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Abstract

In this paper we study the properties of a new packet
trace compression method based on clustering of TCP
flows. With our proposed method, the compression ra-
tio that we achieve is around 3%, reducing the file size,
for instance, from 100 MB to 3 MB. Although this spec-
ification defines a lossy compressed data format, it pre-
serves important statistical properties present into orig-
inal trace. In order to validate the method, memory per-
formance studies were done with the Radix Tree algo-
rithm executing a trace generated by our method. To
give support to these studies, measurements were taken
of memory access and cache miss ratio. For the time, the
results have showed that our proposed method provides
a good solution for packet trace compression.

1. Introduction

Packet traces of Internet traffic are important tools for
performance evaluation and design purposes of many
network elements. For instance, packet traces can be
used to evaluate prototypes of network systems such as
routers, firewalls, Internet servers, etc. Packet traces can
also be used to feed trace-driven simulators used in the
performance evaluation and design of many components
of these systems, as for example, the Network Proces-
sors performing functions ranging from basic packet for-
warding to quality of service (QoS) processing, packet
classification, security, billing and accounting.

The performance of these systems depends not only
on parameters such as packet length or inter-packet time,
but also on some properties of flows, that we call se-
mantic properties: spatial and temporal locality of IP
address, IP address structure, and TCP flags sequence.
It is essential, thus, to use in these studies packet traces
which maintain representative semantic properties of the
Internet traffic.

Despite the importance of using correct packet traces
in the performance evaluation studies, there are several

reasons that make difficult in many cases to have access
to the required traces. Firstly, Internet providers are usu-
ally reluctant to make public real traces captured in their
networks. When these traffic traces are made public,
they are delivered after some transformations, such as
sanitization, which modify some basic semantic proper-
ties (such as IP address structure). Others problems arise
due to the increasing speed of Internet routers. Hard-
ware for collecting traces at high speed (e.g. to link rates
of 2.5 Gbps, 10 Gbps or even 40 Gbps) is usually ex-
pensive. Moreover, with the increase of link rates, the
required storage for packet traces of meaningful dura-
tion becomes too large.

As an example, let us consider the problem of storing
a 1000 sec trace taken from a link at 10 Gbps. Storing
the full content of the traffic would require an storage
of 1.25 Tbytes. If we only store the 40 bytes TCP/IP
headers, together with timing information, we would re-
quire a storage capacity of 125 Gbytes (assuming a mean
packet length of 400 bytes).

In this paper we address the problem of the compres-
sion of these potentially huge packet traces, assuming
the more common case of storing the TCP/IP packet
headers plus timing information only.

Content compress can be as simple as removing all
extra space characters, inserting a single repeat character
to indicate a string of repeated characters, and substitut-
ing smaller bit strings for frequently occurring charac-
ters. The compression is performed by algorithms which
determine how to compress and decompress. Some of
the most popular compress algorithms are the Huffman
coding [1], LZ77 [2], and deflate [3]. Those specifi-
cations define lossless compressed data formats. From
our measurements, using these methods we can expect a
compression ratio of around 50%.

The previous methods do not take into account the
specific properties of the data to be compressed. A more
effective compression method is the one proposed by
Van Jacobson [4] in the context of transmission of In-



ternet traffic through low speed serial links. The method
is based on the fact that in TCP connections, the con-
tent of many TCP/IP header fields of consecutive pack-
ets of a flow can be usually predicted. As we will show,
the achievable compression ratio using this method is
around 30%, reducing the file size, for instance from 100
MB to 30 MB. In the context of saving storage space
of potentially huge packet traces, a lossy method that
utilizes the flow nature in Internet traffic to reduce data
volume while preserving some informations for network
research is presented in [5]. In this case, headers packet
traces are reduced to 16% of its original size.

