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ABSTRACT. For each Hilbert modular form of non-critical slope we construct a
p-adic distribution on the Galois group of the maximal abelian extension unram-
ified outside p and oo of the totally real field. We prove that the distribution is
admissible and interpolates the critical values of the complex L-function of the
form. This construction is based on the study of the overconvergent cohomology
of Hilbert modular varieties and certain cycles on these varieties.

INTRODUCTION

The construction and study of p-adic analytic L-functions for elliptic modular
forms has been extensively studied by several authors using different approaches. In
[15] the authors described the modular symbols approach and stated a conjecture
about the exceptional zeros of those p-adic L-functions. Glenn Stevens gave a new
construction of these p-adic L-functions using his theory of overconvergent modular
symbols (see [18] and [19]). His construction works also in families which allowed
him to prove the exceptional zero conjecture (see [20] and [21]).

For Hilbert modular forms, the construction and study of p-adic analytic L-
functions has been considered by authors such as Manin [13], Dabrowski and Pan-
chishkin (see [8], [17]), Mok [14] and Dimitrov [9]. The construction in [9] is based
on modular symbols setting a framework for generalising Stevens’ work which is the
object of this paper.

Before stating our result, we first briefly recall Stevens’ construction. Let p be
a prime and inc, : Q < @p an embedding. Let N > 4 be an integer such that
(N,p) =1 and we put I' = I'yg(pN). For k > 2 an integer and L a p-adic field, we
denote by Dy (L) the space of L-valued locally analytic distributions on Z, endowed
with an action of I' depending on k; the space of overconvergent modular symbols
can then be described as H}(I',Dy(L)). Let f be a p-stabilization of a newform
of weight £ and level IV, such that U,f = af and the p-adic valuation of « is
strictly less than k£ — 1. Using the Eichler-Shimura isomorphism one obtains a class
¢ € HY (', Sym*~2(L)) such that Upp = ap. The first step in Steven’s method is to
lift ¢ to an element ® € HL(I', Dx(L)) such that U,® = a® (see [18]). This is an
analogue of Coleman’s classicality theorem for overconvergent modular forms. The
p-adic L-function of f is then obtained by evaluating ® on the cycle {oo} — {0}.

Let now F' be a totally real field of degree d. Consider a Hilbert modular variety
Yk of level K C GLQ(A;—:OO)) and fix a cohomological weight A of GLs/F'.
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Let L be a sufficiently large p-adic field. We denote by D, (L) the space of locally
analytic distributions on Or ® Z, with values in L, endowed with an action of a
semigroup in GL2(Q, ®F) and having VY (L), the algebraic representation of weight
)\, as a quotient. We consider the overconvergent cohomology H2 (Y, Dx(L)). This
cohomology was introduced in [1] and [22], and is the natural object which gener-
alises the overconvergent modular symbols. For a positive rational number h € Q
we are interested in the “slope-< h part” of this cohomology, which essentially is
the subspace of H(Yx,Dx(L)) such that every eigenvalue of U, has p-adic valua-
tion < h and is denoted by H?(Yy,D(L))S". This subspace has good properties
when H?(Yy,Dy(L)) admits the so called “< h-slope decomposition” with respect
to Uy, this property implies for example that H3(Yy, Dy(L))<" is a direct summand
of HY(Yx,Dx(L)). The following theorem generalises Stevens’ classicity theorem to
the case of Hilbert modular forms (see 4.1 for more details). Its proof adapts the
method of [22], where the analogous statement is established for the usual coho-
mology, namely by working on the boundary of the Borel-Serre compactification of
Y.

Theorem 0.1. H4(Yy, Dy(L)) admits a decomposition with respect to U,. Moreover
there exists h(\) > 0 depending only on A, such that if h < h(\) then we have a
canonical isomorphism:

~

HE(Yie, DA(L) =" HE(Yie, V(L)<

An immediate consequence of this result is that given any cuspidal automor-
phic representation m of GLs/F contributing to Hd(Yg, VY (C)) and any p-stabilized
new vector f in m which has non-critical slope, one has a well defined class ® €
HY(Yg,Dx(L)) (see 6.1). The main objective of this article is to attach a p-adic
L-function to such a class. To achieve this we evaluate this class on the automor-
phic cycles introduced in [9]. Those cycles are morphisms of real analytic varieties
C, : X,, — Yx where X,, = HCI}(p")(R A R§0 and Cl}(p”) is the narrow ray
class group of F'. We remark that in the case F' = QQ we are considering the disjoint
union of the paths joining a/p™ and oo, for a € {0,...,p" — 1} coprime to p, inside
the modular curve.

In 5.2 we use these cycles to define a distribution valued sequence of evaluations,
ev, for each n € N, on the overconvergent cohomology, which are analogues of the
evaluations described in [9, §1.5]. Using evy we construct a morphism:

(1) HE(Y, DA(L)) = D(Galy, L),

where Gal, = Gal(FP*>°/F) where FP* is the maximal abelian extension of F' un-
ramified outside p and oo, and D(Galy, L) is the space of locally analytic distributions
on Gal,. Then pf € D(Galy,, L) is defined as the image of ® under the map (1).

Remark that FP°° contains the cyclotomic extension of F', and denote by N :
Gal, — L* the continuous character given by the cyclotomic character. For s € Z,
and any continuous character x : Gal, — L* we put:

Ly(f, x,8) := pe(XxN° 7).
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By construction this function is analytic in the variable s € Z,. We are now in a
position to state our main theorem:

Theorem 0.2. The distribution pg € D(Galy, L) is admissible. Let x : Gal, — L*
be a finite order character of F such that x,(—1) = 1 for each ¢ € X, then we

have: 1 Dr()
. TR X, 1)T(X
Ly(f,x,1) =inc, < Q. > HZ,J,
plp

here LP(m ® X, s) is the L-function of m twisted by x without the Euler factor in p,
7(x) is the Gauss sum, Qr is a period attached to m and Z, are local factors defined
in terms of m, and Xp.

The proof of the admissibility uses crucially all evaluations ev,,. The proof of the
interpolation formula is based on some computations given in [9].

As mentioned, a study of the p-adic properties of special values of L-functions
attached to Hilbert modular forms was carried out for example in [8]. The present
work has several advantages. For instance while in [8] the construction of the p-adic
L-function was donne by using the Ranking method we use the theory of overcon-
vergent modular symbols, which is more flexible to applications. In this direction,
in [3], in collaboration with M. Dimitrov and A. Jorza, we extend the method of
the present paper to construct p-adic L-functions in families, and investigate the
exceptional zero conjecture for central critical values of Hilbert modular forms of
any weight.

We would like to point out that the Stevens’ method for the construction of p-
adic L-functions, has been developed in the context of GLy in [24], [4] and [5].
Finally we would like to mention that Januszewski constructed p-adic L-functions for
GL, x GL,_1 in [10]. We hope that these results will motivate similar constructions
of p-adic L-functions for more general reductive groups.

The article is structured as follows. In section 1 we introduce some basic notations
used in this work. In section 2 we prove the existence of slope decomposition for
the compactly supported cohomology of Hilbert modular varieties. In section 3 we
introduce some spaces of distributions. Section 4 is devoted to the proof of theorem
0.1. In section 5 we use automorphic cycles to construct evaluations on the overcon-
vergent cohomology and we construct in particular the map (1). Finally in section
6, we construct p-adic L-functions and we prove theorem 0.2.
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de la Recherche grants ANR-10-BLAN-0114 and ANR-11-LABX-0007-01, Fondation
Simone et Cino del Duca, and CRM (Montreal, Canada).
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comments and suggestions to improve the presentation of this paper.

1. HILBERT MODULAR VARIETIES

1.1. Notations. Let F' be a totally real number field, d = [F' : Q] and X be the
set of embeddings of F' in C. In this paper we consider Q as a subfield of C and then
we identify ¥ with Hom(F, Q). We denote t = (1,...,1) € Z>F.

We denote by A the ring of adeles over Q and A the ring of finite adeles. We put
f&F ::f§§§eréﬂld AQQf ::f§fQ§Q17.

Let p > 2 be a prime number and inc, : Q — @p an embedding. For each
o € ¥ there is an unique p | p in F' such that inc, o o correspond to p. We obtain
a decomposition YXp = |_|p|p Yp, where Y, is the set of o0 € X corresponding to p

under inc,. Moreover, let v, : @; — Q be the non-archimedean valuation such that
vp(p) = 1.

For each prime ideal p over p we choose an uniformizer, @y, of F},. In all this paper
we suppose that wg" = p, where e, is the inertia degree at p. Using the decomposition
F®Q, =]l F» we obtain a group homomorphism u : (FF® Q,)* = (OF ® Zp)*.

