TÍTULO: Comparación de diferentes sistemas de climatización aplicados a un edificio residencial.

AUTORES: Marcé Cortés, Jordi

TITULACIÓN: Grado en Ingeniería Mecánica

FECHA DE PRESENTACIÓN: Julio, 2017
Este proyecto tiene en cuenta aspectos mediambientales:

□ Sí ☐ No

RESUMEN

El proyecto se basa en una rehabilitación energética de una vivienda antigua con dos partes diferenciadas: el cálculo y diseño de la nueva instalación, y la comparación entre la instalación antigua y la instalación nueva.

La idea con la que surgió la realización de este proyecto fue con la comparación entre un sistema de climatización convencional y un sistema de climatización con aporte de energía renovable, pero posteriormente se basó en una rehabilitación de una vivienda para que la comparación que se quería originalmente fuera para un caso práctico y real, para una situación que hoy en día se realiza habitualmente, las rehabilitaciones energéticas en viviendas.

Para la realización de este trabajo se ha realizado un estudio teórico de los diferentes tipos de sistemas de calefacción, refrigeración y ventilación, y los antecedentes que presentan cada uno de ellos para poder ver la evolución hasta la actualidad. También se estudia el funcionamiento de cada uno de ellos y las diferentes maneras de realizar un aporte de energía renovable que tenga como fuente la energía solar o biomasa. Posteriormente se ha indicado el tipo de vivienda, unifamiliar con 160m², que consta de una planta baja, una planta primera y una azotea, ubicada en la calle Zambrano de Viladecans.

El siguiente paso, y uno de los más importantes es el cálculo de cargas térmicas de la obra nueva, a la que se le ha aplicado modificaciones en la envolvente. Este cálculo de cargas se realizará siguiendo el método indicado por la ASHRAE mediante las transmitancias de cada elemento de la vivienda que habrán sido ya calculadas.

Paralelamente a este punto, se realiza el diseño de la obra antigua con el programa Cype Ingenieros para poder tener una visión más clara de la vivienda y poder efectuar un cálculo de cargas aproximado y compararlo con la obra nueva. También ha servido para la confirmación de que con la nueva obra (añadiendo 4mm de aislante en la envolvente) se cumple la normativa actual.

Con el cálculo de cargas realizado, se ha podido proceder al dimensionado de las instalaciones de calefacción, refrigeración y ventilación de la obra nueva respetando siempre la normativa técnica correspondiente, para después poder realizar la asignación de equipos correcta para cada sistema. Una vez se ha realizado la asignación, se ha efectuado el cálculo del presupuesto para cada sistema basándose en los catálogos de los fabricantes o distribuidores.

Por último, se ha realizado la parte más trascendental del proyecto, la comparación del sistema antiguo, y del sistema nuevo, para poder calcular y confirmar la gran diferencia de impacto medioambiental entre los dos sistemas. En este punto también se realiza una comparación de consumos de combustibles, y de consumos económicos para demostrar la viabilidad económica de este tipo de sistemas.
Palabras clave (máximo 10):

<table>
<thead>
<tr>
<th>rehabilitación energética</th>
<th>Climatización</th>
<th>Energías renovables</th>
<th>Energías convencionales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calefacción</td>
<td>Refrigeración</td>
<td>Ventilación</td>
<td>Dimensionado</td>
</tr>
<tr>
<td>Cálculo</td>
<td>Comparación</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ÍNDICE

ÍNDICE DE ILUSTRACIONES ... i
ÍNDICE DE TABLAS ... iii
1. INTRODUCCIÓN ... 5
 1.1 Motivación .. 5
 1.2 Objetivos del proyecto ... 6
 1.3 Alcance del proyecto ... 7
2. ANTECEDENTES Y ACTUALIDAD DE LOS TIPOS DE SISTEMAS ... 8
 2.1 Calefacción ... 8
 2.1.1 Antecedentes de la calefacción .. 8
 2.1.2 Fuentes de energía ... 9
 2.1.3 Sistemas interiores calefacción .. 18
 2.2 Refrigeración .. 21
 2.2.1 Antecedentes refrigeración ... 21
 2.2.2 Tipos de sistemas .. 23
 2.2.3 Generalidades de los sistemas con bomba de calor .. 28
 2.3 Ventilación ... 32
 2.3.1 Ventilación mecánica .. 32
 2.3.2 Ventilación natural ... 34
3. INDICACIONES DE CÁLCULO Y CRITERIOS DE DISEÑO .. 35
 3.1 Datos iniciales .. 35
 3.1.1 Descripción del edificio .. 35
 3.1.2 Normativa aplicada ... 37
 3.2 Descripción de las instalaciones y especificaciones técnicas ... 39
 3.2.1 Sistema antiguo o convencional ... 39
 3.2.2 Sistema nuevo o renovable .. 40
 3.2.3 Ventilación ... 44
4. CÁLCULO DE CARGAS TÉRMICAS .. 46
 4.1 Condiciones de diseño ... 46
 4.2 Cálculo de transmitancias ... 48
 4.3 Método de cálculo y cálculo de cargas .. 58
 4.3.1 Calefacción ... 58
 4.3.2 Refrigeración .. 63
 4.4 Cálculo de cargas de la envolvente antigua con Cype .. 71
 4.5 Comparación de cargas de envolvente nueva y la antigua .. 72
 4.6 Cumplimiento He0 y He1 .. 74
5. DIMENSIONADO DEL SISTEMA Y SELECCIÓN DE EQUIPOS .. 77
 5.1 Dimensionado sistema para ACS .. 77
 5.1.1 Generalidades y normativa a aplicar .. 77
ÍNDICE DE ILUSTRACIONES

Ilustración 1. Estufa de leña... 9
Ilustración 2. William Grylls ... 10
Ilustración 3. Invento Climax .. 11
Ilustración 4. Funcionamiento instalación fotovoltaica 12
Ilustración 5. Placa fotovoltaica .. 13
Ilustración 6. Funcionamiento instalación térmica 14
Ilustración 7. Sistema con apoyo de caldera 15
Ilustración 8. Combustibles para biomasa 17
Ilustración 9. Ciclo de la biomasa .. 17
Ilustración 10. Caldera de pellets ... 17
Ilustración 11. Comparación calefacción 19
Ilustración 12. Willis Carrier ... 22
Ilustración 13. Sistema 1x1 .. 23
Ilustración 14. Sistema multisplit ... 24
Ilustración 15. Sistema VRF bomba de calor 27
Ilustración 16. Sistema VRF de recuperación de calor 27
Ilustración 17. Ciclo bomba de calor ... 29
Ilustración 18. Clasificación eficiencias energéticas 31
Ilustración 19. Esquema de funcionamiento de la UTA 33
Ilustración 20. Esquema recuperador de calor 33
Ilustración 21. Catastro vivienda ... 35
Ilustración 22. Distribución sistemas convencionales 40
Ilustración 23. Sistema tipo VRF ... 42
Ilustración 24. Instalación calefacción y ACS 44
Ilustración 25. Ventilación en una vivienda 45
Ilustración 26. Resultado HE0 .. 74
Ilustración 27. Consumo energético anual del edificio 75
Ilustración 28. Resultado HE1 .. 75
Ilustración 29. Sistema solar de circulación forzada 81
Ilustración 30. Pérdidas límite por orientación e inclinación 83
Ilustración 31. Diferentes tipos de conexionado de captadores 83
Ilustración 32. Orientación captador ... 89
Ilustración 33. Perdidas captador .. 89
Ilustración 34. Distancias límite ... 91
Ilustración 35. Zonas climáticas ... 93
Ilustración 36. Curva de comportamiento captador 97
Ilustración 37. Captador térmico Mediterraneo 100
Ilustración 38. Acumulador AS-300 2E 101
Ilustración 39. Esquema acumulador 102
Ilustración 40. Especificaciones AS300 103
Ilustración 41. Relación pérdida de carga-caudal-diámetro 104
Ilustración 42. Especificaciones modelo de caldera seleccionado ... 104
Ilustración 43. Esquema primario ... 106
Ilustración 44. Estructura suelo radiante Minitec 107
Ilustración 45. Desviación media temp. aire-agua 107
Ilustración 46. Sistema equivalente calefacción/ACS 108
Ilustración 47. Diagrama de pérdida de carga en tuberías evalPEX .. 112
Ilustración 48. Curva de comportamiento bomba ALPHA15-40 130 ... 113
Ilustración 49. Modelo depósito de inercia 114
Ilustración 50. Colector Vario M ... 114
Ilustración 51. Sistema suelo radiante planta 1 115
Ilustración 52. Esquema instalación sistema VRF
Ilustración 53. Valores resumen instalación refrig.
Ilustración 54. Plano distribución sistema refrigeración
Ilustración 55. Distribución tipo ventilación CTE
Ilustración 56. Gráfico caída de presión- caudal ventilación
Ilustración 57. Curva de comportamiento recuperador de calor
Ilustración 58. Distribución ventilación planta baja
Ilustración 59. Gráfico comparación económica consumos
Ilustración 60. Gráfico de comparación consumos y material
Ilustración 61. Gráfico de comparación consumo, material y instalación
Ilustración 62. kg CO2 /año
Ilustración 63. Gráfico power input
Ilustración 64. Gráfico comparación consumo económico
Ilustración 65. Gráfico comparación costes consumo, materiales e instalación
Ilustración 66. Comparación Kg CO2/año
ÍNDICE DE TABLAS

Tabla 1. Temperaturas de ebullición .. 28
Tabla 2. Especificaciones bomba de calor VRF .. 30
Tabla 3. Estructura vivienda .. 36
Tabla 4. Estructura vivienda ... 37
Tabla 5. Caudal de ventilación mínimo .. 44
Tabla 6. Valores exteriores ... 46
Tabla 7. Valores interiores ... 47
Tabla 8. Resistencias térmicas superficiales ... 48
Tabla 9. Transmisancia fachada ... 49
Tabla 10. Resistencias térmicas superficiales interiores 49
Tabla 11. Transmisancias paredes interiores ... 50
Tabla 12. Coeficiente de reducción de temperatura b 51
Tabla 13. Transmisancia paredes interiores .. 52
Tabla 14. Transmisancia suelos .. 52
Tabla 15. Transmisancia techos .. 53
Tabla 16. Transmisancia cubierta .. 54
Tabla 17. Transmisancia solera ... 54
Tabla 18. Factor de transmisión para solera .. 55
Tabla 19. Transmisancias en ventanas .. 56
Tabla 20. Valor α por color .. 57
Tabla 21. Valores factor solar ... 57
Tabla 22. Carga transmisión sala de estudios .. 60
Tabla 23. Carga ventilación sala de estudios ... 61
Tabla 24. Carga total calefacción .. 62
Tabla 25. Valores CLTD para fachada .. 64
Tabla 26. Valores CLTD para azoteas .. 64
Tabla 27. Valores SCL para ventanas .. 64
Tabla 28. Cargas por transmisión en sala de estudio 66
Tabla 29. Relación temperatura-humedad específica 67
Tabla 30. Carga por ventilación en sala de estudios 67
Tabla 31. Valores de radiación unitaria .. 68
Tabla 32. Valores de cargas por radiación ... 69
Tabla 33. Valores de cargas internas sala de estudios 70
Tabla 34. Carga total refrigeración ... 70
Tabla 35. Cargas envolvente antigua ... 71
Tabla 36. Comparación cargas calefacción ... 72
Tabla 37. Comparación cargas refrigeración ... 72
Tabla 38. Resumen cálculo de demanda energética 76
Tabla 39. Pérdidas límite orientación e inclinación 88
Tabla 40. Valores factor k para latitudes ... 91
Tabla 41. Contribución solar mínima .. 92
Tabla 42. Demanda de referencia a 60ºC .. 92
Tabla 43. Valores mínimos de ocupación ... 93
Tabla 44. Poblaciones por zonas de referencia 94
Tabla 45. Radiación Solar Global .. 94
Tabla 46. Demanda mensuales ACS .. 96
Tabla 47. Valores mensuales medios de radiación 97
Tabla 48. Cobertura solar total anual .. 99
Tabla 49. Longitud de los circuitos suelo radiante 109
Tabla 50. Densidad de flujo ... 110
Tabla 51. Caudal por circuito ... 111
1. INTRODUCCIÓN

1.1 MOTIVACIÓN

Durante los últimos años, el cambio climático desgraciadamente está teniendo un papel muy importante en la sociedad, y poco a poco se han ido ejecutando diferentes medidas con la finalidad de conseguir mayor producción de energía renovable y así que nuestras acciones y hábitos tengan menos impacto en la atmósfera y el medioambiente.

En el ámbito nacional, España tiene un objetivo marcado para el 2020, que el 20% de la energía producida proceda de fuentes renovables, y en el sector residencial, ya se implantaron exigencias de aportaciones mínimas de energía renovable para la producción de agua caliente sanitaria en viviendas.

Creo que este tipo de medidas son buenas para mirar al futuro, pero únicamente tienen en cuenta las obras de construcción nueva o en las rehabilitaciones de gran envergadura, por esta razón creo que puede ser muy importante la rehabilitación de todas viviendas antiguas.

Por las razones indicadas anteriormente, mediante rehabilitaciones en viviendas antiguas, se podrá mejorar el confort de los residentes, reducir el consumo de los combustibles, y lo más importante, evitar la instalación de equipos que funcionen con combustibles fósiles y renovarlos con equipos cuya fuente de energía sea renovable.

La estimulación que veo en la realización de este proyecto es dar una alternativa más respetuosa con el medio ambiente y más eficiente para viviendas con más de 20 años y demostrar que puede ser totalmente viable para cualquier reforma que se pueda estar realizando en cualquier vivienda.
1.2 OBJETIVOS DEL PROYECTO

El objetivo principal de este proyecto es diseñar una nueva instalación de calefacción, refrigeración y agua caliente sanitaria para una vivienda con más de 25 años que debe sufrir una rehabilitación.

Por tanto se quiere mejorar la instalación antigua mediante nuevas tecnologías en climatización más eficientes y sobre todo con una aportación de energía renovable.

Para poder conseguir el objetivo principal marcado se deberán realizar los siguientes objetivos secundarios:

- Evaluación teórica de diferentes sistemas renovables y no renovables de calefacción y refrigeración.
- Diseño de la vivienda e instalación antigua con el programa Cype Ingenieros.
- Cálculo de cargas térmicas de cada habitación a climatizar.
- Diseño de los sistemas de refrigeración, calefacción y ACS (Agua Caliente Sanitaria).
- Cumplimiento de todas las especificaciones técnicas expuestas.
- Presupuestar la nueva instalación
- Comparar el impacto económico y medioambiental con la instalación antigua para poder demostrar su viabilidad y la reducción del impacto medioambiental.
1.3 ALCANCE DEL PROYECTO

El alcance de este proyecto es el siguiente:

Técnica teórica de energías renovables.
Técnica teórica de sistemas de calefacción y refrigeración.
Diseño y cálculo de cargas con el programa Cype ingenieros.
Cálculo de cargas térmicas y diseño de la instalación de refrigeración, calefacción y ACS para la vivienda en cuestión.
Plan de diseño.
Plan de presupuesto de las diferentes instalaciones.
Evaluación de las consecuencias económicas y ambientales y comparación con los sistemas convencionales.
Diseño de planos para la distribución de las instalaciones.
2. ANTECEDENTES Y ACTUALIDAD DE LOS TIPOS DE SISTEMAS

En este capítulo se hará referencia a las tres partes fundamentales de la regulación de las condiciones ambientales en una vivienda, la calefacción, la refrigeración y la ventilación de los cuales se indicará brevemente sus antecedentes y los sistemas actuales, a la vez que el funcionamiento de dichos sistemas.

2.1 CALEFACCIÓN

Un sistema de calefacción permite elevar la temperatura de un determinado local en relación con la temperatura ambiente exterior. De esta manera conseguiremos aumentar nuestro confort frente a la sensación de frío.

2.1.1 Antecedentes de la calefacción

En la actualidad, cuando padecemos frío en nuestra vivienda en la mayoría de casos todos tenemos elementos que nos pueden proporcionar calor, pero nuestros antepasados uno de los mayores retos que tenían era sobrevivir al frío.

Los primeros lo conseguían cubriéndose con piel, pelo o plumas de animales, y posteriormente con el descubrimiento del fuego mediante hogueras.

Esta fuente de alimentación fue utilizada por los griegos, de tal manera que mediante la fuente de alimentación (fuego) en el exterior, conseguían calentar la vivienda mediante tuberías que transportaban el humo caliente a través de la vivienda antes de salir al exterior.

A lo largo de la historia el ser humano se las ha ingeniado para mantener el calor en la vivienda lo máximo posible.

En la antigua castilla se inventó el sistema de gloria que consistía en quemar paja a la entrada de la gloria, y posteriormente el producto de la combustión se transportaba por un doble piso entre la vivienda y el suelo.

También actualmente vemos las típicas casas rurales compuestas de anchos y bajos muros. Normalmente este tipo de casas que aún se pueden ver, se encuentran en zonas de alta montaña y la razón es para poder tener una mayor inercia térmica, y de esta manera aprovechar al máximo el calor del escaso Sol de los días de invierno. Por otro lado la escasa altura era para que el aire caliente no subiera.
Posteriormente llegó el que podemos llamar el primer invento de calefacción cerrado para viviendas, la estufa de leña. Las ventajas que presentaba era que el fuego quedaba cerrado y el humo producto de la combustión salía por un conducto de extracción que a la vez calentaba el recinto antes de salir al exterior.

El siguiente paso ya es más reconocible para todos, ya que vino junto con la revolución industrial, las calderas de calefacción central. Mediante la combustión en una caldera se distribuía el vapor por las tuberías y se repartía a diferentes sitios de la vivienda en concreto.

Posteriormente el vapor fue sustituido por agua, como actualmente, y distribuido hacia radiadores para mantener la zona en concreto caliente.

Por último, las últimas décadas ha ganado protagonismo el suelo radiante, el cual se explicará más en profundidad posteriormente, pero que la distribución será mediante agua de la misma manera que los radiadores, pero en este caso se reparte por toda la superficie del local consiguiendo un mayor confort y eficiencia, dado la inercia que ofrece.

2.1.2 Fuentes de energía

Para la producción de calor con la finalidad de utilizarla para la calefacción de una vivienda se han utilizado diferentes sistemas a lo largo de la historia. Como hemos visto anteriormente, a partir de la revolución industrial llegaron las calderas que se utilizaban mediante combustibles fósiles en la gran mayoría viviendas. Los sistemas convencionales más utilizados son las calderas de gas natural o gasóleo tanto para calefacción como para ACS (Agua caliente sanitaria), pero en los últimos años se ha potenciado el uso de fuentes renovables para este tipo utilidades.

En este capítulo se explicarán las energías renovables más utilizadas en calefacción que son la energía solar y la energía de biomasa, y sus sistemas para calefacción.
2.1.2.1 Energía solar

La energía solar es la energía que aprovechamos proveniente del Sol, la cual llega a la Tierra en forma de radiación electromagnética. Este aprovechamiento de la energía solar puede darse de dos maneras: por conversión térmica de alta temperatura, conocido como sistema fototérmico (solar térmica) y por conversión fotovoltaica conocido como sistema fotovoltaico.

El sistema que hemos comentado en primer lugar, la conversión térmica de alta temperatura, consiste en transformar la energía solar en energía térmica almacenada en un fluido. Para calentar el líquido se utilizan colectores.

El segundo sistema comentado sería mediante conversión fotovoltaica, la cual consiste en la transformación de la energía luminosa proporcionada por el Sol directamente en energía eléctrica. Para dicha transformación se utilizan placas solares formadas por células fotovoltaicas que pueden estar compuestas de silicio o germanio.

- Antecedentes energía solar fotovoltaica:

En los últimos años la energía fotovoltaica ha tenido una gran evolución dada por circunstancias que han potenciado las energías renovables como el cambio climático. Pero el efecto fotovoltaico fue reconocido por primera vez en 1839 por el físico francés Alexandre-Edmond Becquerel quien realizó los primeros estudios sobre el espectro solar, magnetismo, electricidad y óptica.

En 1877, el inglés William Grylls Adams, creó la primera célula fotovoltaica de selenio con un rendimiento ínfimo. Poco después en 1883 Charles Fritts creó la primera celda solar con una eficiencia del 1%, con un alto coste ya que fue construida con Selenio como semiconductor y una fina capa de oro. La gran evolución llegó en 1954 en los laboratorios Bells, cuando accidentalmente experimentando con semiconductores se demostró que el silicio era muy sensible a la luz con algunas impurezas. En este mismo año la eficiencia de las celdas que se comercializaban era de un 6%, y se empezaron a utilizar para satélites de la URSS y de los EEUU, lo que fue un gran estímulo en la investigación.

En 1970 se lograron nuevos avances con la primera célula solar con heteroestructura de arsénico de galio mejoraron los rendimientos conseguidos hasta el momento.
Comparación de diferentes sistemas de climatización aplicados a un edificio residencial

Jordi Marcé Cortés

hasta el punto de conseguir en los módulos de alta eficiencia para uso aeroespacial una eficiencia del 20%.

En el siglo XXI, entra en juego el deterioro del medio ambiente provocado por las emisiones de CO2 y otros gases nocivos. Esto provoca pactos e inversiones mayores para el desarrollo sostenible del medio-ambiente como el tratado de Kyoto.

Países como Australia o Estados Unidos tienen las plantas fotovoltaicas más grandes. Por otro lado, en España, hubo un crecimiento muy grande hasta el año 2007, siendo uno de los países punteros en ese momento. Pero en los últimos 10 años las inversiones e instalaciones han ido a menos, aunque somos unos de los países desarrollados con mayor potencial para la energía fotovoltaica. Por otro lado, aparte de las grandes plantas fotovoltaicas, el autoconsumo fotovoltaico no consigue crecer mucho ya que no hay apenas política de ayuda a los productores de autoconsumo.

- Antecedentes energía solar térmica:

No resulta tan sencillo marcar fechas concretas de los primeros inventos como en la energía fotovoltaica, pero el primer elemento en el que se aprovechaba la energía solar para generar energía data del siglo II a.C, donde los griegos ya conseguían encender las antorchas sin apenas esfuerzo mediante un aparato con forma parabólica con el interior reflejante. De esta manera se conseguía altas temperaturas concentradas en su foco gracias a la radiación del Sol, su nombre es Skaphia.

En 1767, el suizo Horace de Saussure inventó lo que se conoce como caja caliente. Consistía en una caja acristalada con el interior pintado de negro, y con aislante en todas las caras excepto una para poder retener el calor. Horace llegó a conseguir temperaturas de 109ºC dentro de la caja. Acababa de inventar lo que conocemos como el antecesor del colector solar.

Posteriormente, el inventor Auguste Mochot inventó una máquina de vapor alimentada por energía solar, que consistía en un gran receptor parabólico recubierto de espejos que concentraban la radiación del sol en un solo punto, y mediante el calor generado se activaba un motor de vapor.

En 1891 Clarence Kemp inventó el calentador de agua "Climax", que consistía en una combinación entre la...
Comparación de diferentes sistemas de climatización aplicados a un edificio residencial

Jordi Marcé Cortés

caja caliente, y los tanques de agua expuestos al sol, de esta manera conservaba el agua caliente más tiempo.

En el año 1929 Wukkuan Bailley patentó su modelo de calentador solar para agua, similar al modelo de Clarence Kemp pero con el área de calentamiento solar separada del de almacenaje. Consistía en una serie de tuberías cuya agua al ser calentada se movía por convección hacia un depósito colocado en la parte alta del calentador.

Todos estos inventos comentados no tuvieron evolución alguna hasta después de la segunda Guerra Mundial, ya que ocasionó una baja drástica del precio de la electricidad.

A partir de los 70 se reactiva este tipo de inversiones, y en los años 80 se inauguran diferentes centrales de concentración.

En el siglo XXI se ha visto una gran evolución en este tipo de sistemas ya que por ejemplo el ayuntamiento de Barcelona obligaba a los edificios nuevos a la instalación de sistemas solares térmicos para ACS. Los modelos de los que disponemos actualmente son simplemente una evolución del sistema de Bailley.

- Funcionamiento energía solar fotovoltaica:

La función de las células fotovoltaicas es transformar la energía solar (limpia y renovable), en energía eléctrica.

Ilustración 4. Funcionamiento instalacion fotovoltaica

Como se puede observar en la imagen anterior, los paneles fotovoltaicos transforman la energía solar en eléctrica (paso 1), posteriormente mediante un inversor se
transforma la corriente continua obtenida en alterna, que es la que se utiliza en viviendas (paso 2). Como se indica, en caso de que las placas no puedan suministrar electricidad siempre estaremos conectados a la red eléctrica.

A continuación, vamos a detallar la transformación de energía solar a eléctrica que realizan las placas fotovoltaicas.

Una parte de la celda será un semiconductor P (huecos = positivo) y otra parte un semiconductor del tipo N (electrones = negativo), luego lo veremos con más detalle. Puedes ver la celda en la imagen de abajo. De esta forma aprovechamos para producir energía eléctrica el llamado "Efecto Fotovoltaico".

Como se ha indicado anteriormente, las células están formadas de cristales de silicio o de arseniuro de galio, materiales semiconductores. Dichos materiales al mezclarse con otros materiales como el fósforo o el boro consiguen una carga positiva o negativas. Una mitad de la celda será semiconductor positivo (P) lo que quiere decir que les faltan electrones y la otra un semiconductor negativo (N) lo que quiere decir que les sobran electrones, y de esta manera conseguimos producir energía con el efecto fotovoltaico.

![Ilustración 5. Placa fotovoltaica](image)

Únicamente si tenemos este formato (P en un lado y N en el otro) conseguiremos generar corriente eléctrica.

Cuando la luz del Sol impacta directamente, la energía del Sol hace que se muevan los electrones de la parte negativa a la parte positiva, por lo tanto, de la parte donde sobran electrones a la parte donde faltan, y al producirse el mismo efecto en todas las celdas hace que se produzca un campo eléctrico en el panel. Por último, cabe indicar que de todas las partículas que emite el Sol, las únicas que absorben las células son los fotones, las cuales reaccionarán con el silicio y el arseniuro generando electricidad como hemos indicado.
- Funcionamiento energía solar térmica:

La función de los colectores de energía solar térmica consiste en la transferencia de la energía procedente del Sol a un medio portador de calor como puede ser el agua. A continuación, se indica un esquema tipo de una instalación de energía solar térmica con los elementos necesarios:

![Esquema de instalación solar térmica]

Ilustración 6. Funcionamiento instalación térmica

El primer sistema a tener en cuenta será el sistema de captación solar. Dicho sistema estará formado por un captador o captadores solares conectados entre sí. Su misión como se comentaba será la de captar la energía solar para transformarla en energía térmica aumentando la temperatura del fluido que circula en el sistema.

El sistema más utilizado para viviendas (como nuestro caso), es el captador solar plano, mediante el cual se pueden obtener temperaturas de 60ºC.

El segundo sistema será el sistema de acumulación. Dicho sistema estará formado por un depósito de acumulación cuyo funcionamiento será almacenar la energía calorífica del fluido para su posterior utilización. Este elemento es siempre necesario para la producción de agua caliente sanitaria (ACS), ya que el agua es transportada desde el sistema de captación hasta el sitio donde se va a demandar, pero si se quiere aprovechar al máximo la energía térmica obtenida se deberá transportar a un depósito para mantenerla, ya que la demanda será en momentos puntuales que pueden coincidir con horas donde no se pueda lograr captación solar, como la noche.

El tercer sistema a tener en cuenta será la distribución, el cual engloba diferentes elementos necesarios para trasladar el fluido como pueden ser las tuberías, la bomba del retorno, vaso de expansión... Dicho fluido a transportar suele estar formado por un 60% aproximadamente de agua y un 40% de glicol, ya que el fluido debe tener parte
Por último en este tipo de sistemas, la normativa (Reglamento de instalaciones térmicas en edificios), obliga a tener un apoyo de un sistema convencional como puede ser una caldera de gas. Este sistema es obligatorio instalarlo ya que hay previsión de que en ciertos momentos que se pueda tener demanda, la instalación solar no sea capaz de cumplir con la demanda en concreto. En la siguiente imagen se puede ver un esquema tipo de una instalación de captación solar para ACS con apoyo de caldera. En este caso los dos intercambiadores (de la caldera y de la instalación solar) estarán en el mismo acumulador.

Ilustración 7. Sistema con apoyo de caldera

Es muy probable, dependiendo la zona, que en verano se llegue a cubrir el 100% de la demanda de ACS con la aportación solar, mientras que en el invierno no se llegue al 50%.

- Ventajas e inconvenientes de la energía solar:

 - Ventajas de la energía solar:

 La primera y posiblemente más importante es que no se producen residuos peligrosos a diferencia de las fuentes de energía a partir de combustibles fósiles.

 La segunda gran ventaja es que la fuente de energía, el Sol, es una fuente renovable.

 La tercera es que es totalmente accesible a ciertas zonas donde la red eléctrica no lo es tanto.

 Por último, su suministro e instalación es fácilmente amortizable por el ahorro que se genera en combustibles fósiles como podrían ser gas natural o gasóleo.
- Inconvenientes de la energía solar:
 Principalmente la gran desventaja es la inversión inicial, aunque mucho más marcada en fotovoltaica que en térmica solar.
 El segundo inconveniente es la dependencia del tiempo, es decir que la producción los días que no tengamos apenas Sol será mucho más escasa.
 Por último, el lugar de instalación del panel o captador deberá tener unas ciertas características, no se podrá poner en cualquier ubicación.

2.1.2.2 Energía biomasa

La biomasa es una fuente energética renovable, aunque menos conocida que otras como pueden ser la solar o la eólica.
Consiste en la utilización de materia orgánica como fuente de energía.
Aunque actualmente parece que es un tipo de energía renovable más reciente, es totalmente incorrecto, ya que es el más antiguo de las fuentes de energía utilizadas. Como se ha comentado anteriormente en los antecedentes de la calefacción, nuestros antepasados ya generaban calor como supervivencia mediante hogueras, y mucho después mediante paja o calderas de leña, hasta que llegó la revolución industrial y se utilizaron masivamente los combustibles fósiles. El uso de este tipo de energía renovable ha crecido en los últimos años por el cambio climático y por ello ha tenido una significativa evolución.
Actualmente tenemos 3 tipos de biomasa: natural (producida por la naturaleza), residual (generada por la actividad humana), o producida (cultivada con fines energéticos).
Dependiendo de la energía que se quiera obtener, se somete a la biomasa a distintos procesos. Para el caso de obtención de energía térmica que es el más utilizado ya que podrá ser útil para calefacción o agua caliente sanitaria, se realiza la combustión directa.

Actualmente hay diferentes medios para la utilización de biomasa:
 - Estufa.
 - Calderas de baja potencia para viviendas unifamiliares.
 - Calderas centralizadas para edificios d viviendas.
 - Centrales térmicas.
Por otro lado tenemos diferentes tipos de combustibles a utilizar en estos sistemas: (la mayoría de ellos tendrán variantes para cada uno de los combustibles)
- Pellets, procesados industrialmente.
- Astillas producto de la transformación de la madera en la industria.
- Residuos agroindustriales como huesos de aceituna o cascaras.
- Leña.

