
iQ: an efficient and flexible queue-based simulation
framework

Damian Roca, Daniel Nemirovsky,
Marc Casas, Miquel Moreto, and Mateo Valero

Barcelona Supercomputing Center (BSC-CNS)
and Universitat Politècnica de Catalunya (UPC)

Barcelona, Spain
Email: {name}.{surname}@bsc.es

Mario Nemirovsky
ICREA Senior Research Professor at BSC-CNS

Barcelona, Spain
Email: mario.nemirovsky@bsc.es

Abstract—Conventional system simulators are readily used
by computer architects to design and evaluate their processor
designs. These simulators provide reasonable levels of accuracy
and execution detail but suffer from long simulation latencies
and increased implementation complexity. In this work we
propose iQ, a queue-based modeling technique that targets
design space exploration and optimization studies at the core
component level. iQ emulates processor elements by abstracting
the implementation details into modular components composed of
queue structures, delay parameters, probabilistic driven message
generation and event control. Its easy reconfigurability makes iQ
a highly flexible and powerful processor simulator. We have used
iQ to build an Ivy Bridge and a Core 2 Duo processor model
and have validated them against real hardware running SPEC
CPU2006 Int achieving average error rates of 9.55% and 8.93%.

I. INTRODUCTION

Computer architects use several simulation tools in order to
design, evaluate and optimize computing systems. However,
the wide variety of simulation tools makes the selection
process a non-trivial task. While some techniques are based
on analytical models [1], [2], others rely on the use of
system simulators [3] for bottleneck identification and design
verification.

Full system simulators such as Gem5 [3] are currently
commonplace. Other researchers have been using trace-driven
simulators [4] in an effort to reduce the execution time while
maintaining accuracy. Furthermore, researchers use represen-
tative reduced traces [5], [6] which capture the workload
behavior. These tools are excellent for detailed simulations
but they are cumbersome in dealing with the initial stages of
design space exploration due to the lengthy simulation time
and substantial development effort involved.

In contrast, there are other tools more suitable for de-
sign space exploration [7], [8]. They reduce the simulation
time required while maintaining accuracy, but the underlying
complexity remains the same. Thus, another abstraction level
is required. Analytical models should cover this area but
are oversimplified. To improve the outputs of these models,
some researchers [9], [10], [11], [12] have used queuing
theory [13] to construct multi-threaded processors models to
analyze resource contention without focusing on the processor
implementation. However, finer granularity simulation is often

desired when pinpointing micro-architectural bottlenecks or
exploring diverse design parameters and components.

To meet this challenge, architects use a two-stage process.
In the first stage, a high-level simulator is used for the design
space exploration analysis. The bottleneck identification and
the performance improvement estimation obtained guide the
second stage, a more detailed simulation to test and validate
component designs. In this work we present a fine-grained
queue-based simulator, iQ, to be used in the first stage. The
main requirements for iQ are a large complexity abstraction
and fast simulations, while maintaining the error within ac-
ceptable boundaries. To satisfy these needs, we based our
framework on queue theory and statistical information. The
combination of these techniques allows us to represent any
processor component or functionality with queues, servers,
delays, and communication lines. While the queues correspond
to the need of handling an instruction flow, the delays are
the representation of the required time to perform an action
over an instruction. Although there are previous works on both
areas, our intent is to provide a generic framework which it is
detailed enough to be used as the default tool for fast design
space exploration.

To represent applications, a dynamic instruction flow is
generated based on a statistical profile formed by the in-
struction’s distribution probability and register dependency
information. Once the profile is available, it is time to build
a processor model based on the queue elements. To construct
processor models, architectural information is required, which
can be determined easily for an existent processor (ALUs,
ROB length, etc) or in a new design the researcher defines
these parameters. With the profile and the model, architects
can study the impact of new components and/or analyze the
bottlenecks on these models with simulations that take a few
seconds, and most important modifications are feasible in real-
time due to iQ’s abstraction level. Later we demonstrate that
accuracy is not lost to gain simulation speed.