Let G = Resp,,/7G L2, B be the Borel subgroup of the upper triangular matrices
and T be the standard torus. Let Z be the center of G and we denote G* = G/Z.

1.2. Hilbert modular varieties.

1.2.1. Let GX, be the connected component of the identity in G(R), Z» = Z(R) and
KI = SOy(Fy), where Fop = F @ R.

Let K be an open compact subgroup of G(Ay) then we define the Hilbert modular
variety of level K by:

Y =G(Q)\ G(A)/ KK Zw.

This variety is a complex manifold and we can describe more explicitly its connected
components. Let Cj. := F* \ A% /det(K)F5 and for each x € C}. we choose gx €
G(Ay) such that the image of det(gy) in Cj; is x. Then we have a decomposition:

YK: |_| YX,

xeC;

where Yy = G(Q) \ G(Q)gy KGL /KK Z. Moreover if we denote I'x = G(Q) N
gng;lGj;O then Yy ~ I'y \ Hp, here Hp := H>F and H is the upper half plane.

Hypothesis 1.1. We suppose in all this paper that for each x € C;} the group

I'x :=T%x/Tx N Z(Q) is torsion-free.

This hypothesis is satisfied if K is sufficiently small. In that case we deduce that
Yx is smooth and the fundamental group of Yy is I'x.

Remark 1.2. We will fix in all this work representatives gx whose image in G(Q,)
is trivial.
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1.2.2. Borel-Serre compactificacion. The variety Yx is not compact, here we will
describe the Borel-Serre compactificacion of Yx. To construct this compactification
we first enlarge Hp. We denote G(Q)T := G(Q) N GL and let G*4(Q)T be the
image of G(Q)T in G*(Q). In [7] it is constructed a space Hy containing Hf, and
it is proved that it is a manifold with corners with smooth boundary. There is a
continuous action of G*4(Q)* on Hp extending the action over Hp, moreover if T
is a torsion free arithmetic subgroup of G*4(Q)* then I' \ Hf is a compact surface
with fundamental group I'. More explicitly we have:

EﬁF:ZZEL?LJLJQ(P)
P

where the second union is over the set of Borel groups of G®I, and each e(P) is
a contractible space. Moreover the boundary | |, e(P) is stable under the action of
G*4(Q)™, in fact we have: ye(P) = e(yPy~ ') for each v € G*(Q)T and Borel group
P.

Using these notations we define the Borel-Serre compactification of Yi by:

= | | Tx\He.

xEC}
1.3. Cohomology and Hecke operators.

1.3.1. Cohomology. Let M be a module with a right action of K, and suppose that
KN Z(Q) acts trivially. We denote by £(M) the sheaf over Yx given by the local
system G(Q) \ (G(A) x M)/KK} Z,, — Yk which is defined by v(g, m)kkeo =
(vgkkoo, m-k). For some specific modules M we will be interested in the cohomology
groups: H (Y, L(M)) and H: (Y, L(M)).

Suppose that the action of K on M factorizes through the image of K into G(Q,),
then the groups I'x act on M and so for ? € {, c} we have the following decompo-
sition:

H(Yic, L(M)) = @, e HiTx \ Hp, L(M)) = @ o Hy (T, M),

where the term in the middle £(M) is the sheaf over T'y \ Hp given by the local
system defined by v(z,m) = (yz,my~!) for v € Ty, 2 € Hp and m € M.

Let T be a torsion free arithmetic subgroup of G*4(Q)™ then we have the following
exact sequence:

. — H{(T\Hp, L(M)) = H(T\ Hp, L(M)) — H/(T'\ 0Hp, L(M)) — ...

here the sheaf £(M) on T'\ OHp is defined as before.

The boundary of T'\ Hp is given by Upep.I'p \ e(P) where Br is a fixed set of
representatives of the classes of the Borel groups under the action by conjugation of
I'and I'p = T'N P. Then we obtain:

(2) H*(O(\Hp),Lr(M)) =~ @ H*(Tp\e(P),Lrn(M)) =~ @ H*(Tp, M
pPeBr PeBr
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1.3.2. Hecke operators. Let A C G*(Q)* be a semigroup acting on M, I', IV C A
be as before, and A € A such that TV N AT'A™? is of finite index in I". For ? € {0, ¢}
we define:

[OyT'] = Hy (U \ He, M) = Hy(I'\ Hp, M),
by [CAIY] = Corgjmm,l o[No 1"(35120/\,1F,A where Corgmm,l and resgm,lp,{\ are
the classical co-restriction and restriction map on the cohomology and [A] : H5(I' N
ATIYAN\Hp, M) — HYI'NATA '\ Hp, M) is given by the map M — M, m — mA.

In the same way, we define Hecke operators in the adelic point of view. Let
R C G(Ay) be a semigroup acting on M. Let K C G(Ay) be an open compact
subgroup contained in R and satisfying 1.1. For each z € R we define

[KaK]: Hy(Yic, L(M)) = Hy(Yie, L(M))
by [KzK] := Corgnyra—1 ko[T]ores g xnz—1 Kz, Where Corgr, ko1 i and resg grz—1Kz
are as before, and [z] : Hi(Yrre-1x2, L(M)) = Hi(Ygnpra—1,L(M)) is given as
follow: let x : Ygrzke—1 — Yxrz-1xz be given by g € G(A) — gxr € G(A),
then [z] is the morphism obtained using the y-cohomomorphism Lz, —1 g (M) ~~
Lirzia—1 (M) (in the notations of [6]) defined by (g,m) — (gz =1, zm).

Denote by A the image of R in G(Q,), then let A} C G(Q)™ be the inverse image
of A under the map G(Q)* — G(Q,) and finally let A C G*!(Q)* be the image of
Ay in G*(Q)*. Then A acts on M and I'yCcAforalye C;g. We suppose that
z € R satisfy det(K) = det(K Nz~ 'Kz) and let o : Cj- — C}% be the bijection such
that for each y € Ci we can write gyz = Ay9o(y)kc where Ay € G(Q), k € K and
¢ € G, Then using the above notations we have:

(3) [K(EK] = @ [fa(y))‘)’TY]'
yGC}

Notation 1.3. We use the usual notations about Hecke operators. If ((1)@0}3) €
R we denote U, the operator [K (éa(,)p) K] and if (1 0) € R the we write U, =

Op
(K (45) K]. We have U, =1, Uy"

1.4. Algebraic representations of G. Through all this work we fix (k,r) €
Z*F x 7 such that k, > 2, ko =7 mod 2 and | r |< k, — 2 for all 0 € Xp.

Let L be a finite extension of @, containing a normal closure of F'. Attached
to the data (k,r) we get a dominant character, A, for (Gr,Br,T1), correspond-
ing to (k"}g‘”, _k";“2+r)aezF € (ZxZ)*F ie. if Ais a L-algebra then for t =
((“0" b([), ))UegF € T(A) we have:

kg —2+4r —kg+2+r
At)= ] a0 * b5 °
oEXR
Let V) be the irreducible algebraic representation of highest weight A of G, then
V is the algebraic induction of A from the Borel subgroup of the lower triangular
matrices to Gp,.
We have an explicit description of this representation. Let A be a L-algebra then

we have:
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® Sym"*” ®detr 5

oEX R
rt—k+42t

here the action on the left side is given by: (g- P)(X,Y) = (det(g)) 2 P(aX —
cY,—bX +dY), for g = (2}) € G(A) ~ Gly(A)*F and P(X,Y) is a polynomial
in the variables X = (X5)sex, and Y = (Y, )sex, which is homogeneous of degree
ks — 2 in the variables X, and Y.

We denote L(k,7; L) = Q,cx,. Sym** 2(L)@det— 2" e , regarded as a left G(L)-
module. Let crit : L(k,r; L) — L be the morphism such that P(X,Y) € L(k,r; L)

. . . k—2t—7‘t k—2t4rt .
is sent to the coefficient in front of X Y 2 . Moreover, consider the mor-

phism ec : VY (L) — L given by ¢ — (kk2t+rt) (fx), where f, € V(L) is uniquely
2

k—2t+4rt
2

determined by the condition f.({%) = =
the following commutative diagram:

(4) V(L) — L

for all z € F'®g L. Then we have

crit

L(k,r;L)

2. SLOPE DECOMPOSITION FOR THE COMPACTLY SUPPORTED COHOMOLOGY

In this section we prove the following theorem. Let R C G(Ay) be a semigroup
and K C G(Ay) be an open compact subgroup contained in R satisfying hypothesis
1.1. Let M be a compact Frechet space over L equipped with a continuous left
action of R, where L is a finite extension of Q,. Suppose that the action of R on M
factorizes through the image of R in G(Q,) and moreover K N Z(Q) acts trivially.