Ilustración 8. Combustibles para biomasa

- **Ventajas e inconvenientes que nos proporciona la biomasa:**

 - **Ventajas:**
 - Se considera que tiene un balance neutro en el ciclo de carbono, es decir que la cantidad de CO2 que se produce se compensa con el CO2 absorbido que forma parte de la atmósfera.
 - El precio del combustible es más económico que los combustibles fósiles y a la vez más estable.
 - Por el tipo de combustible utilizado, la operación y el mantenimiento es más sencillo.
 - **Inconvenientes:**
 - La inversión inicial en este caso, también será mayor que en el caso de los sistemas que utilizan combustibles fósiles.
 - Los rendimientos pueden ser un poco inferiores, pero en calderas ya hay de superiores al 90%.

Ilustración 9. Ciclo de la biomasa

Ilustración 10. Caldera de pellets
- **Funcionamiento:**

El funcionamiento en los diferentes sistemas que ofrecen el uso de biomasa es similar.

El equipo consta de un brasero de combustible donde se deposita el combustible como podrían ser pellets. Mediante el mecanismo específico de la máquina se arrastra el combustible hasta el punto donde está el cenicero y de esta manera prende. Una vez se genera llama, mediante sensores se detecta y se inicia la ventilación, y a partir de aquí se inicia el quemado masivo de combustible que variará según la demanda. El calor que es producido por la combustión es transmitido al circuito de agua (en el caso de la caldera).

2.1.3 Sistemas interiores calefacción

Las opciones que se van a tener en cuenta como sistemas interiores de calefacción van a ser los sistemas más utilizados compatibles con sistemas de agua, que de esta manera puedan funcionar con productoras como calderas o sistemas solares.

- **Suelo radiante**

El suelo radiante es el sistema más innovador y eficiente que actualmente podemos encontrar en el mercado.

Los sistemas radiantes son los que mejor se ajustan a la emisión óptima de calor del cuerpo humano por radiación, convección, transmisión y evaporación.

A continuación, podremos ver una comparativa por parte de Uponor (fábricante de suelo radiante), en el cual compara su suelo radiante con otros sistemas de calefacción y la calefacción ideal:
Comparación de diferentes sistemas de climatización aplicados a un edificio residencial
Jordi Marcé Cortés

El sistema de suelo radiante es el que consigue la repartición de temperatura más parecida al confort máximo que podemos tener en una vivienda en comparación con otros tipos de sistemas.

Otra gran ventaja que tiene es la inercia térmica. Como sabemos los suelos tienen mucha inercia térmica que podemos comprobar en el día a día con la temperatura del suelo en la variación del día a la noche. Por esta razón en una vivienda el pavimento captará la energía de nuestro suelo radiante y la irá cediendo lentamente consiguiendo una gran inercia.

Otras ventajas que encontramos son la climatización sin movimientos de aire que en muchos casos puede llegar a ser incómoda, un intercambio térmico uniforme ya que el suelo radiante ocupará toda la superficie a climatizar, y el ahorro energético entre otros ya que necesita una temperatura inferior del agua que otros sistemas de climatización como pueden ser los radiadores convencionales.

- Radiadores

La calefacción por radiadores es el sistema más utilizado en las últimas décadas, donde los radiadores han ido evolucionando y aumentando su eficiencia.

La principal diferencia entre sistema de radiadores frente al suelo radiante es la temperatura de impulsión, que en el primer caso rondará los 70-80 ºC y en el segundo los 35-40ºC.

Una ventaja de los radiadores es la capacidad de llegar a consigna, es decir, a diferencia del suelo radiante no deben calentar todo el suelo por lo tanto calentarán la zona mucho más rápido, aunque por otro lado en el momento de desconexión el suelo radiante gracias a su inercia seguirá calentando la habitación.
El gran inconveniente de los radiadores frente al suelo radiante, como se puede ver en la imagen anterior, es la incapacidad para conseguir la homogeneidad para toda la superficie de la vivienda, por lo tanto, nunca podrá ofrecer el confort que ofrece el suelo radiante.

En conclusión, un sistema de radiadores será lo correcto para instalar en el caso que sea una vivienda que necesiten calefacción en momentos puntuales.

La ventaja más clara de los radiadores frente al suelo radiante es el precio, ya que el suelo radiante sigue siendo más caro que los radiadores.
2.2 REFRIGERACIÓN

Entendemos como refrigeración el enfriamiento de un fluido, generalmente agua o aire, por medio de la evaporación de otro fluido llamado refrigerante que utilizamos para conseguir una temperatura interior más fría que la temperatura ambiente del exterior.

2.2.1 Antecedentes refrigeración

Actualmente, tenemos grandes facilidades en nuestras viviendas gracias a una gran evolución tecnológica del ser humano, pero en la época de los egipcios, que aguantaban temperaturas de 50 ºC, ya tenían sus métodos para enfriar los habitáculos, en este caso del faraón. Lo que hacían era desplazar los bloques al exterior ya que por la noche en el desierto hace mucho frío, y a primera hora de la mañana los volvían a poner en la habitación y de esta manera se refrescaba el habitáculo. Un poco más tarde, los mismos egipcios colgaban alfombras humedecidas en las entradas de las casas, y gracias al vapor de agua que salía de ellas, reducían la temperatura y la sequedad de la vivienda.

Posteriormente, los romanos fueron capaces de diseñar una red de acueductos por el interior de la vivienda para circular agua, de esta manera reducían la temperatura y también la sequedad de la vivienda.

Para ver los primeros avances reales en climatización debemos ir hasta el año 1758, cuando el norteamericano Benjamín Franklin empezó a experimentar con líquidos volátiles de rápida evaporación como el alcohol para enfriar agua i demostró que se podía utilizar para reducir la temperatura de un objeto más allá del punto de congelación del agua.

En 1820, el científico Michael Faraday siguió experimentando con las propiedades refrigerantes pero esta vez de los gases, y así descubrió que con el amoníaco a grandes presiones y vaporizándolo, podía enfriar su laboratorio.

Posteriormente, en el año 1851, el doctor en medicina John Gorrie de Florida, notó que la recuperación de los pacientes era mucho mejor cuando se realizaba en climas fríos que en calientes. De esta manera Gorrie pensó en poner techo refrescante. De esta manera el aire se enfriaba y al pesar más quedaba en la parte inferior del local donde se recuperaba el paciente. Entonces Gorrie decidió dejar la medicina y dedicarse a mejorar su invento, hasta el año 1855 cuando murió en la pobreza ya que la persona que le financiaba había fallecido tiempo atrás.

Pero la climatización moderna tiene un antes y un después que lo marca el ingeniero norteamericano Willis Carrier, en el año 1902, que mientras trabajaba para la empresa
Buffalo Forge Company inventó el equipo moderno de aire acondicionado. Esta máquina la desarrolló para una imprenta que tenía problemas para fijar colores en el papel por culpa del calor que sufrían. Pero Carrier lo solucionó consiguiendo controlar la temperatura y la humedad, comprimiendo amoníaco y después evaporándolo por tal de enfriar el agua la cual posteriormente pasaba por serpentines que enfriaban y a la vez le quitaban vapor de agua al aire que después era distribuido por la sala.

Carrier continuó evolucionando su sistema ya que el amoníaco era tóxico y los equipos muy extravagantes y a los años 20 consiguió desarrollar un compresor mucho más eficiente utilizando dielene, un refrigerante que no era tóxico.

A partir del año 1925 se empezó a utilizar el aire acondicionado en más ámbitos, no solo en el industrial, y por lo tanto se empezó a hacerse notar en comercios y salas de cine y más tarde se empezó a utilizar en oficinas, tras verificar que sus trabajadores aumentaban considerablemente su rendimiento.

Pero no fue hasta los años 50, después de la Segunda Guerra Mundial, cuando se generalizó el uso del aire acondicionado en los Estados Unidos y se expandió al resto del mundo.

En la actualidad, podemos disfrutar de los efectos del aire acondicionado en nuestro día a día, no solo en el confort que nos puede dar en verano (frío) o en invierno (calor) sino también para mantener los productos más frescos, los medicamentos,... lo cual no solo comprobamos en nuestras viviendas sino que también beneficia claramente a la industria.

Ilustración 12. Willis Carrier
2.2.2 Tipos de sistemas

Para realizar la refrigeración de la vivienda existen multitud de sistemas, pero los 3 sistemas más utilizados que podemos encontrar en cualquier fabricante son los sistemas 1x1, los sistemas multi split y los sistemas de caudal variable.

Actualmente, todos estos sistemas se pueden utilizar tanto para refrigeración (aire frío) como para calefacción (aire caliente), pero en este caso se estudiará para la realización de refrigeración.

En este capítulo se explicará el funcionamiento básico de los tipos de aire acondicionado mencionados anteriormente, aplicando especial interés en el sistema más complejo, el sistema de caudal variable.

- Sistemas 1x1

Este tipo de sistemas está compuesto por una unidad exterior (productora) y una única unidad interior. Es un tipo de sistema muy utilizado años atrás para la refrigeración de viviendas.

Estos equipos los últimos años han ido evolucionando consiguiendo rendimientos cada vez superiores, pero la ventaja más grande que se ha conseguido los últimos años en todos los sistemas con bomba de calor, es la evolución del compresor (el elemento que más consume), evolucionando actualmente a los compresores Inverter.

Al ser un único equipo, la válvula de expansión la encontramos en la unidad exterior, la cual recibirá una demanda determinada y la atenderá hacia la unidad interior mediante esta válvula de expansión que permitirá el paso del caudal de refrigerante determinado para la demanda que se pueda tener. Este tipo de equipos es ideal para realizarlo mediante conductos en locales donde se pueda tener una misma demanda en todas las habitaciones a las que se distribuya. En el caso de no ser así siempre se perderá energía ya que es un sistema muy práctico pero no muy eficiente para esta aplicación.

Este tipo de sistema será ideal para climatizar una única habitación mediante un split.
- **Sistemas “Multi Split”**

 Este tipo de sistemas, técnicamente son muy similares a los equipos explicados anteriormente con una única diferencia, a una misma unidad exterior podemos conectar hasta 6 unidades interiores. Puede ser un tipo de sistema ideal para un tipo de vivienda en el que no tengas más de 6 habitaciones con demandas distintas a climatizar.

 El inconveniente que tiene este sistema es que como se ha indicado en el sistema anterior la válvula de expansión estará en la unidad exterior, pero en este caso tendremos 6 líneas frigoríficas diferentes para realizar la distribución (impulsión y retorno). Por esta razón no siempre se podrá instalar este tipo de equipos.

 Por otro lado, también pueden tener el inconveniente de la potencia que se necesite en la vivienda ya que estos sistemas normalmente no sobrepasan los 10kW de producción.

- **Sistemas VRF**

 El sistema VRF (Variable Refrigerant Flow), ha sido y es muy popular y utilizado, pero primero procederemos a comentar sus predecesores, los sistemas aire-agua que hoy en día se siguen utilizando pero mucho de estos sistemas han sido substituidos por sistemas VRF.

 Los elementos necesarios y su función es la que se describe a continuación:

 - **Bomba de calor o enfriadora**: Para calentar o enfriar el agua del circuito cerrado.
 - **Distribución del agua**: una red de tuberías que se encargan de realizar la distribución entra la unidad productora y las unidades interiores (fan-coils o climatizadores).
 - **Fan-coils (o climatizadores)**: son las unidades interiores que se encargar de intercambiar la energía que reciben del agua fría/caliente con el aire, para conseguir calentar o enfriar el aire del local.
Comparación de diferentes sistemas de climatización aplicados a un edificio residencial
Jordi Marcé Cortés

Resumiendo el sistema vemos que tenemos 4 intercambios. Primero el aire exterior, que con electricidad conseguimos la condensación/evaporación mediante la cual enfriamos o calentamos un gas refrigerante, este gas refrigerante intercambia la energía que posee con el agua del circuito. Posteriormente el agua fría o caliente es distribuida por el sistema hasta llegar a las unidades interiores donde se vuelve a intercambiar la energía del agua con el aire para calentar/enfriar el local, por lo tanto tenemos 4 intercambios: Aire-gas-agua-aire.

Como hemos dicho anteriormente estos sistemas poco a poco han ido substituyendo por sistemas VRF. Los sistemas VRF son sistemas de caudal variable, que como su propio nombre indica el caudal se regula (modifica) gracias a la tecnología inverter de los compresores y las válvulas de expansión electrónicas (PMV - Pulse Motor Valve) que están situadas en las unidades interiores y de esta manera cada válvula corresponde a una unidad interior cuya demanda se regulará mediante la válvula, por lo tanto entregamos a cada unidad interior el refrigerante que demanda a la zona que climatiza, por lo que el consumo de estos sistemas será el de la potencia que se entrego. Dicho refrigerante ha ido evolucionando ya que hace unos años el más utilizado era el R22, posteriormente se pasó al R407, y actualmente se utiliza el R410a.

Estos sistemas tienen mucho más margen que otros, ya que puedes realizar instalaciones con numerosas unidades interiores y cada interior tenga la capacidad de trabajar a una temperatura diferente (con ciertos límites según el tipo de sistema), y también podrán tener un número de unidades encendidas y otras apagadas.

En principio este sistema se ideó para una solución fácil y muy útil para grandes instalaciones como hoteles, oficinas, comercios, residencias, pero poco después con sistemas más reducidos también se empezaron a aplicar a viviendas.

Los sistemas VRF no solo tienen ventajas de funcionamiento y comodidad para el cliente sino que también tiene un ahorro de energía gracias a los siguientes componentes:

- Compresores Inverter: Dichos compresores tienen la gran ventaja (frente a los convencionales), que regulan la potencia según se acercan a consigna, es decir, los compresores convencionales van a máxima potencia hasta que llegan a la temperatura indicada, en cambio los Inverter van disminuyendo potencia conforme se van acercando a consigna, por lo tanto se va adaptando a lo que
Comparación de diferentes sistemas de climatización aplicados a un edificio residencial

Jordi Marcé Cortés

necesitamos en cada momento. Estas características harán aumentar nuestro confort ya que evitamos altibajos de temperatura y tendremos un ahorro energético, evitando las continuas arrancadas y a la vez que el compresor trabaje a máxima potencia de forma continua. Estos compresores actualmente también los encontramos en los sistemas comentados anteriormente, tanto el 1x1 como el multi split.

- Flujo de energía: Tenemos muchas menos pérdidas que sus antecesores por la reducción de conversiones.

- Bombeo: Los compresores Inverter hacen que no es necesario bombear el gas para la circulación y por lo tanto reducimos el consumo de las bombas que se podría tener (Aunque es mínimo).

- Control: Existe una comunicación entre la unidad exterior y las unidades interiores que hace tener constancia del número de unidades que tiene el sistema y de la ubicación de cada unidad. De esta manera se puede facilitar mucho la reparación de una unidad y a la vez nos da la opción de tener todas las unidades controladas mediante un control centralizado.

Por otro lado, las unidades exteriores de VRF de gran potencia (normalmente superiores a 40kW), pueden estar formadas por diferentes módulos teniendo la capacidad de poder realizar Back up entre los dos módulos.

Por último, en esta breve descripción de los sistemas VRF cabe indicar el inconveniente que presentan con el gas. El gas que se utiliza actualmente, como se ha indicado es el R410a, y como las instalaciones de VRF suelen ser de dimensiones media-grande, tendremos gran cantidad de refrigerante. Esto tiene el inconveniente que si en una habitación tenemos una fuga, todo el refrigerante saldrá por dicha habitación y se asentará en la parte inferior desplazando el oxígeno hacia la parte superior, por esta razón tienen un cierto peligro y la normativa española como la americana ponen limitaciones. En el caso del RITE (española) 0,44kg/m³ y en el caso de la ASHRAE (americana) mucho más restrictiva, 0,15 kg/m³.

Dentro de los sistemas de caudal variable VRF encontramos 3 tipos de sistema diferenciados:

- Solo frío: Toda la potencia entregada por la productora se destina a refrigeración

- Bomba de calor: En este caso todo el sistema (unidades interiores) funcionarán
Comparación de diferentes sistemas de climatización aplicados a un edificio residencial

Jordi Marcé Cortés

en calefacción o refrigeración. Este sistema es el más utilizado de los sistemas VRF.

Ilustración 15. Sistema VRF bomba de calor

- **Recuperación de calor**: Tiene la capacidad de poder proporcionar calor o frío en un mismo sistema, es decir, que unas unidades interiores den calor al mismo tiempo que otras unidades interiores dan frío. No solo tiene la ventaja de poder ofrecer calor y frío a la vez según las necesidades de cada zona sino que se proporciona mediante una recuperación en una caja mediante los retornos de las unidades interiores y de esta manera se reducen los costos de operación.

Ilustración 16. Sistema VRF de recuperación de calor
2.2.3 Generalidades de los sistemas con bomba de calor

Anteriormente solo habíamos realizado una breve explicación de los tipos de sistema VRF, pero vamos a profundizar más en este tipo de sistema, el cual es el más utilizado.

El fluido que nos permite el funcionamiento del sistema, como hemos comentado anteriormente, es el R-410a, el cual utilizamos actualmente tanto en los sistemas VRF como los sistemas 1x1 y multi split.

Lo que necesitamos en nuestro fluido es que tenga facilidad de absorber calor a una baja presión y baja temperatura, y cederlo a alta presión y temperatura, para conseguirlo deberá tener una temperatura de ebullición muy baja.

<table>
<thead>
<tr>
<th>Elemento</th>
<th>Temperatura de Ebullición</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agua</td>
<td>99,98 ºC</td>
</tr>
<tr>
<td>Etanol</td>
<td>78,37 ºC</td>
</tr>
<tr>
<td>Amoniaco</td>
<td>-33,34 ºC</td>
</tr>
<tr>
<td>Refrigerante R410A</td>
<td>-51,58 ºC</td>
</tr>
</tbody>
</table>

Tabla 1. Temperaturas de ebullición

- **Funcionamiento del sistema.**

El refrigerante es transportado por un circuito formado por tuberías de cobre, dicho circuito tiene diferentes partes: evaporación, compresión, condensación y expansión.

Primero nos situaremos en la zona de evaporación, con nuestro refrigerante en la tubería de cobre, se pone en contacto con el aire que queremos enfriar. Entonces el refrigerante comienza a absorber calor del aire y se evaporará rápidamente. Por lo tanto el refrigerante conseguirá absorber calor a baja temperatura y baja presión y cambiará de estado a gas.

Posteriormente necesitamos ceder todo el calor absorbido, por esta razón salimos de la parte de evaporación con gas a baja presión y pasamos a la zona de compresión, donde mediante el compresor aumentamos la presión y temperatura por tal de pasar dicho gas a líquido. Este cambio de estado vendrá dado en la parte de condensación, donde se cederá el calor al ambiente.

En este punto tenemos refrigerante en estado líquido pero a alta presión, y para poder volver a empezar el ciclo, antes de llegar a la parte de evaporación comentada
antes de llegar al evaporador (unidad interior) con líquido a baja presión y baja temperatura. En los sistemas 1x1 y multi split se expansionará en la misma unidad exterior y en los sistemas VRF en la misma unidad interior.

- **Sistema Inverter.**

Anteriormente, en la explicación del sistema VRF se ha mencionado el sistema Inverter, que también encontramos ya en la mayoría de sistemas, en este apartado indicaremos detalladamente las ventajas de este sistema.

El sistema Inverter hace referencia a un único componente, el compresor, justamente el que consume más energía del sistema.

Dichos compresores tienen la gran ventaja (frente a los convencionales), que regulan la potencia según se acercan a consigna, es decir, los compresores convencionales van a máxima potencia hasta que llegan a temperatura, en cambio los Inverter van disminuyendo potencia conforme se van acercando a consigna, por lo tanto se va adaptando a lo que necesitamos en cada momento mediante el regulador de frecuencia.

Mediante los compresores Inverter mejoramos nuestro confort en comparación con los sistemas convencionales, ya que se alcanza mucho más rápido la temperatura de consigna, mantenemos la temperatura que pedimos con un menor gasto y con mínimos excesos de frío y calor (menos oscilaciones en la temperatura de consigna), y por último reducimos los niveles sonoros.

Por otro lado, con los compresores Inverter en comparación con los convencionales, conseguimos un ahorro de energía considerable ya que evitamos arrancadas y paradas constantes del compresor y por esta razón tenemos una reducción del desgaste del compresor y por lo tanto una consecuencia positiva con la reducción de su mantenimiento.
Comparación de diferentes sistemas de climatización aplicados a un edificio residencial
Jordi Marcé Cortés

- **Eficiencia de la bomba de calor:**

 Para saber la eficiencia de la bomba de calor que consideremos, deberemos fijarnos en los coeficientes EER y COP de sus especificaciones que nos indican las eficiencias en frío y calor respectivamente. A continuación, veremos las especificaciones de una bomba de calor VRF del fabricante Mitsubishi Electric donde vemos parte de sus especificaciones y comprobamos que indican los rendimientos.

<table>
<thead>
<tr>
<th>MODELO</th>
<th>PUHY-P200YKB-A1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacidad Nominal</td>
<td></td>
</tr>
<tr>
<td>Refrigeración</td>
<td>20,000</td>
</tr>
<tr>
<td>kW</td>
<td>22.4</td>
</tr>
<tr>
<td>kW</td>
<td>25.0</td>
</tr>
<tr>
<td>Consumo Nominal</td>
<td></td>
</tr>
<tr>
<td>Refrigeración</td>
<td>5.19</td>
</tr>
<tr>
<td>kW</td>
<td>5.61</td>
</tr>
<tr>
<td>Coeficiente Energético</td>
<td></td>
</tr>
<tr>
<td>EER</td>
<td>4.31</td>
</tr>
<tr>
<td>COP</td>
<td>4.30</td>
</tr>
</tbody>
</table>

Tabla 2. Especificaciones bomba de calor VRF

Si queremos calcular los rendimientos deberemos disponer de los siguientes parámetros:

- \(Q_c \) = Potencia calorífica que cede el condensador.
- \(Q_i \) = Potencia calorífica que absorbe el evaporador.
- \(W \) = Potencia eléctrica que consume el compresor.

- Si nuestro objetivo es obtener el COP, es decir, el rendimiento cuando se trabaja en calefacción, para proporcionar calor, la energía útil de la bomba de calor es la que cede el condensador:

\[
\text{COP} = \frac{Q_c}{W}
\]

Las siglas COP en inglés significan "Coefficient of performance".
- Si nuestro objetivo es obtener el EER, es decir, el rendimiento cuando se trabaja en refrigeración, para proporcionar frío, la energía útil de la bomba de calor es la que cede el evaporador:

\[EER = \frac{Q_r}{W} \]

Las siglas EER en inglés significan "Energy Efficiency Ratio".
Desde 2013 también disponemos de los rendimientos estacionales SCOP y SEER que hacen referencia al COP y el EER pero para una estación entera, es decir en verano o invierno (realizando la media con las temperaturas medias de los meses que corresponde). Mediante estos coeficientes podremos determinar la clase energética del equipo.
2.3 VENTILACIÓN

La ventilación es el proceso de mejorar o mantener la calidad del aire interior de cualquier ambiente y es sumamente importante supervisarla constantemente para evitar la estanqueidad del aire. Esto se hace reponiendo oxígeno y removiendo humedad, olores, humo, calor, bacterias transportadas por el aire y otros gases.

En las viviendas antiguas no era necesario esta ventilación porque la envolvente tenía infiltraciones que permitían esta ventilación. Actualmente, se han mejorado las envolventes de las viviendas para aislarla térmicamente de una mejor manera, pero por otro lado también queda aislada para la ventilación. Por esta razón la ventilación tiene tanto peso hoy en día ya que si tenemos nuestra vivienda aislada la calidad del aire interior es deficiente y hay una falta de confort.

Podemos realizar este proceso de ventilación de manera mecánica o natural. Puede ser tratada tanto por el uso de unidades de tratamiento de aire o dependiendo de la arquitectura del edificio, se puede realizar la ventilación gracias a las diferencias de presión.

2.3.1 Ventilación mecánica

Consiste en ejecutar la admisión o la extracción del aire interior de un local por medios mecánicos para tal de forzar la circulación del flujo de aire y provocando su renovación.

Formas de ventilación mecánica:

- Unidades de tratamiento de aire (UTA):

 La finalidad de estos dispositivos es distribuir el aire tratado a través del edificio, limpiar y filtrar el aire, controlar su temperatura tanto en calefacción como en refrigeración y su humedad. Para ello los elementos más importantes de la UTA o AHU son los siguientes: filtros, serpentines de calefacción y refrigeración, humidificadores, ventiladores y dispositivos de recuperación de calor.

 El control de la humedad se puede realizar por la bobina de refrigeración en verano o por humidificadores. En invierno será necesario humidificar el aire para mejorar la calidad y reducir la electricidad estática.

 Los dispositivos de recuperación de calor pueden instalarse en la UTA entre el suministro y la extracción, la finalidad de efectuar dicha recuperación es ahorrar energía y aumentar las capacidades de calefacción y refrigeración.
Comparación de diferentes sistemas de climatización aplicados a un edificio residencial
Jordi Marcé Cortés

- Unidades de recuperación de calor mediante ventilación forzada:
 En ciertos casos (según normativa), puede llegar a ser obligatorio este tipo de unidades. La función de estos dispositivos es recuperar el calor del aire que se va a extraer (aire agotado). Esto se realiza mediante la transferencia de calor del aire que extraemos del local a el aire fresca que entra.
 En invierno por ejemplo, si encontramos el aire exterior a una temperatura de 0ºC fácilmente conseguiremos tenerlo a 8-10ºC con dicha recuperación de calor.

Podemos encontrar diferentes tipos de dispositivos para ejecutar esta función como pueden ser ruedas de entalpía rotatoria o intercambiadores de calor de flujo cruzado entre otros.
 También, si utilizamos este tipo de dispositivos, afectará directamente a los equipos de climatización, ya que reducirá la demanda de calefacción y refrigeración, por lo tanto reduciremos la potencia de los equipos.
2.3.2 Ventilación natural

La ventilación natural consiste en la renovación de aire mediante la ejecución de la admisión y extracción de forma natural.

Formas de ventilación natural:

- Ventilación eólica:
 Se obtiene gracias a las diferentes presiones creadas por el viento alrededor del edificio, cuyas aberturas permiten el paso a través del edificio.

- Ventilación con flotabilidad:
 Se produce como resultado de la fuerza de flotación direccional que resulta de las diferencias de temperatura entre el interior y el exterior. Debido a las ganancias internas de calor, se crean las diferencias de temperatura entre el interior y el exterior.
3. INDICACIONES DE CÁLCULO Y CRITERIOS DE DISEÑO

En este capítulo se indicarán las condiciones iniciales para el posterior cálculo de cargas. Dicho cálculo de cargas se efectuará para la vivienda ya rehabilitada, la cual a partir de ahora se mencionará como obra/sistema nuevo, diferenciándola de la obra/sistema antiguo.

Para tener en cuenta la obra antigua, se ha realizado su diseño mediante el programa Cype y se ha obtenido el cálculo de cargas mediante dicho programa.

Indicar que en el Anexo 1 se encuentran los planos de la vivienda.

3.1 DATOS INICIALES

3.1.1 Descripción del edificio

La vivienda que queremos climatizar está formada por 3 plantas diferentes situada en la calle María Zambrano en Viladecans. A continuación, se indica una imagen de extraída del Google Maps.
Dicha vivienda tiene una forma rectangular con aproximadamente 160 m² por planta. La estructura del edificio es la siguiente:

- Planta baja: encontramos el garaje, recepción y lavadero que no climatizaremos, y por otro lado una habitación de invitados, el salón-cocina y un baño que sí climatizaremos.
- Primera planta: En esta planta climatizaremos un despacho, 3 dormitorios, una sala de estudios, un cine, un aseo y un baño.
- Segunda planta: Solo tenemos la azotea y el ascensor, por lo tanto esta planta no se climatizará.

En todas las plantas descritas, también encontramos las escaleras para comunicarlas entre ellas, pero no serán climatizadas.

La vivienda está pensada para una familia de 4 personas.

La estructura del edificio es la siguiente: (Únicamente se indica el área de las zonas a climatizar y ocupación estimada).

<table>
<thead>
<tr>
<th>Planta</th>
<th>Local</th>
<th>Ocupación (pers.)</th>
<th>Área (m²)</th>
<th>Área a climatizar por planta (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planta Baja</td>
<td>Habitación invitados</td>
<td>2</td>
<td>13,1</td>
<td>59,2</td>
</tr>
<tr>
<td></td>
<td>Salón - Cocina</td>
<td>4</td>
<td>46,1</td>
<td></td>
</tr>
<tr>
<td>Planta 1</td>
<td>Dormitorio 1 (con baño)</td>
<td>2</td>
<td>21,8</td>
<td>99,8</td>
</tr>
<tr>
<td></td>
<td>Dormitorio 2</td>
<td>2</td>
<td>10,2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dormitorio 3</td>
<td>2</td>
<td>10,2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sala de estudios</td>
<td>2</td>
<td>15,3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cine</td>
<td>4</td>
<td>15,1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Despacho</td>
<td>1</td>
<td>27,2</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 3. Estructura vivienda
- Estructura vivienda mediante Cype:
 Como se ha indicado anteriormente, se ha simulado el diseño de la vivienda mediante el programa CYPECAD MEP de Cype Ingenieros, dicho diseño de la envolvente se indicará a continuación para facilitar la visión de la vivienda:

![Tabla 4. Estructura vivienda](image)

3.1.2 Normativa aplicada

La instalación de climatización debe estar diseñada de acuerdo con las leyes y reglamentos gubernamentales vigentes en este tipo de aplicaciones. En este caso de forma general son las siguientes:

- RITE (RD 1027/2007)
- CTE (RD 314/2006).
- RSIF (RD 138/2011)
- Normas DIN y UNE aplicables.
- Regulaciones locales (Barcelona).
- Directrices de ASHRAE (American Society of Heating, Refrigeration and Air Conditioning Engineers laws).

- Concentración del refrigerante R-410a.

Como se ha indicado anteriormente, la concentración de gas es una parte de la normativa que tenemos que tener muy presente y respetar.

En la mayoría de viviendas no es un problema ya que no es común la utilización de sistemas VRF para viviendas y menos que el sistema sea suficientemente grande
como para que la carga del sistema supere la limitación.

La concentración crítica que debemos respetar es 0,44 kg/m3, aunque el gas R-410a es un inofensivo e incombustible, pero es más pesado que el aire y en el caso de tener una fuga todo el gas queda depositado en la parte inferior del local y podría conducir a una situación de hipoxia. Por esta razón deberemos respetar el límite indicado anteriormente que está sujeta a ISO5149, EN378-1.

En el momento de la asignación se realizará la comprobación del refrigerante total del sistema.
3.2 DESCRIPCIÓN DE LAS INSTALACIONES Y ESPECIFICACIONES TÉCNICAS

En este capítulo se indicará los diferentes sistemas que tiene la vivienda (obra antigua) y posteriormente los sistemas que se quieren instalar para su renovación (obra nueva).

3.2.1 Sistema antiguo o convencional

En la primera instalación, la que hay actualmente, tenemos dos sistemas de bomba de calor 1x1 solo frío para la refrigeración de la vivienda (ya no son usuales los sistemas solo frío).

El primer sistema ubicado en la planta primera, situado en el baño, va conectado a una red de conductos para climatizar todas las habitaciones a climatizar de la planta 1.

El segundo sistema ubicado en la planta baja, situado en el baño, va conectado a un conducto para refrigerar la zona salón-comedor.

En ambos casos la ubicación de las unidades exteriores es en la azotea.

También en ambos casos la potencia de las unidades es de 7kW.