In this paper we study the properties of a new web
packet trace compression method proposed in [6]. The
method is lossy, in the sense that cannot recover the ex-
act original packet trace. Exploiting some properties
of Internet Web packet flows the compression ratio we
achieve is around 3%, reducing the file size, for instance
from 100 MB to 3 MB.

We have restricted our studies to Web traffic, which
is an important part of the current Internet traffic. Other
applications, such as P2P applications, are becoming
more and more important, and we plan to incorporate
them in future studies.

2. Flow characterization

In [6] a novel flow characterization that incorporates
a specific set of packet characteristics such as TCP struc-
tures, inter packet time, and payload size, was proposed.
This flow characterization can be used for achieving a
lossy compression method. In this section we summa-
rize the main ideas behind this flow characterization and
compression method.

Let us define a packet flow as a sequence of packets
in which each packet has the same value for a 5-tuple
of source and destination IP address, protocol number,
and source and destination port number. Each packet
flow can be characterized using the following set of pa-
rameters: TCP flags, inter packet time into a flow, and
payload size.

Let �������	���
�� ���
���������� ������ (1)

denote a flow of � packets, where

� �� is the i-th
packet of this flow. For

� �� we define a mapping � ,� ��� �� � ��� �� , where

� �� is an integer. For each flow,
let � � ���	� �
 � � �
 ��������� � �� � (2)

denote a vector of � integers and � � = � � ���
be a set

of these vectors. The mapping � is a function given by:� �� � � ��� �� � � �� "! 
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�	� �� � (3)

where

�
#  � are different weights to give a relative im-

portance to each parameter. Below, we define each one
of the %& �	� �� � parameters:' % 
 �	� �� � represents the TCP flag carried by each

packet

� �� :
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others TCP flags arrangement can be found, but we
have restricted our studies for the most common;' % 
 �	� �� � represents the inter packet time into a
flow. If a packet to be transmitted waits for a packet
sent by the opposite node, it is called a dependent
packet, otherwise, if a packet is sent immediately
after the last one we classify it as not dependent.
For instance, in the TCP three-way handshake,
when a node sends a syn TCP flag, it waits for a
syn+ack TCP flag from the opposite node. This
waiting time corresponds to the Round trip time
(RTT). In this sense, we associate inter packet time
to acknowledgment dependence. Hence, it is rea-
sonable to believe that with a known RTT distribu-
tion and for small flows might be possible to model
the inter packet into each flow using only a param-
eter: the acknowledgment dependence. Hence:
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Furthermore, we have used different weights

�
#  � .In our case, we have used the following weights for

TCP flags

�
# 
 � , acknowledgment dependence

�
# 
 � ,and payload size

�
# � � : # 
 =16, # 
 =4, and # � =1. Ev-

idently, depending on the type of problem to be studied,
we can apply different weights. Hence, the #  weights
give us a higher degree of flexibility.



2.1. Web flow clustering

We have used the flow characterization previously
described to study the diversity of Web flows in a high-
speed link. We have concluded that Web flows are not
very different from each other, and many of them have
identical or very similar

� �� values. More extensive re-
sults are presented in [6].

The flow diversity study among Web flows is based
on clustering techniques [7]. Clustering techniques al-
low the grouping of many elements of a set in different
groups, clusters, whose members are as similar as pos-
sible.

The clustering methodology starts from a real trace,
and after isolating the flows by their number of packets,
we generate for each flow a corresponding

� �
vector.

We have applied our methodology to traces from dif-
ferent available packet traces [8] [9]. The main conclu-
sion is that in consequence of the huge similarity among
Web flows, we can group a high amount of them into
few clusters.

3. Packet trace compression

After the analysis presented in [6], we see that 98 per-
cent of the flows have less than 51 packets. These flows
comprise 75 percent of all Web packets transmitted on
the link and 80 percent of the bytes on average. Similar
traffic characteristics were found for instance, in [10],
[11]. Hence, our compression method takes into account
two types of flows: short and long flows. Short flows are
flows with the amount of packets ranging from 2 to 50,
and long flows are flows with more than 50 packets.