In this paper, we first provide a detailed description of iQ’s
characteristics. Although our technique can be used to simulate
any computer architecture (including processors, GPUs, and
FPGAs), we implement and validate an Ivy Bridge and a Core
2 Duo model against real hardware. A design space analysis is

1

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina
© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. DOI: 10.1109/MASCOTS.2017.13

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

Delay

Server Occupancy

Fig. 1: Generic modular queue structure. It is sequential and
formed by three elements: a queue, a server, and a delay.

TABLE I: Generic queue structure configuration for different
processor components

Processor component Configuration
Non-pipelined
Integer ALU

Server=ALU latency
Delay=0

Pipelined
Memory ALU

Server= 1 cycle
Delay=mALU latency - 1

Partially pipelined
Cache level

Server=non pipelined latency
Delay=Cache latency-server

then presented which showcases the usefulness iQ provides for
architects, saving them time and effort by quickly identifying
bottlenecks and revealing improvement options.

Contributions:
• New simulation paradigm of splitting the one simulator

based technique into a queuing model plus full system
simulator.

• Simulation methodology based on queue models and
statistical information for design space exploration and
bottleneck identification at the core component level.

• iQ’s performance evaluation and validation against real
hardware

II. IQ MODEL

A. Background

In the case of an arithmetic unit such as an Integer ALU
in a processor, the queue can model the ALU input queue
where the message represents an arithmetic instruction such
as an add, and the service time added is the time the ALU
unit takes to execute that arithmetic instruction. Dependencies
between messages (i.e., instructions) or within computational
resources (e.g., ALUs, branch predictors, Out-of-Order track-
ing) are also accounted to model the performance of the system
characteristics being modeled.

A probabilistic model can also be included to emulate non-
deterministic behavior such as branch miss-predictions and
cache hits and misses. A collection of discrete events drives
the execution simulation, in representation of computational
cycles. Total performance is measured as a collection of pro-
cessed messages per total events, in other words, instructions
per cycle.

B. Queuing Model

Processors are formed by a wide variety of components such
as functional units and memory levels. To represent them using
queuing model we have implemented a modular queue struc-
ture that is capable of representing different behaviors through
a set of variable configurations. This module, represented in

Figure 1 is formed by a queue, a server, and a delay. The
users can configure the queue length and the delays required
to process instructions. The Queue occupancy models the
resource contention and availability.

Server: This parameter is used to model the time to execute
the proper function over the instructions. The service time
is the latency required to process an instruction. While an
instruction is being serviced, the subsequent instructions wait
in the queue.

Delay: This parameter is used to complement the Server
latency to ensure the appropriate total delay for the component
the instruction will pass through. In this manner we ensure that
the combination of Service and Delay time is used to represent
any structure, pipelined or not.

Table I shows latency configurations to achieve the desired
structure. For instance, a fully pipelined structure, such as
Multiply ALU with a four cycles latency where a new instruc-
tion may begin execution each cycle. Then the total execution
time is the sum of a Service time (once cycle) and a Delay
time (three cycles). Each cycle the server processes a new
instruction but their total execution time is 4 due to the delay.

Time-line: An event (i.e., cycle) is used to not only keep
track of the number of cycles elapsed, but also tracks and
schedules instruction events to maintain proper execution flow.
For instance, assuming instruction A enters an ALU (which
takes four cycles to compute) at cycle 42. Then, an action
at cycle 46 is scheduled which will move instruction A to
the following stage of execution. Performance is measured
by dividing the total number of retired instructions by total
elapsed cycles (i.e., IPC). The end of the simulation is reached
when the variation between different IPC intervals is negligible
and thus we consider the IPC is stabilized. The amount of time
until the IPC reach that point is variable but usually is within
tens of seconds.

C. Modeling hardware and software characteristics

Hardware: Conceptually, architects need to have a high
level view of a processor (like the 5-stage pipeline) to deter-
mine which basic modules are required to emulate the behavior
of a processor. Identifying the processor components to include
in the model will determine the extra modules. For example,
each ALU or memory level can be included with a generic
module. To reduce the development effort and the simulation
time, iQ models do not require knowing all the specific details
but must only capture the main behavior of each component.
For example, in constructing a cache module, details such as
size and number of lines do not need to be included, the cache
module can still provide accurate results only being configured
to know the hit/miss ratios and corresponding latencies.