Para el sistema de calefacción y ACS, la vivienda dispone de una caldera de gas natural de 20kW para abastecer toda la calefacción y agua caliente sanitaria de la vivienda.

La ubicación de la caldera de gas natural es en el cuarto de máquinas que encontramos en la azotea. Desde dicha ubicación se distribuye las tuberías hacia los radiadores.

Dichos radiadores están distribuidos por toda la vivienda, con un radiador por cada local a climatizar a excepción del comedor-cocina que dispone de dos.

A continuación, se adjunta una imagen con el sistema simulado con el programa Cype. Como se ha indicado anteriormente para el sistema antiguo se utilizará este programa tanto para la instalación como para el cálculo de cargas.

En la imagen indicada se podrá ver la distribución indicada anteriormente, para el sistema de refrigeración y el de calefacción.
3.2.2 Sistema nuevo o renovable

En el sistema que se instalará partiremos con un sistema de placas térmicas a un intercambiador con aporte de una caldera de biomasa para abastecer calefacción y ACS, y por otro lado una bomba de calor para cubrir la demanda de refrigeración.

También se añadirá un recuperador de calor para la ventilación de la vivienda.

- VRF para refrigeración y placas térmicas para ACS y suelo radiante con apoyo caldera.

Como ya se ha comentado en el capítulo anterior, el sistema VRF de bomba de calor para calefacción y refrigeración (utilizado únicamente en verano) que se quiere instalar estará compuesto de los siguientes elementos:
- Unidad exterior bomba de calor: La unidad exterior VRF de nuestro sistema mediante la cual cubriremos la demanda necesaria, irá colocada en la azotea.

Posteriormente en el momento de la asignación deberemos decidir la colocación exacta para garantizar una buena ventilación de la máquina.
- Distribución: De la unidad exterior aprovecharemos un bajante para bajar las tuberías de refrigerante hasta la planta 1 donde realizaremos la distribución con distribuidores tipo T que nos permitirá simplificar muchísimo la instalación, ya que de esta manera únicamente iremos con una línea frigorífica de impulsión y otra de retorno hasta cada habitación que mediante la T podremos desviar la línea a la habitación para alimentar la máquina específica de cada local.
La tubería saldrá de la unidad exterior y se dividirá en dos líneas, una que alimentará a la planta baja y la otra a la planta primera.

- Unidades interiores: Una vez tengamos las cargas de cada local, se realizará la asignación de las unidades que serán de tipo mural. De esta manera conseguiremos un mayor ahorro energético y de obra que en el caso de ser mediante conductos ya que el sistema será VRF y por lo tanto al tener las válvulas de expansión en las unidades interiores, únicamente funcionarán aquellas en sus respectivos locales exigen en ese momento una demanda de calor/frío.

En general la unidad exterior alimentará a 8 unidades interiores de tipo mural, una por habitación a climatizar. En la planta baja encontraremos dos unidades interiores y en la planta primera 6 unidades. A continuación adjunto un esquema tipo de la instalación que se ha descrito en este apartado, teniendo en cuenta que la potencia de las unidades podrá ser modificada claramente cuando se calcule las cargas y se realice la instalación.
Comparación de diferentes sistemas de climatización aplicados a un edificio residencial

Jordi Marcé Cortés

Ilustración 23. Sistema tipo VRF
Comparación de diferentes sistemas aplicados a un edificio residencial
Jordi Marcé Cortés

Como se puede ver en el esquema anterior, en la instalación VRF, seleccionaremos equipos Mitsbishi Electric ya que es uno de los fabricantes que garantiza uno de los rendimientos más altos del mercado y también para garantizar un diseño de los splits VRF que pueda satisfacer al cliente. Por otro lado, nos permite tener una sobrecarga de un 130%, algo que para una vivienda puede ser muy útil si garantizamos un buen rendimiento ya que en muy rara ocasión estarán todas las unidades en funcionamiento.

Aunque la bomba de calor es reversible, para calor y frío, la aportación de calefacción para suelo radiante y ACS la realizaremos mediante placas térmicas y caldera de biomasa aunque siempre se tendrá la opción de apoyar también con la bomba de calor.

El sistema de placa solar térmica constará de 5 partes, aunque realmente tiene más ya que es más complejo que el sistema comentado anteriormente:

- Captador fotovoltaico: El conjunto de palcas solares estarán situadas en la azotea de la vivienda. Será muy importante la orientación e inclinación de las placas solares ya que dependerá en parte de la ubicación de la vivienda. Gracias a la energía del Sol se calienta el líquido que contienen los captadores hasta el momento que dicho líquido consigue la temperatura óptima, en ese momento el fluid se traslada hasta el acumulador para calentar el agua mediante un circuito cerrado.
- Acumulador: El agua del acumulador será calentada para el uso mediante el serpentín del circuito cerrado del captador. En el caso de que la energía recibida del captador no sea suficiente para llegar a la temperatura de consigna del acumulador se pondría a funcionar el tercer elemento, la caldera.
- Caldera: Dicho elemento únicamente entrará en funcionamiento en los momentos que la demanda sea superior a la producción y por lo tanto en el tanque acumulador no consigamos la temperatura que necesitamos.

Desde el acumulador tendremos 2 salidas de agua a 2 temperaturas diferentes. La salida para el agua caliente sanitaria (ACS) que la tendremos siempre en la parte superior del acumulador ya que es el agua que necesitamos a más temperatura (60ºC aprox.) y la salida para el circuito de calefacción.

En la siguiente imagen se puede ver el sistema indicado anteriormente de manera muy simplificada.
3.2.3 Ventilación

Los sistemas indicados anteriormente no proporcionan ventilación por sí mismos, por lo tanto es necesario un sistema de ventilación independiente. Dependiendo de la ocupación y de la calidad del aire interior (IDA), los requisitos de ventilación pueden cambiar. Esto es siempre necesario ya que se debe prever una cierta renovación del aire para asegurar la calidad del aire en el interior del local.

Para poder ver la ventilación necesaria en cada local de nuestra vivienda deberemos ir a la sección HS3 donde encontraremos los siguientes datos a aplicar:

<table>
<thead>
<tr>
<th>Local</th>
<th>Caudal de ventilación mínimo exigido q_v en l/s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Por ocupante</td>
</tr>
<tr>
<td>Dormitorios</td>
<td>5</td>
</tr>
<tr>
<td>Salas de estar y comedores</td>
<td>3</td>
</tr>
<tr>
<td>Aseos y cuartos de baño</td>
<td>15 por local</td>
</tr>
<tr>
<td>Cocinas</td>
<td>2$^{(1)}$</td>
</tr>
<tr>
<td>Trasteros y sus zonas comunes</td>
<td>0,7</td>
</tr>
<tr>
<td>Aparcamientos y garajes</td>
<td>120 por plaza</td>
</tr>
<tr>
<td>Almacenes de residuos</td>
<td>10</td>
</tr>
</tbody>
</table>

(1) En las cocinas con sistema de cocción por combustión o dotadas de calderas no estancas este caudal se incrementa en 8 l/s.
(2) Este es el caudal correspondiente a la ventilación adicional específica de la cocina (véase el párrafo 3 del apartado 3.1.1).

Tabla 5. Caudal de ventilación mínimo

La ventilación deberá realizarse mediante una admisión de aire que se llevará a cabo en comedores, dormitorios... (salas secas), un paso de aire que se realizará en pasillos o vestíbulos y una extracción de aire se realizará en baños o cocinas (salas húmedas). Todo este sistema se realizará mediante conductos con sus rejillas de admisión correspondientes y todo el sistema interconectado con un recuperador de calor.
Comparación de diferentes sistemas aplicados a un edificio residencial
Jordi Marcé Cortés

En la siguiente imagen podemos ver los locales donde se debe realizar admisión de aire fresco (flechas azules), los locales donde se debe realizar extracción de aire (flechas rojas), y por último las flechas amarillas indican las zonas de paso de locales secos a locales húmedos.
CÁLCULO DE CARGAS TÉRMICAS

Por tal de seleccionar correctamente los equipos para nuestra vivienda, sin que estén sobredimensionados y perdamos energía de producción ni que nos falte energía para llegar a la situación de confort deberemos realizar los cálculos de las cargas térmicas para cada local correctamente.

En este apartado se describirán las condiciones de diseño y se describirá el método de cálculo por tal de realizar posteriormente la asignación.

Dicho cálculo de cargas de cargas será para el caso de la obra nueva a la que se le efectuará unas pequeñas modificaciones en la envolvente para reducir la carga térmica. En este caso la obra antigua tenía 4mm de aislante térmico lana mineral, y para el cálculo de la obra rehabilitada se considerará el doble, 8mm de aislante lana mineral.

4.1 CONDICIONES DE DISEÑO

- Ubicación: Gavá (Barcelona)
- Longitud: 41° 18’ 26” N
- Latitud: 00° 14” E
- Altitud: 9 msnm

- Condiciones exteriores:
 Para seleccionar las temperaturas máximas y mínimas anuales, cogeremos los valores referencia del programa mitsusoft de Mitsubishi Electric que se basa en la norma UNE 24045.

Consideraremos las siguientes temperaturas y humedades exteriores:

<table>
<thead>
<tr>
<th></th>
<th>Temperatura</th>
<th>Humedad relativa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verano</td>
<td>31</td>
<td>64%</td>
</tr>
<tr>
<td>Invierno</td>
<td>2</td>
<td>68%</td>
</tr>
</tbody>
</table>

Tabla 6. Valores exteriores
Comparación de diferentes sistemas aplicados a un edificio residencial
Jordi Marcé Cortés

A continuación se indica los valores interiores que se tendrán en cuenta para el confort interior:

<table>
<thead>
<tr>
<th></th>
<th>Temperatura</th>
<th>Humedad relativa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verano</td>
<td>24</td>
<td>50%</td>
</tr>
<tr>
<td>Invierno</td>
<td>21</td>
<td>40%</td>
</tr>
</tbody>
</table>

Tabla 7. Valores interiores

Para el cálculo de cargas no solo necesitamos las temperaturas interiores y exteriores para poder calcular la transferencia de calor, también necesitamos otros valores que influirán como la actividad de las personas, la iluminación y la recuperación de calor para la ventilación que se indican a continuación:

- Actividad de las personas
 Sentado con trabajo ligero: sensible 75W/p

- Iluminación
 10 W/m²

- Recuperación de calor
 70% de eficiencia en recuperación de calor.
4.2 CÁLCULO DE TRANSMITANCIAS

En este capítulo se realizará el cálculo de las transmitancias de los diferentes elementos que componen la vivienda para poder realizar el posterior cálculo de cargas. Dicho cálculo de transmitancias se dividirá en los elementos constructivos de la vivienda (exterior e interiores), las ventanas y las puertas. En todos los casos se indicará previamente la normativa a aplicar que le corresponde a dicho elemento.

- Elementos constructivos:

Para saber las pérdidas de calor que podremos tener en cada recinto deberemos tener en cuenta que en los diferentes recintos tendremos diferentes cerramientos como pueden ser paredes, fachada, ventanas, puertas,...y las pérdidas de calor variaran. Para poder calcular estas pérdidas deberemos calcular el coeficiente global de transferencia del recinto mediante los coeficientes de transferencia de los diferentes elementos que encontramos en el local. Para los siguientes cálculo vamos a utilizar el método de cálculo del documento del CTE DA-DB-HE 1.

A continuación, se indicarán los coeficientes de transferencia de los cerramientos:

- Muro exterior (fachada):

Como indica el CTE, no deberemos tener en cuenta únicamente los elementos que componen los cerramientos sino también las resistencias térmicas superficiales de cerramientos en contacto con el aire exterior como se indica a continuación:

<table>
<thead>
<tr>
<th>Posición del cerramiento y sentido del flujo de calor</th>
<th>R_{ve}</th>
<th>R_{bi}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cerramientos verticales o con pendiente sobre la horizontal >80° y flujo Horizontal</td>
<td>0,04</td>
<td>0,13</td>
</tr>
<tr>
<td>Cerramientos horizontales o con pendiente sobre la horizontal ≤80° y flujo ascendente (Techo)</td>
<td>0,04</td>
<td>0,10</td>
</tr>
<tr>
<td>Cerramientos horizontales y flujo descendente (Suelo)</td>
<td>0,04</td>
<td>0,17</td>
</tr>
</tbody>
</table>

Tabla 8. Resistencias térmicas superficiales
Estos factores los iremos añadiendo en los cálculos que correspondan a cerramientos en contacto con el aire exterior.

<table>
<thead>
<tr>
<th>Elemento</th>
<th>Espesor L (m)</th>
<th>Conductividad Térmica λ (W/m°C)</th>
<th>Resistencia térmica R=L/ (\lambda)(m²°C/W)</th>
<th>(\Sigma R)</th>
<th>(U= (1/ \Sigma R)) (W/m²·ºC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_{se})</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0,04</td>
<td></td>
</tr>
<tr>
<td>Ladrillo perforado</td>
<td>0,135</td>
<td>0,35</td>
<td>0,385</td>
<td></td>
<td>4,59 0,22</td>
</tr>
<tr>
<td>Mortero cemento</td>
<td>0,01</td>
<td>0,8</td>
<td>0,0125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lana mineral</td>
<td>0,12</td>
<td>0,032</td>
<td>3,75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ladrillo hueco</td>
<td>0,07</td>
<td>0,32</td>
<td>0,22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yeso</td>
<td>0,015</td>
<td>0,3</td>
<td>0,05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(R_{SI})</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0,13</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 9. Transmitancia fachada

- Muros interiores en contacto con zonas climatizadas:

Tabla 6. Resistencias térmicas superficiales de particiones interiores en m²·K/W

<table>
<thead>
<tr>
<th>Posición de la partición interior y sentido del flujo de calor</th>
<th>(R_{se})</th>
<th>(R_{SI})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particiones interiores horizontales con pendiente sobre la horizontal >80° y flujo horizontal</td>
<td>0,13</td>
<td>0,13</td>
</tr>
<tr>
<td>Particiones interiores horizontales o con pendiente sobre la horizontal ≤80° y flujo ascendente (Techo)</td>
<td>0,10</td>
<td>0,10</td>
</tr>
<tr>
<td>Particiones interiores horizontales y flujo descendente (Suelo)</td>
<td>0,17</td>
<td>0,17</td>
</tr>
</tbody>
</table>

Tabla 10. Resistencias térmicas superficiales interiores
Comparación de diferentes sistemas aplicados a un edificio residencial
Jordi Marcé Cortés

<table>
<thead>
<tr>
<th>Elemento</th>
<th>Espesor L (m)</th>
<th>Conductividad Térmica λ (W/m²°C)</th>
<th>Resistencia térmica (R = L/\lambda(m²°C/W))</th>
<th>(\Sigma R)</th>
<th>(U = (1/\Sigma R)) (W/m²·ºC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_{se})</td>
<td>-</td>
<td>-</td>
<td>0,13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yeso</td>
<td>0,015</td>
<td>0,3</td>
<td>0,05</td>
<td>0,64</td>
<td>1,56</td>
</tr>
<tr>
<td>Ladrillo hueco</td>
<td>0,09</td>
<td>0,32</td>
<td>0,28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yeso</td>
<td>0,015</td>
<td>0,3</td>
<td>0,05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(R_{si})</td>
<td>-</td>
<td>-</td>
<td>0,13</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 11. Transmitancias paredes interiores

En este caso la resistencia exterior e interior será la misma ya que en los dos casos se trata del interior de la vivienda y aplicamos el 0,13 visualizado en la tabla del CTE. Estos factores los iremos añadiendo a continuación en todos los cálculos referentes a particiones interiores. Para el cálculo de cargas, esta transmitancia no se utilizará ya que entre zonas climatizadas la transferencia de calor será nula.

- Muros interior en contacto con zonas no climatizadas:

En este caso para obtener la transmitancia total deberemos aplicar un factor que obtendremos posteriormente:

\[
U = U_p \cdot b
\]

Donde \(U_p \) será la transmitancia térmica que se calculará de la misma manera como se ha realizado hasta el momento y donde \(b \) será el coeficiente de reducción de temperatura relacionado al espacio no habitable, que conseguiremos con la siguiente tabla extraída del CTE:
El caso que coincide sería el tercero y dentro de éste sería el caso 1 y como tenemos una relación de áreas de cerramiento de 0,14 entre las zonas afectadas utilizaremos el factor $b=0,91$ para el caso de la pared que comunica garaje con comedor.

Por otro lado, tenemos diferentes casos en la planta 1 en contacto con pasillos y escaleras, los cuales tienen una relación de áreas de aproximadamente 0,8 por lo tanto el valor $b=0,59$.

Para obtener dicha relación de áreas, se ha dividido el área del cerramiento que divide la zona habitable de la no habitable entre la suma de cerramientos en contacto con el aire exterior o terreno.
Comparación de diferentes sistemas aplicados a un edificio residencial
Jordi Marcé Cortés

<table>
<thead>
<tr>
<th>Elemento</th>
<th>Espesor L (m)</th>
<th>Conductividad térmica λ (W/m°C)</th>
<th>Resistencia térmica R=L/λ(m²°C/W)</th>
<th>ΣR</th>
<th>U= (1/ ΣR) (W/m²·°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{se}</td>
<td>0,015</td>
<td>0,3</td>
<td>0,13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yeso</td>
<td>0,015</td>
<td>0,3</td>
<td>0,05</td>
<td>0,64</td>
<td>1,56</td>
</tr>
<tr>
<td>Ladrillo hueco</td>
<td>0,09</td>
<td>0,32</td>
<td>0,29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yeso</td>
<td>0,015</td>
<td>0,3</td>
<td>0,05</td>
<td>0,64</td>
<td>1,56</td>
</tr>
<tr>
<td>R_{si}</td>
<td></td>
<td></td>
<td>0,13</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 13. Transmitancia paredes interiores

\[U_{final} \text{ comedor-garaje} = 1,56 \cdot 0,91 = 1,42. \]
\[U_{final} \text{ paredes planta 1} = 1,56 \cdot 0,59 = 0,94 \]

- Suelo entrepisos no climatizados:

<table>
<thead>
<tr>
<th>Elemento</th>
<th>Espesor L (m)</th>
<th>Conductividad térmica λ (W/m°C)</th>
<th>Resistencia térmica R=L/λ(m²°C/W)</th>
<th>ΣR</th>
<th>U= (1/ ΣR) (W/m²·°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rse</td>
<td></td>
<td></td>
<td>0,17</td>
<td>0,17</td>
<td></td>
</tr>
<tr>
<td>Yeso</td>
<td>0,015</td>
<td>0,3</td>
<td>0,05</td>
<td>0,89</td>
<td>1,12</td>
</tr>
<tr>
<td>Bovedilla cerámica</td>
<td>0,3</td>
<td>0,67</td>
<td>0,45</td>
<td>0,89</td>
<td>1,12</td>
</tr>
<tr>
<td>Yeso</td>
<td>0,015</td>
<td>0,3</td>
<td>0,05</td>
<td>0,89</td>
<td>1,12</td>
</tr>
<tr>
<td>Rsi</td>
<td></td>
<td></td>
<td>0,17</td>
<td>0,17</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 14. Transmitancia suelos

En este caso debemos seguir el mismo proceso que anteriormente. Tendremos una relación inferior a 0,25 en todas las habitaciones en contacto con la zona de garaje. Por tanto, en todas las habitaciones en contacto con el garaje tendremos en cuenta un factor de 0,96 menos el despacho que seleccionaremos el factor 0,91. Indicar que en este caso corresponde al tipo 3 caso 2 de la tabla.

\[U_{final} = 1,12 \cdot 0,96 = 1,08 \]
Comparación de diferentes sistemas aplicados a un edificio residencial
Jordi Marcé Cortés

- Suelo entre pisos climatizados:

El valor de la transmitancia será el calculado anteriormente, 1,12 W/m²·°C, pero de la misma manera que el resto de elementos que dividen dos zonas climatizadas no se utilizará para el cálculo de cargas ya que la transferencia de calor será nula.

- Techo entre pisos no climatizados:

<table>
<thead>
<tr>
<th>Elemento</th>
<th>Espesor L(m)</th>
<th>Conductividad térmica λ (W/m²°C)</th>
<th>Resistencia térmica R=L/λ(m²°C/W)</th>
<th>ΣR</th>
<th>U= (1/ ΣR) (W/m²·°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rse</td>
<td>-</td>
<td>-</td>
<td>0,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yeso</td>
<td>0,015</td>
<td>0,3</td>
<td>0,05</td>
<td>0,75</td>
<td>1,33</td>
</tr>
<tr>
<td>Bovedilla cerámica</td>
<td>0,3</td>
<td>0,67</td>
<td>0,45</td>
<td>0,75</td>
<td>1,33</td>
</tr>
<tr>
<td>Yeso</td>
<td>0,015</td>
<td>0,3</td>
<td>0,05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rsi</td>
<td>-</td>
<td>-</td>
<td>0,1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 15. Transmitancia techos

En este caso debemos seguir el mismo proceso que anteriormente. Tendremos una relación inferior a 0,25 en todas las habitaciones en contacto con la zona de garaje. Por tanto, en todas las habitaciones en contacto con el garaje tendremos en cuenta un factor 0,96.

Ufinal= 1,33 * 0,96=1,28

- Techo entre pisos climatizados:

El valor de la transmitancia será el calculado anteriormente, 1,33 W/m²·°C, pero de la misma manera que el resto de elementos que dividen dos zonas climatizadas no se utilizará para el cálculo de cargas ya que la transferencia de calor será nula.
Comparación de diferentes sistemas aplicados a un edificio residencial
Jordi Marcé Cortés

- Cubierta:

<table>
<thead>
<tr>
<th>Elemento</th>
<th>Espesor L (m)</th>
<th>Conductividad Térmica λ (W/m°C)</th>
<th>Resistencia térmica R=L/λ (m²oC/W)</th>
<th>ΣR</th>
<th>U= (1/ ΣR) (W/m²·oC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gres rústico</td>
<td>0,01</td>
<td>1,9</td>
<td>0,005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mortero cemento</td>
<td>0,04</td>
<td>0,8</td>
<td>0,005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geotextil de poliéster</td>
<td>0,0008</td>
<td>0,03</td>
<td>0,027</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impermeabilización asfáltica</td>
<td>0,0036</td>
<td>0,0235</td>
<td>0,15</td>
<td>4,2</td>
<td>0,23</td>
</tr>
<tr>
<td>Lana mineral</td>
<td>0,08</td>
<td>0,032</td>
<td>2,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mortero cemento</td>
<td>0,04</td>
<td>0,8</td>
<td>0,005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arcilla expandida</td>
<td>0,1</td>
<td>0,1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bovedilla cerámica</td>
<td>0,3</td>
<td>0,67</td>
<td>0,45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yeso</td>
<td>0,015</td>
<td>0,3</td>
<td>0,05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rₙₑ</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 16. Transmitancia cubierta

- Solera: (suelo en contacto con el terreno)

<table>
<thead>
<tr>
<th>Elemento</th>
<th>Espesor L (m)</th>
<th>Conductividad Térmica λ (W/m°C)</th>
<th>Resistencia térmica R=L/λ (m²oC/W)</th>
<th>ΣR</th>
<th>U= (1/ ΣR) (W/m²·oC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rₙᵢ</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>gres</td>
<td>0,001</td>
<td>1,9</td>
<td>0,001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mortero</td>
<td>0,03</td>
<td>0,8</td>
<td>0,04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hormigón armado</td>
<td>0,2</td>
<td>1,15</td>
<td>0,174</td>
<td>1,87</td>
<td>0,53</td>
</tr>
<tr>
<td>Film de polietileno</td>
<td>0,0002</td>
<td>0,04</td>
<td>0,005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poliestireno extruido</td>
<td>0,05</td>
<td>0,035</td>
<td>1,42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hormigón armado</td>
<td>0,1</td>
<td>1,63</td>
<td>0,06</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 17. Transmitancia solera
Comparación de diferentes sistemas aplicados a un edificio residencial
Jordi Marcé Cortés

En este caso, fijándonos una vez más en el CTE debemos aplicar la fórmula que se indica a continuación:

$$B' = \frac{A}{\frac{1}{2}P}$$

Donde,

A: Será el área de la solera [m²].
P: Será la longitud del perímetro expuesto de la solera [m].

Por tanto, nuestro valor B' será aproximadamente 6 para un área de 173m² y un perímetro de 58m.

Aplicamos los valores a la siguiente tabla:

<table>
<thead>
<tr>
<th>B'</th>
<th>R_0, $D=0.5$ m</th>
<th>R_0, $D=1.0$ m</th>
<th>R_0, $D=1.5$ m</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,39</td>
<td>1,08</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>1,04</td>
<td>0,89</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>0,85</td>
<td>0,69</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>0,708</td>
<td>0,59</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>0,58</td>
<td>0,49</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>0,52</td>
<td>0,44</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>0,49</td>
<td>0,43</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>0,45</td>
<td>0,40</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>0,40</td>
<td>0,38</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>0,38</td>
<td>0,36</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>0,36</td>
<td>0,34</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>0,34</td>
<td>0,33</td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td>0,32</td>
<td>0,32</td>
<td>-</td>
</tr>
<tr>
<td>14</td>
<td>0,30</td>
<td>0,30</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td>0,28</td>
<td>0,28</td>
<td>-</td>
</tr>
<tr>
<td>16</td>
<td>0,26</td>
<td>0,26</td>
<td>-</td>
</tr>
<tr>
<td>\geq10</td>
<td>0,24</td>
<td>0,24</td>
<td>-</td>
</tr>
</tbody>
</table>

Por tanto, el valor final de U será -> $0,53 \cdot 0,43 = 0,23$
Comparación de diferentes sistemas aplicados a un edificio residencial
Jordi Marcé Cortés

- Ventanas:

Para los huecos como las ventanas utilizaremos la siguiente fórmula indicada por el CTE:

$$U_H = (1 - FM) \cdot U_{H,v} + FM \cdot U_{H,m}$$

Donde:
- $U_{H,v}$: Transmitancia térmica de la parte semitransparente - 0,95
- $U_{H,m}$: Transmitancia térmica del marco de la ventana - 1,1
- FM: La fracción del hueco ocupada por el marco.

Tenemos 4 tipos de ventana:
- Ventana 150x120 -> Habitaciones: Dormitorio 2, sala de estudio, dormitorio3, cine, dormitorio de invitados y cocina.
- Ventana 200x120 -> Habitaciones: Despacho y dormitorio 1.
- Ventana 60x100 -> Habitaciones: Aseo, baño 1 y baño 2.
- Ventana 350 x 210 -> Habitaciones: Comedor.

<table>
<thead>
<tr>
<th>Tipo ventana (cm)</th>
<th>$U_{H,v}$ (W·m2K)</th>
<th>$U_{H,m}$ (W·m2K)</th>
<th>FM (%)</th>
<th>U_H</th>
</tr>
</thead>
<tbody>
<tr>
<td>150x120</td>
<td>0,95</td>
<td>3,44</td>
<td>22.6</td>
<td>1,52</td>
</tr>
<tr>
<td>200x120</td>
<td>0,95</td>
<td>3,44</td>
<td>19.9</td>
<td>1,44</td>
</tr>
<tr>
<td>60x100</td>
<td>0,95</td>
<td>2,15</td>
<td>40</td>
<td>1,46</td>
</tr>
<tr>
<td>350x210</td>
<td>0,95</td>
<td>3,44</td>
<td>11.5</td>
<td>1,24</td>
</tr>
</tbody>
</table>

Tabla 19. Transmitancias en ventanas

A continuación se calculará el factor solar de las ventanas, ya que será necesario para el cálculo de cargas. Para dicho cálculo debemos aplicar la siguiente fórmula:

$$F = F_s \cdot \left(1 - FM \right) \cdot g + FM \cdot 0,04 \cdot U_m \cdot \alpha$$

Donde,
- F_s: El factor sombra del hueco que en nuestro caso lo consideraremos igual a la unidad.
- FM: La fracción del hueco ocupada por el marco.
- g: El factor solar de la parte semitransparente del hueco a incidencia normal
- U_m: La transmitancia térmica del marco.
- α: La absorbividad del marco obtenida de la tabla proporcionada por el CTE.
Comparación de diferentes sistemas aplicados a un edificio residencial
Jordi Marcé Cortés

Como se han utilizado el mismo tipo de vidrio (doble de 8mm con cámara de 14mm de gas argón) y el mismo material en el marco (aluminio), a continuación se establecen los valores para definir el factor solar “F”.

El valor g de factor solar de nuestro vidrio será 0,38 según UNE-EN 410.
El valor α será 0,35, obtenido de la siguiente tabla proporcionada por el CTE:

<table>
<thead>
<tr>
<th>Color</th>
<th>Claro</th>
<th>Medio</th>
<th>Oscuro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blanco</td>
<td>0,20</td>
<td>0,30</td>
<td>-</td>
</tr>
<tr>
<td>Amarillo</td>
<td>0,30</td>
<td>0,50</td>
<td>0,70</td>
</tr>
<tr>
<td>Beige</td>
<td>0,35</td>
<td>0,55</td>
<td>0,75</td>
</tr>
<tr>
<td>Marrón</td>
<td>0,50</td>
<td>0,75</td>
<td>0,92</td>
</tr>
<tr>
<td>Rojo</td>
<td>0,65</td>
<td>0,80</td>
<td>0,90</td>
</tr>
<tr>
<td>Verde</td>
<td>0,40</td>
<td>0,70</td>
<td>0,88</td>
</tr>
<tr>
<td>Azul</td>
<td>0,50</td>
<td>0,80</td>
<td>0,95</td>
</tr>
<tr>
<td>Gris</td>
<td>0,40</td>
<td>0,65</td>
<td>-</td>
</tr>
<tr>
<td>Negro</td>
<td>-</td>
<td>0,95</td>
<td>-</td>
</tr>
</tbody>
</table>

Tabla 20. Valor α por color

A continuación aplicamos la fórmula para obtener el factor solar "F" de nuestra ventana tipo 1 de 150x120 y a continuación indicaremos los valores obtenidos de la misma manera para el resto de ventanas.

\[F = 1 \cdot [(1-0,226) \cdot 0,38 + 0,226 \cdot 0,04 \cdot 3,44 \cdot 0,35] = 0,3 \]

A continuación se indica la tabla con el resto de resultados para los diferentes tipos de ventana.

<table>
<thead>
<tr>
<th>Tipo ventana (cm)</th>
<th>(U_{H,m}) (W·m(^2)K)</th>
<th>FM (%)</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>150x120</td>
<td>3,44</td>
<td>22,6</td>
<td>0,3</td>
</tr>
<tr>
<td>200x120</td>
<td>3,44</td>
<td>19,9</td>
<td>0,31</td>
</tr>
<tr>
<td>60x100</td>
<td>2,15</td>
<td>40</td>
<td>0,24</td>
</tr>
<tr>
<td>350x210</td>
<td>3,44</td>
<td>11,5</td>
<td>0,34</td>
</tr>
</tbody>
</table>

Tabla 21. Valores factor solar

- Puertas:
Para las puertas seleccionaremos una transmitancia térmica con valor \(U = 2 \) W/m\(^2\)-°C muy común en el tipo de puertas de madera utilizadas en viviendas.
Comparación de diferentes sistemas aplicados a un edificio residencial
Jordi Marcé Cortés

4.3 MÉTODO DE CÁLCULO Y CÁLCULO DE CARGAS

Para poder realizar la asignación de equipos, necesitamos saber la demanda que tendremos en la vivienda y concretamente en cada habitación, tanto para calefacción como para refrigeración.
En el caso de calefacción, encontramos gran parte de las pérdidas por transmisión y por ventilación. Posteriormente obtendremos el valor total de la demanda de calefacción por habitación.
Por otro lado para refrigeración, tenemos gran parte de las pérdidas por transmisión y ventilación pero también influyen los elementos que tengamos en las habitaciones que desprendan calor como pueden ser un ordenador o un televisor o las mismas personas o la misma iluminación. Por último también tendremos en cuenta la radiación que nos puede afectar de manera destacable por las ventanas en meses de alta radiación como puede ser junio-julio.
Se realizará el estudio de cargas térmicas por separado, en primer lugar obtendremos la demanda para calefacción y en segundo lugar para refrigeración.
Indicar que para el cálculo de cargas térmicas se tendrá en cuenta las transmitancias calculadas anteriormente para la obra nueva.
En cada punto se procederá a indicar la normativa correspondiente previamente a efectuar el cálculo.