Our compressor generates four datasets. A first
dataset called short-flows-template stores the templates
of flows with less than 51 packets. This dataset has a
first field that stores the value of � (number of pack-
ets), and then a sequence of

� �� values. The second
dataset is called long-flows-template. It stores the tem-
plates of flows with more than 50 packets. The first field
stores the value � and then, for � packets, the

� �� value
and the inter packet time. The third dataset, address,
stores a sequence of unique IP destination address found
in the trace. Finally, the fourth dataset, time-seq stores
for each flow, the time-stamp of the first packet. Fur-
thermore, it stores the following fields: a dataset identi-
fier (S=short-flow-template, L=long-flow-template), an
index to a specific template position into the template
dataset, the RTT of short flows and another index to the
address dataset. In the case of short flows, we have seen
that time-varying does not represents a serious problem.

Hence, for short flows, we have assumed that each flow
has a specific RTT. Evidently, this assumption is not true
for long flows, where RTT is dynamic and time-varying.
Hence, for long flows, the field RTT in the time-seq
dataset is not filled, and the inter packet time is stored
in the long-flows-template dataset.

Our compression method works finding

� �
vectors

that are repeated or very similar. The method starts look-
ing into the 5-tuple of fields (source and destination IP
address, source and destination port number, and pro-
tocol number). When a packet carrying a new flow is
found, a new node is inserted at the end of a linked list
and a new record is created in the time-seq dataset. Each
node stores the following fields: a key (a hashing of
source and destination IP addresses, source and desti-
nation port numbers, and protocol number), time-stamp,� �� value and two pointers. Each node has associated
another linked list, where are inserted the packets from
the same flow. When a Fin or Rst TCP flag is found, the
algorithm, first of all, looks for the number of inserted
nodes associated to this flow.

In the case of short flows, the algorithm searches
for identical or similar

� �
vectors in the short-flows-

template dataset. In the case that a match is not possi-
ble, we insert a new record in this dataset, update the
time-seq dataset and remove all nodes of this flow from
the linked list. This new

� �
vector will constitute the

center of a new cluster. In the case of a match, we only
update the time-seq dataset and remove all nodes of this
flow from the linked list. According with the flow char-
acterization described on Section 2 and for the same

+
,

the maximum distance between two

� �� values of differ-
ent flows is 50. Consequently, for flows with � packets,
the maximum inter flow distance is

� �cb�d ( � . We have
assumed that two vectors

C
and

1
are similar whether

the difference among them is lower than 2% of the max-
imum inter flow distance. Therefore, K5egf is given by:

K2egfhY � �ib6d ( b ( � (JA � (4)

For long flows, we do not perform any search be-
cause the probability of find two identical

� �
vectors

is really very low. Hence, each long flow generates an
input in the long-flows-template dataset. This approach
does not influence the performance of the method, be-
cause the number of long flows is limited. The most im-
portant realization is that shorter flows are much more
common than longer flows, so we have paid attention to
compressing the short flows fast.



4. Decompression algorithm

The decompression algorithm sets up a linked list to
store temporarily the sequence of decompressed pack-
ets. It works reading the four compressed datasets: time-
seq, short-flows-template, long-flows-template and ad-
dress. As we have seen, the time-seq dataset stores, for
each flow, the time-stamp of the first packet; the short-
flows-template dataset stores the templates for small
flows; the long-flows-template dataset the templates for
long flows and the address dataset, a sequence of unique
IP destination addresses. Those templates store the nec-
essary information to reproduce important packet flow
characteristics such as: inter packet time, TCP flag se-
quence and packet size. The algorithm starts reading
the time-seq dataset. Note that this dataset is sorted by
the time-stamp data field. Reading the dataset identifier
and template position fields, the algorithm identify the
template file to be read (short-flows-template or long-
flows-template) and place the position of the template in
this file. Furthermore, it reads the IP destination address
and, in the case of short flows, the RTT.