Software: To simulate instructions, iQ uses instruction
types which are user defined classes resulting in a pseudo-
ISA. This technique eliminates the complexity and necessity
of using binaries and compilers specific to our simulator.
Applications must be profiled using hardware counters and
tools like Pin [14]. This process enables architects to gauge the
makeup of the application’s instruction mix (e.g., arithmetic,

2

memory, and branch) and register dependencies (distance
between the creation and the use of value). iQ uses the
profile to feed an instruction generator module that creates
a representative code dynamically during the simulation. For
instance, iQ uses a random number generator to produce
different instructions types based on a probability distribution
given by the application profile.

D. iQ Advantages

The easily configurable and modular nature of the modules
in iQ allows a great flexibility in emulating the behavior of
different processors’ components. An important step iQ takes
towards improving performance analysis is to quickly and
accurately evaluate the usefulness of the proposed architectural
solutions before expending significant amounts of time and
effort in modifying conventional simulators. As a consequence,
the relation between the different components and their impact
on total performance can be evaluated in real-time.

Accessibility : We use Omnet++ [15] to construct and
simulate different hardware models. It provides an intuitive
simulation environment and support for the libraries containing
the generic queue modules. A configuration file controls all
the hardware and software parameters. A public release of the
simulator is available at GitHub [16]. Furthermore, iQ is being
used within the H2020 project dRedBox [17] in their design
space exploration analysis for disaggregated data centers with
remarkable results.

III. BUILDING AN ILLUSTRATIVE IQ MODEL

A. Simulation setup

Target Architecture: We have used the iQ simulator to
construct and simulate a model of the Intel(R) Core(TM) i7-
3740QM CPU (Ivy Bridge). We evaluate a single core running
single threaded applications. The architectural specifications
for the Intel Ivy Bridge are publicly available [18], [19].

Host machine: We run our simulator on a Dell Latitude
E6430 laptop. The processor is an Ivy Bridge with four cores
and 8 GB of DDR3 RAM. Simulation accuracy and execution
time are the two main characteristics evaluated. To provide
a detailed and fair simulation evaluation, we compare our
Ivy Bridge iQ model against the real processor through the
Instructions per Cycle (IPC).

Benchmarks: We evaluated our simulator running the
SPEC CPU2006 Int benchmarks [20], except omnetpp since
the dependency profiling tool was not capable of executing it
and astar due to a segmentation fault in the Core 2 Duo. To
obtain the application profile, we used the hardware counters
via perf and Pin on a system OpenSuse 13.1 and gcc 4.8.11.
We classify the different executable instructions to fall within
one of four iQ’s instruction class types which we have defined:
Int, Load, Store, and Branch. We used the MICA tool [21] to
obtain the register dependency distance between instructions.

B. iQ Ivy Bridge modules

Our processor’s model structure is based on the 5-stage
pipeline. Fetch, Control (joins Decode and Issue), Execution,

Memory, and Retirement are modeled using iQ based modules
detailed below.

1) Fetch: The fetch module represents the fetch stage
and the L1 instruction cache (i-cache), plus the dynamic
generation of instructions. An application can be composed
of several phases with different profiles, and the architect can
specify the phase execution order. In the SPEC CPU2006 Int
case we observed almost a flat profile during the execution,
corroborating [22]. In consequence, we defined a single phase
profile information. The parameters required to categorize each
phase include: (i) the distribution of different instruction types
and (ii) and the dependency information. The fetch module
generates instructions based on this information.

An important parameter to represent the fetch stage accu-
rately is the number of instructions per cycle that a real chip
is capable of processing, which for the Ivy Bridge case is
four [19]. Then, this module generates four instructions on
each request.

Icache. Since we model the L1 i-cache, the simulator needs
to determine whether a memory operation results in a cache hit
or miss. This hit/miss ratio is set in the iQ configuration file.
A random value is used to determine a hit or a miss according
to the range obtained applying the miss probability to the the
desired distribution. In this case, we assume all the instruction
misses go to the shared L3 cache, and thus we apply the LLC
latency (28 cycles [19]). If it is a hit, in the next cycle four
instructions will be sent to the next module.

