared

degrees knowing that it not a star tree. We have that

p(K2|¬star) =
p(¬star|K2)p(K2)

p(¬star)
. (B.3)

We have seen above that the maximum value of
〈
k2
〉

for a given n is achieved

by a star tree (Eq. 10), and hence the same can be said about the maximum

value of K2. If we call this value Kstar
2 , then

p(¬star|K2) =

 1 for K2 < Kstar
2

0 for K2 = Kstar
2 .

(B.4)

Therefore, forK2 < Kstar
2 , we can apply p(¬star) = 1−p(star) and p(¬star|K2) =

1 to obtain

p(K2|¬star) =
p(K2)

1− p(star)
. (B.5)

If star trees are excluded, the maximum hubiness is reached by a quasi-star

tree, a tree that gives the second largest value of
〈
k2
〉
, and is defined by one

vertex of degree n − 2, one vertex of degree 2 and the remainder of vertices of

degree 1 [38] (Fig. 2). Suppose that Klinear
2 and Kquasi−star

2 are the values of

K2 of a linear tree and a quasi-star tree, respectively. The expectation of
〈
k2
〉

of a URLT knowing that it is not a star tree is

EURLT

[〈
k2
〉
|¬star

]
=

1

n
EURLT [K2|¬star]

=
1

n

Kquasi−star
2 ∑

K2=Klinear
2

p(K2|¬star)K2

=
1

n(1− p(star))

Kquasi−star
2 ∑

K2=Klinear
2

p(K2)K2

=
1

n(1− p(star))

(
EURLT [K2]− p(star)Kstar

2

)
.(B.6)
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Knowing that

Kstar
2 = n

〈
k2
〉
star

= n(n− 1), (B.7)

EURLT [K2] = nEURLT [
〈
k2
〉
]

=
n(n− 1)(5n− 6)

n2
(B.8)

thanks to Eq. 23, and recalling Eq. B.1, one obtains

EURLT

[〈
k2
〉∣∣¬star

]
=

n− 1

1− n3−n

(
5n− 6

n2
− n3−n

)
. (B.9)

Notice that

EURLT

[〈
k2
〉∣∣¬star

]
= EURLT

[〈
k2
〉]

(B.10)

for sufficiently large n (compare Eqs. 23 and B.9).

Adapting Eq. 24 to EURLT
URLA [C|¬star], one obtains

EURLT
URLA [C|¬star] =

n

6

(
n− 1− E

[〈
k2
〉∣∣¬star

])
. (B.11)

Plugging Eq. B.9 to B.11, one obtains

EURLT
URLA [C|¬star] =

(n− 1)(n− 2)(n− 3)

6(n− n4−n)
(B.12)

and also

EURLT
URLA [C|¬star] =

n− 1

3(n− n4−n)
|Q|linear

≈ 1

3
|Q|linear. (B.13)

Adapting Eq. 28 to EURLT [h|¬star], one obtains

EURLT [h|¬star] =
n
(
EURLT

[〈
k2
〉∣∣¬star

]
−
〈
k2
〉
linear

)
(n− 2)(n− 3)

. (B.14)

Note that

EURLT

[〈
k2
〉∣∣¬star

]
−
〈
k2
〉
linear

=
n− 1

1− n3−n

(
5n− 6

n2
− n3−n

)
−
(

4− 6

n

)
=

(n− 2)(n− 3)

n

n4 − nn

n4 − nn+1
(B.15)
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and then

EURLT [h|¬star] =
nn−4 − 1

nn−3 − 1
. (B.16)

It is easy to see that

EURLT [h|¬star] ≈ EURLT [h] =
1

n
(B.17)

for sufficiently large n. For numerical reasons, it is convenient to use Eq. B.16

till n = n∗ and then replace the formula simply by 1/n. n∗ can be chosen as

the largest value of n for which Eq. B.16 does not produce numerical over-

flows when calculating the powers. Such a critical value increases through the

decomposition

EURLT [h|¬star] = a(n, 1)a(n,−1), (B.18)

with

a(n, x) =
n

n−4
2 + x

n
n−3
2 + x

. (B.19)

All the corrected expectations that we have calculated in this section require

n ≥ 4 because there are no labelled trees with n < 4 such that they are not star

trees.
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