4.3.1 Calefacción

Como hemos indicado anteriormente en este caso únicamente calcularemos las cargas por transmisión y ventilación para cada local.

- Cargas de transmisión:

Las cargas de transmisión son las pérdidas a través de los cerramientos en cada habitación. Para proceder al cálculo necesitaremos las condiciones en el interior de la vivienda y las condiciones que tenemos en el exterior.
Para el cálculo de cargas por transmisión se ha utilizado la metodología indicada por la ASHRAE.
Para el proceder al cálculo de cargas térmicas deberemos utilizar parámetros calculados anteriormente como la transmitancia del elemento, o el área a tener en
Comparación de diferentes sistemas aplicados a un edificio residencial
Jordi Marcé Cortés

En cada habitación tendremos diferentes tipos de cerramientos, y se debe diferenciar entre el método de cálculo para muros en contacto con el exterior o para puertas por ejemplo, por esta razón, a continuación se indica como se ha calculado cada tipo de cerramiento:

- Cerramiento en contacto con aire exterior:

Para este tipo de cerramientos como podrían ser fachadas, ventanas o azoteas, se deberán de tener en cuenta todas las paredes de fachada que afecten a las habitaciones climatizadas, con sus respectivas ventanas. También se deberá realizar con este cálculo las habitaciones en contacto con la azotea, y por último, las habitaciones de la planta baja en contacto con el terreno. Se calculará con siguiente expresión:

\[Q = A \cdot U \cdot (T_{\text{int}} - T_{\text{ext}}) \]

Donde,

- \(Q \): Carga por transmisión del elemento.
- \(A \): Área del elemento en contacto con el aire exterior.
- \(U \): Transmitancia del elemento.
- \(T_{\text{int}} \): Temperatura de diseño interior, en este caso en invierno, que sería de 21\(^\circ\)C en nuestro caso como se ha indicado anteriormente.
- \(T_{\text{ext}} \): Temperatura de diseño exterior, que en este caso será de 31\(^\circ\)C.

- Cerramientos con zonas interiores no climatizadas:

Para estos casos se debe calcular con una expresión diferentes utilizando las transmitancias modificadas calculadas anteriormente, ya que la habitación que esté en contacto no climatizada no tendrá la temperatura del exterior ni la temperatura interior, por esta razón se aplica la siguiente expresión:

\[Q = A \cdot U \cdot (T_{\text{int}} - T_{\text{mediana}}(T_{\text{int}}, T_{\text{ext}})) \]

Donde,

- \(Q \): Carga por transmisión del elemento.
- \(A \): Área del elemento en contacto con el aire exterior.
- \(U \): Transmitancia del elemento modificada por el factor b.
Comparación de diferentes sistemas aplicados a un edificio residencial
Jordi Marcé Cortés

\[T_{\text{int}} \]: Temperatura de diseño interior, en este caso en invierno, que sería de 21ºC en nuestro caso como se ha indicado anteriormente.

\[T_{\text{mediana}} \]: En nuestro caso tendrá un valor de 11,5ºC, que se obtiene de realizar la mediana de la interior y la exterior, que serían 21ºC y 2ºC.

Este tipo de cerramiento en nuestra vivienda la encontramos en el comedor y la habitación de invitados en contacto con el garaje (pared), o en todas las habitaciones de la planta primera también en contacto con el garaje (suelo) o con el pasillo (pared).

- Cerramientos con zonas climatizadas:

En estos casos se tiene en cuenta que no habrá intercambio de calor, y por lo tanto la carga en este tipo de cerramientos será nula.

Para poder ver un ejemplo de las indicaciones mencionadas, a continuación se puede ver una tabla de resultados para la habitación sala de estudios:

<table>
<thead>
<tr>
<th>Cerramiento</th>
<th>Orientación</th>
<th>Dimensiones (m)</th>
<th>Área (m²)</th>
<th>(\Delta T) (ºC) calefacción</th>
<th>U (W·m²·K)</th>
<th>Q (W) calefacción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fachada</td>
<td>SO</td>
<td>4,65x2,7</td>
<td>12,6</td>
<td>19</td>
<td>0,22</td>
<td>52,668</td>
</tr>
<tr>
<td>Pared int. Zona no clima.</td>
<td>NE</td>
<td>4,65x2,7</td>
<td>7,75</td>
<td>9,5</td>
<td>0,94</td>
<td>69,2075</td>
</tr>
<tr>
<td>Suelo zona no clima.</td>
<td>H</td>
<td>4,65x3,27</td>
<td>15,21</td>
<td>9,5</td>
<td>1,12</td>
<td>161,8344</td>
</tr>
<tr>
<td>Ventanas</td>
<td>SO</td>
<td>3x1,2</td>
<td>3,6</td>
<td>19</td>
<td>1,44</td>
<td>98,496</td>
</tr>
<tr>
<td>Puertas</td>
<td>NE</td>
<td>2,03x0,825</td>
<td>1,67</td>
<td>9,5</td>
<td>2</td>
<td>31,73</td>
</tr>
<tr>
<td>Azotea</td>
<td>H</td>
<td>4,65x3,27</td>
<td>15,21</td>
<td>19</td>
<td>0,23</td>
<td>66,4677</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>480,4036</td>
</tr>
</tbody>
</table>

Tabla 22. Carga transmisión sala de estudios
Comparación de diferentes sistemas aplicados a un edificio residencial
Jordi Marcé Cortés

Como se puede ver, únicamente se ha tenido en cuenta los cerramientos en contacto con el aire exterior como es la fachada, las ventanas o la azotea, y por otro lado las que están en contacto con zonas no climatizadas como son en el caso el suelo, la pared del pasillo y la puerta. El resto de paredes que están en contacto con zonas climatizadas como se ha indicado anteriormente no se han tenido en cuenta.

- Cargas de ventilación:

El tener que realizar una renovación del aire que tenemos en las habitaciones, produce una carga de ventilación ya que el aire que se introduce fresco viene del exterior, con las condiciones del exterior (temperaturas frías).

Para calcular las cargas por ventilación en calefacción se aplicará la siguiente expresión:

\[Q = V \cdot \rho \cdot C_e \cdot \Delta T \]

Donde,

\(Q \): Carga de ventilación.
\(V \): Volumen de aire de renovación de la habitación, calculados anteriormente en el capítulo de ventilación.
\(\rho \): Densidad del aire.
\(C_e \): Calor específico \(-1,025 \text{ J/kg*K}\)
\(\Delta T \): Incremento de temperatura entre aire exterior y aire interior.

A continuación se podrá ver un ejemplo de la tabla de resultados de la sala de estudios donde se le aplica (como al resto de la vivienda) el porcentaje de recuperación del recuperador de carlor.

<table>
<thead>
<tr>
<th>Ventilación</th>
<th>Caudal (m3/s)</th>
<th>(\Delta T) (ºC)</th>
<th>Carga sensible (W)</th>
<th>Recuperación 70%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sala de estudios</td>
<td>21,6</td>
<td>19</td>
<td>504,8</td>
<td>151,4</td>
</tr>
</tbody>
</table>

Tabla 23. Carga ventilación sala de estudios
Comparación de diferentes sistemas aplicados a un edificio residencial
Jordi Marcé Cortés

Siguiendo el mismo método para todas las habitaciones de la vivienda, a continuación se podrá ver la tabla de resultados de la carga de calefacción total de la vivienda:

<table>
<thead>
<tr>
<th>Local</th>
<th>Transmisión (W)</th>
<th>Ventilación (W)</th>
<th>TOTAL (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Habitación invitados</td>
<td>273,09</td>
<td>252,4</td>
<td>525,49</td>
</tr>
<tr>
<td>Salón-cocina</td>
<td>2326,9</td>
<td>959,7</td>
<td>3286,6</td>
</tr>
<tr>
<td>Dormitorio 1</td>
<td>542,203</td>
<td>252,4</td>
<td>794,603</td>
</tr>
<tr>
<td>Dormitorio 2</td>
<td>387,57</td>
<td>252,4</td>
<td>639,97</td>
</tr>
<tr>
<td>Dormitorio 3</td>
<td>259,274</td>
<td>252,4</td>
<td>511,674</td>
</tr>
<tr>
<td>Sala de estudios</td>
<td>480,4</td>
<td>151,4</td>
<td>631,8</td>
</tr>
<tr>
<td>Cine</td>
<td>395,124</td>
<td>302,9</td>
<td>698,024</td>
</tr>
<tr>
<td>Despacho</td>
<td>909,7</td>
<td>75,72</td>
<td>985,42</td>
</tr>
<tr>
<td>TOTAL</td>
<td>8073,581</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 24. Carga total calefacción

Indicar que en el Anexo 2 se pueden ver las fichas de cálculos de cargas en calefacción para todas las habitaciones.
4.3.2 Refrigeración

Para calcular la demanda en refrigeración calcularemos las cargas por transmisión, ventilación, radiación e internas (iluminación, personas, electrodomésticos,...)

- Cargas de transmisión:
Las cargas de transmisión son las pérdidas a través de los cerramientos en cada habitación. Para proceder al cálculo necesitaremos las condiciones en el interior de la vivienda y las condiciones que tenemos en el exterior.
Para el cálculo de cargas por transmisión se ha utilizado la metodología indicada por la ASHRAE.

- Cerramiento en contacto con aire exterior:

Para el cálculo de cargas por transmisión se ha utilizado la metodología indicada por la ASHRAE.
A diferencia de el cálculo para calefacción en este caso se diferenciará entre ventanas y fachada. En nuestro caso se deberán de tener en cuenta todas las paredes de fachadas que afecten a las habitaciones climatizadas, también las habitaciones en contacto con la azotea y por último las habitaciones de la planta baja en contacto con el terreno. Se calculará con siguiente expresión:

\[Q = A \cdot U \cdot CLTD \]

Donde,
Q: Carga por transmisión del elemento.
A: Área del elemento en contacto con el aire exterior.
U: Transmitancia del elemento.
CLTD: El parámetro CLTD lo obtendremos de las tablas proporcionadas por la ASHRAE, según la orientación de nuestro cerramiento vertical, la latitud y la cantidad de horas de Sol diarias, teniendo en cuenta nuestro tipo de fachada (tipo 2), en la siguiente tabla:
Comparación de diferentes sistemas aplicados a un edificio residencial
Jordi Marcé Cortés

Se ha tenido en cuenta el tiempo solar de 13h, que a lo que solemos llegar en período de horas de sol entre junio y julio.

Para la azotea se utilizará la siguiente tabla de la misma manera: (tipo 14)

De la misma manera según la orientación de nuestra ventana deberemos seleccionar e parámetro correspondiente para 13h.
Será mediante la siguiente expresión:

\[Q = A \cdot SCL \]

Donde,
Q: Carga por transmisión del elemento.
A: Área del elemento en contacto con el aire exterior.
SCL: Parámetro de carga solar para ventanas.

De la misma manera según la orientación de nuestra ventana deberemos seleccionar e parámetro correspondiente para 13h.

- Cerramientos con zonas interiores no climatizadas:

En este caso aplicaremos la misma metodología que en calefacción mediante las mismas transmitancias calculadas anteriormente, se aplica la siguiente expresión:

\[Q = A \cdot U \cdot (T_{int} - T_{mediana}) \]

Donde,
Q: Carga por transmisión del elemento.
A: Área del elemento en contacto con el aire exterior.
U: Transmitancia del elemento modificada por el factor b.
T_{int}: Temperatura de diseño interior, en este caso en invierno, que sería de 21ºC en nuestro caso como se ha indicado anteriormente.
T_{mediana}: En nuestro caso tendrá un valor de 27,5ºC, que se obtiene de realizar la mediana de la interior y la exterior, que serían 31ºC y 24ºC.

Este tipo de cerramiento en nuestra vivienda la encontramos en el comedor y la habitación de invitados en contacto con el garaje (pared), o en todas las habitaciones de la planta primera en contacto con el garaje (suelo) o también con el pasillo (pared).

- Cerramientos con zonas climatizadas:

En estos casos se tiene en cuenta que no habrá intercambio de calor, y por lo tanto la carga en este tipo de cerramientos será nula.

A continuación se muestra como ejemplo el resultado del cálculo de cargas por transmisión para la sala de estudio de la misma manera que en calefacción con los valores correspondientes a cargas por transmisión.
<table>
<thead>
<tr>
<th>Cerramiento</th>
<th>Orientación</th>
<th>Dimens. (m)</th>
<th>Área (m2)</th>
<th>ΔT (ºC) refrigeración</th>
<th>CLTD</th>
<th>SCL</th>
<th>U (W•m²K)²</th>
<th>Q (W) refrigeración</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fachada</td>
<td>SO</td>
<td>4,65x2,7</td>
<td>12,6</td>
<td>-</td>
<td>7</td>
<td>-</td>
<td>0,22</td>
<td>19,404</td>
</tr>
<tr>
<td>Pared int. Zona no clima.</td>
<td>NE</td>
<td>4,65x2,7</td>
<td>7,75</td>
<td>3,5</td>
<td>-</td>
<td>-</td>
<td>0,94</td>
<td>25,4975</td>
</tr>
<tr>
<td>Suelo zona no clima.</td>
<td>H</td>
<td>4,65x3,27</td>
<td>15,21</td>
<td>3,5</td>
<td>-</td>
<td>-</td>
<td>1,12</td>
<td>59,6232</td>
</tr>
<tr>
<td>Ventanas</td>
<td>SO</td>
<td>3x1,2</td>
<td>3,6</td>
<td>-</td>
<td>-</td>
<td>90</td>
<td>1,44</td>
<td>324</td>
</tr>
<tr>
<td>Puertas</td>
<td>NE</td>
<td>2,03x0,825</td>
<td>1,67</td>
<td>3,5</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>11,69</td>
</tr>
<tr>
<td>Azotea</td>
<td>H</td>
<td>4,65x3,27</td>
<td>15,21</td>
<td>-</td>
<td>32</td>
<td>-</td>
<td>0,23</td>
<td>111,945</td>
</tr>
</tbody>
</table>

TOTAL 552,160

Tabla 28. Cargas por transmisión en sala de estudio

- Cargas de ventilación:

Para el caso de refrigeración, encontraremos dos tipos de carga de ventilación, sensible y latente.

Debido a la diferencia de temperatura entre el exterior y el interior tendremos cargas sensibles que se calcularán con la siguiente expresión:

$$Q = V \cdot \rho \cdot Ce \cdot \Delta T$$

Donde,

Q: Carga de ventilación.

V: Volumen de aire de renovación de la habitación, calculados anteriormente en el capítulo de ventilación.

ρ: Densidad del aire.

Ce: Calor específico \rightarrow 1,025 J/kg*K

ΔT: Incremento de temperatura entre aire exterior y aire interior, en este caso será 31-24.
Comparación de diferentes sistemas aplicados a un edificio residencial
Jordi Marcé Cortés

Se ejecutará de la misma manera que en calefacción pero con la nueva variación de temperatura y de la misma manera aplicaremos la reducción por el recuperador de calor.

Por otro lado tendremos la carga latente, debida a la variación de humedad y se calculará con la siguiente expresión:

\[Q = V \cdot \rho \cdot C_v \cdot \Delta g \]

Donde,
Q: Carga de ventilación.
V: Volumen de aire de renovación de la habitación, calculados anteriormente en el capítulo de ventilación.
\(\rho \): Densidad del aire.
Cv: Calor latente de vaporización del agua, que tendrá un valor de 0,63W.
\(\Delta g \): Diferencia de humedad específica entre interior y exterior.

<table>
<thead>
<tr>
<th>Temperatura (°C)</th>
<th>-5</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ws (gVA/KgAS)</td>
<td>2,5</td>
<td>3,7</td>
<td>5,4</td>
<td>7,6</td>
<td>10,7</td>
<td>14,4</td>
<td>20</td>
<td>27,1</td>
<td>36,4</td>
<td>49</td>
</tr>
<tr>
<td>Presión vapor (mbar)</td>
<td>4</td>
<td>6</td>
<td>9</td>
<td>12</td>
<td>17</td>
<td>23</td>
<td>32</td>
<td>43</td>
<td>58</td>
<td>78</td>
</tr>
</tbody>
</table>

Tabla 29. Relación temperatura-humedad específica

Para la obtención de la diferencia de humedad específica se han utilizado los valores de la tabla anterior correspondientes con la temperatura exterior y la temperatura interior, 31 y 24 grados respectivamente, por lo tanto como se puede ver se ha tenido que realizar una interpolación para obtener la humedad de 18,9 para 24°C y de 28,9 para 31°C. Por lo tanto hemos tenido en cuenta una diferencia de humedades específicas de 10.

A continuación se mostrará el ejemplo de los resultados para la sala de estudio:

<table>
<thead>
<tr>
<th>Ventilación</th>
<th>Caudal (m3/s)</th>
<th>(\Delta T) (°C)</th>
<th>Carga sensible (W)</th>
<th>Carga latente (W)</th>
<th>Carga sensible (W)</th>
<th>Carga latente (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sala de estudios</td>
<td>21,6</td>
<td>7</td>
<td>186</td>
<td>162,8</td>
<td>55,8</td>
<td>48,8</td>
</tr>
</tbody>
</table>

Tabla 30. Carga por ventilación en sala de estudios
Comparación de diferentes sistemas aplicados a un edificio residencial
Jordi Marcé Cortés

- Cargas por radiación

Para calcular la carga de radiación deberemos hacerlo con la siguiente fórmula:

\[Q_{sr} = S \cdot R \cdot F \]

Donde,
Qsr: Es la carga térmica por radiación solar a través de cristal, en W.
S: Es la superficie traslúcida o acristalada expuesta a la radiación, en m2.
R: Es la radiación solar que atraviesa la superficie, en W/m2, correspondiente a la orientación, mes y latitud del lugar considerado.
F: Es el facto solar calculado anteriormente.

A continuación se puede ver una tabla de radiación unitaria a una latitud de 40°, son los valores más próximos a nuestro caso (41°).
Las diferentes columnas hacen referencia a fecha (del 21 de junio al 21 de julio), orientación y hora (de 12h a 16h). En nuestro caso utilizaremos la orientación correspondiente según cada ventana y la hora más desfavorable en nuestro caso (15h), que haría referencia a la cuarta columna de valores.
Siempre se seleccionará el caso más desfavorable para que en el momento que se produzca el sistema pueda responder con garantías.

<table>
<thead>
<tr>
<th>21 de junio</th>
<th>S</th>
<th>146</th>
<th>119</th>
<th>94</th>
<th>51</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO</td>
<td>92</td>
<td>192</td>
<td>268</td>
<td>301</td>
<td>265</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>38</td>
<td>119</td>
<td>257</td>
<td>385</td>
<td>439</td>
<td></td>
</tr>
<tr>
<td>NO</td>
<td>38</td>
<td>38</td>
<td>98</td>
<td>393</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horizontal</td>
<td>642</td>
<td>629</td>
<td>569</td>
<td>485</td>
<td>360</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>38</td>
<td>38</td>
<td>35</td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NE</td>
<td>38</td>
<td>38</td>
<td>35</td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>38</td>
<td>38</td>
<td>35</td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SE</td>
<td>113</td>
<td>40</td>
<td>38</td>
<td>35</td>
<td>32</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 31. Valores de radiación unitaria
Comparación de diferentes sistemas aplicados a un edificio residencial
Jordi Marcé Cortés

A continuación se adjunta una tabla con los valores de carga por radiación para las diferentes ventanas según los tipos de orientación que tienen:

<table>
<thead>
<tr>
<th>Tipo ventana (cm)</th>
<th>Orientación</th>
<th>S. vidrio (m²)</th>
<th>R (W/m²)</th>
<th>F</th>
<th>Qsr (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>150x120</td>
<td>SO</td>
<td>1,39</td>
<td>301</td>
<td>0,3</td>
<td>125,5</td>
</tr>
<tr>
<td></td>
<td>NE</td>
<td>1,39</td>
<td>35</td>
<td>0,3</td>
<td>14,6</td>
</tr>
<tr>
<td></td>
<td>NO</td>
<td>1,39</td>
<td>198</td>
<td>0,3</td>
<td>82,6</td>
</tr>
<tr>
<td>200x120</td>
<td>NE</td>
<td>1,9</td>
<td>35</td>
<td>0,31</td>
<td>20,6</td>
</tr>
<tr>
<td></td>
<td>SE</td>
<td>1,9</td>
<td>35</td>
<td>0,31</td>
<td>20,6</td>
</tr>
<tr>
<td>60x100</td>
<td>SO</td>
<td>0,36</td>
<td>301</td>
<td>0,24</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>SE</td>
<td>0,36</td>
<td>35</td>
<td>0,24</td>
<td>3,024</td>
</tr>
<tr>
<td>350x210</td>
<td>NO</td>
<td>6,5</td>
<td>198</td>
<td>0,34</td>
<td>437,6</td>
</tr>
</tbody>
</table>

Tabla 32. Valores de cargas por radiación

Habrá que tener en cuenta sobre todo las ventanas situadas en las habitaciones situadas en la cara SO y las dos ventanas situadas en el comedor que fan a la cara NO.

En el ejemplo de la sala de estudio, se ha tenido en cuenta una radiación por ventanas de 251W, ya que tenemos dos ventanas de 150x120 en la cara SO.

- Cargas internas

Las cargas internas se han distribuido en cargas por iluminación, cargas por personas y cargas por elementos como ordenadores.

En el caso de la iluminación se ha realizado una estimación de 10W/m², y se ha aplicado a las superficies de las habitaciones.

En el caso de las personas se ha contado 150W por persona, que sería para personas ejecutando una cierta actividad, donde 75 serán sensibles y 55 serán latentes.

En el caso de cargas de elementos que desprenden calor como ordenadores, proyectores, televisores,... se ha tenido en cuenta factores de 100W por elemento.

A continuación se muestra el ejemplo que se ha tenido en cuenta para a sala de estudio.
Comparación de diferentes sistemas aplicados a un edificio residencial
Jordi Marcé Cortés

<table>
<thead>
<tr>
<th>Cargas internas</th>
<th>Qi (W)</th>
<th>Carga sensible (W)</th>
<th>Carga latente (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luces</td>
<td>153</td>
<td>153</td>
<td>0</td>
</tr>
<tr>
<td>Personas</td>
<td>260</td>
<td>150</td>
<td>110</td>
</tr>
<tr>
<td>Equipos</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>TOTAL</td>
<td>403</td>
<td>110</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 33. Valores de cargas internas sala de estudios

En este caso en concreto, se ha tenido en cuenta que en la habitación se pueden encontrar 1 persona con 1 ordenador. La habitación tiene una superficie de 15,3 m².

Una vez calculadas todas las cargas para refrigeración en todos los elementos ya tenemos los valores finales de demanda según el tipo de carga que se podrá ver a continuación:

<table>
<thead>
<tr>
<th>Local</th>
<th>Transmisión</th>
<th>C. Internas</th>
<th>Ventilación</th>
<th>Radiación Vidrio</th>
<th>TOTAL (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Habitación invitados</td>
<td>207,89</td>
<td>391</td>
<td>174,4</td>
<td>14,4</td>
<td>787,69</td>
</tr>
<tr>
<td>Salón-cocina</td>
<td>538,6</td>
<td>1281</td>
<td>1607,6</td>
<td>520,2</td>
<td>3947,4</td>
</tr>
<tr>
<td>Dormitorio 1</td>
<td>405,12</td>
<td>578</td>
<td>174,4</td>
<td>20,6</td>
<td>1178,12</td>
</tr>
<tr>
<td>Dormitorio 2</td>
<td>327,9</td>
<td>462</td>
<td>174,4</td>
<td>125,5</td>
<td>1089,8</td>
</tr>
<tr>
<td>Dormitorio 3</td>
<td>369,3</td>
<td>462</td>
<td>174,4</td>
<td>125,5</td>
<td>1131,2</td>
</tr>
<tr>
<td>Sala de estudios</td>
<td>552,16</td>
<td>513</td>
<td>104,6</td>
<td>251</td>
<td>1420,76</td>
</tr>
<tr>
<td>Cine</td>
<td>519,5</td>
<td>771</td>
<td>209,17</td>
<td>125,5</td>
<td>1625,17</td>
</tr>
<tr>
<td>Despacho</td>
<td>1072,9</td>
<td>497</td>
<td>51,5</td>
<td>41,2</td>
<td>1662,6</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12842,7</td>
</tr>
</tbody>
</table>

Tabla 34. Carga total refrigeración

Indicar que en el Anexo 2 se pueden consultar las fichas de cargas térmicas para el resto de habitaciones de la vivienda.
4.4 CÁLCULO DE CARGAS DE LA ENVOLVENTE ANTIGUA CON CYPE

Como se ha indicado anteriormente, se ha realizado el diseño y el cálculo de cargas con Cype Ingenieros. Posteriormente se ha sumado un grosor de 4mm de aislante como parte de la rehabilitación de la vivienda.

En este apartado se adjuntará los valores de las cargas tanto en refrigeración como en calefacción para la envolvente antigua.

<table>
<thead>
<tr>
<th>Local</th>
<th>Refrigeración</th>
<th>Calefacción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Habitación invitados</td>
<td>915,2</td>
<td>684,2</td>
</tr>
<tr>
<td>Salón-cocina</td>
<td>4697</td>
<td>4042,5</td>
</tr>
<tr>
<td>Dormitorio 1</td>
<td>1357,1</td>
<td>1386,2</td>
</tr>
<tr>
<td>Dormitorio 2</td>
<td>1252,15</td>
<td>1161</td>
</tr>
<tr>
<td>Dormitorio 3</td>
<td>1234,7</td>
<td>857,8</td>
</tr>
<tr>
<td>Sala de estudios</td>
<td>1871,9</td>
<td>980,1</td>
</tr>
<tr>
<td>Cine</td>
<td>1931,6</td>
<td>1387,2</td>
</tr>
<tr>
<td>Despacho</td>
<td>2176,35</td>
<td>1813,7</td>
</tr>
<tr>
<td>TOTAL</td>
<td>15436</td>
<td>12312,7</td>
</tr>
</tbody>
</table>

Tabla 35. Cargas envolvente antigua
COMPARACIÓN DE CARGAS DE ENVOLVENTE NUEVA Y LA ANTIGUA

En este punto se realizará una comparación entre los valores de las cargas existentes en la obra antigua con las cargas de la nueva obra con las variaciones de aislante realizadas.

<table>
<thead>
<tr>
<th>Local</th>
<th>Obra antigua</th>
<th>Obra nueva</th>
</tr>
</thead>
<tbody>
<tr>
<td>Habitación invitados</td>
<td>684,2</td>
<td>525,49</td>
</tr>
<tr>
<td>Salón-cocina</td>
<td>4042,5</td>
<td>3286,6</td>
</tr>
<tr>
<td>Dormitorio 1</td>
<td>1386,2</td>
<td>794,603</td>
</tr>
<tr>
<td>Dormitorio 2</td>
<td>1161</td>
<td>639,97</td>
</tr>
<tr>
<td>Dormitorio 3</td>
<td>857,8</td>
<td>511,674</td>
</tr>
<tr>
<td>Sala de estudios</td>
<td>980,1</td>
<td>631,8</td>
</tr>
<tr>
<td>Cine</td>
<td>1387,2</td>
<td>698,024</td>
</tr>
<tr>
<td>Despacho</td>
<td>1813,7</td>
<td>985,42</td>
</tr>
<tr>
<td>TOTAL</td>
<td>12312,7</td>
<td>8073,581</td>
</tr>
</tbody>
</table>

Tabla 36. Comparación cargas calefacción

<table>
<thead>
<tr>
<th>Local</th>
<th>Obra antigua</th>
<th>Obra nueva</th>
</tr>
</thead>
<tbody>
<tr>
<td>Habitación invitados</td>
<td>915,2</td>
<td>787,64</td>
</tr>
<tr>
<td>Salón-cofre</td>
<td>4697</td>
<td>3947,4</td>
</tr>
<tr>
<td>Dormitorio 1</td>
<td>1357,1</td>
<td>1178,12</td>
</tr>
<tr>
<td>Dormitorio 2</td>
<td>1252,15</td>
<td>1089,8</td>
</tr>
<tr>
<td>Dormitorio 3</td>
<td>1234,7</td>
<td>1131,2</td>
</tr>
<tr>
<td>Sala de estudios</td>
<td>1871,9</td>
<td>1420,76</td>
</tr>
<tr>
<td>Cine</td>
<td>1931,6</td>
<td>1597,4</td>
</tr>
<tr>
<td>Despacho</td>
<td>2176,35</td>
<td>1662,6</td>
</tr>
<tr>
<td>TOTAL</td>
<td>15436</td>
<td>12814,92</td>
</tr>
</tbody>
</table>

Tabla 37. Comparación cargas refrigeración
Comparación de diferentes sistemas aplicados a un edificio residencial
Jordi Marcé Cortés

Comparando los valores anteriores con los calculados manualmente para la obra nueva vemos que el cálculo de cargas se ha reducido.

En el caso de refrigeración se ha reducido de 15436W a 12842,7W, un 17% aproximadamente.

En el caso de calefacción se ha reducido de 12312,17W a 8073,581W, un 35% aproximadamente.

Por lo tanto de media se ha conseguido reducir un 25% de la carga total de la vivienda únicamente con un aumento de 4mm de el aislante térmico de la envolvente. En casos con más modificación de la envolvente se puede llegar a reducir la carga un 40% de media.
4.6 CUMPLIMIENTO HE0 Y HE1

El programa Cype tiene una herramienta muy utilizada que nos puede calcular el cumplimiento de la normativa que conocemos como HE0 y HE1 del RITE.

En este caso al ser una rehabilitación no es una obligación si no una recomendación cumplir estas medidas, sería una obligación en el caso de obra nueva. consiste en cumplir el límite de consumo de energía primaria no renovable en una vivienda.

Por esta razón, a la vivienda antigua ya diseñada por Cype, se han añadido los 4mm de aislante térmico en la envolvente para tener la rehabilitación y se han podido obtener los valores de HE0 y HE1.

El HE0 consiste en cumplir el límite de consumo de energía primaria no renovable en una vivienda.

El HE1 consiste en cumplir una demanda energética anual límite que te exige el RITE según el área útil de la vivienda.

Para realizar esta comprobación, se ha realizado las modificaciones en la envolvente de la obra antigua mediante Cype y se ha comprobado obteniendo los siguiente resultados.