2) Control: This module is responsible for emulating the
decode/issue stages and out-of-order execution, including pro-
cessing of dependency checks and branch predictions. In-
structions received from the fetch module are stored in the
ready queue waiting to be processed. Similar to the fetch
stage, the important parameter for modeling the decode stage
is the number of decoded instructions per cycle that the
processor can deliver. Before issuing an instruction to the
modules emulating the execution stage, the control module
must check the dependency information to determine whether
the instruction will be blocked due to interdependencies or due
to lack of free computational resources such as ALUs, Ld/St
queue and ROB entries.

Modeling Dependencies. A consequence of representing
the instructions with messages which do not include regis-
ter information is that the register renaming and the pool
of available registers have to be emulated with statistical
information. To achieve this objective and also to collect
insightful information, we use two queues. The first queue
tracks the instructions under execution inside the processor.
The second queue tracks the instructions blocked in this stage
due to dependency reasons. To determine and control for inter-
instruction dependencies, a dependency distance probability
at the register level is utilized. Before issuing an instruction,
a random number is generated which will determine if the
instruction depends upon a previous instruction and what dis-
tance. The id of the instruction at the corresponding distance
will be chosen as the one the current instruction depends upon.
The current instruction becomes blocked until the instruction

3

0,00

0,50

1,00

1,50

2,00

2,50

3,00

In
st

ru
ct

io
n

s
 p

er

cy
cl

e
 (

IP
C

)
iQ Ivy Bridge

-10,2%

12,03%

-2,81%

-16,3%

4,65%

107%

-10,4% 0,89%

24,1%

-4,5%

(a) iQ model and real Ivy Bridge. The absolute average error rate
without gcc is 9.55% (19.42% with gcc)

0,00

0,50

1,00

1,50

2,00

2,50

In
st

ru
ct

io
n

s
 p

er

cy
cl

e
(I

P
C

)

iQ Core 2 Duo

22,8%

18,4%

13,2%

-5,28% 69,3%

2,24%

-4,48%

2,73%

-1,68%

9,57%

(b) iQ model and real Core 2 Duo. The absolute average error rate
without gcc is 8.93% (14.96% with gcc)

Fig. 2: iQ accuracy: IPC comparison between iQ models and real processors with errors rates shown on top.

it depends on finishes execution.
Branch predictor. To predict branches, we use a similar

method as with the instruction cache by generating a random
number and checking whether it falls within the probability
ranges of a true or false branch prediction. If the branch is
correctly predicted, it is sent to the scheduler function which
emulates the next stage in execution. On the other hand, if
there is a miss-prediction, the pipeline is flushed by emptying
the ready instruction queue and a penalty is applied to the
next clock event. This penalty sums the cost of the pipeline’s
flush and the average memory access latency to fetch new
instructions. In the Ivy Bridge model the value is set up at 60
cycles.

Issue. The scheduler function checks if there is a free func-
tional unit able to execute the instruction. In the Ivy Bridge
case, up to five instructions can be executed simultaneously:
three integer instructions (or 2 integer and 1 branch) and two
memory instructions (2 loads, 1 load and 1 store, or one of
either type). If there is an available functional unit (FU), the
scheduler issues the instruction for execution by sending it to
the corresponding FU module. In case the FU is occupied,
it leaves the instruction in the ready queue until the module
becomes available. Out of order execution is simulated using
the re-order buffer (ROB) length to define the number of
instructions that the processor can examine inside the ready
queue to find a suitable instruction to send. That length is
reduced by taking into account the number of instructions
under execution and also the blocked instructions.

3) Integer/Branch functional units: These functional units
are capable of executing three integer instructions or two inte-
ger instructions and one branch. To emulate their functionality
the generic compound module from Table I is used. The
required time to execute these instructions types in the real
processor is one cycle so the service time is configured to
be one and the delay value is set to zero. The queue length
is unbounded because it is controlled through the maximum
distance between the oldest instruction and the one to be sent.

4) Memory hierarchy: The Intel Ivy Bridge processor is
capable of executing two loads simultaneously, represented
with two memory FUs. The cache miss ratios are specified for
each memory level. iQ uses a random number to determine the
outcome of the memory accesses. To execute the operation, a
cache control module is required after the generic functional
unit. After the memory instruction goes through the L1 d-
cache modules, it arrives to the L1 control module. At this
point, whether the memory access is a cache hit or miss is
determined. If it is a hit, then the instruction is sent to the
retirement module. In case of a miss, it is sent to the L2 cache
module. The same procedure is applied for L2 and L3. Main
memory accesses are treated differently because they always
hit.