The algorithm goes reading the sequences of

� �� val-
ues and decoding the TCP flag, the payload size, and the
inter-packet time. For each one of the

� �� values, the
algorithm inserts a new node at the linked list sorting by
the time-stamp. Furthermore, are assigned the source
and destination IP address, source and destination port
number and protocol number. For source address, we
assign randomly an IP class B or C address. At the mo-
ment, as we are working only with Web traffic, we have
assigned a random value between 1024 and 65000 to
client port number, and to the server side the value 80.

After reading the last

� �� value of the template,
the algorithm continues the procedure reading the next
record in the time-seq dataset. At this moment, all nodes
in the linked list with time stamp less than the current
value are written in a decompressed file.

5. Compression ratio

To study the efficiency of the proposed compres-
sion method, we compare, for large packet traces, the
compression ratio of different compression methods.
The measures were taken from a TSH (Time Sequence
Header) header trace file and the compression methods
evaluated were the GZIP [12], the Van Jacobson method
[4], the Peuhkuri method [5], and the method proposed
in [6]. The GZIP application and also ZIP and ZLIB [13]
use the deflation algorithm. For different TSH file sizes,
the compressed file size obtained using the GZIP appli-

cation is 50% of the original TSH file size (see Figure
1).

For the Van Jacobson method we must modify
slightly the original method. We assume that a time
stamp (2 bytes) is added to each header. The number
of active flows can be much more larger in a high-speed
Internet link than in a low speed serial link (the scenario
which Van Jacobson was originally proposed). We must
increase thus the number of bytes needed to store the
flow identifier (from 1 byte to 3 bytes). The TCP check-
sum, however, is not included. As a result we assume
that minimal encoded headers are of 6 bytes.

To estimate the compression ratio for the Jacobson
method we must use flow-length distribution measured
in the available packet traces. We will call

�kj
as the

probability that a web flow has

4
packets. With the

changes we have explained before, the compression ra-
tio for n-packet flows using the Van Jacobson method is
bounded by: -mlono�p4 � � `2(rq Z �p4?st7 �`2(Q4 � (5)

obtaining thus a compression ratio given by:

u lonvmwyx �{z � � j � l|nj - lon �	4 �
(6)

Using the distribution

� j
that we obtained from sev-

eral traces, we conclude that the compression rate of the
Van Jacobson method is around 30%.

The lossy method proposed by Peuhkuri also utilizes
the flow nature in Internet traffic, but was thought for
reduce storage space. However, it has the compression
ratio bouded by 16%.

In the proposed compression method 8 bytes are suf-
ficient to represent each flow of

4
packets. There are

some data structures with information related to the
clusters of flows that are also needed. However these
additional data structures are almost constant with the
packet trace length. Then for large packet traces, the
compression ratio for n-packet flows is given by:-}�p4 � � ~`2(Q4 � (7)

obtaining thus a compression ratio of:

u vmwgx ��z � � j ��j*-}�p4 �
(8)

which results in a compression ratio of around 3%.
Figure 1 shows the file size comparison between the

original trace and the four compression methods under
analysis.
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Figure 1: File size comparison

6. Memory performance validation

The compression method studied in this paper
achieves a large compression ratio. However, it is not
able to recover the exact compressed information. In this
section we study whether the recovered trace is suitable
for studies focusing on memory access characteristics.
The results presented in this section do not cover the en-
tire set of possible network benchmarks, but they clearly
show that the recovered trace exhibits close behavior in
relation with the original packet trace.