Theorem 2.1. Let x € R. Suppose that the action of x on M gives a completely con-
tinuous operator on M. Then for each h € Q and i € N there is a < h-decomposition
of H: (Y, L(M)) with respect to [KzK].

This kind of result was proved in [22] to H* (Y, £(M)). In this work we adapt
the strategy used in [22], to the cohomology of the boundary of the Borel-Serre
compactification of Yx. Finally using the mapping cone we can prove the theorem.

2.1. Complexes.

2.1.1. Let I" be a torsion free arithmetic subgroup of G (Q)*. The compact variety
['\ Hf is a smooth C*-variety with corners, then by [16] we can find a finite tri-
angulation of '\ Hz inducing a triangulation on its boundary. We fix one of those
triangulations. Using the natural projection Hp — I'\ Hz we obtain a triangulation
on Hp. For each i € {0,...,2d} we denote by /\; the set of simplexes of degree i
of this last triangulation. The group I' acts on A;, and the quotient by this action
is a finite set, in addition each orbit is in bijection with I'. Let C;(T") := Z[A;] be
7



the free Z-module generated by A;. Then C;(I') is a free Z[I'l-module of finite rank
and by considering the standard boundary operators we obtain the following exact
sequence of Z[I'-modules:

0— Co(l') —» ... > C1(T") - Co(I') = Z — 0.

When M is a left Z[I']-module we define C*(T', M) := Homp(C,(I"), M), then:

e The cohomology of C*(T', M) compute the cohomology of T" i.e. the groups
H*(T', M);

e C(I", M) is isomorphic to M", here 7; is the number of orbits of the action
of I" on A;.

2.1.2. Complexes from the boundary. From the triangulation of Hp fixed in 2.1.1 we
obtain a triangulation of Hp. If we call A? the set of ¢-simplexes of this triangula-
tion then in the same way that in 2.1.1 we consider the Z[I']-modules:

CP () = Z[A7).

Let B be the set of Borel groups of G and we denote by Z[B] the free Z-module
over B. The group I' acts on B by conjugation, then Z[B] is in fact a Z[[']-module.

Proposition 2.2. The Z[[']-module C2(T) is free of finite rank. Moreover C2(T) is
a resolution of Z[B], i.e. we have the following exact sequence of Z[I'|-modules:

(5) 0—CY () = ... = C) — CYT) = Z[B] — 0.

Proof: The first affirmation is a consequence of the fact that the action of I' on
OHF is free and the triangulation of I' \ Hf fixed in 2.1.1 is finite.

By construction, the complex computes the homology of 9Hp. Moreover we have
a decomposition OHp = | |peze(P) (see 1.2.1) where each e(P) is a contractible
topological space, then H;(0Hp) = 0 if i > 0 and Hy(0Hr) = Z[B]. So we deduce
the exact sequence (5). m

If M is a module with an action of I" then for each i € N we define
Ci(T, M) := Homp(C2(T), M).

From (5) we deduce that C§(I', M) is a complex. In proposition 2.4 we give
other description of the complex C§(T', M). Let P be a Borel of G, let e¢(P) be
the contractible space attached to P (see 1.2.1) and denote I'p := I' N P(Q). The
triangulation of H fixed in section 2.1.1 induces a triangulation of e(P), then for
i € {0,...,2d — 1} we denote by AF the set of simplexes of dimension i in this
triangulation. In fact, we have AF = {s € A;|s C e(P)}. We denote C;(I'p) the
free Z-module over AZP , then we have:

Lemma 2.3. For each i the module C;(I'p) is a free Z[I'p|-module of finite rank.
Moreover we have the following exact sequence of Z[I' p]-modules:

(6) O—>C'2d,1(1“p) — ... —)Cl<rp) —)Co(Fp) — 7Z — 0.
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Proof: This lemma is proved in the same way as proposition 2.2. =

If M is a left Z[I'p]-module we define C*(I'p, M) := Homr, (Ce(I'p), M). Let Br
be a fixed set of representatives of the classes of the Borel groups under the action
by conjugation of I'. Then we have:

Proposition 2.4. ¢) For each Z[I']-module M we have an isomorphism:

Cé(F,M> @PEBFC.(vaM)v

~

this isomorphism is functorial in M.

it) Each C)(T, M) is isomorphic to finitely many copies of M. Moreover the co-
homology groups H*(T'\ OHp, L(M)) are calculated by taking the cohomology of the
complex C5(I', M).

Proof: We have the following decomposition of Z[I']-modules:

)= P D o),

PeBr Q~P
then is enough to define for each P € Br an isomorphism:

HOmF(@QNP C.(FQ),M) .:._> C.(FP, M)

Fix P € Br. We define Homp(@QNP Ce(I'q), M) — C*(I'p, M) by & = ¢ |cy(1p)-
We will verify that this map is an isomorphism. Let ¢ such that ¢ |, )= 0.
Let @ ~ P and s € Co(I'g). There exist v € I' such that vs € Co(I'p), then
©(s) =~y p(ys) = 0. So ¢ = 0 and then the morphism is injective. To prove that
it is surjective, let p € C*(I'p, M) and we define p : Pg..p Ce(I'q) — M as follows:
let s € Co(I'g) where Q ~ P and we choice v € T' such that vs € Co(I'p), then
we define B(s) := vy 1p(ys). Is not difficult to prove that @ is well defined and is
I'-equivariant.

The first affirmation of part 2) is deduced from the fact that C2(T') is a free Z[T']-
module of finite rank. Finally from part 1) and decomposition (2) we deduce that

the cohomology of C§(T', M) is H*(T'\ 0Hp, L(M))m

2.1.3. Compact supports. We recall de notion of mapping cone of a morphism of
complexes. Let A be an abelian category. If 7 = #® : C* — D® is a morphism of
complexes of elements of A, we obtain a new complex of elements in A denoted by
Cone(7)*® and defined as follows: for each i € Z we have Cone(r)" := C* @ D*~! and
the differential is defined by:

d : Cone(r)" — Cone(n)™ | (¢,d) — (—dc(c), —7'(c) + dp(d)).
IfI' ¢ G*(Q) and M a I'module we denote 7* : C*(I', M) — C(I', M) the
morphism of complexes obtained from the inclusion C2(T') C C,(T). We define:
C2(I', M) := Cone(m)*®.
Proposition 2.5. Each Ci(T', M) is isomorphic to finitely many copies of M. More-
over the cohomology groups H(T'\Hpg, L(M)) are calculated by taking the cohomology

of the complex C2(T', M).
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Proof The first assertion is a direct consequence of 2.1.1 and proposition 2.4.
We have two long exact sequences:

o = H(T \ Hp, L(M)) — HY (T \ Hp, L(M)) — H T\ OHp, L(M)) — ...

and

. = HY(C2(T,M)) — H/(C*(T',M)) — H(CT',M)) — ...

Moreover, for each i we have HY( \ Hp,L(M)) ~ H(C*(T,M)) and HY(T \
OHFp, L(M)) ~ H'(C5(I", M)). Then, using the five lemma we obtain the proposition.

2.2. Hecke operators on complexes. In this subsection we define operators on
C?2(T', M) which induces the standard Hecke operators on the cohomology.

2.2.1. Compatible pairs. Let T and I be torsion free arithmetic subgroups of G*4(Q)*

and ¢ : I' — IV a group homomorphism. We take a left I-module N and a left I"-
module M. A pair (¢, «) is called compatible if o : M — N is a morphism of
Z[I']-modules when we consider M as a Z[I']-module via ¢. In [22] the author as-
sociates a morphism a® : C*(I", M) — C*(I', N) to each such pair. We obtain an
analogous morphism in the boundary.

By proposition 2.2, C2(T') is a projective resolution of Z[B] by Z[']-modules. Via
¢ we can consider C?(I") as other resolution of Z[B] by Z[T'-modules, then there is
a map ¢, : C2(T') — CI(I") compatible with ¢, and it is unique up to homotopy.
Then we obtain a map a® : C5(I", M) — C§(I', N) given by ¢ — a0 @ o ¢,. This
map is uniquely defined up to homotopy.

The relation between these constructions is given by:

Co(T) —— Co(I) C*(T,N) «—— C*(I", M)
co(r) —— (1) C3(I,N) +—— C3(I'", M)

the first diagram is in homotopy category on Z[I'] and the second one in the homotopy
category on Z.

o If we take I' C IV, M = N, ¢ be the inclusion and « the identity, then we
obtain the restriction map: resf. : C3(I", M) — C3(T', M).

e Suppose A C G*(Q)7 is a semigroup, I' C A and X € A such that A\TA™! C
A. Moreover suppose that M is a left A-module. We take ¢ : \TA™! — T
given by v — A7'y\ and M — M defined by m +~ Am. Then obtain a
morphism denoted by [A] : C§(I', M) — CH(ALA™L, M).