5) Retirement: The retirement module emulates the re-
tirement stage of a processor. The processor model retires
instructions in an out-of-order fashion since instructions are
retired when they arrive. This does not affect the accuracy
since iQ uses statistical profiles of the application and not
real code. If a traditional trace was used instead, then the
in-order retirement would have to be used. There is almost
no difference on accuracy or simulation time using in-order
or out-of-order retirement. Once the instruction is retired, its
id is sent to the control module. The control module can then
check possible dependencies on that id and proceed to execute
those instructions. This module also collects statistics about
the entire simulation such as the latency required to execute
each instruction, histograms about queue occupancies, number
of retired instructions separated by type, etc.

IV. EVALUATION

A. Accuracy

Figure 2a presents the comparison between the simulated
and real Ivy Bridge IPC values running the SPEC CPU2006
Int benchmarks. It also shows the percentage relative error
between these values. Apart from gcc that will be explained
separately, the average error rate for the other benchmarks

4

is 9.55%. This error is comparable to those obtained with
cycle-accurate simulators specifically modified to match a
specific platform [23], proving that iQ can modelate the key
components of a processor. There is only one outlier, gcc.
The dependency model has been identified as the source
of error due to its current inability of representing long
and frequent dependency chains that limit the performance
of the processor for gcc. As future work, a more detailed
dependency representation has to be implemented to allow
users to simulate correlated dependencies.

B. iQ for another processor

To extend iQ’s validation, we constructed a processor model
based on the Intel Core 2 Duo [24]. The methodology is the
same as with the previous model but the parameters of the
predefined modules have been reconfigured based on the Core
2 Duo specifications. The application profile (instruction mix
and register dependencies) is the same since this information
is micro-architecture independent and used the same SPEC
CPU2006 Int benchmarks. Figure 2b presents the IPC com-
parison between the model and the real chip. As with the Ivy
Bridge, our Core 2 Duo model exhibits competitive accuracy
rates, except for gcc (for similar reasons as in the previous
model).

C. Simulation Speed

iQ’s execution time is reduced by the fact that the model
only needs to execute the application profile until the variation
in the output IPC value is negligible and does not need to
execute the entire program. In less than ten thousand cycles
all the benchmarks have a stable output IPC, and thus the
simulations can finish. After measuring the real CPU execution
time required for simulating those cycles, the final IPC is
obtained in 2 seconds on average with a maximum of 4.2,
demonstrating a remarkable speedup over the times required
by other simulators.

D. Comparison with other simulators

Table II compares the absolute average error (second col-
umn) and average simulation time (third column) between our
iQ simulation platform and other state of the art proposals. To
populate it, we used the numbers from the original papers. The
third column presents the execution time for each simulation
technique: Gem5 runs the test input set of the SPEC2006,
Sniper runs the large set of Splash-2 [25], ZSim runs 50 billion
instructions, analytical model runs 1 billion and iQ runs until
the IPC is stable. Although different benchmark sets are used,
Table II positions iQ with current techniques. We see that iQ
is the fastest and provides very low error percentage.

Gem5 is a full system simulator which detail results in
very slow but highly accurate simulations [23]. However,
the development cost is high, precluding its use for design
space exploration analysis. The simulation speed of Sniper
is improved compared to full-system simulators like Gem5
and MARSS, in the range of a few MIPS, while the accuracy
is relatively high. While Sniper’s scope is to perform rapid

TABLE II: Comparison between iQ and other simulators based
on the numbers provided in the original articles

Simulator Avg. error (%) Avg. Sim time
(hours)

iQ 9.55 0,0005
Analytical [26] 13 0.055

ZSim [8] 9.7 1,12
Sniper [7] 19.8 6,94

MARSS [27] 15.5 86,80
Gem 5 [23] 13 69,4

and accurate simulations by using interval simulation, its
flexibility is still limited since modifications take time and
each simulation can take hours.

ZSim is a suitable tool to perform accurate simulations,
but not to perform design space exploration analysis because
the execution time is not small enough and modifications
still require significant efforts for such high-level studies. In
Table II we show their performance values for the SPEC
benchmarks obtained from their website [28].