We have applied three benchmark programs taken
from Netbench [14] and Commbench [15] benchmarks.
The selected programs were: Route (Netbench), NAT
(Netbench), and RTR (Commbench). All the selected
programs involve the Radix Tree Routing inside their
algorithms. The Radix Tree is a binary tree, which start-
ing at the root, stores the prefix address and mask so
far. As you move down the tree, more bits are matched
going one way down the tree. If they don’t match, the
other branch holds the entry required. This sort of data
structure can result in efficient average performance for
forwarding table lookup times, on the order of ln (num-
ber of entries), which for large routing tables is quite a
gain. The returned value from looking up an entry will
typically be the next hop IP router.

The Radix Tree code was instrumented using the
ATOM tool [16]. In order to delimit the processing of
packets, checkpoints were placed at the beginning and
at the end of the packet processing. The instrumented
code records the number of memory accesses performed
by each packet. At the end of the traffic trace processing,
a list including the total number of memory accesses per
packet is generated.

6.1. Memory access measurements

In our experiments, we have used four different
traces. A first trace is a subset of the original RedIRIS
trace, containing only Web flows. Henceforth, we will
call this trace of Original trace. The second one is the
decompressed trace, obtained by applying our proposed
compress/decompress method over the Original trace. A
third trace was generated assigning random IP destina-
tions addresses, but maintaining the same temporal dis-
tribution of the Original trace. Finally, for the last trace,
the IP directions were generated by a multiplicative pro-
cess and were launched using LRU stack model with an
exponential inter-packet time distribution.

Figure 2 plots the cumulative traffic (Y axis) against
the number of memory access (X axis) when executing
the Radix Tree Routing algorithm for the four traces. We
observe that the Original and the Decompressed trace
show similar behavior while the others traces depict dif-
ferent shapes. We can see, for instance, that approxi-
mately 55% of the traffic from the Original and Decom-
pressed trace execute access to memory ranging from
53 to 67. Otherwise, the random trace shows that only
30% of its traffic ranges from 53 to 62 access to memory,
and the fractal trace for this same number of memory
access presents approximately 27% of the traffic. Fur-
thermore, we observe that for the Original and Decom-
pressed trace, the number of access ranging from 53 to
92 corresponds to 60%, but for the Random trace, we
have 70% of the traffic executing from 53 to 88 mem-
ory accesses, and the random trace executing from 53 to
96 accesses to memory for 37% of the traffic.These di-
vergences are due to the fact that the number of visited
nodes is different.

6.2. Cache miss rate

In Figure 3 and for the same Radix Tree algorithm,
we show the cumulative traffic (Y axis) against the cache
miss rate (X axis). Here, again, we observe huge similar-
ity among the Original and the Decompressed trace, but
in this case, the fractal trace has a similar behavior and
the random trace presenting not concordance with the
Original trace. In the graph we can see that about 60% of
the packets from the Original and Decompressed trace
show a cache miss rate lower than 5%, which correspond
to the sequence of packets with a very similar behavior.
Otherwise, for this same ratio, we obtain around 10%
of the packets from the Random trace. For a cache miss
ratio ranging from 5% to 10%, we observe an inverse be-
havior, with 50% of the packets from the random trace
conforming this ratio and only 10% of the packets from
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the Original and Decompressed trace. In our opinion,
the differences between the Original and random trace
are due to the fact that in one trace memory needs to
be released, whereas in the other trace memory is still
available.
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7. Conclusions

In this paper, we have studied a novel packet trace
compression method based on TCP flow clustering. We
show that with our proposed method, storage size re-
quirements for TCP/IP packet traces are reduced to 3%
of its original size. Although this specification defines

a lossy compression method, analysis over the decom-
pressed trace have showed that they represent a good ap-
proximation of original traces. A memory performance
evaluation was carried out with four types of traces and
the outcomes for memory access and cache miss ratio
measurements demonstrated that our proposed compres-
sion method shows a huge efficiency.

As future works, we intend to extend this analysis to a
richer set of network benchmarks, verifying also the ap-
plicability of the method to other types of applications
like P2P, and implement a synthetic packet trace gener-
ator based on the described methodology.
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