2.2.2. Corestriction map. Suppose I' C T is of finite index. The complex CJ(I") is a

projective resolution of Z[B] by Z[T']-modules. Then there exists a map 7 : C2(I') —

CO(I") of I'-modules, unique up to homotopy. If M is a left I"-module then we obtain
10



a map Cor} : Cs(', M) — C5(I", M) called the corestriction map and defined as
follows: fix a decomposition IV = Ly, then for any ¢ € C§(T', M) we put

Cort (9)(s) = Y Yap(r("9)).

This map is uniquely defined up to homotopy. In [22] is defined a morphism CorIE/ :
C*(T', M) — C*(I", M), and we have commutative diagrams as in 2.2.1 relating these
two corestriction morphisms.

2.2.3. Hecke operators. Let A C G*(Q)* be a semigroup, I, T’ C A be free torsion
arithmetic groups. Let A € A be such that I N AI'A\~! is of finite index in I'. We
define:

[DALY] : C3(T, M) — C3(T', M) by [CAT] = Corkyypy-1 0 [\ 0 reshy—ipvy.-

In [22] is defined the Hecke operator [[ALY] : C*(I', M) — C*(I", M) and we have
the following commutative diagram:

[[ATY]

C*(T, M) C* (I, M)

[TATY]

Cs(T', M) Cs(I', M)

This diagram live in the homotopy category over Z, in this last category the mapping
is well defined and we obtain a morphism:

(7) [CALY] : C2(T, M) — C2(T', M).
Remark 2.6. These morphisms give the usual morphisms on the cohomology.

2.3. Conclusions. Consider the notation on the beginning of this section. On the
cohomology we have the decomposition (3), then from subsections 2.1 and 2.2 we
obtain immediately the following proposition:

Proposition 2.7. Suppose that K satisfies hypothesis 1.1, the action of R on M
factorizes through the projection R — G(Q,) and K N Z(Q) acts trivially on M.
Then, there exists a bounded complex RTU'®(K, M) such that:
e The cohomology of RT'e(K,M) is H2 (Y, L(M)).
e Each RT%L(K, M) is isomorphic to finitely many copies of M.
e We can define operators over RT'S(K, M) giving the classical Hecke operators
on H{(Yk, L(M)).

Proof of theorem 2.1: From proposition 2.7 and [22, §2.3.13], we deduce the exis-
tence of the < h-decomposition of RI's(K, M) with respect to [Kx K| for each i € Z.
Finally we deduce the theorem from the discussions in [22, §2.3.10] and [22, §2.3.12].m
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3. DISTRIBUTIONS

In this section we recall the definition of the spaces of distributions that we will
use to define the p-adic overconvergent coefficients on Hilbert modular varieties.
Moreover we describe the space of distributions on some Galois groups.

3.1. Generalities.

3.1.1. Definitions. Let X C @}, be an open compact subset. Let A(X, L) be the
vector space over L of the locally L-analytic functions f: X — L. Let A, (X, L) be
the subspace of A(X, L) such that f € A,(X, L) if and only if f is analytic on the
disks of radius p~™. The space A, (X, L) is a Banach space when equipped with the
norm defined as follows. Let f € A, (X, L) and fix a covering of X by disks of radius
p~ ™. Fix one of these disks and let a = (aq,..,a,) € X be one of its centers, over
this disk we can write:

fz1, .., 2p) = Z em(@) () —ay)™ . (xp — ap)™n,

meN”

Then we define || f ||,= sup{p~"2"™|cm(a)], | m € N" , a} where a run through
the set of centers of the fixed covering of X. Because X is compact we have A(X, L) =
Up>0A4n (X, L) and then we will consider the inductive limit topology on A(X, L).
Let D(X, L) be the continuous dual of A(X,L). Moreover, let D,(X, L) be the
continuous dual of A, (X, L), then D, (X, L) is a Banach space and D(X, L) is the
projective limit over n of the D, (X, L)’s.

It is possible to prove that the inclusions A, (X, L) C A,+1(X, L) are completely
continuous (see [22, Lemma 3.2.2]). From this fact we deduce that D(X,L) is a
compact Fréchet space.

3.1.2. Admissibility. Let M be a vector space over L endowed with a decomposition
M = UpenM,,,such that for each n M, is a Banach space, M,, C M, 41 and this last
inclusion is completely continuous. We consider M with the inductive limit topology
of the M,,’s. Let M (resp. M,’) be the continuous dual of M (resp. M,). If p € MY
we denote || p ||, the number || u |as, ||n, where || - ||, is the norm obtained in M,).

Definition 3.1. Let h € Q. A p € MV is called h-admissible if there exists a
constant C' > 0 such that for each n we have || u ||, < Cp™".

Remark 3.2. If we take M = A(X,L) and M, = A,(X,L) then p € D(X,L)
is h-admissible if there exist some C' > 0 such that for each n € N and for all
f € An(X, L) we have | u [,< Cp™ || f [In.

In particular if we put X = Z, then we obtain that if u € D(Z,, L) is h-admissible
then there exist C' > 0 such that for all a € Z,, j € N and n € N we have:

(a2, (2 — )|y < Cprih),
Compare with [2] and [23].

3.2. Distributions on O ® Z,,.
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3.2.1. Spaces. We fix an identification of Or ® Z, with an open compact of Qg.
Using the notations of 3.1.1 we denote:

A(L) == A(Op ® Zp,L) , D(L) :=D(OF ® Zy, L),
Ay (L) := Ap(OF ®Zy, L) , Dy(L) := D, (OF & Zyp, L) and we have D(L) — D, (L).
3.2.2. The action of a semi-group. We define some groups and semi-groups in G(Q,):
T*={(§9) € T(Q)| ba™' € OF ® Ly}
T+ ={(§3) € T(Qp)| ba™" € pOF @ Zp}.
I={(¢}) € G(Zp)|c € pOp ® Ly}
Ap:=ITHI =
G(Q,) N {x(ﬁcg) |a € (O @ Zp)~*,b,c,d € Op @ Lp,x € (F®Q,)"}

We define an action of A, on A(L) and D(L). For f € A(L), v € A, and
z € Of ® Z;, we put:

o Ify=(2%) e let:
1 NE =M T s ) £ [
v Z)= 0 det(y)(a—cz)~?t a—cz :
o Ify=(2Y)eT™ let:

(v 1) = A (" 0 ) Flda™"2),

see subsection 1.1 to the definition of the function w.

This definition gives us a well defined continuous action on A(L), simply because
we made explicit the action defined in [22]. The space A, (L) is stable under this
action. Then we obtain a continuous action on D(L) and D,(L). These spaces
endowed with this action are noted by Ax(L), A (L), Dx(L) and D) ,,(L).

Lemma 3.3. Let v € Tt then the morphism defined on Dy(L) is a compact oper-
ator.

Proof: See [22, Lemma 3.2.8]. =

Remark 3.4. Depending of the situation we will use the right action of A, on D(L)
or the left action of A L

3.2.3. Or-modules. Let A(Op) be the Or-module of the functions f € A(L) with
values in Op,. The topology in A(L) induces a topology on A(Op) and we denote by
D(Oy,) its continuous dual. We have A(L) = LA(Op,) then we can consider D(Oy,)
as a Op-sub-module of D(L) in the natural way. It is important to remark that
A(Opr) is stable under the action of A, and then we obtain a right action of A, on
D(Or). As before we write Ay (Or) and Dy(Op,) when we consider the action of A,
on these modules.

We denote Ay, (0r) := Ax (L) N A\(Or). This Or-module is stable under the
action of A;,,. We consider the induced topology on it and we call its continuous dual
by Dxn(Or). Moreover, we have the restriction morphism Dy(Op) — Dy, (Or), it
is continuous and compatible with the action of A,,.

13



Remark 3.5. For each n the space D) ,,(L) is a Banach and D) ,,(O)®L = D) ,(L).
But is important to remark that Dy (L) is just a compact Frechet and D)(Or) ® L #
Di(L).

3.2.4. Let Vy(L) < Ax(L) , f — f be given by f(z) = f({%) for each z € Z, ®Op,
here we consider V(L) as the algebraic induction of A\. This map is a continuous
homomorphism, then we obtain 7 : Dy(L) — V,(L)Y. Moreover, it is I-equivariant
map but not Ap-equivariant, in fact for any p € Dy(L) we have:

Z kog—2—1
oEDp 2

(i (0w,)) = @p (1) (0, ) -

3.2.5. Invariant distributions. Here we define a space of distributions that will be
very useful to define evaluations on the overconvergent cohomology.