Analytical models present similar simulation speeds to iQ
but the resulting accuracy depends on the model’s complexity.
In Table II we show one of the latest models [26]. To achieve
that accuracy, that model is based on interval simulation,
checkpoints, and cache and predictors. However, analytical
models provide average performance values which obscure the
dynamic behavior. Instead, queue models capture the latency
distribution. This information is crucial to perform optimal
design space exploration analysis and modifications to the
processor architecture itself (more ALUs, memory ports, etc).

Conversely, an iQ based processor model emulates the real
behavior through abstractions. Despite this fact, the accuracy
level outperforms nearly all other simulators and simulation
time is better than that of complex analytical models. Thanks
to the component abstractions and the instruction generator,
iQ performs simulations within a few seconds compared to
several hours.

V. DESIGN SPACE EXPLORATION ANALYSIS

This section demonstrates the practical usefulness of the
iQ model and how it can be used by architects to run design
level analysis and optimize their systems. A modern processor
is a complex machine with many more factors and parameter
values that should also be evaluated. This fact indicates that the
number of simulations growths exponentially with the number
of factors. For instance, conducting an experiment consisting
of 7 different parameter values for these 5 different factors
concurrently means 16807 simulations for each benchmark (9
hours to run).

Eight configurations out of this multi-factor study are pre-
sented in Table III and compared to the default Ivy Bridge
architecture. They form a representative subset of solutions
based on the number of factors involved and the improvement
achieved for comparison reasons. Although there are more
configurations that accomplish the objective, choosing the ap-
propriate solution will depend on the cost functions accounting
for power, area, and implementation feasibility.

5

TABLE III: Design space exploration: factor and parameter configurations with the resultant performance improvement

Configuration Fetch
(inst/cycle)

RoB length
(entries)

Branch penalty
(cycles)

DRAM latency
(cycles)

LLC latency
(cycles)

Improvement
(%)

Default(-) 4 168 60 180 28 -
A 5 128 40 - - 15.33
B 5 256 40 - - 18.19
C 5 - 50 - Miss ratio -10% 15.46
D 5 128 50 130 - 16.55
E 5 256 - 125 - 15.32
F - 256 40 150 - 15.28
G 6 - - 140 Miss ratio -5% 17.03
H 6 256 55 170 25 15.00

Regarding the results from Table III the only difference
between configuration A and configuration B is the increase
of the size of the RoB length in B to 256. A larger number
of fetched instructions per cycle combined with a reduced
branch penalty makes that more instructions are available for
execution each cycle. Then, this fact is exploited by a larger
RoB length which translates into an improvement of 18.19%,
while A obtains 15.33%. It becomes the architect’s job to make
a cost-benefit analysis and determine whether this extra 2.86%
improvement is worth the implementation and energy costs.
Configuration G provides a similar improvement, a 17.03%,
with a different combination of parameter values. Instead of
modifying the RoB length and the branch penalty it reduces
the LLC miss ratio by 5% and also reduces the DRAM latency.
Improving the memory hierarchy reduces the time instructions
are blocked due to pending memory requests and allows to
exploit a larger instruction level parallelism (ILP).

Following with the memory improvements, configuration C
includes a reduction of the LLC miss ratio by 10%. In this
case, a less aggressive fetch is compensated with a reduced
branch penalty. However, this configuration is not so optimal
as the previous one and presents a 15.46% improvement.
Knowing that the LLC cache miss ratio needs to be decreased
the architect can then use a cache simulator to decide which
cache scheme fulfills the new miss ratios. Also remarkable is
the configuration H, where all the factors are slightly modified.
In comparison with the previous configurations where specific
components were targeted, H proves that a minimum enhance-
ment in all the processor stages achieves a 15% improvement.

Other solutions are more aggressive, such as E. To achieve
a drastic reduction of the DRAM latency may not seem
feasible. However, new memory technologies may enable such
breakthroughs and then the architect can estimate its impact.
Once configuration E revealed its potential with a 15.32%
improvement, the architect can iterate on top of it. Decreasing
the RoB length following the premises from previous analysis
to 128 and reducing the branch penalty by 10 cycles results
in 16.55% improvement (configuration D).