- Resultado HE0:

\[
C_{ep, edificio} = 43.70 \text{ kWh/(m}^2\text{-año)} \leq C_{ep, lim} = C_{ep, base} + F_{ep, cor} \frac{S}{S_{n}} = 56.10 \text{ kWh/(m}^2\text{-año)}
\]

donde:
- \(C_{ep, lim}\): Valor límite del consumo energético de energía primaria no renovable para los servicios de calefacción, refrigeración y ACS, considerada la superficie útil de los espacios habitables, kWh/(m}^2\text{-año)}.
- \(C_{ep, base}\): Valor base del consumo energético de energía primaria no renovable, para la zona climática de invierno correspondiente al emplazamiento del edificio (tabla 2.1, CTE DB HE 0), 59.00 kWh/(m}^2\text{-año)}.
- \(F_{ep, cor}\): Factor corrector por superficie del consumo energético de energía primaria no renovable (tabla 2.1, CTE DB HE 0), 1.500.
- \(S\): Superficie útil de los espacios habitables del edificio, 245.93 m}^2\.

Ilustración 26. Resultado HE0
Comparación de diferentes sistemas aplicados a un edificio residencial
Jordi Marcé Cortés

La siguiente gráfica de barras representa el balance entre el consumo energético del edificio y la demanda energética, mostrando de forma visual la eficiencia energética del edificio, el representar gráficamente la compensación de la demanda mediante el consumo.

En el semieje de ordenadas positivo se representan, mes a mes, los distintos consumos energéticos del edificio, separando entre vectores energéticos de origen renovable y no renovable, y mostrando para éstos últimos tanto la energía final consumida como el montante de energía primaria necesaria para generar dicha energía final en punto de consumo.

En el semieje de ordenadas negativo se representa, mes a mes, la demanda energética del edificio, separada por servicio, distinguiendo la demanda de calefacción, la de refrigeración y la de agua caliente sanitaria.

![Gráfica de barras]

Ilustración 27. Consumo energético anual del edificio

La imagen anterior es una gráfica extraída de los cálculos de Cype para el consumo energético anual HE0, donde se puede ver mensualmente a que corresponde cada cantidad de carga representada.

- **Resultado HE1:**

\[
D_{cal, edificio} = 23,46 \text{ kWh/}(m^2 \cdot \text{año}) \leq D_{cal, lm} = D_{cal, base} + F_{cal, sup}/S = 24.1 \text{ kWh/}(m^2 \cdot \text{año})
\]

\[D_{ref, lm} = 3.35 \text{ kWh/}(m^2 \cdot \text{año}) \leq D_{ref, lm} = 15.0 \text{ kWh/}(m^2 \cdot \text{año})
\]

Ilustración 28. Resultado HE1
Comparación de diferentes sistemas aplicados a un edificio residencial
Jordi Marcé Cortés

La siguiente tabla es un resumen de los resultados obtenidos en el cálculo de la demanda energética de calefacción y refrigeración de cada zona habitable, junto a la demanda total del edificio.

<table>
<thead>
<tr>
<th>Zonas habitables</th>
<th>S_h (m²)</th>
<th>D_{cal} (kWh)</th>
<th>$D_{cal,base}$ (kWh)</th>
<th>$F_{rel,exp}$ (kWh/ (m².año))</th>
<th>$D_{cal,lim}$ (kWh)</th>
<th>D_{ref} (kWh)</th>
<th>$D_{ref,lim}$ (kWh/ (m².año))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vivienda unifamiliar</td>
<td>245.03</td>
<td>3762.5</td>
<td>23.4</td>
<td>20</td>
<td>1000</td>
<td>24.1</td>
<td>815.8</td>
</tr>
<tr>
<td></td>
<td>245.03</td>
<td>3762.5</td>
<td>23.4</td>
<td>20</td>
<td>1000</td>
<td>24.1</td>
<td>815.8</td>
</tr>
</tbody>
</table>

Tabla 38. Resumen cálculo de demanda energética

La tabla anterior, es una tabla extraída de Cype, como toda la documentación extraída en este punto, para el cálculo de demanda energética del edificio estudiado, HE1.

Como vemos en los dos casos se cumple la recomendación del CTE.
Indicar que los cálculos efectuados por el Cype tanto para el cálculo de cargas de la obra antigua como para los cálculos de HE0 y HE1 tendrán ciertas variaciones respeto a los valores que se han podido calcular manualmente por diferencias en los métodos de cálculo.
5. DIMENSIONADO DEL SISTEMA Y SELECCIÓN DE EQUIPOS

En este capítulo se realizada el dimensionado de los equipos siguiendo las metodologías indicadas en la normativa y posteriormente la asignación de equipos según las demandas energéticas correspondientes.

5.1 DIMENSIONADO SISTEMA PARA ACS

Como se ha indicado anteriormente, el sistema que se quiere instalar para abastecer la demanda de ACS es un sistema de captación solar a un interacumulador con apoyo de caldera de pellets (biomasa).

Para poder realizar el dimensionado y la asignación de equipos deberemos calcular la demanda de ACS que habrá en la vivienda.

Para el cálculo de dicha demanda y para el dimensionado de la instalación solar partiremos de las indicaciones del IDAE (Instituto para la diversificación y ahorro de la energía) obtenidas de la normativa del RITE y el CTE, por esta razón se hará referencia a los mismos continuamente.

5.1.1 Generalidades y normativa a aplicar

En las instalaciones de ACS con aporte de energía solar térmica, la normativa es muy estricta y reciente, y por esta razón se detallará más en este punto.

- Generalidades:

Según el coeficiente global de pérdidas de los captadores, se considerarán, a efectos de permitir o limitar, dos grupos dependiendo del rango de temperatura de trabajo:

- Las instalaciones destinadas exclusivamente a producir agua caliente sanitaria, calentamiento de piscinas, precalentamiento de agua de aporte de procesos industriales, calefacción por suelo radiante o “fan-coil” u otros usos a menos de 60 °C, podrán emplear captadores cuyo coeficiente global de pérdidas sea inferior a 9 W/(m2A°C).

- Las instalaciones destinadas a climatización, calefacción por sistemas diferentes a suelo radiante o “fan-coil”, u otros usos en los cuales la temperatura del agua de
Comparación de diferentes sistemas aplicados a un edificio residencial
Jordi Marcé Cortés

El coeficiente global de pérdidas es la pendiente de la curva que representa la
ecuación del rendimiento o eficiencia del captador. Si se utiliza una ecuación de
segundo grado, el coeficiente global de pérdidas se tomará igual a a1+ 30a2, siendo
a1 y a2 los coeficientes de la ecuación de eficiencia del captador, de acuerdo con la
norma UNE-EN 12975-2.

En ambos grupos el rendimiento medio anual de la instalación deberá ser mayor del
30%.

- Requisitos generales de la instalación solar:

1- Fluido de trabajo.

En cualquier caso el pH a 20 °C del fluido de trabajo estará comprendido entre 5 y 9,
y el contenido en sales se ajustará a los señalados en los puntos siguientes:

a) La salinidad del agua del circuito primario no excederá de 500 mg/l totales de
sales solubles. En el caso de no disponer de este valor se tomará el de conductividad
como variable limitante, no sobrepasando los 650 μS/cm.

b) El contenido en sales de calcio no excederá de 200 mg/l. expresados como
contenido en carbonato cálcico.

c) El límite de dióxido de carbono libre contenido en el agua no excederá de 50 mg/l.

Fuera de estos valores, el agua deberá ser tratada.

El diseño de los circuitos evitará cualquier tipo de mezcla de los distintos fluidos que
pueden operar en la instalación. En particular, se prestará especial atención a una
eventual contaminación del agua potable por el fluido del circuito primario.

Para aplicaciones en procesos industriales, refrigeración o calefacción, las
características del agua exigidas por dicho proceso no sufrirán ningún tipo de
modificación que pueda afectar al mismo.
2- Protección contra heladas.
El fabricante, suministrador final, instalador o diseñador del sistema deberá fijar la mínima temperatura permitida en el sistema. Todas las partes del sistema que estén expuestas al exterior deberán ser capaces de soportar la temperatura especificada sin daños permanentes en el sistema.
El fabricante deberá describir el método de protección anti-heladas usado por el sistema. A los efectos de este documento, como sistemas de protección anti-heladas podrán utilizarse:

1. Mezclas anticongelantes.
2. Recirculación de agua de los circuitos.
3. Drenaje automático con recuperación de fluido.
4. Drenaje al exterior (sólo para sistemas solares prefabricados).

Como anticongelantes podrán utilizarse los productos, solos o mezclados con agua, que cumplan la reglamentación vigente y cuyo punto de congelación sea inferior a 0°C(*). En todo caso, su calor específico no será inferior a 3 kJ/(kg·K), equivalentes a 0,7 kcal/(kg·°C), medido a una temperatura 5 °C menor que la mínima histórica registrada.

3- Sobrecalentamientos.
Los puntos que nos pueden afectar según normativa son los siguientes:

- Protección contra sobrecalentamientos.
El sistema deberá estar diseñado de tal forma que con altas radiaciones solares prolongadas sin consumo de agua caliente, no se produzcan situaciones en las cuales el usuario tenga que realizar alguna acción especial para llevar al sistema a su forma normal de operación.
Cuando el sistema disponga de la posibilidad de drenajes como protección ante sobrecalentamientos, la construcción deberá realizarse de tal forma que el agua caliente o vapor del drenaje no supongan ningún peligro para los habitantes y no se produzcan daños en el sistema, ni en ningún otro material en el edificio o vivienda.

- Protección contra quemaduras.
En sistemas de agua caliente sanitaria, donde la temperatura de agua caliente en los puntos de consumo pueda exceder de 60 ºC deberá ser instalado un sistema automático de mezcla u otro sistema que limite la temperatura de suministro a 60ºC,
aunque en la parte solar pueda alcanzar una temperatura superior para sufragar las pérdidas.

4- Resistencia a la presión.
Se deberán cumplir los requisitos de la norma UNE-EN 12976-1.

5- Prevención de flujo inverso
La circulación natural que produce el flujo inverso se puede favorecer cuando el acumulador se encuentra por debajo del captador, por lo que habrá que tomar, en esos casos, las precauciones oportunas para evitarlo.
En sistemas con circulación forzada se aconseja utilizar una válvula anti-retorno para evitar flujos inversos.

6- Prevención de legionelosis
Se deberá cumplir, cuando sea de aplicación, el Real Decreto 865/2003, por lo que la temperatura del agua en el circuito de distribución de agua caliente no deberá ser inferior a 50 ºC en el punto más alejado y previo a la mezcla necesaria para la protección contra quemaduras o en la tubería de retorno al acumulador. La instalación permitirá que el agua alcance una temperatura de 70ºC.

Todas las especificadas indicadas anteriormente referenciadas en el IDAE deben ser cumplidas por todo fabricante capacitado para comercializar este tipo de sistemas.

- Clasificación de los sistemas:
Teniendo en cuenta la clasificación establecida por IDAE, a continuación se indicará la clasificación que correspondería a nuestro sistema:

- Por el principio de circulación se trata de una instalación por circulación forzada.
- Por el sistema de transferencia de calor se trata de una instalación con intercambiador de calor en el acumulador solar.
- Por el sistema de expansión será sistema cerrado.
- Por el sistema de aporte de energía auxiliar será aportado en el mismo acumulador solar.
- Por su aplicación será de uso combinado (hace referencia a ACS y calefacción).
- Criterios generales de diseño por IDAE

1- Dimensionado y cálculo.

- Datos de partida:
Los datos de partida para el dimensionado y cálculo de la instalación están constituidos por dos grupos de parámetros:
 - Condiciones de uso:
 En nuestro caso será para aplicaciones de A.C.S, y la demanda se determinará según el consumo de agua caliente.
 - Condiciones climáticas: Las condiciones climáticas vienen dadas por la radiación global total en el campo de captación, la temperatura ambiente diaria y la temperatura del agua de la red.

- Dimensionado básico
 El dimensionado básico de las instalaciones o sistemas a medida se refiere a la superficie seleccionada de captadores solares y el volumen de acumulación solar
 El dimensionado básico de una instalación, para cualquier aplicación, deberá realizarse de forma que en ningún mes del año la energía producida por la instalación solar supere el 110% de la demanda de consumo y no más de tres meses seguidos el 100%. A estos efectos, y para instalaciones de un marcado carácter estacional, no se tomarán en consideración aquellos períodos de tiempo en los cuales la demanda se sitúe un 50 % debajo de la media correspondiente al resto del año.

A estos efectos, se definen los conceptos de fracción solar y rendimiento medio estacional o anual de la siguiente forma:
 - Fracción solar mes “x” = (Energía solar aportada el mes “x”/Demanda energética durante el mes “x”) ×100
Comparación de diferentes sistemas aplicados a un edificio residencial
Jordi Marcé Cortés

- Fracción solar año “y” = (Energía solar aportada el año “y”/Demanda energética durante el año “y”) × 100
- Rendimiento medio año “y” = (Energía solar aportada el año “y” /Irradiación incidente año “y”) × 100
- Irradiación incidente año “y” = Suma de las irradiaciones incidentes de los meses del año “y”
- Irradiaciones incidentes en el mes “x” = Irradiación en el mes “x” × Superficie captadora

Para el cálculo del dimensionado básico de instalaciones a medida podrá utilizarse cualquiera de los métodos de cálculo comerciales de uso aceptado por proyectistas, fabricantes e instaladores. Asimismo, el método de cálculo incluirá las prestaciones globales anuales definidas por:

– La demanda de energía térmica.
– La energía solar térmica aportada.
– Las fracciones solares medias mensuales y anual.
– El rendimiento medio anual

Para el caso que las placas solares térmicas tengan la finalidad de abastecer A.C.S (nuestro caso), deberá cumplir la siguiente condición:

\[50 < V/A < 180 \]

Donde:
A: Área de los captadores en m2.
V: Volumen del depósito de acumulación en l cuyo valor recomendado es el consumo diario que se calculará posteriormente.

2- Diseño del sistema de captación.

- Generalidades:
Se recomienda que los captadores que integren la instalación sean del mismo modelo, tanto por criterios energéticos como por criterios constructivos.

- Orientación, inclinación, sombras e integración arquitectónica:
La orientación e inclinación del sistema de captación y las posibles sombras del mismo deberán tener unas pérdidas inferiores a las que se indican en la siguiente
Comparación de diferentes sistemas aplicados a un edificio residencial
Jordi Marcé Cortés

tabla:

<table>
<thead>
<tr>
<th>Caso</th>
<th>Orientación e inclinación</th>
<th>Sombra</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>10 %</td>
<td>10 %</td>
<td>15 %</td>
</tr>
<tr>
<td>Superposición</td>
<td>20 %</td>
<td>15 %</td>
<td>30 %</td>
</tr>
<tr>
<td>Integración arquitectónica</td>
<td>40 %</td>
<td>20 %</td>
<td>50 %</td>
</tr>
</tbody>
</table>

Ilustración 30. Pérdidas límite por orientación e inclinación

- Conexionado:
Los captadores se dispondrán en filas constituidas, preferentemente, por el mismo número de elementos. Las filas de captadores se pueden conectar entre sí en paralelo, en serie o en serie-paralelo. El límite de elementos en la misma fila vendrá dada por el fabricante.

En nuestro caso que la finalidad es abastecer A.C.S, el CTE nos indica que no deberemos de poner más de 2 captadores en la misma fila.

Diferentes conexionados posibles:

Ilustración 31. Diferentes tipos de conexionado de captadores

3- Diseño del sistema de acumulación solar.

- Generalidades:
Preferentemente, los acumuladores serán de configuración vertical y se ubicarán en zonas interiores. Para aplicaciones combinadas con acumulación centralizada es obligatoria la configuración vertical del depósito, debiéndose además cumplir que la relación altura/diámetro del mismo sea mayor de dos. Deberemos aplicar a nuestro caso. En caso de aplicaciones para A.C.S es necesario prever un conexionado
puntual entre el sistema auxiliar y el solar de forma que se pueda calentar este último con el auxiliar, para poder cumplir con las medidas de prevención de legionella. Se podrán proponer otros métodos de tratamiento anti-legionella.

- **Situación de las conexiones:**

 Con objeto de aprovechar al máximo la energía captada y evitar la pérdida de la estratificación por temperatura en los depósitos, la situación de las tomas para las diferentes conexiones serán las establecidas en los puntos siguientes:

 a) La conexión de entrada de agua caliente procedente del intercambiador o de los captadores al acumulador se realizará, preferentemente, a una altura comprendida entre el 50 % y el 75 % de la altura total del mismo.

 b) La conexión de salida de agua fría del acumulador hacia el intercambiador o los captadores se realizará por la parte inferior de éste.

 c) En caso de una sola aplicación, la alimentación de agua de retorno de consumo al depósito se realizará por la parte inferior. Encaso de sistemas abiertos en el consumo, como por ejemplo A.C.S., esto se refiere al agua fría de red. La extracción de agua caliente del depósito se realizará por la parte superior.

 d) En caso de varias aplicaciones dentro del mismo depósito habrá que tener en cuenta los niveles térmicos de éstas, de forma que tanto las salidas como los retornos para aplicaciones que requieran un mayor nivel térmico en temperaturas estén por encima de las que requieran un nivel menor.

 Cabe decir que gran parte de los fabricantes que venden el sistema unificado ya tienen en cuenta y cumplen este tipo de recomendaciones/especificaciones. Pero posteriormente en la asignación se confirmará que se cumplen.

- **Sistema auxiliar en el acumulador solar:**

 Para que el sistema auxiliar ataque también el acumulador solar deberemos cumplir todas y cada una de las siguientes condiciones en el acumulador solar:

 1. Deberá tratarse de un sistema indirecto: acumulación solar en el secundario.
 2. Volumen total máximo de 2000 litros.
 3. Configuración vertical con relación entre la altura y el diámetro del acumulador no inferior a 2.
Comparación de diferentes sistemas aplicados a un edificio residencial
Jordi Marcé Cortés

4. Calentamiento solar en la parte inferior y calentamiento convencional en la parte superior considerándose el acumulador dividido en dos partes separadas por una de transición de, al menos, 10 centímetros de altura. La parte solar inferior deberá cumplir con los criterios de dimensionado de estas prescripciones y la parte convencional superior deberá cumplir con los criterios y normativas habituales de aplicación.

5. La conexión de entrada de agua caliente procedente del intercambiador solar al acumulador se realizará, preferentemente, a una altura comprendida entre el 50% y el 75% de la altura total del mismo, y siempre por debajo de la zona de transición. La conexión de salida de agua fría hacia el intercambiador se realizará por la parte inferior del acumulador.

6. Las entradas de agua estarán equipadas con una placa deflectora o equivalente, a fin de que la velocidad residual no destruya la estratificación en el acumulador.

7. No existirá recirculación del circuito de distribución de consumo de A.C.S.

Como se ha indicado anteriormente, los fabricantes que disponen de interacumuladores para sistemas solares y calderas auxiliares ya tienen en cuenta estas especificaciones.

4- Diseño del sistema de intercambio.

La potencia mínima de diseño del intercambiador independiente, \(P \), en vatios, en función del área de captadores \(A \), en metros cuadrados, cumplirá la condición:

\[
P > 500A
\]

El intercambiador independiente será de placas de acero inoxidable o cobre y deberá soportar las temperaturas y presiones máximas de trabajo de la instalación.

El intercambiador del circuito de captadores incorporado al acumulador solar estará situado en la parte inferior de este último y podrá ser de tipo sumergido o de doble envolvente. El segundo intercambiador sumergido podrá ser de serpentín o de haz tubular. La relación entre la superficie útil de intercambio del intercambiador incorporado y la superficie total de captación no será inferior a 0,15.

En caso de aplicación para A.C.S. se puede utilizar el circuito de consumo con un intercambiador, teniendo en cuenta que con el sistema de energía auxiliar de producción instantánea en línea o en acumulador secundario hay que elevar la temperatura hasta 60°C y siempre en el punto más alejado de consumo hay que
Comparación de diferentes sistemas aplicados a un edificio residencial
Jordi Marcé Cortés

asegurar 50 °C.

5- Diseño del circuito hidráulico.

- Generalidades:

En caso de aplicación para A.C.S., el circuito hidráulico del sistema de consumo deberá cumplir los requisitos especificados en UNE-EN 806-1.

- Tuberías:

Con objeto de evitar pérdidas térmicas, la longitud de tuberías del sistema deberá ser tan corta como sea posible, evitando al máximo los codos y pérdidas de carga en general.

El diseño y los materiales deberán ser tales que no exista posibilidad de formación de obturaciones o depósitos de cal en sus circuitos que influyan drásticamente en el rendimiento del sistema.

- Bombas:

Si el circuito de captadores está dotado con una bomba de circulación, la caída de presión se debería mantener aceptablemente baja en todo el circuito.

Siempre que sea posible, las bombas en línea se montarán en las zonas más frías del circuito, teniendo en cuenta que no se produzca ningún tipo de cavitación y siempre con el eje de rotación en posición horizontal.

Las tuberías conectadas a las bombas se soportarán en las inmediaciones de éstas, de forma que no provoquen esfuerzos recíprocos de torsión o flexión. El diámetro de las tuberías de acoplamiento no podrá ser nunca inferior al diámetro de la boca de aspiración de la bomba.

6- Diseño del sistema de energía auxiliar.

Para asegurar la continuidad en el abastecimiento de la demanda térmica, las instalaciones de energía solar deben disponer de un sistema de energía auxiliar.

Por razones de eficiencia energética, entre otras, se desaconseja la utilización de energía eléctrica obtenida por efecto Joule como fuente auxiliar, especialmente en los
Comparación de diferentes sistemas aplicados a un edificio residencial
Jordi Marcé Cortés

casos de altos consumos y fracciones solares anuales bajas. (En nuestro caso caldera)

Queda prohibido el uso de sistemas de energía auxiliar en el circuito primario de captadores.

El diseño del sistema de energía auxiliar se realizará en función de la aplicación (o aplicaciones) de la instalación, de forma que sólo entre en funcionamiento cuando sea estrictamente necesario y que se aproveche lo máximo posible la energía extraída del campo de captación solar. Para ello se seguirán los siguientes criterios:

1. Para pequeñas cargas de consumo se recomienda usar un sistema de energía auxiliar en línea, siendo para estos casos los sistemas de gas modulantes en temperatura los más idóneos.

2. En caso de aceptarse, de acuerdo con el punto, la instalación de una resistencia eléctrica como sistema de energía auxiliar dentro del acumulador solar, su conexión, salvo que se apruebe expresamente otro procedimiento, sólo se podrá hacer mediante un pulsador manual y la desconexión será automática a la temperatura de referencia. Adicionalmente, se instalará un termómetro en la parte baja de la zona de calentamiento con energía convencional cuya lectura sea fácilmente visible para el usuario.

La documentación a entregar al usuario deberá contener instrucciones claras de operación del sistema auxiliar y deberá ser previamente aprobada por el IDAE.

3. No se recomienda la conexión de un retorno desde el acumulador de energía auxiliar al acumulador solar, salvo que existan períodos de bajo consumo estacionales, en los que se prevea elevadas temperaturas en el acumulador solar. La instalación térmica deberá efectuarse de manera que en ningún caso se introduzca en el acumulador solar energía procedente de la fuente auxiliar.

4. Para la preparación de agua caliente sanitaria, se permitirá la conexión del sistema de energía auxiliar en paralelo con la instalación solar cuando se cumplan los siguientes requisitos:

 – Exista previamente un sistema de energía auxiliar constituido por uno o varios calentadores instantáneos no modulantes y sin que sea posible regular la temperatura de salida del agua.
 – Exista una preinstalación solar que impida o dificulte el conexionado en serie.
Comparación de diferentes sistemas aplicados a un edificio residencial
Jordi Marcé Cortés

5. Para sistemas con energía auxiliar en paralelo y especialmente en aplicaciones de climatización, usos industriales y otras aplicaciones en ese rango de temperaturas, es necesario un sistema de regulación del agua calentada por el sistema solar y auxiliar de forma que se aproveche al máximo la energía solar.

En los puntos 4 y 5, la conmutación de sistemas será fácilmente accesible.

6- Diseño del sistema eléctrico y de control.

El diseño del sistema de control asegurará el correcto funcionamiento de las instalaciones, procurando obtener un buen aprovechamiento de la energía solar captada y asegurando un uso adecuado de la energía auxiliar. El sistema de regulación y control comprende los siguientes sistemas:

- Control de funcionamiento del circuito primario y secundario (si existe).
- Sistemas de protección y seguridad de las instalaciones contra sobrecalentamientos, heladas, etc.

El sistema de control asegurará que en ningún caso se alcancen temperaturas superiores a las máximas soportadas por los materiales, componentes y tratamientos de los circuitos.

5.1.2 Dimensionado instalación solar

Según todas las indicaciones anteriores, en este punto se procederá a realizar el dimensionado de la instalación solar.

- Cálculo de las pérdidas por orientación e inclinación.

El CTE nos indica unas pérdidas (mencionadas en el punto anterior) según ciertas especificaciones del edificio que se indican a continuación:

<table>
<thead>
<tr>
<th>Caso</th>
<th>Tabla 2.4 Pérdidas límite</th>
<th>Sombras</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>Orientación e inclinación</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Superposición</td>
<td>10 %</td>
<td>10 %</td>
<td>15 %</td>
</tr>
<tr>
<td>Integración arquitectónica</td>
<td>20 %</td>
<td>15 %</td>
<td>30 %</td>
</tr>
<tr>
<td></td>
<td>40 %</td>
<td>20 %</td>
<td>50 %</td>
</tr>
</tbody>
</table>

Tabla 39. Pérdidas límite orientación e inclinación

Nuestro caso sería el general, y a continuación vamos a calcular las pérdidas para confirmar que tenemos menos de 15% límite que nos indica el CTE.
Comparación de diferentes sistemas aplicados a un edificio residencial
Jordi Marcé Cortés

Fijándonos en el CTE seleccionaremos el mismo ángulo ya que nuestro caso se trata de la misma latitud. También indicamos el ángulo acimut, α definido como el ángulo entre la proyección sobre el plano horizontal de la normal a la superficie del módulo y el meridiano del lugar. Valores típicos son 0° para módulos orientados al sur, -90° para módulos orientados al este y +90° para módulos orientados al oeste. En nuestro caso tendremos orientación al sud por lo tanto será 0°C.

![Perfil del captador](image1)

Ilustración 32. Orientación captador

Posteriormente deberemos fijarnos en la siguiente figura que nos especifican en el CTE:

![Ángulo de inclinación (β)](image2)

Ilustración 33. Perdidas captador

Debemos fijarnos en la línea que separa el 10% de pérdidas que es nuestro límite,
Comparación de diferentes sistemas aplicados a un edificio residencial
Jordi Marcé Cortés

que será la zona rallada como se indica en la leyenda como 90%-95%. También deberemos seleccionar la línea vertical de la orientación sur 0ºC como se ha comentado anteriormente y ver donde cruza con la línea de los 41º que tenemos.

En este caso se ha señalado (rojo) aproximadamente donde nos cruzaría, y estaríamos entre los 60º y los 5º. A continuación aplicamos las fórmulas indicadas en el CTE para saber la inclinación máximas y mínimas, que como coincide con nuestra latitud será muy simple.

\[a) \quad \text{inclinación máxima} = \text{inclinación} \left(\phi = 41º \right) - (41º - \text{latitud}); \]
\[b) \quad \text{inclinación mínima} = \text{inclinación} \left(\phi = 41º \right) - (41º\text{-latitud}); \quad \text{siendo 5º su valor mínimo.} \]

Como es lógico, ya que el CTE aplica el ejemplo de nuestra latitud, en el primer caso el resultado será simplemente la resta entre 60-0 por lo tanto la inclinación máxima será 60º y en el segundo caso de la misma manera la inclinación mínima será 5º. Por lo tanto nuestra inclinación estará dentro del límite de pérdidas del 10% si estamos en ese margen de orientación, por lo que sería correcto poner un ángulo de 40º.

En nuestro caso en concreto tendremos una perdidas de únicamente el 5% como se puede ver en la leyenda de la imagen anterior.

Por otro lado no tendremos pérdidas de radiación solar por sombras ya que no tenemos edificios más altos al lado de nuestra vivienda.

- Perdidas de radiación solar por sombras.

En nuestro caso este tipo de pérdidas no se tendrán en cuenta, ya que apenas están presente al no tener edificios más altos alrededor y no afectará las sombras que pueden provocar los muros de la azotea ya que están a una distancia mucho más grande de la indicada como mínima en el siguiente apartado.

- Distancia mínima entre filas de captadores. (En el caso que necesitemos más de 2 captadores).
Comparación de diferentes sistemas aplicados a un edificio residencial
Jordi Marcé Cortés

En el caso de necesitar más de una fila de captadores deberemos aplicar una distancia mínima que obtendremos con la siguiente expresión:

\[d = \frac{h}{\tan(61^\circ - \text{latitud})} \]

Donde:
El factor \(1/\tan(61^\circ-\text{latitud}) \) viene dado en la siguiente tabla:

<table>
<thead>
<tr>
<th>Latitud</th>
<th>29°</th>
<th>37°</th>
<th>39°</th>
<th>41°</th>
<th>43°</th>
<th>45°</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k)</td>
<td>1,600</td>
<td>2,246</td>
<td>2,4715</td>
<td>2,747</td>
<td>3,078</td>
<td>3,487</td>
</tr>
</tbody>
</table>

Tabla 40. Valores factor \(k \) para latitudes

Los factores \(d \) y \(h \) vendrán representados de la misma manera en la siguiente representación:

![Ilustración 34. Distancias límite](image)

5.1.3 Cálculo demanda ACS

Para el cálculo de la demanda total que tendremos de ACS, deberemos tener en cuenta que según la zona en la que se encuentre nuestra vivienda deberá cumplir una serie de especificaciones que nos marca el documento básico HE4 Ahorro de energía del CTE, ya que nos exige un mínimo de contribución solar.

Para ello deberemos seguir los siguientes pasos:

1- Obtención de la contribución solar mínima.
2- Cumplimiento de las condiciones de diseño y dimensionado.
3- Cumplimiento de las condiciones de mantenimiento.

A continuación se indica la tabla mediante la cual sabremos el % de contribución solar que deberemos tener en nuestra demanda de ACS según la zona:
Comparación de diferentes sistemas aplicados a un edificio residencial
Jordi Marcé Cortés

<table>
<thead>
<tr>
<th>Demanda total de ACS del edificio (l/d)</th>
<th>Zona climática</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
</tr>
<tr>
<td>50-6.000</td>
<td>30</td>
</tr>
<tr>
<td>5.000-8.000</td>
<td>30</td>
</tr>
<tr>
<td>6.000-7.000</td>
<td>30</td>
</tr>
<tr>
<td>7.000-8.000</td>
<td>30</td>
</tr>
<tr>
<td>8.000-9.000</td>
<td>30</td>
</tr>
<tr>
<td>9.000-10.000</td>
<td>30</td>
</tr>
<tr>
<td>10.000-12.500</td>
<td>30</td>
</tr>
<tr>
<td>12.500-15.000</td>
<td>30</td>
</tr>
<tr>
<td>15.000-17.500</td>
<td>35</td>
</tr>
<tr>
<td>17.500-20.000</td>
<td>46</td>
</tr>
<tr>
<td>> 20.000</td>
<td>52</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Demanda total de ACS del edificio (l/d)</th>
<th>Zona climática</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
</tr>
<tr>
<td>50-1.000</td>
<td>50</td>
</tr>
<tr>
<td>1.000-2.000</td>
<td>50</td>
</tr>
<tr>
<td>2.000-3.000</td>
<td>50</td>
</tr>
<tr>
<td>3.000-4.000</td>
<td>51</td>
</tr>
<tr>
<td>4.000-5.000</td>
<td>58</td>
</tr>
<tr>
<td>5.000-6.000</td>
<td>62</td>
</tr>
<tr>
<td>> 6.000</td>
<td>70</td>
</tr>
</tbody>
</table>

Tabla 41. Contribución solar mínima

En nuestro caso estaríamos en el primer punto de demanda ya que se trata de una vivienda de 4 personas, pero posteriormente se realizará el cálculo de la demanda y de la zona en la que se encuentra para saber exactamente el % a aplicar.