Let E(1) be the sub-group of O} of totally positive units. We denote by A} (L)
the space of f € A\(L) such that f(§9) = f for all e € E(1). In fact f € A (L)
if and only if f(ez) = A(§9)f(z) for any e € E(1) and z € O Q Z,,.

We can verify that A} (L) is stable under the action of TF. Moreover, the space
A7 (L) is a Frechet and we have A (L) = UneNAj\rm(L), here Aj\in(L) is the Banach
space given by A} (L)NAy ,(L). Let Dy (L) be the continuous dual of A (L). Then
D;(L) is a compact Frechet and it is endowed with a continuous right action of TF.

3.3. Distributions on Galois groups. We describe the space of distributions
where we find the p-adic L-functions.

3.3.1. Galois groups. Let FP*° be the maximal abelian extension of F', unramified
outside p and co. We denote

Gal, = Gal(FP>°/F).

Let F! be the narrow class field of F', by definition we have Gal(F!/F) ~ Clf. Then

we have a natural morphism Gal, — Cl;. The kernel of this morphism described

using by class field theory: we consider E(1) inside (O ® Z;,)* in the natural way,

then we have an exact sequence of topological groups:

(8)
0

(OF ® Zp)*/E(1) — Gal,, Cl- 0.

Then we obtain a natural decomposition Gal, = erm}t Galy, x. If we choose for each

X € CI}S a ox € Galp x, then the last exact sequence gives us a homeomorphism:

9) rx 1 (OF @ Zp)* /E(1) — Galp x

Remark 3.6. Using Class field Theory we can identify finite order characters of
Gal, with Hecke characters of F' of finite order whose conductor contain only primes
of F' lying above p. In the rest of this paper we freely use this identification.
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3.3.2. Let Gal) = (Or®Z,)* /E(1). The topological groups Galy and Gal, are p-adic
spaces, and we fix isomorphisms of these groups with open compact subsets of @;‘*‘5,
where ¢ is the Leopoldt defect of F'. Then using notations in 3.1.1 we can consider the
spaces A(Galy, L), D(Galy, L), A(Galy, L) and D(Galy, L); in addition in D(Gal,, L)
and D(Galy, L) we have the notion of admissible distribution (see 3.1.1).

From the decomposition Gal, = erCIIt Gal, x and (9) we obtain an isomorphism

of Frechet spaces A(Galy, L) = .,él((}zad]f’,,l})mzt given by f — (fx)xeCI; where fx =
f orx. Then we obtain an isomorphism of compact Frechet spaces:

(10) D(Galy, L) = D(Gal), L)'

Remark 3.7. We can identify the space A(Gal), L) with the space of functions
[ € A((Op ® Z,)*, L) such that f(ez) = f(z) for all z € (Op ® Z,)* and e € E(1).
So we obtain that:

(11)  A(Galy, L) ={f:Gal, » L | forxom € A(Op ® Zy)*,L) Vx € CI}: },

here 7 : (OF ® Zp)* — Gal, is the natural projection.
3.3.3. Let A(Galj, L) — AY (L), f — [ be defined by:

0 if 2 ¢ (Op ® Z,)
(12) flz) =
ANED(2) ifz € (OF ® Zy)*,

here A = (klf{titrt) € Z. This morphism is in fact continuous, then we obtain:
2

Dy (L) = D(Galy, L), denoted by p — p*.

Lemma 3.8. We have:

(1) There exists C' > 0 depending only on A such that if n > 1 and f €
An(Galy, L) then f € A (L) and moreover we have || f|l, < C| f|ln-

(2) Leth € Q. If i € DY (L) is a h-admissible distribution then p* € D(Gal), L)
15 also h-admissible.

Proof: Firstly if f € A,(Galy, L) then is clear that fe Al (L) for n > 1. Now
let gx : O ® Z, — L be defined by g(z) = AAN(§9). Then gy € AJ(L). If we

denote C' = ||gx|lo then we have || f|l, < C||f|ln. The second part of the lemma is a
direct consequence of the first one. m

4. COMPARISON THEOREM

Let L be a finite extension of Q, containing the normal closure of F. In the next
two sections we will exclude L of the spaces defined above. For example we use V),
D, Dy ... instead of V\(L), Dy(L), Dy (L), ..

Let K be an open compact subgroup of G(A ) whose image in G(Q,) is contained
in A,. The morphism Dy — VY, described in 3.2.4, is I-equivariant then we obtain

15



a morphism on the cohomology:

™ HY(Yi, L(Dy)) = HY(Yic, L(VY)).
On HY(Yk, L(D,)) we consider the <-slope decomposition with respect to U, (the
existence of such decomposition is given by theorem 2.1). Over Hd(Yg, L(VY)) we

kg—2—1
consider <-slope decomposition with respect to UI? = pZ“EzF 2 U, By 3.2.4 we
have 7o U, = U]? om then m induces a morphism of the <-slope parts. In fact we
have the following result:

Theorem 4.1. We denote k° = min{k, | 0 € ¥p}. If h € Q and h < k° — 1 then
we have a canonical isomorphism:

HX(Yi, L(Dy))="

HE(Yi, £(VY))=h.

To proof this theorem we follow [22]. The main difficulty to use the approach
used in [22] is the existence of the slope decomposition for the compactly supported
cohomology, such existence was proved in section 2. To finish we use the locally
analytic version of the BGG-resolution.

4.1. BGG resolution. Let V) = V) (L) be the locally algebraic induction as defined
in [22, §3.2.9]. As in [22] we can see V), within 4y and it is invariant under the action
of Ap, then we obtain a Ap-equivariant map Dy — V,'.

We have a canonical inclusion V) C V), moreover we have a right action of A, over
V, moreover it is I-equivariant. We obtain an I-equivariant morphism V)Y — VY
and then

H(Yi, L(VY)) —= HE(Yi, L(VY)).

If we consider U, on the left side and Uz()) on the right side, then this map is com-
patible with these Hecke operators, moreover from theorem 2.1 we deduce that
H& (Y, L(Vy)) has slope decomposition with respect to U,. Then in the same way
that in [22, Lemma 4.3.8] we can prove that for each rational number h we have:

(13) HE(Yie, LV )=t == HI (Y, L(VY))="
We fix 0 € ¥ and denote by A, the algebraic character of T" defined by:

—ko+r ko+r kp—2+r —kp+2+r
A(t) =as > by’ H ap 2 bp 2 ,
pEXFp—0
for each t = ((aop bi)) o From [22, Prop. 3.2.11] we have an [-equivariant
pELF

morphism ©, : Ay — A, , remark that this morphism is not equivariant with
respect to the action of all A,, in fact we have:

O((6p) * ) =p " (47) *0(f).
We obtain an I-equivariant morphism:

(14) @(\7/ : D)\U — ’D)\.
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We denote X = 3y ©y, then from [22, Prop. 3.2.12] we have the following
exact sequence:

3

(15) D,es, Dr, Dy, VY 0,

In fact, this sequence is the last part of the locally analytic BGG-resolution of V/
(see [22, §3.3)]).

4.2. Proof of theorem 4.1. From the discussion in 4.1 we obtain a morphism
HY(Yk,L(Dy)) — H(Yk,L(VY)), this morphism is compatible with the Hecke
operators. From (13) is enough to prove that H(Yg, £(Dy))Sh — H (Y, L(VY))Sh
is an isomorphism.

We write Xp = {071, ...,04}. We denote Xy = ) and for each s € {1, ..,d} we write:

S S
Y, = Z@gj : @D%]_ — D,.
j=1 j=1

For each s € {1,..,d} let Qs be the quotient of Dy, such that the following
sequence is exact:

ey
0 Qs * > coker(X;_1) — coker(Xs) —= 0.

Remark that A, acts on coker(X;) and @, and in fact the last sequence is I-
equivariant. However, this sequence is not Aj-equivariant, in fact we have:

0 Qs coker(¥;_1) —— > coker(X;) — 0
10
“(0p)

()t “(65)

0

0 Qs coker(Xs_1) ——— coker(3)

Passing to the cohomology and by considering the action of U, we obtain the
following exact sequence:

HY(Yie, £(Q4))=h=Fos=1) 5 HY(Yy, L(coker(S1)))=" —

H (Y, L(coker(E,))) 5" — HIAY (Yie, £(Qy))=h—kes 1),

From 3.2.3 we deduce that in H:(Yi, £(Qs))="(kos=1 there is a Op-lattice invari-
ant by Up, for any i. By assumption, for each s we have h — (k,, — 1) < 0 then
H (Y, £(Qs))=h=(kes=1) = {0} and so:

HY(Yy, L(coker(Z,_1)))S" ~ HY Yk, L(coker(X,))) ="

Finally, clearly we have coker(3y) = D) and from (15) we obtain coker(X;) = VY
then we deduce the theorem.
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5. EVALUATIONS ON THE COHOMOLOGY

In this section, to each class in the overconvergent cohomology we attach a distri-
bution over the Galois group introduced in 3.3. Moreover we prove the admissibility
of this distribution when the class is an eigenvector of U, with slope non zero. To
do that we use the automorphic cycles introduced in [9].