VI. RELATED WORK

Different techniques have been used to provide feasible
design space exploration tools. SMARTS [29] provides re-
duced representative subsets of benchmarks to reduce the
simulation time although the underlying processor model can

compromise its advantages. To avoid the use of third tools,
synthetic traces [1] can be generated recreating the original
behavior from a previous execution reducing the simulation
time. TaskPoint [30] applies sampled simulation to task-
based programs. Cook et al. [31] developed a design space
exploration technique based on Monte Carlo methods. Lee
et al. [32] used a regression model to analyze the trade-offs
between performance and power consumption.

Prior work has also used queue models to simulate multi-
processor systems [11], [10], [33]. They exhibit a higher level
of abstraction in the processor architecture, reduced to a traffic
generator, because they focus on the multi-threaded contention
problems. The first work only simulates the different cache
levels of the memory hierarchy and how the requests access
them. They do not simulate the ISA, focusing on the memory
accesses. The second work adds more detail to the mem-
ory hierarchy implementing the bank scheme and the main
memory, but the rest of the processor still remains hidden. iQ
extends both works by implementing the remaining processor
components, a more complete ISA, and defining a generic
framework easily extensible to other processor architectures.
Then, iQ can perform a fine-grain analysis of the entire
processor.

Data center scale simulations have been performed using
the queue methodology, both in performance [34] and in
power [12], sharing the granularity problem of previous works.

VII. CONCLUSION

In this work, we have proposed iQ, a queue-based model
simulator at the core components level that targets design
space exploration studies. We have shown how iQ emulates
processor components by abstracting the implementation de-
tails. Its modular nature and easy reconfigurability of the
component parameters make iQ a highly flexible and powerful
processor simulator.

ACKNOWLEDGMENTS

The authors would like to thank Mauricio Breternitz,
Rodolfo Milito, and Vasilis Karakostas for their helpful re-
views. Damian Roca work was supported by a Doctoral
Scholarship provided by Fundación La Caixa. This work has
been supported by the Spanish Government (Severo Ochoa
grants SEV2015-0493) and by the Spanish Ministry of Science
and Innovation (contracts TIN2015-65316-P).

6

REFERENCES

[1] S. Nussbaum and J. Smith, “Modeling superscalar processors via statis-
tical simulation,” Proceedings of PACT, 2001.

[2] L. Eeckhout and K. D. Bosschere, “Hybrid analytical-statistical model-
ing for efficiently exploring architecture and workload design spaces,”
Proceedings of PACT, 2001.

[3] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, et al., “The gem5
simulator,” ACM SIGARCH Computer Architecture News, vol. 39, no. 2,
pp. 1–7, 2011.

[4] A. Rico, A. Duran, F. Cabarcas, Y. Etsion, A. Ramirez, and M. Valero,
“Trace-driven simulation of multithreaded applications,” in Proceedings
of ISPASS, pp. 87–96, IEEE, 2011.

[5] T. Lafage and A. Seznec, “Choosing representative slices of program
execution for microarchitecture simulations: A preliminary application
to the data stream,” Workload characterization of emerging computer
applications, 2001.

[6] R. Wunderlich, T. Wenisch, B. Falsafi, and J. Hoe, “Smarts: accelerating
microarchitecture simulation via rigorous statistical sampling,” Proceed-
ings of ISCA., 2003.

[7] T. E. Carlson, W. Heirman, and L. Eeckhout, “Sniper: exploring the level
of abstraction for scalable and accurate parallel multi-core simulation,”
in Proceedings of 2011 SC, p. 52, ACM, 2011.

[8] D. Sanchez and C. Kozyrakis, “ZSim: Fast and Accurate Microarchi-
tectural Simulation of Thousand-Core Systems,” Proceedings of ISCA,
2013.

[9] M. Véran and D. Potier, QNAP 2: A portable environment for queueing
systems modelling. PhD thesis, INRIA, 1984.

[10] R. Zilan, J. Verdú, and J. Garcı́a, “An abstraction methodology for
the evaluation of multi-core multi-threaded architectures,” IEEE 19th
MASCOTS, 2011.

[11] T. F. Tsuei and W. Yamamoto, “Queuing simulation model for multi-
processor systems,” Computer, 2003.