Para el cálculo de demanda diaria para nuestra vivienda deberemos aplicar la siguiente tabla:

<table>
<thead>
<tr>
<th>Criterio de demanda</th>
<th>Litros/día-unidad</th>
<th>unidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vivienda</td>
<td>28</td>
<td>Por persona</td>
</tr>
<tr>
<td>Hospitales y clínicas</td>
<td>55</td>
<td>Por persona</td>
</tr>
<tr>
<td>Ambulatorio y centro de salud</td>
<td>41</td>
<td>Por persona</td>
</tr>
<tr>
<td>Hotel ****</td>
<td>69</td>
<td>Por persona</td>
</tr>
<tr>
<td>Hotel ***</td>
<td>55</td>
<td>Por persona</td>
</tr>
<tr>
<td>Hotel **</td>
<td>41</td>
<td>Por persona</td>
</tr>
<tr>
<td>Hotel/hostal **</td>
<td>34</td>
<td>Por persona</td>
</tr>
<tr>
<td>Camping</td>
<td>21</td>
<td>Por persona</td>
</tr>
<tr>
<td>Hostal/pensión *</td>
<td>20</td>
<td>Por persona</td>
</tr>
<tr>
<td>Residencia</td>
<td>41</td>
<td>Por persona</td>
</tr>
<tr>
<td>Centro penitenciario</td>
<td>28</td>
<td>Por persona</td>
</tr>
<tr>
<td>Albergue</td>
<td>24</td>
<td>Por persona</td>
</tr>
<tr>
<td>Vestuarios/Duchas colectivas</td>
<td>21</td>
<td>Por persona</td>
</tr>
<tr>
<td>Escuela sin ducha</td>
<td>4</td>
<td>Por persona</td>
</tr>
<tr>
<td>Escuela con ducha</td>
<td>21</td>
<td>Por persona</td>
</tr>
<tr>
<td>Cuartetos</td>
<td>28</td>
<td>Por persona</td>
</tr>
<tr>
<td>Fábricas y talleres</td>
<td>21</td>
<td>Por persona</td>
</tr>
<tr>
<td>Oficinas</td>
<td>2</td>
<td>Por persona</td>
</tr>
<tr>
<td>Gimnasios</td>
<td>21</td>
<td>Por persona</td>
</tr>
<tr>
<td>Restaurantes</td>
<td>8</td>
<td>Por persona</td>
</tr>
<tr>
<td>Cafeterías</td>
<td>1</td>
<td>Por persona</td>
</tr>
</tbody>
</table>

Tabla 42. Demanda de referencia a 60°C
Comparación de diferentes sistemas aplicados a un edificio residencial
Jordi Marcé Cortés

<table>
<thead>
<tr>
<th>Número de dormitorios</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Número de Personas</td>
<td>1,5</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

Tabla 43. Valores mínimos de ocupación

Como se ha indicado anteriormente, tendremos en cuenta 4 personas para nuestra vivienda ya que cuenta con 3 dormitorios para residentes continuos y un dormitorio de invitados que no contabilizaremos ya que será una carga muy puntual.

En nuestro caso, como es una vivienda unifamiliar de 4 personas, deberemos contar una demanda de ACS de 112 litros/día y aplicando un factor de seguridad de 1,1 tendremos 123,2 litros/día, por lo tanto podemos confirmar que estamos situados entre 50-5000 l/d de la primera tabla.

A continuación se indica un mapa mediante el cual podremos averiguar en qué zona climática nos encontramos y de esta manera saber el % de aportación solar mínimo para nuestra demanda de ACS.

Ilustración 35. Zonas climáticas

La zona climática en la que nos encontramos sería la zona II, por lo tanto deberemos tener en cuenta que nuestra aportación mínima de solar será del 30%.
De todas maneras en el CTE nos indica una tabla donde encontramos Gavá que sería la población de la vivienda y se nos indica que pertenece a la zona II como vemos a continuación:

A CORUÑA	Arteixo	IV
A Coruña		I
Ferrol		I
Naron		I
Oseiros		I
Riveira		I
Santiago de compostela		I
ALAVA	Vitoria-Gasteiz	I
ALBACETE	Albacete	V
Almansa		V
Hellín		V
Villarrobledo		IV
ALICANTE	Alcoy	IV
Alicante		V
Benidorm		IV
Crevillent		V
Denia		IV
Elche		V
Elda		IV
Ibi		IV
Javea		IV
Novelda		IV
Orihuela		IV
BARCELONA	Badalona	II
Barcelona		II
Castelldefels		II
Cerdanyola del Valles		II
Cornella de Llobregat		II
Granollers		III
L'Hospitalet de Llobregat		II
Igualada		II
Manresa		II
El Masnou		II
Matarro		II
Mollet del Valles		II
Montcada i		II
El Prat de Llobregat		II
Premia de mar		II
Ripollet		II
Rubí		II
Sabadell		II
Sant Adria de Besos		II

Tabla 44. Poblaciones por zonas de referencia

A continuación se indica una tabla para extraer los datos de Radiación Solar Global media diaria anual según la zona indicada, que para las capitales de provincia se recogen en el documento “Atlas de Radiación Solar en España utilizando datos del SAF de Clima de EUMETSAT”.

<table>
<thead>
<tr>
<th>Zona climática</th>
<th>MJ/m²</th>
<th>kWh/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>H < 13,7</td>
<td>H < 3,8</td>
</tr>
<tr>
<td>II</td>
<td>13,7 ≤ H < 15,1</td>
<td>3,8 ≤ H < 4,2</td>
</tr>
<tr>
<td>III</td>
<td>15,1 ≤ H < 16,6</td>
<td>4,2 ≤ H < 4,6</td>
</tr>
<tr>
<td>IV</td>
<td>16,6 ≤ H < 18,0</td>
<td>4,6 ≤ H < 5,0</td>
</tr>
<tr>
<td>V</td>
<td>H ≥ 18,0</td>
<td>H ≥ 5,0</td>
</tr>
</tbody>
</table>

Tabla 45. Radiación Solar Global
 Comparación de diferentes sistemas aplicados a un edificio residencial
Jordi Marcé Cortés

5.1.4 Dimensionado y asignación circuito primario solar

- Dimensionado de los colectores:
 La ecuación utilizada en este método es:

 \[
 f = 1,029 D_1 - 0,065 D_2 - 0,245 D_{12} + 0,0018 D_{22} + 0,0215 D_{13}
 \]

 La secuencia que suele seguirse en el cálculo es la siguiente:
 1. Valoración de las cargas caloríficas para el calentamiento de agua destinada a la
 producción de A.C.S. o calefacción.
 2. Valoración de la radiación solar incidente en la superficie inclinada del captador o
 captadores.
 3. Cálculo del parámetro \(D_1 \).
 4. Cálculo del parámetro \(D_2 \).
 5. Determinación de la gráfica \(f \).
 6. Valoración de la cobertura solar mensual.

 Para poder dimensionar los colectores necesarios para abastecer la demanda de
 ACS, necesitamos saber la carga de calor mensual necesaria para calentar el agua
 destinada al consumo doméstico. Para obtener esta carga de calor mensual (demanda
 energética), necesitaremos el consumo diario calculado previamente, y la temperatura
 de red.

 El cálculo se ejecutará con la siguiente expresión:

 \[
 Q_a = C_e * C * (T_a - T_r) * N
 \]

 Donde:
 \(Q_a \) = carga calorífica mensual para ACS (J)
 \(C_e \) = Calor específico del agua: 4186 J/kgºC
 \(C \) = Consumo diaria de ACS: 112 litros/día
 \(T_a \) = Temperatura de agua de acumulación: 60ºC
 \(T_r \) = Temperatura del agua de red (ºC)
 \(N \) = Número de días del mes
Obteniendo los valores representados en la siguiente tabla:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Enero</td>
<td>112</td>
<td>60</td>
<td>8</td>
<td>31</td>
<td>755,7571</td>
<td>209,9325</td>
</tr>
<tr>
<td>Febrero</td>
<td>112</td>
<td>60</td>
<td>9</td>
<td>28</td>
<td>669,4920</td>
<td>185,9700</td>
</tr>
<tr>
<td>Marzo</td>
<td>112</td>
<td>60</td>
<td>11</td>
<td>31</td>
<td>712,1558</td>
<td>197,8210</td>
</tr>
<tr>
<td>Abril</td>
<td>112</td>
<td>60</td>
<td>13</td>
<td>30</td>
<td>661,0531</td>
<td>183,6258</td>
</tr>
<tr>
<td>Mayo</td>
<td>112</td>
<td>60</td>
<td>14</td>
<td>31</td>
<td>668,5544</td>
<td>185,7095</td>
</tr>
<tr>
<td>Junio</td>
<td>112</td>
<td>60</td>
<td>15</td>
<td>30</td>
<td>632,9232</td>
<td>175,812</td>
</tr>
<tr>
<td>Julio</td>
<td>112</td>
<td>60</td>
<td>16</td>
<td>31</td>
<td>639,4868</td>
<td>177,6352</td>
</tr>
<tr>
<td>Agosto</td>
<td>112</td>
<td>60</td>
<td>15</td>
<td>31</td>
<td>654,0206</td>
<td>181,6724</td>
</tr>
<tr>
<td>Septiembre</td>
<td>112</td>
<td>60</td>
<td>14</td>
<td>30</td>
<td>646,9881</td>
<td>179,7189</td>
</tr>
<tr>
<td>Octubre</td>
<td>112</td>
<td>60</td>
<td>13</td>
<td>31</td>
<td>683,0882</td>
<td>189,7467</td>
</tr>
<tr>
<td>Noviembre</td>
<td>112</td>
<td>60</td>
<td>11</td>
<td>30</td>
<td>689,1830</td>
<td>191,4397</td>
</tr>
<tr>
<td>Diciembre</td>
<td>112</td>
<td>60</td>
<td>8</td>
<td>31</td>
<td>755,7571</td>
<td>209,9325</td>
</tr>
</tbody>
</table>

Tabla 46. Demandas mensuales ACS

El parámetro D1 expresa la relación entre la energía absorbida por la placa del captador plano y la carga calorífica total de calentamiento durante un mes:

\[D1 = \frac{\text{Energía absorbida por el captador}}{\text{Carga calorífica mensual}} \]

La energía absorbida por el captador viene dada por la siguiente expresión:

\[E_a = S_c \cdot F_r'(\tau) \cdot R_1 \cdot N \]

Donde:
- \(S_c \): Superficie del captador (m\(^2\))
- \(R_1 \): Radiación diaria media mensual incidente sobre la superficie de captación por unidad de área (kJ/m\(^2\)). Posteriormente se indicará los valores para nuestra zona.
- \(N \): Número de días del mes
- \(F_r'(\tau) \): Factor adimensional, que viene dado por la siguiente expresión:

\[F_r'(\tau) = \frac{F_r(\tau) \cdot n[(\tau)]}{(\tau) \cdot n} \cdot (F_r'/F_r) \]
Comparación de diferentes sistemas aplicados a un edificio residencial
Jordi Marcé Cortés

Donde:

$F_r (\tau_\alpha)n$: Factor de eficiencia óptica del captador, es decir, ordenada en el origen de la curva característica del captador. En nuestro caso será 0,76 aproximadamente como se puede ver la gráfica.

$(\tau_\alpha) / (\tau_\alpha)n$: Modificador del ángulo de incidencia. En general se puede tomar como constante: 0,96 (superficie transparente sencilla) o 0,94 (superficie transparente doble).

F_r' / F_r: Factor de corrección del conjunto captador-intercambiador. Se recomienda tomar el valor de 0,95.

El valor obtenido será de $F_r'(\tau_\alpha)$ = 0,68

Indicar que el valor R_1 de radiación obtenido para poder ejecutar la fórmula del aporte de energía del captador se ha obtenido de la gráfica y tabla que se puede ver a continuación de adiasre.

El parámetro D_2 expresa la relación entre las pérdidas de energía en el captador, para una determinada temperatura, y la carga calorífica de calentamiento durante un mes:

$D_2 = \frac{\text{Energía perdida por el captador}}{\text{Carga calorífica mensual}}$
La energía perdida por el captador viene dada por la siguiente expresión:

\[Ep = Sc \cdot Fr' \cdot UL \cdot (100-Ta) \cdot \Delta T \cdot K1 \cdot K2 \]

Donde:
Sc: Superficie de captación en \(m^2 \) (Especificaciones del fabricante)
Fr' UL: Será calculada posteriormente
Ta: Temperatura ambiente media mensual (°C)
\(\Delta T \): Periodo de tiempo considerado (s)
K1: Factor corrector por almacenamiento calculado a continuación
K2: Factor de corrección para ACS mediante un factor de temperaturas mínimas de ACS, ambiente y de red.

- Obtención Fr'UL mediante la siguiente expresión:

\[Fr' \cdot UL = Fr \cdot UL / (Fr'/Fr) \]

Donde:
Fr * UL = 3,818 W/m\(^2\)°C, la pendiente de la curva característica
Fr'/Fr: Factor de corrección del circuito primario captador-intercambiador, con un valor recomendado de 0,95.

Obteniendo el resultado Fr' * UL = 4 W/m\(^2\)°C

- Obtención del factor de corrección K1:

\[K1 = \text{[kg acumulación/(75Sc)]}^{0.25} = \text{[(112/75*2,37)]}^{0.25} = 1,12 \]

- Obtención del factor de corrección K2:

\[K2 = (11.6+1.18Tac+3.86Tr-2.32Ta)/(100-Ta) \]

Donde:
Tac: Temperatura acumulación: 60°C
Tr: Temperatura de red, variante según el mes (mostrado anteriormente)
Ta: Temperatura ambiente media según el mes.

Una vez obtenido D1 y D2, aplicando la ecuación inicial se calcula la fracción de la carga calorífica mensual aportada por el sistema de energía solar. De esta forma, la energía útil captada cada mes, \(Qu \), tiene el valor:
Comparación de diferentes sistemas aplicados a un edificio residencial
Jordi Marcé Cortés

Qu= f Qa

A continuación se indica una tabla con los valores finales D1,D2 para obtener el valor f y por último el valor Qu.

<table>
<thead>
<tr>
<th>Mes</th>
<th>D1</th>
<th>D2</th>
<th>f</th>
<th>Qu (MJ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enero</td>
<td>0,5301797</td>
<td>3,5937606</td>
<td>0,2695446</td>
<td>203,71105</td>
</tr>
<tr>
<td>Febrero</td>
<td>0,8108686</td>
<td>3,7141107</td>
<td>0,4681703</td>
<td>313,43534</td>
</tr>
<tr>
<td>Marzo</td>
<td>1,1508514</td>
<td>4,0382613</td>
<td>0,6593718</td>
<td>469,57822</td>
</tr>
<tr>
<td>Abril</td>
<td>1,4664669</td>
<td>4,3830028</td>
<td>0,7996039</td>
<td>528,57816</td>
</tr>
<tr>
<td>Mayo</td>
<td>1,906847</td>
<td>4,3204938</td>
<td>0,9731462</td>
<td>650,64555</td>
</tr>
<tr>
<td>Junio</td>
<td>2,0607571</td>
<td>4,3050123</td>
<td>1,0217628</td>
<td>646,69416</td>
</tr>
<tr>
<td>Julio</td>
<td>2,1645328</td>
<td>4,1750707</td>
<td>1,0574636</td>
<td>676,23746</td>
</tr>
<tr>
<td>Agosto</td>
<td>1,7822691</td>
<td>3,9531350</td>
<td>0,9486108</td>
<td>620,41047</td>
</tr>
<tr>
<td>Septiembre</td>
<td>1,3348806</td>
<td>4,0053072</td>
<td>0,7566972</td>
<td>489,57552</td>
</tr>
<tr>
<td>Octubre</td>
<td>0,8532109</td>
<td>4,0170828</td>
<td>0,4808916</td>
<td>328,49229</td>
</tr>
<tr>
<td>Noviembre</td>
<td>0,5626443</td>
<td>3,9859057</td>
<td>0,2747446</td>
<td>189,34854</td>
</tr>
<tr>
<td>Diciembre</td>
<td>0,4578825</td>
<td>3,53184136</td>
<td>0,2147425</td>
<td>162,29384</td>
</tr>
</tbody>
</table>

Indicar que como se puede ver el valor f (cobertura de energía solar respecto la energía de demanda del ACS) sería correcto según normativa, ya que en ningún mes tenemos una aportación solar superior al 110%, y tampoco tenemos 3 meses seguidos con más de un 100% de aportación solar.

También se puede comprobar que la aportación solar media anual será un 66%, por lo tanto también cumplimos el mínimo que nos indica el RITE.

Como se ha podido ver anteriormente con la curva de comportamiento utilizada, el modelo que se instalará será el Mediterraneo 250 de BAXI Roca.
- Bomba:
La bomba se deberá de poner en el circuito justo después del intercambiador.

A continuación planteamos la ecuación para la obtención de pérdidas:

\[(V_{12}/2g) + (P_{1}/\gamma) + Z_{1} = (V_{22}/2g) + (P_{2}/\gamma) + Z_{2} + H_{r12} + H_{B}\]

Donde,
\[H_{B} = LT \cdot H_{cl} + \Sigma k(v^2/2g) + (Z_{2} - Z_{1})\]

LT : longitud total del circuito primario = 17,9 m
Hcl : pérdida de carga por metro de tubo = 12 mm c.a./m
Z2-Z1 : pérdidas por altura geométrica = 0,6 m
K de 0,75 para 8 codos
K de 10 para 2 válvulas de cierre

\[H_{B} = 0,21 + 26 \cdot 4,6 \cdot 10^{-5} + 0,6 = 0,82 \text{ mca}\]
Con el valor calculado anteriormente y el caudal de 0,03 l/s podríamos realizar la asignación de bomba, pero en nuestro caso con los captadores seleccionados, ya forman parte de un conjunto que incluye el interacumulador y tanto las válvulas de cierre o esféricas como la bomba y el vaso de expansión.

- Tuberías:

El diámetro de tubería del circuito primario como indica el fabricante será de 1", por lo tanto un diámetro nominal de 25 mm.

5.1.5 Dimensionado circuito secundario solar

- Acumulador.

Anteriormente se ha calculado la demanda diaria para 4 personas en una vivienda unifamiliar, que es de 112 l/día. Por esta razón deberemos seleccionar un acumulador con una capacidad superior.

En este caso como se ha indicado, se ha seleccionado un conjunto de captador con interacumulador con 2 serpentines uno para la entrada solar y otro para entrada de caldera auxiliar, y tenemos la opción de seleccionar el acumulador de 300L que es el que nos interesa.

Este depósito está fabricado con acero esmaltado y contiene un aislamiento del depósito mediante espuma rígida de poliuretano inyectado.
Se ha seleccionado un acumulador con dobles serpentín (ineracumulador), de la marca Baxi de Roca modelo AS-300 2E. (Ficha técnica en el Anexo 3)

Para asegurarnos que está dentro de los márgenes que exige la normativa debemos aplicar la siguiente fórmula indicada anteriormente.

\[50 < \frac{V}{A} < 180 \]

Teniendo en cuenta que el área de captación es 2,4m\(^2\) y el volumen será 300L obtenemos un valor de 125 que se encuentra dentro del margen permitido.

- Intercambiador:

El intercambio desde los captadores solares se realizará en el acumulador mediante un serpentín del circuito solar (primario) que comunica con el agua del acumulador para ceder el calor. Para dimensionarlo, realizaremos el cálculo mediante la siguiente fórmula para cumplir las exigencias del CTE:

\[P \geq 500 * A \]

Donde:

- \(P \): potencia mínima del intercambiador (W)
- \(A \): área de captadores (m\(^2\))

Por lo tanto en nuestro caso que el área de los captadores será 2,4 m\(^2\), nuestro intercambiador deberá ser de mínimo 1,2kW.
Comparación de diferentes sistemas aplicados a un edificio residencial
Jordi Marcé Cortés

En este caso se recomienda mínimo 0,15 m² de sección de serpentín por kW de producción, por lo tanto en este caso necesitaremos un serpentín de mínimo 0,18m², y el serpentín inferior del circuito solar tiene 1m², por lo tanto tenemos bastante margen.

Esmaltados AS 200, 300, 400 y 500

<table>
<thead>
<tr>
<th></th>
<th>AS 200-2E</th>
<th>AS 300-2E</th>
<th>AS 400-2E</th>
<th>AS 500-2E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volumen ACS</td>
<td>200</td>
<td>300</td>
<td>400</td>
<td>500</td>
</tr>
<tr>
<td>Tipo de intercambiador</td>
<td>2 serpentines</td>
<td>2 serpentines</td>
<td>2 serpentines</td>
<td>2 serpentines</td>
</tr>
<tr>
<td>Superficie serpentín inferior (m²)</td>
<td>0,76</td>
<td>1,20</td>
<td>1,20</td>
<td>1,20</td>
</tr>
<tr>
<td>Volumen serpentín inferior (l)</td>
<td>11,10</td>
<td>18,10</td>
<td>18,10</td>
<td>18,10</td>
</tr>
<tr>
<td>Superficie serpentín superior (m²)</td>
<td>1,10</td>
<td>1,80</td>
<td>1,80</td>
<td>2,30</td>
</tr>
<tr>
<td>Volumen serpentín superior (l)</td>
<td>5,10</td>
<td>6,70</td>
<td>6,70</td>
<td>6,70</td>
</tr>
<tr>
<td>Instalación</td>
<td>Vertical</td>
<td>Vertical</td>
<td>Vertical</td>
<td>Vertical</td>
</tr>
<tr>
<td>Presión máx. primario (bar)</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Temperatura máx. primario (°C)</td>
<td>110</td>
<td>110</td>
<td>110</td>
<td>110</td>
</tr>
<tr>
<td>Presión máx. secundaria (bar)</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Temperatura máx. secundaria (°C)</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
</tr>
<tr>
<td>Clase de eficiencia energética</td>
<td>C</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>Peso en vacío (kg)</td>
<td>190</td>
<td>190</td>
<td>190</td>
<td>190</td>
</tr>
</tbody>
</table>

Ilustración 40. Especificaciones AS300

5.1.6 Dimensionado circuito primario caldera

- Tuberías:

Las tuberías utilizadas para este sistema serán de 1" (25mm) cumpliendo lo que nos indica el manual de usuario ya que el serpentín que irá conectado a la caldera de pellets irá también con el mismo diámetro. Este diámetro será necesario porque es posible necesitar en este caso transportar una mayor cantidad de agua por unidad de tiempo.

Para poder saber la pérdida de carga de la tubería, establecemos una velocidad especificada por el fabricante de 0,4 m/s. Al realizar el cálculo correspondiente vemos que tenemos un caudal de 2 m³/h aproximadamente. De esta manera observando la gráfica que se muestra a continuación podemos extraer la pérdida de carga.
La pérdida de carga será de aproximadamente 15mm c.a./m.

- Caldera

Nuestro sistema de caldera deberá estar preparado para abastecer toda la demanda de ACS y calefacción, por lo tanto tiene que tener capacidad suficiente para todo el sistema como si no existiera la aportación solar.
Comparación de diferentes sistemas aplicados a un edificio residencial
Jordi Marcé Cortés

En la tabla anterior se pueden ver los rendimientos de las calderas según sea la opción de 18kW o la opción de 24kW, apenas varía por lo tanto seleccionaremos de rendimiento 90% (ya que aún no sabemos la opción que seleccionaremos).

A continuación se calcula el calor necesario para conseguir la temperatura de consumo 60ºC en el caso más desfavorable de agua de red que en nuestro caso será 8ºC, donde también aplicaremos unas pérdidas del 10% del acumulador aplicado también al rendimiento de la caldera.

Calor necesario:

\[P_c = Q \cdot C_e \cdot \Delta T \]

Donde:
- \(P_c \): potencia calorífica
- \(Q \): Caudal (l/s)
- \(\Delta T \): variación de temperatura (ºC)

Obtenemos el valor 6,53kW, al que debemos aplicar el rendimiento y las pérdidas que se muestran a continuación:

\[P = P_c / (\eta \cdot Perd.) \]

El valor obtenido será de 7,8 kW. Por lo tanto este valor será el necesario para el momento en que no tengamos posibilidad de utilizar el sistema solar y la caldera deba calentar todo el agua del depósito teniendo en cuenta el peor caso posible que sería tener el agua de red a 8ºC. Este valor deberemos sumarlo a la demanda total de calefacción para poder escoger la potencia correcta de nuestra caldera.

En total obtenemos una potencia necesaria de 16kW aproximadamente, de esta manera la caldera de 18kW será suficiente para nuestro sistema.

A continuación se adjunta imagen donde se podrá ver el plano de la distribución del circuito primario. Para ver los planos completos se podrán consultar en el anexo 1.
En la anterior imagen se puede ver la distribución realizada en la azotea en el circuito primario, donde el elemento número 7 es la placa solar térmica, el número 8 el acumulador, el número 9 el depósito de inercia, el número 10 la caldera y el resto de indicaciones hacen referencia a las tuberías que como se ha indicado se podrá ver en el anexo 1 con más profundidad.
5.2 DIMENSIONADO CIRCUITO CALEFACCIÓN

El modelo seleccionado de suelo radiante será el Minitec de Uponor. Se ha seleccionado este tipo de suelo radiante porque se utiliza en obras que podemos tener una limitación de altura como puede ser en reformas, o porque la estructura del edificio no permite una sobrecarga de peso sobre los forjados del edificio.

Para el cálculo de cualquier sistema de climatización invisible (suelo radiante) habrá que tener en cuenta las especificaciones que encontramos en la norma UNE EN 1264.

Para el cálculo de la productora para nuestro suelo radiante muchas veces se realiza un cálculo simplificado que es aplicar un ratio de 80-100 W/m². Este ratio viene de una curva característica establecida por la norma UNE EN 164-2 que fija la relación entre la densidad de flujo térmico \(q \) en W/m² y la temperatura media de la superficie de suelo \(\theta_{F,m} \) en °C quedando la siguiente relación:

\[
q = 8,92 \times (\theta_{F,m} - \theta_e)^{1,1}
\]

Si establecemos la máxima temperatura que se recomienda en el pavimento de 29 °C y la temperatura ambiente que normalmente se considera como muy baja 20°C, obtenemos el valor de 100W/m², que conociendo la superficie total en la que tendremos suelo radiante, tendremos la potencia necesaria para el suelo radiante.
Comparación de diferentes sistemas aplicados a un edificio residencial
Jordi Marcé Cortés

En nuestro caso, en las condiciones de diseño hemos decidido que serán 21ºC por lo tanto nos quedará el siguiente ratio:

\[q = 8,92 \times (29 - 21)^{1.1} \]

El valor obtenido con las condiciones de diseño del proyecto y los 29ºC de temperatura máxima para el pavimento obtenemos un valor de 88 W/m².

Esta sería la opción simplificada en el caso de no tener cálculo el cálculo de cargas realizado. En nuestro caso, posteriormente procederemos a realizar los ratios de carga por superficie en cada habitación.

A continuación se indica un sistema equivalente al nuestro:

![Ilustración 46. Sistema equivalente calefacción/ACS](image)

Aunque en nuestro caso nuestro depósito será de doble serpentín ya que tendremos aporte solar, y por otro lado nuestro depósito de inercia atacará a un colector que dividirá el sistema en diferentes circuitos.

- Cálculo de los diferentes circuitos:
 Antes de calcular la longitud de tubo de cada circuito debemos conocer la ubicación de los diferentes colectores. Los colectores deberán situarse en puntos intermedios a los recintos donde dará servicio. Para realizar el cálculo para obtener la longitud de los circuitos se utilizará la siguiente fórmula:

\[L = \frac{A}{e} + 2 \cdot l \]

donde:
A: Área cubierta por el circuito.
e: Separación entre tuberías (m).
l: Distancia entre el colector y el área a climatizar (m).
Comparación de diferentes sistemas aplicados a un edificio residencial

Jordi Marcé Cortés

<table>
<thead>
<tr>
<th>Local</th>
<th>Área (m²)</th>
<th>l (m)</th>
<th>L (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Habitación invitados</td>
<td>13,10</td>
<td>2,50</td>
<td>92,33</td>
</tr>
<tr>
<td>Salón - Cocina</td>
<td>12,00</td>
<td>4,50</td>
<td>89,00</td>
</tr>
<tr>
<td>Salón - Cocina 2</td>
<td>12,00</td>
<td>7,00</td>
<td>94,00</td>
</tr>
<tr>
<td>Salón - Cocina 3</td>
<td>12,00</td>
<td>6,00</td>
<td>92,00</td>
</tr>
<tr>
<td>Dormitorio 1</td>
<td>15,00</td>
<td>9,50</td>
<td>119,00</td>
</tr>
<tr>
<td>Dormitorio 2</td>
<td>10,00</td>
<td>2,30</td>
<td>71,27</td>
</tr>
<tr>
<td>Dormitorio 3</td>
<td>10,00</td>
<td>8,30</td>
<td>83,27</td>
</tr>
<tr>
<td>Sala de estudios</td>
<td>14,00</td>
<td>5,80</td>
<td>104,93</td>
</tr>
<tr>
<td>Cine</td>
<td>14,00</td>
<td>11,00</td>
<td>115,33</td>
</tr>
<tr>
<td>Despacho</td>
<td>12,00</td>
<td>5,00</td>
<td>90,00</td>
</tr>
<tr>
<td>Despacho 2</td>
<td>12,00</td>
<td>3,60</td>
<td>87,20</td>
</tr>
</tbody>
</table>

Tabla 49. Longitud de los circuitos suelo radiante

Se ha tenido en cuenta una separación entre tuberías de 0,15 m como se especifica en manuales de fabricantes de suelo radiante como Uponor.

De la misma manera Uponor nos indica que para este tipo de suelo radiante los circuitos no deben exceder los 120 metros de tubería, por esta razón en las habitaciones grandes se han dividido los circuitos.

- Cálculo de la temperatura de impulsión.

Para el cálculo de la temperatura de impulsión utilizaremos la siguiente fórmula:

\[q = K_H \cdot \Delta \theta_H \]

Donde:

- **q**: Densidad flujo térmico (W/m²)
- **K_H**: Constante de transmitancia del suelo (W/m²·°C)
- **Δθ_H**: Desviación media de la temperatura aire-agua, entre impulsión y diseño de interior. (°C)
Comparación de diferentes sistemas aplicados a un edificio residencial
Jordi Marcé Cortés

Para el cálculo de la transmitancia como hemos realizado anteriormente sumamos las resistencias de un parquet (no incluido anteriormente, pero con efecto casi nulo en el cálculo), de 15mm y un mortero de conductividad especial de 4mm.

Obtenemos una resistencia total de 0,159 y realizando la inversa obtenemos el valor de una transmitancia de 6,3.