In all this section we fix an open compact subgroup of G(Ay), denoted by K, such
that {(4V)|u € OF,v € Op} C K and its image in G(Q,) is contained in A,.

We fix {ax | x € CIL} C Afﬁ, 7 a set of representatives of ClL such that ay! € Op

and ax, = 1. Using the notations of 1.2.1 we consider gx to be (“6‘ (1]) for each

X € Cl;.
5.1. Automorphic cycles. For n € N we denote:
Up"):={ucOf|u—1€p"Op} and CIL(p"):= F*\ A% /U(P")FL.

The group U(p") is open and compact in Ay .. Let E(p") = Ox (U (p")F, then
E(1) is the group of totally positive units of Op. The real analytic variety X,, :=
F*\ A% /U(p") has dimension d. For each y € Cl;(p”) we fix a representative
ay € A} we have the following decomposition in connected components:

Xp = |_| Xn,ya
y€CI5(p™)
where X,y = F*\ F*ayU(p")F% /U (p"™). The morphism E(p™)\ F, — X,y given
by [2] — [ayz] is an analytic isomorphism. Moreover from the Dirichlet’s Theorem
E(p") \ F5; is isomorphic to (R /Z)?~1 x R. We deduce that X,y is connected and
orientable.

If x € Ap then we denote x, by its image in F' ® Q,. The morphism AR —

G(A), z — (’é ”3?7;_") induces a morphism of analytic varieties, called automorphic

cycle in [9]: Cg ., Xy — Yi.

5.2. Evaluations. We define certain evaluations on the overconvergent cohomology,
these evaluations will be useful to construct our p-adic L-function and to prove its
properties. Let n € N, we define the evaluations in four steps:

Step 1. The cycle C, gives the morphism:

(16) HY(Yk,L(Dy)) = HY( Xy, Fp).

where Fy, 1= Cj;,,(L£(Dy)). We can verify that F, is the sheaf of locally constant
sections of the local system:

Fo = F*\ (A xDy)/U(") = X,
where the action on Ay xDj is given by f(z,u)v = (fav, p * (8 (”P_i)p_")), f e
F* xz e Af,pe DyandveUpr).
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Step 2. Let £,,(D,) be the sheaf over X, given by the locally constant sections

of the local system:
Lp(Dy) :=F*\ (Ag xD,)/U(p") = Xp,
where f(z, p)v = (fro,u*(39)), f € F*,2 € AY,p € Dy and v € U(p").
: -1 : v (vp—1)p~™" 1 - - v

The matrix (épn) € A, satisfy (0 (vp PP ) (Op':‘l) = (épnl) (39) for each v.
Then the morphism A} xDy — A} xD, given by (z,4) — (z, 4t (§ ,» )) defines a
morphism of sheaves F,, — L£,,(D)), then we obtain:
(17) Hg(Xm]:n) - Hcd(Xmﬁn(D)\))'

Step 3. Let £(D,) be the sheaf over E(p™) \ F of locally constant sections of
the local system:
E(p")\ (F% x Dy) = E(p") \ Fx,

)

where e(c, ) = (ce,u* (£9)) for e € E(p"), c € FE and u € D,.
01 00

Let y € Cl;(p") and let h : E(p") \ Ff — X,y be given by the representative, ay,
of y. We have h*(L,(Dy)|x,,) = £(Dy) and then we obtain an isomorphism:

(18) HY(Xpy, La(DA)|x,,) = HI(E(R") \ Fib, L(Dy)).
The function Dy — Dy defined by p — p | A (see 3.2.5) gives a morphism of sheaves

over E(p")\ F5: £(D,)) — Dy . Here, by abuse of notation, Dy” means the constant
sheaf with stalk Dj\r. We obtain a morphism:

(19) HAB(p") \ Fb, L(Dy)) = HAE(p™) \ FLL, DY).

The real analytic variety F(p") \ F is connected, orientable and of dimension d
then HY(E(p") \ F55, DY) ~ Dy. From (18) and (19) we obtain:

(20) HE (X, £(D)) = (D)),
Step 4. Finally from (16), (17) and (20). we get the following evaluation:
evin : H(Yic, L(Dy)) = (D)) 0.
These different evaluations are related by:

Lemma 5.1. For each n > 1 we have the following commutative diagram:

HA(Yic, Lxc(Dy)) — 2= H(Vi, L (Dy))

eVEK n+1 eVK,n

(D;\’)Cl;(anrl) trn (D;r)a;(p")

here tr, : (D/J\r)m;(pn“) — (D;\F)Cllt(pn) is the morphism trn((/ﬁx)xecﬁw(p"“)) -
(V.Y)yem}(p“) with vy = 3,y lix, where x — 'y means the set of x € CLE(p™T™)

whose image in CI5(p") is y.
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Proof We prove that in each step of the construction of our evaluations we have
a commutative diagram.

Firstly we construct a morphism H%(X,11, Fpi1) — H3(X,,Fn). Let pry :
Xn+1 — X, be the canonical morphism, F := (pry)«(Fnt1) and & = Gal(Xp41/X,,) ~
Or/pOp. The morphism « : F,,11 — F, given by (y,p) — (y, p * ((1)2)) is well de-
fined because we have the following identity:

Let U C X, be an open small enough such that pr,'(U) = UgesU; C Xnt1 and
for each g pry, induces an homeomorphism i, : U — Uy, then we have I'(U, F) =
L(pr=Y(U), Fut1) = Bgesl(Uy, Frt1). We define:

U, F)—T(U,F,), 5 = (8¢)gece — Za 0 84 01ig.
ged

That induces a morphism of sheaves F — F,,. Remark that Hél(XnH,an) =

(5 9)

Hg(Xn,}"), then we obtain: Hg(XnH,]:nH)
the following commutative diagram:

HY(X,,F,). We have

HY(Yic, Lic(Dy)) ————= H(Vic, Lic(Dy))

Hg(Xn—&-lv-Fn—i-l) Hg(Xm]:n)

Denote F' = pr,(Ln+1(Dy)), if we repeat the last construction using instead of
a the morphism o : L,11(Dy)) — L,(D,) defined by (y,u) — (y,u), we obtain
a morphism X,: F' — L,(D)) of sheaves over X,. This morphism gives us the
trace morphism in the cohomology H¥(X 11, Lni1(Dy)) = HY(Xn, L,(Dy)). From

((1)2)((1] ;r} )= (¢ p;+11 ) we deduce the following commutative diagram:

¢ o

Hg(Xn+1a]:n+1) Hg(Xnvfn)

Hg(Xn+1a £n+1(D>\)) e o Hg(Xm ﬁn(Dk))
20



Finally decomposing the morphism H%(X,, 11, Lnt1(Dy)) — HH(X,, L£,(Dy)) on the
connected components of X,, and X, 11 we obtain the following commutative dia-
gram:

HY(Xp41, Log1(Dy)) —22¢— HY(X,,, L,,(Dy))

(D;\i-)cl; ("th) trn (DI)CIF (™)
m

5.3. Construction. Using evg ; we achieve to attach a distribution to each class
in the overconvergent cohomology.

Let ® € HY Yk, L(D,)) and we write evy 1(®) = (Vy)yecfg(p) € (D;\r)cﬁw(p). For

each x € CIJFr we define:

px= Y ()" € D(Galy, L),
y€CIE(p)x
here Cl}(p)x is the set of y € Clf(p) whose image in Cl} is x, and (y)* is the
image of vy under Dy — D(Gal), L). Finally let g € D(Galy, L) be the distribution
corresponding to (fix) o+ € D(Galy, L)CIJFr using the isomorphism (10). Then we
F
have:
(21) po t AGaly, L) > L, f— > pix(fx)
xGCl}
where fx € A(Galy, L) is defined in 3.3.2.
The following diagram summarize our construction:

eVK 1

HY(Yie, L(Dy)) (D} ) Ol @) (D} )%

|

D(Gals, L)'

~

D(Gal,, L)

5.4. Classical cycles and evaluations. The results of this subsection will be used
to prove that the distribution pe € D(G,, L) is admissible (see 5.5).
5.4.1. Cycles. Let f € F and E C E(1) be a subgroup of finite index. Let I' C
GL2(F) be an arithmetic subgroup such that (8 (1_1€)f> € I' for all e € E. Then
y — f + iy induces a morphism:

cf: E\F$ — I'\Hp.