[12] D. Meisner and T. Wenisch, “Stochastic queuing simulation for data
center workloads,” Exascale Evaluation and Research Techniques Work-
shop, 2010.

[13] E. Gelenbe and I. Mitrani, Analysis and synthesis of computer systems,
vol. 4. World Scientific, 2010.

[14] S. Berkowits, “Pin-a dynamic binary instrumentation tool,” 2012.
[15] A. Varga, “The OMNeT++ discrete event simulation system,” ESM),

2001.
[16] iQ, code repository. Available at https://github.com/damianroca/

iQ---Queue-model-simulation,.
[17] H2020 project, dRedBox. Available at http://www.dredbox.eu/home.

html,.
[18] I. Corporation, “Intel 64 and IA-32 Architectures Optimization Refer-

ence Manual,” no. March, 2014.
[19] A. Fog, “The microarchitecture of intel, amd and via cpus/an optimiza-

tion guide for assembly programmers and compiler makers,” 2012.
[20] J. L. Henning, “Spec cpu2006 benchmark descriptions,” ACM SIGARCH

Computer Architecture News, vol. 34, no. 4, pp. 1–17, 2006.
[21] K. Hoste and L. Eeckhout, “Microarchitecture independent workload

characterization,” in IEEE Micro, 2007.
[22] Phase Behavior ZSim analysis. Available at http://zsim.csail.mit.edu/

validation/time series/,.
[23] A. Gutierrez, R. G. Dreslinski, T. Mudge, C. Sudanthi, C. D. Emmons,

M. Hayenga, and N. Paver, “Sources of error in full-system simulation,”
Proceedings of ISPASS, 2014.

[24] R. Intel, “Intel 64 and ia-32 architectures optimization reference man-
ual,” Intel Corporation, May, 2012.

[25] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The splash-2
programs: Characterization and methodological considerations,” in ACM
SIGARCH computer architecture news, 1995.

[26] S. Van den Steen, S. De Pestel, M. Mechri, S. Eyerman, T. Carlson,
D. Black-Schaffer, E. Hagersten, and L. Eeckhout, “Micro-architecture
independent analytical processor performance and power modeling,” in
Proceedings of ISPASS, IEEE, 2015.

[27] A. Patel, F. Afram, S. Chen, and K. Ghose, “Marss: Micro architectural
systems simulator.,” in ISCA tutorial 6, 2012.

[28] SPEC benchmarks performance. Available at http://zsim.csail.mit.edu/
validation/ooo.txt,.

[29] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe, “Smarts:
Accelerating microarchitecture simulation via rigorous statistical sam-
pling,” in Computer Architecture, 2003. Proceedings. 30th Annual
International Symposium on, IEEE, 2003.

[30] T. Grass, A. Rico, M. Casas, M. Moreto, and E. Ayguadé, “Taskpoint:
Sampled simulation of task-based programs,” in Performance Analysis
of Systems and Software (ISPASS), 2016 IEEE International Symposium
on, pp. 296–306, IEEE, 2016.

[31] J. Cook, J. Cook, and W. Alkohlani, “A statistical performance model
of the opteron processor,” ACM SIGMETRICS Performance Evaluation
Review, 2011.

[32] B. C. Lee and D. M. Brooks, “Accurate and efficient regression modeling
for microarchitectural performance and power prediction,” in ACM
SIGOPS Operating Systems Review, ACM, 2006.

[33] T. Tsuei and W. Yamamoto, “A processor queuing simulation model for
multiprocessor system performance analysis,” in Proc. of 5th Workshop
on Computer Architecture Evaluation using Commercial Workloads
(CAECW), pp. 58–64, 2002.

[34] D. Meisner, J. Wu, and T. F. Wenisch, “Bighouse: A simulation
infrastructure for data center systems,” ISPASS, 2012.

7

https://github.com/damianroca/iQ---Queue-model-simulation
https://github.com/damianroca/iQ---Queue-model-simulation
http://www.dredbox.eu/home.html
http://www.dredbox.eu/home.html
http://zsim.csail.mit.edu/validation/time_series/
http://zsim.csail.mit.edu/validation/time_series/
http://zsim.csail.mit.edu/validation/ooo.txt
http://zsim.csail.mit.edu/validation/ooo.txt