También necesitaremos el cálculo de la densidad de flujo de cada habitación que se muestra en la siguiente tabla:

<table>
<thead>
<tr>
<th>Local - circuitos</th>
<th>Area (m2)</th>
<th>Carga Q (W)</th>
<th>Densidad de flujo (W/m2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Habitación invitados</td>
<td>13,1</td>
<td>525,49</td>
<td>40,11374</td>
</tr>
<tr>
<td>Salón - Cocina</td>
<td>46,1</td>
<td>3286,6</td>
<td>71,292842</td>
</tr>
<tr>
<td>Dormitorio 1</td>
<td>21,8</td>
<td>794,603</td>
<td>36,449679</td>
</tr>
<tr>
<td>Dormitorio 2</td>
<td>10,2</td>
<td>639,97</td>
<td>62,742157</td>
</tr>
<tr>
<td>Dormitorio 3</td>
<td>10,2</td>
<td>511,674</td>
<td>50,164118</td>
</tr>
<tr>
<td>Sala de estudios</td>
<td>15,3</td>
<td>631,8</td>
<td>41,294118</td>
</tr>
<tr>
<td>Cine</td>
<td>15,1</td>
<td>698,024</td>
<td>46,226755</td>
</tr>
<tr>
<td>Despacho</td>
<td>27,2</td>
<td>985,42</td>
<td>36,228676</td>
</tr>
</tbody>
</table>

Tabla 50. Densidad de flujo

Para el cálculo de la temperatura de impulsión, seleccionaremos el caso en el que tenemos una densidad de flujo más alto que sería el comedor:

\[71.2 = 6.3 \times \Delta \theta H \]

Con lo que obtenemos un valor de desviación media aire-agua de 11,3 al que le sumamos la temperatura del recinto y le aplicamos un salto térmico de 5°C, tal y como indica el manual de Uponor y obtenemos un valor de impulsión de 37,3°C.

- Cálculo del caudal de agua de los circuitos y pérdida de carga.

Para los circuitos de calefacción se tiene en cuenta un salto térmico de 10°C, por lo tanto tendremos una temperatura de retorno de 27,3°C.
Para poder dimensionar ciertos elementos como la bomba necesitamos saber el caudal de cada circuito y las pérdidas de carga en cada circuito.

Para calcular el caudal de cada circuito se utilizará la siguiente expresión:

\[
Q = m \cdot \frac{C_p(T_{imp} - T_{ret})}{m} = \frac{Q}{C_p(T_{imp} - T_{ret})}
\]

Donde,

- \(m \): Caudal de agua (Kg/h)
- \(C_p \): Calor específico del agua (1Kcal/Kg\(^\circ\)C = 1,16W/kg\(^\circ\)C)
- \(T_{imp} - T_{ret} \): Salto térmico impulso-retorno=10\(^\circ\)C.
- \(Q \): Potencia emitida por cada circuito.

A continuación se indica una tabla con los caudales en cada circuito:

<table>
<thead>
<tr>
<th>Local - Circuito</th>
<th>Carga Q (W)</th>
<th>Caudal (l/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Habitación invitados</td>
<td>525,49</td>
<td>0,01255</td>
</tr>
<tr>
<td>Salón - Cocina</td>
<td>1095,5</td>
<td>0,02616</td>
</tr>
<tr>
<td>Salón - Cocina 2</td>
<td>1095,5</td>
<td>0,02616</td>
</tr>
<tr>
<td>Salón - Cocina 3</td>
<td>1095,5</td>
<td>0,02616</td>
</tr>
<tr>
<td>Dormitorio 1</td>
<td>794,603</td>
<td>0,01897</td>
</tr>
<tr>
<td>Dormitorio 2</td>
<td>639,97</td>
<td>0,01528</td>
</tr>
<tr>
<td>Dormitorio 3</td>
<td>511,674</td>
<td>0,01222</td>
</tr>
<tr>
<td>Sala de estudios</td>
<td>631,8</td>
<td>0,01509</td>
</tr>
<tr>
<td>Cine</td>
<td>698,024</td>
<td>0,01667</td>
</tr>
<tr>
<td>Despacho</td>
<td>492,71</td>
<td>0,01176</td>
</tr>
<tr>
<td>Despacho 2</td>
<td>492,71</td>
<td>0,01176</td>
</tr>
</tbody>
</table>

Tabla 51. Caudal por circuito

Para los caudales calculados según indicaciones del fabricante seleccionaremos un diámetro nominal de 16mm para los diferentes circuitos de suelo radiante, ya que no debemos superar el 0,2 KPa/m, por lo tanto como se indicará a continuación el diámetro más pequeño que podemos seleccionar será de 16mm.
Comparación de diferentes sistemas aplicados a un edificio residencial
Jordi Marcé Cortés

Mediante los diámetros de tubería y los caudales podemos obtener las pérdidas de carga del circuito para el tipo de tubería que se utilizará mediante la siguiente gráfica.

Deberemos mirar el caso más desfavorable que será el de mayor caudal. Por lo tanto deberemos de tener en cuenta el caudal de los circuitos del Salón - Cocina y el diámetro de 16mm para obtener la mayor pérdida de carga del circuito.

![Diagrama de pérdida de carga en tuberías Wirsbo-evaLPEx (desde 12x2 hasta 25x2,3)](image)

Fig.10.2 - Diagrama de pérdida de carga en tuberías Wirsbo-evaLPEx (desde 12x2 hasta 25x2,3)

Ilustración 47. Diagrama de pérdida de carga en tuberías evalPEX

Primeramente, seleccionaremos el diámetro del tramo principal en el que deberemos tener en cuenta todo el caudal del sistema, el cual es 0,19 l/s, como podemos ver en la gráfica de Uponor no llega a mostrarnos ese dato de caudal pero el fabricante recomienda un diámetro de 32mm, y como vemos la de 25mm es muy probable que ya sea útil para nuestro caso y la de 32mm será compatible ya que el fabricante lo indica para un caudal superior al nuestro.
Comparación de diferentes sistemas aplicados a un edificio residencial
Jordi Marcé Cortés

En la gráfica se ha seleccionado la línea verde de la tubería tipo de 16mm de diámetro que juntamente con el caudal 0,026 l/s, obtenemos una pérdida de carga de 0,075 KPa/m. En el circuito mencionado tenemos 106 metros el caso más desfavorable, por lo tanto tendremos una pérdida de carga máxima de 7,95 KPa.

Según manuales técnicos para el cálculo de bombas como son Uponor o Grundfos se aplica aproximadamente un 30% de la pérdida de carga del circuito más desfavorables que hace referencia a otros elementos del circuito como pueden ser válvulas de corte o los diferentes codos, para obtener la pérdida de carga total, que en este caso será de 10,4 KPa, que equivaldrá a 1,04 mca.

A continuación se indica curva de la bomba ALPHA2 15-40 130 de Grundfos la cual como se puede ver nos funcionaría perfectamente.

Para ello indicaremos el caudal 0,094 m3/h que anteriormente hemos obtenido en l/s y la pérdida de carga calculada de 1,04 mca.

![Ilustración 48. Curva de comportamiento bomba ALPHA15-40 130](image)

- Dimensionamiento del depósito de inercia.

Como las calderas de biomasa no son calentadores instantáneos y atacará tanto a calefacción como ACS, será necesario la instalación de un depósito de inercia. Es muy importante que no sea excesivamente pequeño ya que provocará un arranque muy frecuente.
Comparación de diferentes sistemas aplicados a un edificio residencial
Jordi Marcé Cortés

Para calderas de biomasa se recomienda aproximadamente 15 litros por Kw de producción (como nos indica Grupo Biosan instaladores), por lo tanto nuestro depósito de inercia será de 300L. Se ha seleccionado el depósito de inercia de la marca Geiser G-370-1/-II.

Ilustración 49. Modelo depósito de inercia

- Colector

Para la selección del colector se ha tenido en cuenta el número de salidas necesario, en este caso 11 y diámetro de conexionado con los diferentes circuitos. Se ha seleccionado el colector Vario M de Uponor que va con tuberías de 3/4 pero tiene la opción de aplicar reducciones a 16mm (nuestro caso), que el mismo fabricante vende.

Ilustración 50. Colector Vario M

<table>
<thead>
<tr>
<th>Código</th>
<th>salidas</th>
<th>mm</th>
<th>bar</th>
<th>psi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1085944</td>
<td>2</td>
<td>6</td>
<td>210</td>
<td></td>
</tr>
<tr>
<td>1085945</td>
<td>3</td>
<td>6</td>
<td>260</td>
<td></td>
</tr>
<tr>
<td>1085946</td>
<td>4</td>
<td>6</td>
<td>310</td>
<td></td>
</tr>
<tr>
<td>1085947</td>
<td>5</td>
<td>6</td>
<td>360</td>
<td></td>
</tr>
<tr>
<td>1085948</td>
<td>6</td>
<td>6</td>
<td>410</td>
<td></td>
</tr>
<tr>
<td>1085949</td>
<td>7</td>
<td>6</td>
<td>460</td>
<td></td>
</tr>
<tr>
<td>1085950</td>
<td>8</td>
<td>6</td>
<td>510</td>
<td></td>
</tr>
<tr>
<td>1085951</td>
<td>9</td>
<td>6</td>
<td>560</td>
<td></td>
</tr>
<tr>
<td>1085952</td>
<td>10</td>
<td>6</td>
<td>610</td>
<td></td>
</tr>
<tr>
<td>1086250</td>
<td>11</td>
<td>6</td>
<td>660</td>
<td></td>
</tr>
<tr>
<td>1086251</td>
<td>12</td>
<td>6</td>
<td>710</td>
<td></td>
</tr>
</tbody>
</table>

Ilustración 50. Colector Vario M
Comparación de diferentes sistemas aplicados a un edificio residencial

Jordi Marcé Cortés

A continuación se indica una parte del plano de calefacción donde se podrá ver de manera simple la distribución del sistema.

Como se puede ver en la imagen anterior, se trata de una parte de la distribución del sistema de calefacción de suelo para la planta 1, donde se pueden distinguir el colector y los circuitos de suelo radiante. Para ver el plano con más profundidad, en el anexo 1 se encuentran los planos de las diferentes instalaciones.
5.3 DIMENSIONADO CIRCUITO REFRIGERACIÓN

Para el circuito de refrigeración, como se ha indicado anteriormente se utilizará una bomba de calor VRF (caudal variable) con una unidad interior de pared por habitación.

Se seleccionará la opción VRF por la razón de evitar el sistema que había anteriormente de distribución por conductos para evitar consumos innecesarios.

Por otro lado, también podremos garantizar un mayor confort ya que con una única unidad exterior y una única línea principal, a diferencia de otros sistemas, podremos tener las unidades que sean necesarias en funcionamiento y la temperatura que se requiera, incluso si únicamente se requiere el funcionamiento de una unidad.

Desde el punto de vista económico será más caro que otros sistemas, pero el nivel de confort será muy superior y la instalación más sencilla.

- Dimensionar las unidades interiores:

La selección de los equipos será del fabricante Mitsubishi Electric. A continuación se adjunta tabla donde se podrá ver la asignación de las diferentes unidades para cada habitación.

<table>
<thead>
<tr>
<th>Local</th>
<th>Carga sensible</th>
<th>Carga total</th>
<th>Asignación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Habitación invitados</td>
<td>596,4977</td>
<td>787,69</td>
<td>PKFY-P15VBM-E</td>
</tr>
<tr>
<td>Salón-cocina</td>
<td>2977,1173</td>
<td>3947,4</td>
<td>PKFY-P40VHM-E</td>
</tr>
<tr>
<td>Dormitorio 1</td>
<td>986,72</td>
<td>1178,12</td>
<td>PKFY-P15VBM-E</td>
</tr>
<tr>
<td>Dormitorio 2</td>
<td>898,39</td>
<td>1089,8</td>
<td>PKFY-P15VBM-E</td>
</tr>
<tr>
<td>Dormitorio 3</td>
<td>939,808</td>
<td>1131,2</td>
<td>PKFY-P15VBM-E</td>
</tr>
<tr>
<td>Sala de estudios</td>
<td>1261,9603</td>
<td>1420,76</td>
<td>PKFY-P15VBM-E</td>
</tr>
<tr>
<td>Cine</td>
<td>1307,604</td>
<td>1625,17</td>
<td>PKFY-P20VBM-E</td>
</tr>
<tr>
<td>Despacho</td>
<td>1585,665</td>
<td>1662,6</td>
<td>PKFY-P25VBM-E</td>
</tr>
</tbody>
</table>

Tabla 52. Asignación unidades interiores
La selección se ha realizado teniendo en cuenta la carga de cada habitación, pero también confirmando que también cumplirá la carga sensible de la habitación. Como se puede ver en la tabla que se muestra a continuación extraída del "Databook" de Mitsubishi Electric, podemos comprobar la aportación sensible de cada unidad, en el caso que hemos tenido en cuenta de 25°C interiores aproximado.

![Tabla 53. Potencias de las unidades interiores](image)

A continuación se adjunta las especificaciones técnicas de las unidades interiores seleccionadas:

![Tabla 54. Especificaciones unidades interiores (1)](image)

![Tabla 55. Especificaciones unidades interiores (2)](image)
Comparación de diferentes sistemas aplicados a un edificio residencial
Jordi Marcé Cortés

- Dimensionado unidad exterior:

Para dimensionar la unidad exterior necesitamos saber la capacidad total conectada como unidades interiores que es 160. Es necesario para poder seleccionar la potencia límite de la unidad exterior, ya que estos sistemas permiten tener una sobrecarga del 130%. Por lo tanto para saber la máxima capacidad de unidad exterior debemos aplicar la siguiente expresión:

\[\text{Capacidad exterior} = \frac{\text{Capacidad interior}}{1,3} = \frac{160}{1,3} = 123,1 \]

La unidad que seleccionemos no podrá tener una capacidad total inferior a 123,1.

A continuación se muestra los diferentes modelos de bombas de calor para seleccionar:

<table>
<thead>
<tr>
<th>MODELO</th>
<th>PUMY-P112VKM3</th>
<th>PUMY-P125VKM3</th>
<th>PUMY-P140VKM3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacidad</td>
<td>12,5</td>
<td>14,0</td>
<td>15,5</td>
</tr>
<tr>
<td>Nominal</td>
<td>12,5</td>
<td>14,0</td>
<td>15,5</td>
</tr>
<tr>
<td>Consumo</td>
<td>2,79</td>
<td>3,48</td>
<td>4,52</td>
</tr>
<tr>
<td>Nominal</td>
<td>2,79</td>
<td>3,48</td>
<td>4,52</td>
</tr>
<tr>
<td>Coeficiente</td>
<td>3,04</td>
<td>3,74</td>
<td>4,47</td>
</tr>
<tr>
<td>ETR</td>
<td>4,4</td>
<td>4,05</td>
<td>3,63</td>
</tr>
<tr>
<td>ECP</td>
<td>4,61</td>
<td>4,28</td>
<td>4,83</td>
</tr>
<tr>
<td>Capacidad Total</td>
<td>12,5</td>
<td>14,0</td>
<td>15,5</td>
</tr>
<tr>
<td>Interiores Conectados</td>
<td>P15-P140/10/9</td>
<td>P15-P140/10/10</td>
<td>P15-P140/10/10</td>
</tr>
<tr>
<td>Alimentación</td>
<td>1 fase, 280V-240V/50Hz</td>
<td>1 fase, 280V-240V/50Hz</td>
<td>1 fase, 280V-240V/50Hz</td>
</tr>
<tr>
<td>Tiempo</td>
<td>19s</td>
<td>19s</td>
<td>19s</td>
</tr>
<tr>
<td>Velocidad</td>
<td>1,5</td>
<td>1,5</td>
<td>1,5</td>
</tr>
<tr>
<td>Caudal de aire</td>
<td>110</td>
<td>110</td>
<td>110</td>
</tr>
<tr>
<td>Potencia</td>
<td>0,074 x 2</td>
<td>0,074 x 2</td>
<td>0,074 x 2</td>
</tr>
<tr>
<td>Compressor</td>
<td>2,9</td>
<td>2,9</td>
<td>2,9</td>
</tr>
<tr>
<td>Refrigerante</td>
<td>1,8</td>
<td>1,8</td>
<td>1,8</td>
</tr>
<tr>
<td>Dimensiones (Ancho x Alto x Fondo)</td>
<td>4,8 x 2,098 x 1,002</td>
<td>4,8 x 2,098 x 1,002</td>
<td>4,8 x 2,098 x 1,002</td>
</tr>
<tr>
<td>Peso</td>
<td>122</td>
<td>122</td>
<td>122</td>
</tr>
<tr>
<td>Rango de operación (min/autodif)</td>
<td>5 - +/-2 s / 20 - +/-15 Th</td>
<td>5 - +/-2 s / 20 - +/-15 Th</td>
<td>5 - +/-2 s / 20 - +/-15 Th</td>
</tr>
</tbody>
</table>

Tabla 56. Especificaciones unidades exteriores

Como se puede ver, la unidad más pequeña es la PUMY-P112VKM3, la cual no nos servirá, deberemos seleccionar la unidad con capacidad 125, modelo PUMY-P125VKM3.

A continuación se calcula el % de sobrecarga del sistema de la misma manera que se ha calculado anteriormente:

\[\% \text{ sobrecarga} = \frac{\text{Capacidad unidades interiores}}{\text{Capacidad unidad exterior}} \times 100 = \frac{160}{125} \times 100 = 128\% \]
Comparación de diferentes sistemas aplicados a un edificio residencial
Jordi Marcé Cortés

Estaremos dentro del rango de trabajo de la unidad como se esperaba. El hecho de que tengamos más potencia en unidades interiores que en la productora no será ningún problema ya que en una vivienda es muy difícil tener una simultaneidad total, ya que si están funcionando las unidades de los dormitorios, es muy posible que el cine, despacho o comedor no esté en funcionamiento, por lo tanto no se sobrepasará el 100% de sobrecarga en funcionamiento y las unidades interiores podrán ir al máximo rendimiento.

- Distribución:
 Mediante el programa Design Tool, diseñaremos la distribución del sistema y el mismo programa nos indicará la cantidad y modelos de los distribuidores necesarios y los diámetros de la tubería.
Comparación de diferentes sistemas aplicados a un edificio residencial
Jordi Marcé Cortés

Ilustración 52. Esquema instalación sistema VRF
Comparación de diferentes sistemas aplicados a un edificio residencial
Jordi Marcé Cortés

Como se puede ver en el esquema anterior necesitaremos 7 unidades de distribuidor modelo CMY-Y62-E para la distribución indicada. Por otro lado, si se introducen las distancias necesarias para cada tramo nos indica el diámetro necesario y también nos podrá indicar la cantidad de gas adicional que se deberá poner al sistema, y por último también nos indica si hay algún error en el sistema diseñado.

Ilustración 53. Valores resumen instalación refrig.

En este punto podremos realizar la comprobación para ver si este sistema será viable en relación con el límite de concentración de gas que nos indica el RITE, 0,44 kg/m³.

Como vemos en la comprobación del sistema con el programa "Design Tool" tenemos 9,9 kg de refrigerante R410a. Para verificar que no tendremos ningún problema de concentración de gas con la normativa, seleccionamos la habitación más pequeña que forme parte del sistema. En este caso será tanto el dormitorio 2 como el dormitorio 3 con 10,2 m², es decir, 30 m³, realizando el siguiente cálculo obtendremos la cantidad máxima de refrigerante para el sistema.

\[0,44 \text{ kg/m}^3 \times 30 \text{ m}^3 = 13,2 \text{ kg}\]

Por lo tanto los 9,9 kg de nuestro sistema será inferior al valor límite según normativa de 13,2kg.

Indicar que en el Anexo 1 se pueden consultar los planos de la vivienda con la distribución de la instalación de refrigeración

<table>
<thead>
<tr>
<th>Resultados</th>
<th>×</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unidad interior:</td>
<td>8 / 10</td>
</tr>
<tr>
<td>Capacidad:</td>
<td>160 / 63 to 162 / 128.0%</td>
</tr>
<tr>
<td>Longitud total de tubería:</td>
<td>54,0 / 300,0 m</td>
</tr>
<tr>
<td>Mayor longitud actual:</td>
<td>21,0 / 150,0 m</td>
</tr>
<tr>
<td>Después del primer distribuidor actual:</td>
<td>14,0 / 30,0 m</td>
</tr>
<tr>
<td>Refrigerante adicional:</td>
<td>5,1 kg</td>
</tr>
<tr>
<td>Carga total de refrigerante:</td>
<td>9,9 kg</td>
</tr>
</tbody>
</table>

Indicar que en el Anexo 1 se pueden consultar los planos de la vivienda con la distribución de la instalación de refrigeración
Comparación de diferentes sistemas aplicados a un edificio residencial
Jordi Marcé Cortés

A continuación se muestra una imagen que forma parte de los planos de las instalaciones donde se podrá ver una parte de la distribución de la instalación de refrigeración.

En la captura del plano se puede ver parte de la instalación de refrigeración de la planta 1, con lo que podemos ver aproximadamente la distribución que podrá tener la instalación con la situación de los distribuidores y las máquinas interiores.

Para poder ver con más profundidad los planos de refrigeración al completo, se pueden consultar en el Anexo 1.
5.4 DIMENSIONADO CIRCUITO VENTILACIÓN

La ventilación de un edificio es sumamente importante para el bienestar general de los inquilinos. La renovación del aire produce un aumento de confort e de bienestar.

La razón por la que cada día es más importante garantizar esta renovación de aire es porque las viviendas antiguas es muy probable que dispongan de infiltraciones en la misma estructura, pero actualmente, la envolvente de un edificio es una parte muy importante en construcción ya que debemos garantizar un mínimo de aislante para los locales interiores. Esta cantidad de aislante y de modificación en la fachada minimiza la posibilidad de tener infiltraciones para la renovación de aire y por esta razón es cada vez más habitual el uso de ventilación mecánica o forzada y a la vez de la utilización de elementos como recuperadores de calor para que nuestra vivienda pueda llegar a ser aún más eficiente.

En este capítulo se indicará como proceder al cálculo de los conductos y aberturas necesarias para garantizar la ventilación exigida de nuestra vivienda.

5.3.1 Indicaciones CTE

En la siguiente imagen se podrá ver las indicaciones que debemos seguir para realizar la ventilación en la vivienda. Como se puede ver necesitaremos puntos de admisión de aire fresco en cuartos secos, y puntos de extracción en cuartos húmedos, y a la vez garantizar el flujo de los cuartos secos a los húmedos mediante aberturas de paso.

![Diagrama de ventilación CTE](image-url)
Comparación de diferentes sistemas aplicados a un edificio residencial
Jordi Marcé Cortés

- Aberturas

Como indica el CTE, para el caso de viviendas, como nuestro caso, pueden utilizarse como abertura de paso un aireador o la holgura existente entre las hojas de las puertas y el suelo.

- Conductos de admisión:

Basándonos siempre en el Código Técnico de Edificación en este capítulo, se exige que los conductos deben tener sección uniforme y carecer de obstáculos en todo su recorrido.
Por otro lado también deben tener un acabado que dificulte su ensuciamiento y deben ser practicables para su registro y limpieza cada 10 m como máximo en todo su recorrido.

5.3.2 Dimensionado de aberturas y conductos

- Dimensionado aberturas:
Como indica el CTE el área a tener en cuenta será el mayor que se pueda obtener con la siguiente tabla:

| Aberturas de ventilación | Aberturas de admisión | 4 qv, ó
| Aberturas de extracción | 4 qv, ó
| Aberturas de paso | 70 cm² ó
| Aberturas mixtas (1) | 8 qv |

(1) El área efectiva total de las aberturas mixtas de cada zona opuesta de fachada y de la zona equidistante debe ser como mínimo el área total exigida.

Tabla 57. Área mínima de abertura cm²

Donde,
qv: caudal de ventilación mínimo exigido del local [l/s].
qva: caudal de ventilación correspondiente a cada abertura de admisión del local calculado, [l/s].
qve: caudal de ventilación correspondiente a cada abertura de extracción del local calculado [l/s].
qvp: caudal de ventilación correspondiente a cada abertura de paso del local calculado, [l/s].
Comparación de diferentes sistemas aplicados a un edificio residencial
Jordi Marcé Cortés

- Dimensionado conductos de extracción:

Cuando los conductos se dispongan en la cubierta, la sección debe ser como mínimo igual a la obtenida mediante la fórmula:

\[S = 1,5 \times qvt \]

Donde,
qvt: el caudal de aire en el tramo del conducto \([l/s]\), que es igual a la suma de todos los caudales que pasan por las aberturas de extracción que vierten al tramo.

- Aspiradores mecánicos del sistema:

Deben dimensionarse de acuerdo con el caudal extraído y para una depresión suficiente para contrarrestar las pérdidas de presión previstas del sistema.

- Cálculo aberturas:

- Admisión (cuartos secos):
Para saber el área mínimo utilizaremos la expresión que nos indica el cte: \((l/s)\)
\[S = 4 \times qv \]
Donde,
qv: caudal de ventilación mínimo exigido de el local\([l/s]\).
A continuación se adjunta tabla con los resultados para los diferentes locales.

<table>
<thead>
<tr>
<th>Local</th>
<th>qv (l/s)</th>
<th>S (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Habitación invitados</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>Salón-cocina</td>
<td>92,2</td>
<td>368,8</td>
</tr>
<tr>
<td>Dormitorio 1</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>Dormitorio 2</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>Dormitorio 3</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>Sala de estudios</td>
<td>6</td>
<td>24</td>
</tr>
<tr>
<td>Cine</td>
<td>12</td>
<td>48</td>
</tr>
<tr>
<td>Despacho</td>
<td>3</td>
<td>12</td>
</tr>
</tbody>
</table>

Tabla 58. Secciones aberturas
Comparación de diferentes sistemas aplicados a un edificio residencial
Jordi Marcé Cortés

Calculados los valores anteriores, no habrá ningún problema a la hora de seleccionar la rejilla correcta ya que cualquier fabricante tiene de áreas superiores.

- De paso (cuartos secos a húmedos):
El CTE indica que se deberá de disponer de 70cm² como mínimo. En este caso se utilizará la ranura inferior de la puerta ya que habrá 1 cm de espacio, por lo tanto 75cm².

- Cálculo conductos extracción:

Para el cálculo del diámetro del conducto de extracción deberemos saber el caudal de cada tramo y de esta manera poder saber el diámetro correcto normalizado para dicho tramo.
Para saber que diámetro asignar deberemos calcular el área del conducto. Para ello, utilizaremos el caudal de extracción del local que se ha mostrado anteriormente en la tabla del CTE y por otro lado lo dimensionaremos para la velocidad máxima indicada por el CTE de 4m/s.
El cálculo se efectuará mediante la siguiente expresión:

\[S = \frac{Q}{v} \]

Donde,
S: Sección del conducto
Q: caudal del conducto
v: velocidad máxima

- Tramo 1
Para el tramo principal vertical se deberá tener en cuenta todo el caudal de extracción. El caudal a tener en cuenta será el calculado para la cocina, en este caso se tendrá en cuenta la parte de extracción del caudal calculado para el comedor-cocina, y tal y como indica el RITE se tendrá en cuenta un valor de 208,8 m³/h, y por otra parte los baños que suman un valor de 108 m³/h. En total por lo tanto deberemos tener en cuenta un valor de 316 m³/h. También se deberá tener en cuenta la velocidad de 4 m/s.

\[S = \frac{316}{4} \times \frac{1h}{3600s} = 0,022 \text{ m}^2 \]
Comparación de diferentes sistemas aplicados a un edificio residencial
Jordi Marcé Cortés

Obtenemos el diámetro con la siguiente expresión:

\[D = \frac{\sqrt{3}}{\sqrt{\pi}} = 0,167 \text{ m} \]

Por lo tanto el diámetro que deberemos seleccionar será de 200mm para el tramo principal que irá desde la azotea hasta la planta primera.

Aplicando la normativa mencionada anteriormente con la siguiente fórmula: [l/s]

\[S = 1,5 * qvt \]

Se obtiene el diámetro mínimo de 131,7mm por lo tanto el diámetro seleccionado estará por encima y será correcto.

Para el resto de tramos se utilizará el mismo método de cálculo.

- Tramo 2: Desde el baño de Planta 1 al tramo principal. Se deberá tener en cuenta el caudal únicamente de dicho baño.

- Tramo 3: Se tendrá en cuenta el caudal de la cocina-comedor y el baño de planta baja, y subirá hasta unirse al tramo 1.

- Tramo 4: Se tendrá en cuenta el caudal del baño situado en Planta baja y se unirá con el tramo 3.

- Tramo 5: Se tendrá en cuenta el caudal del comedor-cocina y se unirá al tramo 3.

A continuación se indica una tabla con el cálculo de los diámetros para los tramos indicados anteriormente:

A continuación se adjunta una tabla con los diferentes diámetros nominales calculados para los diferentes tramos de tubería:

<table>
<thead>
<tr>
<th>Local</th>
<th>q (m3/h)</th>
<th>S (m2)</th>
<th>D (m)</th>
<th>D norm. (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tramo 1</td>
<td>316</td>
<td>0,022</td>
<td>0,1674081</td>
<td>200</td>
</tr>
<tr>
<td>Tramo 2</td>
<td>54</td>
<td>0,00375</td>
<td>0,0691163</td>
<td>100</td>
</tr>
<tr>
<td>Tramo 3</td>
<td>262,8</td>
<td>0,018</td>
<td>0,1514263</td>
<td>180</td>
</tr>
<tr>
<td>Tramo 4</td>
<td>54</td>
<td>0,00375</td>
<td>0,0691163</td>
<td>100</td>
</tr>
<tr>
<td>Tramo 5</td>
<td>208,8</td>
<td>0,0145</td>
<td>0,1359092</td>
<td>150</td>
</tr>
</tbody>
</table>

Tabla 59. Diámetros nominales asignados
Comparación de diferentes sistemas aplicados a un edificio residencial
Jordi Marcé Cortés

- Cálculos conductos admisión:

En este caso como indica el CTE deberán ser de sección uniformes todos los que formen parte de los locales de admisión. Por lo tanto tendremos un tramo principal con el caudal total y dos tramos secundarios, uno para la planta baja y otro para la planta 1.

- Tramo principal:
Para calcular el caudal total debemos sumar todos los caudales de los diferentes locales secos, de los que forman parte todas las habitaciones de la planta 1 exceptuando el baño, y el comedor, y de la planta baja el comedor y la habitación de invitados. Estos locales suman un caudal total de 342,7 m³/h.

El caudal correspondiente para la planta 1 será de 219,6 m³/h y para la planta baja de 123,12 m³/h, por lo tanto para dimensionar los tramos secundarios tendremos en cuenta el caudal de la planta 1.

Para el tramo principal utilizaremos la expresión utilizada anteriormente con el caudal total:

$$S = \frac{342,72 \times 1h}{3600s} = 0,024 \text{ m}^2$$

Obtenemos el diámetro:

$$D = \frac{\sqrt{3s}}{\sqrt{\pi}} = 0,174 \text{ m}$$

Con lo cual utilizaremos también un diámetro de 200mm.

- Tramos secundarios:
Como se ha indicado se realizará mediante la misma expresión:

$$S = \frac{219,6 \times 1h}{3600s} = 0,015 \text{ m}^2$$

Obtenemos el diámetro:

$$D = \frac{\sqrt{3s}}{\sqrt{\pi}} = 0,138 \text{ m}$$

Para este caso se seleccionarán conductos de 150mm.
Comparación de diferentes sistemas aplicados a un edificio residencial
Jordi Marcé Cortés

- Selección del recuperador de calor:
 Debemos revisar que la pérdida de carga esté dentro los valores generales del modelo del recuperador.