Remark 5.2. Let f, f/ € F be such that (é (fzf/)> € I' then ¢y = cpr.
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Let m, : Clf(p") — Clf be the natural map. For each x € Clf we write
ClE(p™)x := m,'(x). Recall that from hypothesis on K we deduce that Yx has
#Cl}. connected components, Yx = I—'XECI} Y.

Lemma 5.3. i) Fiz x € Clf. We have CIE(p")x = F*\ F*axF1 O /U (p")F; and
an isomorphism % ~ Cl;;(p”)x. Moreover the association O — @F given by
a — Ug, where ug is 1 at the premier numbers different that p and a in p, gives us:

(P’?gF>X ~ @; ~ Cl+ n
(1) UG B r(P")x
A _ (5=)" .
i) Fiz a set of representatives S, C O for % Then we have the following
commutative diagram:
n +uacia\p—n
|_|a€Sn E(p )\Foo I‘X\]HIF
CK,n
|JyGlem(p")xX”’y Yx

Proof: The part i) is clear. Let a € S, and call y the corresponding class in
ClL(p™)x. Let [r] € E(p™) \ F& then its image in X,y is [raxu,) and we have

Crnl[raxua]) = [("" (apln)f’ )] = [("g (_“p;n)w )], the last identity comes from:

(Taoaua (apln)p> - <(1) ap{”) <r%x (*apl‘”)oo> (tga (ap’"la;l)’}> :

here (ap™"ay 1)1} denotes the finite adele which is (ap "ay!); for [ # p and 0 for
I = p. Finally c_q,n(r]) =[5 +ir] = [(§ _“ﬁ’_")i} then its image in Yy is

[(§ Cer D= )] = [(5 7 =) (G 9)] = Crnllraxua]). m

5.4.2. Evaluations. We define evaluations on the cohomology of I' \ Hf in the same
way that in 5.2. Let f € F, E C F(1) and I' C GLy(F') be as before, moreover we
suppose that the image of I' in G(Q,) is contained in A, and fix a decomposition
f =ab™!, where a,b € O and b # 0.

Step 1. Using cy instead of Ck , in step 1 of 5.2 we obtain:

HA(T\ Hp, £(Dy) ——

Hg(E \ Fg,ciﬁ(p)\)) .

Step 2. Explicitly the sheaf ¢}£(D,) is given by the fiber bundle E'\ (Ff xDy) —

E\ F where e(y, 1) = (ey, p* (661 f(lflefl) )). So using (}¢) instead (; ;nl) of step
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2 in 5.2 we obtain:

O
R

H{(E\ Fg,c;L(Dy)) H{(E\ F%, L(Dy)),
here £(D,) is the sheaf over E \ Ff given by Ff x D) where the action is e(y, u) =

(ey, (5" 9))-
Step 3. Finally, using HY(E \ Ff, £(D)) — HY(E\ Ff, DY) ~ D} we obtain:

evr s : HY(T'\ Hp, L(Dy)) — Dy .

5.4.3. Description of evp y. We denote A]; the subspace of Ay (L) of functions g such
that (e;l f(l_le_l) )*g =g for all e € E. This space is a Frechet space and we denote
D{(L) = D{ its continuous dual. The morphism A} — A{ g (§9)xgis
continuous and then gives us D{ — Dj\r.

As in 3 we consider the subspace Af\c 0 C Af\c of functions that can be expressed
as a converging power series on all O ® Z,. This space is a Banach space and

we call D{O its dual. We have the restriction Dy o — D{O. In the same way, we
can define spaces A{O(OL) and D{O(OL) and we have the restriction morphism
Dx0(O1) = D{,(O).

Orp X
Remark 5.4. Let a’,a € O be defining the same class in <”7§f)), is not difficult

-n lpy—mn
to obtain an isomorphism between D{¥ ~ and DY” , and moreover the following
diagram is commutative:

n

ap~
D)\

_l’_
D)\

n Op X
In particular the image of D{¥ = — Dy depend only on the class of a in 7<” E(?f)

Remark 5.5. The restriction morphism Dy — D{ gives HY(E \ FZ, ctL(Dy)) —

HY(E\F%,D]) ~ D{. Sowe obtain a morphism HZ(T'\Hp, £(D,)) — D). Moreover
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by definition we have the following commutative diagram:
(22)

c*

evp,y : HA(T \ Hr, £(Dy)) HY(E\ Ff, ¢HL(Dy)) Dy

(59

f
Dy
Remark 5.6. In the same way that in the last remark we can define morphisms:
HY(T\ Hp, £(Dro)) = DYy, and HZ(T\ Hp, £(Dxo(OL))) = Df(Op).

5.4.4. Or,-modules.

Lemma 5.7. Let I' C G(Q) be an arithmetic group with image in G(Q,,) contained
in Ap. Let ¢ € HI(T \ Hp, L(D,)), then there exist C(¢) > 0 such that:

o if (f, E) is a pair satisfying conditions in 5.4.2 to respect with I" and if v € Df\c

is the image of ¢ under the morphism HI(I'\ Hp, L(Dy)) — Df\c defined at
the end of 5.4.2, then:

[ v [lo< C(9).

Proof: Considering the notation of 3, 5.4.3 and by definition we obtain the follow-
ing commutative diagram:

HY(T\ Hp, £(Dy)) HYE\ F4,¢iL(Dy)) D
HYT \ Hp, £(Dyy)) d HY(E\ F%,¢5L(Day)) D{,

*

HAT\ Hp, £(Dy,0(01))) ——— HUE\ F, ¢4L(D20(01))

DY ,(OL)

Dy, is a Banach L-space then there exists f € L™ such that the image of 3¢ through
HYT\Hp, L(Dy)) = HYT \Hp, L(Dy o)) is contained in HL(L'\ Hp, L(Dyo(OL))).
We write C(¢) =| 8 |,*.

Let (f,E) be as before and let v € D{ be the image of ¢ under the morphism
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HYT\Hp, L(Dy)) — D{. Because the choice of 5 the image of Sv in D{O is in fact
contained in Df\CO(OL) and then || fv ||[o< 1. Then we obtain:

[vllo = C(@)|Br]o < C(@). =

5.4.5. Classical and automorphic evaluations. Let ® € HY (Y, £L(Dy)) and fix n > 1.
We denote eVK,n((I)) = (yy)yGCIF(p") S (D;)Cllt(pn) Fix x € Cl; and a € Sy, then

denote by vy, € D, " the image of ® under:

—n

H(Yi, £(Dy)) — H{(Yx, L(D))) —= H{(Tx \ Hp, L(Dy)) —= Dy,

here the last morphism was described in the end of 5.4.2.

Lemma 5.8. Lety € Clj.(p")x be the image of a € S, under the bijection M ~

E(1)
ClL(p™)x. Then we have:
vy = vsa* (§ pt)-
Proof: From lemma 5.3 we obtain the following commutative diagram:
H{ (Ys, L(Dy)) H{(Tx \ Hp, L(Dy))
C:; Gaaesnciapfn

HE (U ecrt (), Xny: ChL(DA)) Daes, H(E(p") \ Y, ¢ - L(Dy))
#(§ ) Bacsn*(( i)
HE(Uyeort ry Xnys £n(Dr)) H(E(p™) \ 55, La(Dy)*

Dflfw(p")x

Here the right column is by definition (evp, _4,-n)acs, . Finally we obtain the result
from (22) m
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5.5. Admissibility.

Lemma 5.9. Let ® € HY (Y, L(Dy)). Then there exists C = C(®) > 0, depend-
ing only on ®, such that for each n > 1 we have ||vy|l, < C where evi ,(P) =

(VY)yGCl;(p")'
Proof: Let x € Cl;. Let & € Hg(I‘X\HF, L(Dy)) be the image of ®. Let Cx > 0

be given by lemma 5.7.
Ifn>1landy € CIJIS (p™)x let a € S, be corresponding to y by the isomorphism

O \*
(pEci{)) Cl;(p”)x. Then from 5.8 and 5.7 we have:

| vx ln=I vx,a * ((1) ;*?) 1n<]| vx,a o< Cx-
We take C(®) := max{Cx | x € Cl}} =

Proposition 5.10. Let ® € Hd (Y, L(D))) be such that Uy(®) = a® where o € L*.
We denote h = v,(«) then pue € D(Galy, L) is an h-admissible distribution.

Proof: Recall that ue € D(Galy, L) is obtained from (F‘X)xecfg € D(Gal,, L)lew
under isomorphism 10, then it is enough to prove that uy is h-admissible for each
X € Cl‘;.

Fix x € CIf. Let n > 1 and denote ev ,(®) = (Vy)yecfg(p") then using lemma
5.1 we obtain:

px = " Z (vy) ™.
y€CIE(p)x
Let C > 0 be the constant obtained in 3.8 then:

i lln< p™p~ " max{|[(vy)*[ln | ¥ € CIE(@")x} < Cp™'p~ " max{|lvy|ln | ¥ € CIE(p")x}-

Let C'(®) > 0 be the constant obtained in 5.9, then we deduce that for each n > 1
we have || px [|n< C(®)Cp~"p™, so pix is h-admissible. m

6. AUTOMORPHIC REPRESENTATIONS AND p-ADIC L-FUNCTIONS

6.1. Construction. Let m = m,, ® 7y be a cohomological automorphic representa-
tion of G(A) of type (k,r) where (k,r) € Z*F x Z such that k, > 2, k, = r mod 2
and | r |< k, — 2 for each 0 € ¥p. Let ¢ be the conductor of 7 and suppose that
K (cp) satisfy the condition 1.1.

Let k; be a number field containing containing the normal closure of F' and the
field of definition of m¢. Let L be a p-adic field containing k,. We call X the dominant
character attached to the data (k,r) as in 1.4.

Let fr € S ) (K1(c)) be the newform attached to 7 (here Sy ,)(Ki(c)) is the
space S(i,w)(K1(c),C) with w = (k") yes,. in the notations of [11]). We suppose
that the following condition is satisfied:
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Hypothesis 6.1. There exists a p-stabilisation of £, denoted £ € S ,y(K1(c) N

Ko(p)) C S,y (K1(cp)), such that if we denote by a, € Q the eigenvalue of £ with
respect to the Hecke operator Uy, then we have:

kg—2—1
vp(incp(pZUGEF > ay)) <k¥—1,
where k* = min{k, | o € Xp}.

Using a result of Matsushima-Shimura-Harder (see [11, Prop. 3.1]) we obtain
a class 61(f) € H&,(Y1(cp), L(VY(C))). Let HE  (Yi(ep), L(VY(C)))[f,1] be the

cusp

space of the Hecke eigenclasses in H, (‘fusp (Y1(ep), L(VY(C))) with the same eigenvalues

that f and sign (1,..,1) € Z¥F. This space is 1-dimensional (see [11, §8]), then fixing
a period €, € C* we obtain a well determined class:

¢r € H (Yi(ep), L(VX(L))).

kg—2—1
By construction this class satisfy U£¢f = a¢r where a = incp(pZ”EEF 2 a,). By
hypothesis v,(a) < kY — 1 and then by theorem 4.1 there exists an unique

®¢ € H(Y1(cp), L(DA(L)),

whose specialization is ¢¢ and U,P¢ = a®P¢. Using the construction described in 5.3
we define:

e == a pe, € D(Galy, L)
Theorem 6.2. The distribution pe € D(Gal,, L) is h-admissible where h = vp(a).

Let x : Gal, — L* be a finite order character of F' such that xo(—1) = 1 for each
o € X, then we have:

pe(x) = inc, (LP(W o 1>T(X)> 11%.

Qr
plp

here LP(m ® X, s) is the L-function of w twisted by x without the Euler factor in p,
7(x) is the Gauss sum as defined in [9, §2.5], and:

ap_cond(xp) if Xp is ramified
Zp =
Xp(wp)_dp(1*a;1Xp(wp)_1NF/Q(P)_1)
1—apxp(wp)

if not.

where, dy is the p-adic valuation of the different of F', oy = incp(ap) and ay is the
eigenvalue of £ with respect to the hecke operator U,.

In this statement we use remark 3.6 to see x : Gal, = L™ as a finite order Hecke

L(m®|-|} . ®x,1 _
character of F. Remark that from [11, Th. 8.1] we know that Lxel i, exl)

Ox cQ
_(kO— o_
where n is a integer such that w <n< w and x is any finite order

Hecke character of F.
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We prove this theorem in the next two subsections. In the next subsection we
recall the evaluations described in [9] and we make explicit the relation with our
evaluations. This explicit relation allow us relate our construction with L-values.

We would like to remark that a basic problem in our construction is the lack of
uniqueness of our p-adic L-functions. This problem is a consequence of the fact that
theorem 0.2 does not guarantee the interpolation of enough critical values. This
problem is settled in the ongoing work [3]. We refer to [12] for a precise study of
distributions on Galois groups and the problem of uniqueness.

6.2. A computation of Dimitrov. In this subsection we follow [9] to define eval-

uations on Hg(YKl(cp), L(VY(L))), moreover we relate these evaluations with some

critical values of L(m,s). Here we will denote VY (L) by VY and Dy(L) by D,.
These evaluations are defined in the same way as in 5.2:

e Using the automorphic cycle Ck, (cp),n We obtain:

HE (Y, (o) £(VX)) = HU (X, CF (0 n VX))

1(Cp),n
e Let £,(VY) be the sheaf on X,, obtained by considering the action v € U(p™)
on VY by the matrix (% 9) on the right. Then the right action of ( ]}}) on
VY gives O, (D) JL(VY) — L,(VY) a morphism of sheaves over X,,. Then
we obtain: HY(Xn, Ok oy L(VX)) = HY(Xn, L (VY));
e Consider the morphism VY — L defined by ¢ (klf;titvﬂt)so( f+), where f, €
2

VY is uniquely determined by the condition f.({%) = 25 forall z €

F @g L. Then we obtain HY(X,, L,(VY)) — HY(Xp, L) ~ LEF®");
e Putting all these steps together we get:

+ (. n
ev(lﬂ(l(q)),n : Hg(YKl(cp)a E(VX)) — LCIF(p )
Lemma 6.3. Let cr: Dy — L be defined by cr(p) = (&)M(ZW) Then we
2
have the following commutative diagram:
+ (. n
Vi, (e + HE(Y1(ep), L(D))) (D})CIE™)
Ccr
k—2t—rt .
P eV (g0 f HE(Yi(ep), L(VY) LCEe™)

Proof: If we denote by 7 : Dy — V\A/ the projection, it is I-equivariant, moreover
for each pu € Dy we have:

k—2t—rt 1 -1

2 () (o p”)'

(s (o)) =p"
‘;{1( p)n and eV, (¢p),, the lemma follows.m
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Lemma 6.4. Let ¢f be as in 6.1, and for each n > 1 we denote evK (P (o) =

((Iy7f)y601;(pn) e LCH(P") | Let y : Gal, — L* be a finite order character such that

Xo(—1) =1 for each o0 € ¥p. Let n > 0 large enough such that x factorizes through
the projection Gal, — CLL(p"), then we have:

k—2t-rt . LP(m ® ¥,
RS e = ing, (PSR [T 7,

y€CI} (p) plp

Proof: Using the notations of [9, §1.5] with w = (ks — 2)sex, and wy = r, and
the commutative diagram (4) we obtain:

k—2t—rt k 2t—rt
Slﬂélu(]gp) 1n(¢f) - pn : o evKl (cp),n <¢f) 2 « n(ay’f)yecl;g(l?")'

Finally the lemma result from the calculations given in the proof of [9, Th. 2.4]m
6.3. Proof of theorem 6.2. We have that U,(®¢) = a®P¢, then from lemma 5.10
we deduce that ¢ is an h-admissible distribution where h = v, ().

Let x : Gal, — L* be a finite order character such that x,(—1) = 1 for each

o € Xp. Let n > 1 be such that the conductor of x is divided by p"Op. Then we
can consider x to be defined on Cl}(p").

We write eV, (op)n(Pf) = (Vy)yGCIF(p”) € (Dj\r)m;(pn). From definition in 3.3.3
and lemma 5.8, we obtain that if x € C1f and y € CLf(p")x then we have:

k —_— 2t k—2t+rt
0 () = (k_2t+rt)x<y>uy<zz )
2

here xx is given by the composition of the homeomorphism ry : Galf7 — Galp x and

X-
As before we write evS (gf)f) (ay7f)y€Cl;(pn). Then we have: ug(x) =

=a e (x)

S0 Y Y K-

x€CLE yeClf (™)«

n k — 2t k—2t4rt
D S S (A RENE S
2

x€Clf yeClf (p")x

k—2t4+rt
=p" 2 o Y x(¥)ayr
y€CIEL(p)
P
—incp< (W®X’ > HZp,

plp
here the second equality follows from lemma 5.1, the fourth from lemma 6.3 and the

last one from lemma 6.4. . =
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