![Ilustración 56. Gráfico caída de presión- caudal ventilación](image)

Mediante la gráfica anterior, tendremos en cuenta la máxima pérdida de carga seleccionando el mayor diámetro de nuestro sistema, 200mm, y contando la longitud mayor posible.

A partir de la gráfica anterior y contando 20 metros de longitud de conductos, obtenemos una pérdida de carga de 1,4 mm.c.a.

Según la marca de rejillas Redi, obtenemos que en rejillas estándar se tiene una pérdida de carga de aproximadamente 2 mm.c.a. En nuestro caso tendremos 3 rejillas de extracción, por lo tanto una pérdida de carga total de aproximadamente 7,4mm.c.a. No se tendrá en cuenta las pérdidas correspondientes a los codos de la instalaciones ya que en este caso será una pérdida mínima.
Se ha seleccionado el recuperador de calor modelo RIS P del fabricante Sodeca con la siguiente curva de comportamiento:

![Curva de comportamiento recuperador de calor](image1)

En este caso, para el caudal que podremos tener, puede llegar a una pérdida de carga máxima de 30mm.c.a, por lo tanto el modelo 400, será el modelo seleccionado.

A continuación se indica tabla de especificaciones de dicho recuperador de calor:

<table>
<thead>
<tr>
<th>Modelo</th>
<th>Velocidad (m/s)</th>
<th>Intensidad (A)</th>
<th>Potencia (W)</th>
<th>Caudal max. RF (m³/h)</th>
<th>Caudal max. F (m³/h)</th>
<th>Eficiencia térmica (%)</th>
<th>IaR (mA)</th>
<th>Tensión total (V)</th>
<th>Intensidad total (A)</th>
<th>Potencia total (kW)</th>
<th>Peso (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RIS-400-P-S</td>
<td>1,00</td>
<td>2,00</td>
<td>1,00</td>
<td>1,00</td>
<td>1,00</td>
<td>1,00</td>
<td>1,00</td>
<td>1,00</td>
<td>1,00</td>
<td>1,00</td>
<td>1,00</td>
</tr>
<tr>
<td>RIS-400-P-E</td>
<td>1,00</td>
<td>2,00</td>
<td>1,00</td>
<td>1,00</td>
<td>1,00</td>
<td>1,00</td>
<td>1,00</td>
<td>1,00</td>
<td>1,00</td>
<td>1,00</td>
<td>1,00</td>
</tr>
<tr>
<td>RIS-400-P-W</td>
<td>1,00</td>
<td>2,00</td>
<td>1,00</td>
<td>1,00</td>
<td>1,00</td>
<td>1,00</td>
<td>1,00</td>
<td>1,00</td>
<td>1,00</td>
<td>1,00</td>
<td>1,00</td>
</tr>
<tr>
<td>RIS-700-P-S</td>
<td>2,00</td>
</tr>
<tr>
<td>RIS-700-P-E</td>
<td>2,00</td>
</tr>
<tr>
<td>RIS-700-P-W</td>
<td>2,00</td>
</tr>
<tr>
<td>RIS-1000-P-S</td>
<td>3,00</td>
</tr>
<tr>
<td>RIS-1000-P-E</td>
<td>3,00</td>
</tr>
<tr>
<td>RIS-1000-P-W</td>
<td>3,00</td>
</tr>
<tr>
<td>RIS-1000-P-R</td>
<td>3,00</td>
</tr>
<tr>
<td>RIS-1500-P-R</td>
<td>3,00</td>
</tr>
</tbody>
</table>

Tabla 60. Especificaciones recuperador de calor
Comparación de diferentes sistemas aplicados a un edificio residencial
Jordi Marcé Cortés

A continuación se indicará una captura del plano de ventilación donde se podrá ver su distribución de manera aproximada.

Ilustración 58. Distribución ventilación planta baja

En este caso se puede observar la distribución de los conductos de ventilación para la planta baja. Para poder ver con más profundidad los planos que se han realizado para las diferentes instalaciones, se podrán consultar en el Anexo 1.
6. PRESUPUESTO

En este apartado se presentarán de manera simplificada los precios unitarios del material y la instalación para el sistema de calefacción y el sistema de refrigeración. Indicar que en el anexo 3 se adjuntará las tarifas de cada elemento ofertado.

6.1 PRESUPUESTO SISTEMA CALEFACCIÓN

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Cantidad</th>
<th>Unidad</th>
<th>Precio</th>
<th>Importe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caldera CBP Matic 18</td>
<td>1</td>
<td>1</td>
<td>4.760</td>
<td>4.760</td>
</tr>
<tr>
<td>Acumulador AS-200-2E</td>
<td>1</td>
<td>1</td>
<td>1.587</td>
<td>1.587</td>
</tr>
<tr>
<td>Captador Solar Mediterraneo</td>
<td>1</td>
<td>1</td>
<td>657</td>
<td>657</td>
</tr>
<tr>
<td>Suelo radiante Minitec</td>
<td>159</td>
<td>1</td>
<td>24,41</td>
<td>3.881,19</td>
</tr>
<tr>
<td>Comfort Pipe</td>
<td>1</td>
<td>1</td>
<td>1,60</td>
<td>1,60</td>
</tr>
<tr>
<td>Colector Vario M</td>
<td>1</td>
<td>1</td>
<td>655,32</td>
<td>655,32</td>
</tr>
<tr>
<td>Depósito de inercia Geiser G-370-I</td>
<td>1</td>
<td>1</td>
<td>793</td>
<td>793</td>
</tr>
<tr>
<td>Bomba de impulsión ALPHA2 15-40</td>
<td>1</td>
<td>1</td>
<td>424</td>
<td>424</td>
</tr>
<tr>
<td>Instalación selo radiante</td>
<td>1</td>
<td>1</td>
<td>2.500*</td>
<td>2.500</td>
</tr>
<tr>
<td>Instalación caldera biomasa</td>
<td>1</td>
<td>1</td>
<td>2.000*</td>
<td>2.000</td>
</tr>
</tbody>
</table>

* Indicar que los importes indicados en las instalaciones son precios orientativos facilitados por empresas instaladoras como Solo Clima.

Total PVP(EUR) 17.259,11
6.2 PRESUPUESTO SISTEMA REFRIGERACIÓN

Presupuesto

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Cantidad</th>
<th>Unidad</th>
<th>Precio</th>
<th>Importe</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUMY-P125VKM2</td>
<td>1</td>
<td>1</td>
<td>5.957€*</td>
<td>5.957</td>
</tr>
<tr>
<td>PKFY-P15VBM-E</td>
<td>5</td>
<td>1</td>
<td>890€*</td>
<td>4.450</td>
</tr>
<tr>
<td>PKFY-P20VBM-E</td>
<td>1</td>
<td>1</td>
<td>909*</td>
<td>909</td>
</tr>
<tr>
<td>PKFY-P25VBM-E</td>
<td>1</td>
<td>1</td>
<td>926*</td>
<td>926</td>
</tr>
<tr>
<td>PKFY-P40VHM-E</td>
<td>1</td>
<td>1</td>
<td>979*</td>
<td>979</td>
</tr>
<tr>
<td>CMY-Y62-G-E</td>
<td>7</td>
<td>1</td>
<td>100*</td>
<td>500</td>
</tr>
</tbody>
</table>

* Según conversación con departamento comercial de Mitsubishi Electric el precio indicado hace referencia a PVR, por lo tanto no se aplica IVA ni descuento comercial (ronda el 45% en esta gama). Por esta razón siguiendo la recomendación del fabricante se considera los precios PVR sin aplicar descuentos ni IVA, y se considera que este importe incluye de una manera aproximada la instalación.

Total PVP (EUR) 13.721
6.3 PRESUPUESTO SISTEMA VENTILACIÓN

Presupuesto

<table>
<thead>
<tr>
<th>Fecha de presupuesto</th>
<th>dd.mm.aaaa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Válido hasta</td>
<td>dd.mm.aaaa</td>
</tr>
<tr>
<td>Total (EUR)</td>
<td>3.497,15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Cantidad</th>
<th>Unidad</th>
<th>Precio</th>
<th>Importe</th>
</tr>
</thead>
<tbody>
<tr>
<td>RIS-400-P-S-D</td>
<td>1</td>
<td>1</td>
<td>2.347,15</td>
<td>2.347,15</td>
</tr>
<tr>
<td>Conductos*</td>
<td>50</td>
<td>1</td>
<td>7</td>
<td>350</td>
</tr>
<tr>
<td>Instalación**</td>
<td>1</td>
<td>1</td>
<td>800</td>
<td>800</td>
</tr>
</tbody>
</table>

** Indicar que se ha medido una aproximación de la necesidad de 50 metros de conducto para la instalación de ventilación. El precio se ha extraído un comercial de Salvador Escoda que ha dado una aproximación según los diámetros necesarios.
* La instalación se ha contado cómo un 30% del precio del material.

Total PVP (EUR) 3.497,15

Indicar que en el Anexo 3 se podrán consultar los precios de cada equipo desde el catálogo de su fabricante.
7. COMPARACIÓN ECONÓMICA Y MEDIOAMBIENTAL

En este capítulo se realizará una comparativa del sistema que había anteriormente en la vivienda, un sistema convencional.

Para realizar dicha comparación dividiremos el cálculo entre los sistemas de refrigeración y los sistemas de calefacción. Internamente también los dividiremos entre la opción "renovable" y la opción "convencional". La opción renovable será la opción nueva que plantemos para el proyecto más eficiente y limpia, y por otro lado la opción convencional será la opción que tiene actualmente la vivienda.

- Para refrigeración:
 - Sistema renovable:
 El sistema destinado para refrigeración en este caso está compuesto por una unidad exterior bomba de calor de caudal variable situada en la azotea con diferentes unidades interiores de pared en cada local a climatizar.
 - Sistema convencional:
 El sistema destinado para refrigeración está compuesto por 2 sistemas 1x1 de conductos. Las dos unidades exteriores bombas de calor situadas en la azotea, y una unidad de conductos de 7kW situada en el baño de la planta primera y otra unidad de conductos de 5kW situada en la planta baja.

- Para calefacción y ACS:
 - Sistema renovable:
 En este caso se utilizará una fuente solar con apoyo de caldera de biomasa para ACS, y para la demanda de calefacción un sistema de suelo radiante alimentado por la caldera de biomasa de pellets.
 - Sistema convencional:
 Para calefacción se utiliza un sistema de radiadores con una caldera como productora que también se utiliza para el agua caliente sanitaria. Dicha caldera es de 20 kW de gas natural.
7.1 COMPARACIÓN SISTEMAS CALEFACCIÓN Y ACS

7.1.1 Cálculo demanda energética

- Sistema renovable:

Se estimará el mismo periodo de utilización para los dos sistemas. En este caso se estimará el uso de la calefacción de noviembre a marzo, con 8 horas diarias. Por lo tanto se tendrá en cuenta 150 días con una intermitencia de uso del 80%.

Para el consumo total de la caldera en calefacción deberemos tener en cuenta la potencia de la caldera y el tiempo de uso anual con la intermitencia indicada mediante la siguientes expresiones:

\[
\text{Deman. Calefacción} = P_{\text{CAL}} \cdot H_{\text{DIA}} \cdot D_{\text{AÑO}} \cdot I
\]

Donde:
- \(P_{\text{CAL}}\): Potencia de la caldera
- \(H_{\text{DIA}}\): Horas al día en funcionamiento
- \(D_{\text{AÑO}}\): Días anuales funcionando
- \(I\): Intermitencia de uso (80%)

\[
\text{Deman. Calefacción} = 18 \cdot 8 \cdot 150 \cdot 0,8 = 17.200 \text{ kWh/año}
\]

Mediante la siguiente expresión calcularemos la demanda anual para el ACS:

\[
\text{Deman. ACS} = \text{Deman. DÍA} \cdot D_{\text{AÑO}} \cdot C_p \cdot \Delta T
\]

Donde:
- \(\text{Deman. DÍA}\): Demanda diaria (l/día)
- \(D_{\text{AÑO}}\): Días anuales funcionando
- \(C_p\): Calor específico \(\frac{\text{kcal}}{Kg\cdot^\circ C}\)
- \(\Delta T\): Incremento de temperatura (\(^\circ C\))

\[
\text{Deman. ACS} = 112 \cdot 365 \cdot 1 \cdot (60 - 10) = 2.044.000 \frac{\text{kcal}}{\text{año}} \cdot \frac{1\text{kW-h}}{860\text{Kcal}} = 2.376,74 \frac{\text{kW-h}}{\text{año}}
\]
Comparación de diferentes sistemas aplicados a un edificio residencial
Jordi Marcé Cortés

Como se ha calculado anteriormente deberemos aplicar el porcentaje de energía renovable (Solar) que tendremos para el consumo de ACS que es un 66%. Por lo tanto, por parte de la caldera tendremos la siguiente demanda para ACS:

\[
2.376,74 \, \frac{\text{kW} \cdot \text{h}}{\text{año}} \times 0,66 = 1568,65 \, \frac{\text{kW} \cdot \text{h}}{\text{año}}
\]

Por lo tanto la demanda total por parte de la caldera que dará servicio tanto a ACS como a calefacción será la suma de las demandas calculadas anteriormente.

Demanda total = Demanda Calefacción + Demanda ACS

Demanda total = 17.200 \, \frac{\text{kW} \cdot \text{h}}{\text{año}} + 1.568,65 \, \frac{\text{kW} \cdot \text{h}}{\text{año}} = 18.768,65 \, \frac{\text{kW} \cdot \text{h}}{\text{año}}

Por último para poder saber el consumo total anual para calefacción y ACS, debemos aplicar el rendimiento de la caldera a la demanda total con la siguiente expresión:

\[
\text{Consumo total} = \frac{\text{Demanda total}}{\text{Rendimiento caldera}} = \frac{18.768,65 \, \frac{\text{kW} \cdot \text{h}}{\text{año}}}{0,90} = 20.854,1 \, \frac{\text{kW} \cdot \text{h}}{\text{año}}
\]

- Sistema convencional:

Como se ha indicado, para este caso se tendrán en cuenta las mismas condiciones que en el sistema renovable. Es decir, se considera que la calefacción tendrá un uso de 150 días, desde noviembre a marzo, 8 horas diarias y una intermitencia de uso del 80%.

Se realizan los mismos cálculos que anteriormente para obtener los consumos totales, pero en este caso la caldera de la que se dispone es de 25 kW.

Para el consumo total de la caldera en calefacción deberemos tener en cuenta la potencia de la caldera y el tiempo de uso anual con la intermitencia indicada mediante la siguientes expresiones:

\[
\text{Deman. Calefacción} = P_{\text{CAL}} \times H_{\text{DÍA}} \times D_{\text{AÑO}} \times I
\]

Donde:
- \(P_{\text{CAL}} \): Potencia de la caldera
- \(H_{\text{DÍA}} \): Horas al día en funcionamiento
- \(D_{\text{AÑO}} \): Días anuales funcionando
- \(I \): Intermitencia de uso (80%)
Comparación de diferentes sistemas aplicados a un edificio residencial
Jordi Marcé Cortés

Deman. Calefacción = 25 * 8 * 150 * 0,8 = 24.000 kWh/año

Mediante la siguiente expresión calcularemos la demanda anual para el ACS:

\[\text{Deman. ACS} = \text{Deman. DÍA} \times \text{D AÑO} \times \text{Cp} \times \Delta T \]

Donde:

- Deman. DÍA: Demanda diaria (l/día)
- D AÑO: Días anuales funcionando
- Cp: Calor específico (kcal/kg°C)
- \(\Delta T \): Incremento de temperatura (ºC)

Deman. ACS = 112 * 365 * 1 * (60 – 10) = 2.044.000 kcal/año

En este caso no tenemos ningún tipo de aporte de energía renovable, por lo tanto únicamente se necesita encontrar la demanda total y aplicar el rendimiento de la caldera.

\[\text{Demanda total} = \text{Deman. Calefacción} + \text{Deman. ACS} \]

\[\text{Demanda total} = 24.000 \text{ kWh/año} + 2.376,74 \text{ kWh/año} = 26.376,74 \text{ kWh/año} \]

\[\text{Consumo energético total} = \frac{\text{Demanda total}}{\text{Rendimiento caldera}} = \frac{26.376,74 \text{ kWh/año}}{0,85} = 31.031,14 \text{ kWh/año} \]

7.1.2 Cálculo consumo de combustible

- Sistema renovable:

Los cálculos anteriores han sido realizados para poder comprobar la repercusión en el coste del combustible. Para calcular dicho coste se realizará mediante la siguiente expresión:

\[Q_{\text{combustible}} = \frac{\text{CE}}{\text{PCI}} \]

Donde,

- CE: Consumo energético anual (kWh/año)
- PCI: Poder calorífico inferior (kW·h/kg)
Comparación de diferentes sistemas aplicados a un edificio residencial
Jordi Marcé Cortés

Q= kg de combustible anual

En este caso se utilizará una caldera de pellets por lo tanto debemos obtener el PCI de pellets como combustible y aplicar la expresión anterior.

\[
Q_{\text{combustible}} = \frac{20.854.1 \text{ kW·h año}^{-1}}{5.01 \text{ kW·h/kg}} = 4.162.5 \text{ Kg}
\]

- Sistema convencional:

Para el sistema convencional se procederá de la misma manera que para el renovable. Debemos obtener el PCI del gas natural para poder obtener la cantidad de combustible anual para la demanda energética (en ambos casos los datos de PCI se han obtenido de la IDAE).

\[
Q_{\text{combustible}} = \frac{CE}{PCI}
\]

Donde,

CE: Consumo energético anual (kW·h año^{-1})

PCI: Poder calorífico inferior (kW·h/kg)

Q= kg de combustible anual

\[
Q_{\text{combustible}} = \frac{31.031.14 \text{ kW·h año}^{-1}}{12.77 \text{ kW·h/kg}} = 2.430 \text{ Kg}
\]

En este caso para poder realizar el cálculo económico posterior, debemos calcular la cantidad de combustible en litros:

\[
2.430 \text{ Kg} \times 1 \text{ L/} 0,45\text{kg} = 5.400\text{L}
\]

7.1.3 Cálculo consumo económico

- Sistema renovable:

Para el sistema renovable necesitaremos saber el precio del cada Kg de pellets, el cual es 0,167€/kg.

Precio total anual = 0,167 €/Kg * 4.162,5 = 695,2 €

- Sistema convencional:

En este caso necesitaremos saber el precio por cada litro de gas natural, el cual es
Comparación de diferentes sistemas aplicados a un edificio residencial
Jordi Marcé Cortés

0,38€/l.

Precio total anual = 0,38 €/Kg * 5.400 = 2.052 €

El gasto económico se reduce un 66,1%
- Comparación:

Para realizar la comparación económica entre los diferentes sistemas se ejecutará desde 3 puntos distintos:

- Consumo.

En este punto únicamente compararemos el coste del combustible anual para poder ver la diferencia total después de 10 años. A continuación se indica el gráfico representativo de dicha comparación:

Como vemos únicamente fijándonos en el consumo del combustible a utilizar, después de 10 años tendremos un ahorro total de aproximadamente 14.000€.

- Consumo + material de la opción renovable.

En este caso se quiere representar la opción de hacer el cambio de sistema contando el precio de todos los elementos materiales que se necesitarían y poder ver cuántos años se tardaría en amortizar dicha inversión. A continuación se indica el
Comparación de diferentes sistemas aplicados a un edificio residencial
Jordi Marcé Cortés

gráfico representativo de dicha comparación:

Ilustración 60. Gráfico de comparación consumos y material

Como se puede ver en el gráfico, entre el noveno y el décimo año se recupera la inversión material inicial.

- Consumo + material y instalación de sistema renovable.

En este sistema se tiene en cuenta tanto el precio del material de todo el sistema de ACS y calefacción y a la vez una aproximación, como se indica en el presupuesto, del precio de la instalación de la caldera de biomasa y del suelo radiante, de esta manera se podrá ver en el caso de tener que realizar toda la instalación nueva, los años que se tardaría en amortizar la instalación simplemente con los consumos del sistema convencional. A continuación se indica el gráfico representativo de dicha comparación:
Como se puede ver en el gráfico anterior a partir del año 13 la instalación quedaría totalmente amortizada.

7.1.4 Comparación del impacto ambiental

Cada día se tiene más en cuenta que una máquina sea sostenible, y algo que antes nunca se miraba hoy en día cada vez se mira más, las emisiones de CO2.

En este caso el sistema que más influirá será el sistema de calefacción, anteriormente para la caldera de gas natural y posteriormente a la caldera de pellets.

El gas que influye más directamente al cambio climático es el CO2, y en este caso vamos a realizar un estudio de las emisiones que se producen con el sistema convencional (caldera de gas natural), frente a las que se producen mediante el sistema renovable (biomasa).

Se han utilizado los datos de CO2 por kW·h producido de la IDAE, tanto para gas natural como biomasa, que se pueden ver a continuación:
Comparación de diferentes sistemas aplicados a un edificio residencial
Jordi Marcé Cortés

Tabla 61. Factores emisiones CO2

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Valores Propuestos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricidad convencional Nacional</td>
<td>(*) 0,399</td>
</tr>
<tr>
<td>Electricidad Nacional de origen 100% renovable</td>
<td>(**) 0</td>
</tr>
<tr>
<td>Electricidad Nacional de origen 100% no renovable</td>
<td>(**) 0,521</td>
</tr>
<tr>
<td>Electricidad convencional peninsular</td>
<td>(**) 0,372</td>
</tr>
<tr>
<td>Electricidad convencional Extra peninsular</td>
<td>(**) 0,857</td>
</tr>
<tr>
<td>Electricidad convencional Baleares</td>
<td>(**) 0,960</td>
</tr>
<tr>
<td>Electricidad convencional Canarias</td>
<td>(**) 0,811</td>
</tr>
<tr>
<td>Electricidad convencional Ceuta y Melilla</td>
<td>(**) 0,732</td>
</tr>
<tr>
<td>Gasóleo calefacción</td>
<td>(***) 0,311</td>
</tr>
<tr>
<td>GLP</td>
<td>(***) 0,254</td>
</tr>
<tr>
<td>Gas natural</td>
<td>(***) 0,252</td>
</tr>
<tr>
<td>Carbón</td>
<td>(***) 0,472</td>
</tr>
<tr>
<td>Biomasa</td>
<td>(***) 0,018</td>
</tr>
<tr>
<td>Biomasa densificada (pelets)</td>
<td>(***) 0,018</td>
</tr>
</tbody>
</table>

(*) Valor obtenido de la Propuesta de Documento Reconocido: Valores aprobados en Comisión Permanente de Certificación Energética de Edificios de 27 de Junio de 2013
(***) Según cálculo del apartado 5 de este documento.
(****) Basado en el informe “Well to tank report, version 4.0” del Joint Research Intitute.

Aplicando las demandas energéticas finales a la siguiente expresión obtenemos los kg totales de CO2 en cada caso.

\[\text{Kg CO2} = \text{Factor emisiones CO2} \times \text{Demanda energética total} \]

- **Sistema convencional:**

\[\text{Kg CO2} = 0,252 \times 31.031,14 \text{ kWh} \text{ año} = 7819,8 \text{ Kg} \]

- **Sistema renovable:**

\[\text{Kg CO2} = 0,018 \times 20.854,1 \text{ kWh} \text{ año} = 375,4 \text{ Kg} \]

La razón por la que la biomasa produce tan poco CO2 en su combustión es porque se tiene en cuenta todo el ciclo de vida, es decir, la cantidad de CO2 que produce 1 kg de leña en su combustión, ha sido absorbida anteriormente para realizar la fotosíntesis. El valor que se indica es realmente por producciones indirectas como el
Comparación de diferentes sistemas aplicados a un edificio residencial
Jordi Marcé Cortés

transporte.

A continuación se indica una gráfica representativa de la diferencia de producción de CO₂ entre los dos sistemas:

Ilustración 62. kg CO₂/año
7.2 Comparación de sistemas refrigeración

En este capítulo se realizará una comparación entre el sistema convencional actual de la vivienda y el sistema renovable a implantar en la rehabilitación, de la misma manera que se ha realizado anteriormente en los sistemas para calefacción.

7.2.1 Cálculo consumo eléctrico

- Sistema renovable:

Para realizar el cálculo de consumo anual en refrigeración, es más complejo que para caldera, ya que la bomba de calor puede funcionar tanto en refrigeración como en calefacción. En cada caso tiene un rendimiento diferente, para refrigeración el coeficiente EER marca su rendimiento y para calefacción mediante el COP. En nuestro caso está pensado para únicamente tener la unidad en funcionamiento para el modo refrigeración por lo tanto para realizar el cálculo de consumo de electricidad necesitaremos el valor de la potencia de alimentación "Power Input", en el cual ya se tiene en cuenta el rendimiento de la unidad. Las especificaciones de la unidad exterior PUMY-P125VKM2, se pueden ver en la tabla que se muestra a continuación:

<table>
<thead>
<tr>
<th>Tabla 62. Especificaciones PUMY.P125</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo</td>
</tr>
<tr>
<td>Potencia de entrada (kW)</td>
</tr>
<tr>
<td>Potencia de salida (kW)</td>
</tr>
<tr>
<td>Rendimiento EER</td>
</tr>
<tr>
<td>Consumo eléctrico (kW)</td>
</tr>
<tr>
<td>COP</td>
</tr>
</tbody>
</table>

Para el sistema de refrigeración, de la misma manera que en calefacción consideraremos su uso durante 5 meses, (15 Mayo a 15 Octubre), por lo tanto 150 días.

La unidad seleccionada tiene un compresor inverter, eso significa que el consumo será más reducido que uno convencional porque tiene un regulador de frecuencia. En
equipos de una misma potencia se estima que dicha reducción está entre un 25% y un 50%. En nuestro caso contaremos una reducción del 30%. Por otro lado también tenemos la diferencia que este sistema es VRF, por lo tanto en el caso de que simplemente estén en funcionamiento 3 dormitorios, haciendo referencia a las personas de la vivienda, la unidad no funcionará al 100% del rendimiento.

Por ello se ha realizado una mediana de las combinaciones de locales en uso más posibles en la vivienda estudiada. Este cálculo se realiza para saber qué porcentaje de potencia de alimentación será más correcta para un uso real de la vivienda.

A continuación se muestra la tabla con la potencia media estimada:

<table>
<thead>
<tr>
<th>Tipos</th>
<th>Local 1</th>
<th>Local 2</th>
<th>Local 3</th>
<th>Local 4</th>
<th>Capacidad total</th>
<th>Potencia total</th>
<th>Potencia media</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combinación 1</td>
<td>Dorm. 1</td>
<td>Dorm. 2</td>
<td>Dorm. 3</td>
<td>-</td>
<td>15+15+15</td>
<td>5,1</td>
<td></td>
</tr>
<tr>
<td>Combinación 2</td>
<td>Despacho</td>
<td>Sala estudio</td>
<td>Salón-cocina</td>
<td>-</td>
<td>25+15+40</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Combinación 3</td>
<td>Salón-Cocina</td>
<td>Dorm. 2</td>
<td>Dorm. 3</td>
<td>-</td>
<td>40+15+15</td>
<td>7,9</td>
<td>7,8</td>
</tr>
<tr>
<td>Combinación 4</td>
<td>Dorm. 1</td>
<td>Dorm. 2</td>
<td>Dorm. 3</td>
<td>Despacho</td>
<td>15+15+15+25</td>
<td>7,9</td>
<td></td>
</tr>
<tr>
<td>Combinación 5</td>
<td>Salón-Cocina</td>
<td>Despacho</td>
<td>Sala estudio</td>
<td>-</td>
<td>40+25+15</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 63. Potencia media de utilización

Por lo tanto se estima una potencia media de 7,8kW de demanda, mediante la cual podremos saber la potencia de alimentación a utilizar con la siguiente gráfica extraída del manual técnico de la unidad exterior:
En nuestro caso considerando aproximadamente 8kW de demanda tendremos un factor de "power input" de 0,5. Por lo tanto del Input marcado por el fabricante deberemos aplicar un 30% de reducción por ser un compresor inverter, ya que se reducirá las arrancadas y paradas y por otro lado, por la cantidad de unidades interiores que consideraremos un 50%.

Por lo tanto consideraremos el siguiente input:

\[
\text{Power Input} = 3,46 \text{kW} \times 0,5 \times 0,7 = 1,21 \text{kW}
\]

Una vez hemos obtenido el valor de kW por hora podemos aplicar la expresión para obtener el valor de los kW consumidos al año:

\[
\text{Consumo Eléct.} = P_{\text{inp.}} \times H_{\text{día}} \times D_{\text{año}}
\]

Consumo Eléct. = 1,21 \times 8 \times 150 = 1.452 \text{kWh/año}

Donde:

- \(P_{\text{inp.}}\): Potencia de la caldera
- \(H_{\text{día}}\): Horas al día en funcionamiento
- \(D_{\text{año}}\): Días anuales funcionando
Comparación de diferentes sistemas aplicados a un edificio residencial
Jordi Marcé Cortés

- Sistema convencional:

Se considera las mismas condiciones que anteriormente para el uso de las unidades. Estará funcionando 5 meses del 15 de Mayo al 15 de Octubre, 8 horas diarias.
En este caso como se ha comentado anteriormente tenemos 2 equipos 1x1 de 7kW cada uno con un "Power input" de 2,7kW. En este caso los compresores que no son inverter si que consumen el 100% del "Power input", ya que no tienen regulador de frecuencia (todo o nada).
De la misma manera que anteriormente vamos a plantear la siguiente combinación de uso:

- Combinación 1: Las habitaciones que estén en uso serán de la misma planta, es decir, únicamente tendremos en unos uno de los equipos. Este caso será el más habitual y se considerará para el 60% del tiempo, por lo tanto 90 días.

- Combinación 2: Por otro lado, podrá haber momentos puntuales que se enciendan las dos unidades, por ejemplo si está en funcionamiento algunas habitaciones y a la vez el comedor. Consideraremos esta combinación para solo el 40% del tiempo considerado. Por lo tanto 60 días.

Consumo eléctrico combinación 1:

\[\text{Consumo Eléct.} = P_{\text{INP.}} \times H_{\text{DÍA}} \times D_{\text{AÑO}} \]
\[\text{Consumo Eléct.} = 2,7 \times 8 \times 90 = 1.944 \text{ kWh/año} \]

Donde:
P_{\text{INP.}}: Potencia de alimentación de la bomba de calor
H_{\text{DÍA}}: Horas al día en funcionamiento
D_{\text{AÑO}}: Días anuales funcionando

Consumo eléctrico combinación 2:

\[\text{Consumo Eléct.} = P_{\text{INP.}} \times H_{\text{DÍA}} \times D_{\text{AÑO}} \]
\[\text{Consumo Eléct.} = (2,7+2,7) \times 8 \times 60 = 2.592 \text{ kWh/año} \]

Donde:
P_{\text{INP.}}: Potencia de alimentación de la bomba de calor
H_{\text{DÍA}}: Horas al día en funcionamiento
D_{\text{AÑO}}: Días anuales funcionando
- Consumo total anual:

Consumo Eléct. = 2.592 + 1.944 = 4.536 kWh/año

7.2.2 Cálculo consumo económico

Se ha tenido en cuenta el mismo precio de kWh, seleccionando la misma tarifa de Endesa que tiene un precio de 0,148€/kWh.

- Consumo anual opción renovable:

Precio anual = Precio (€/kWh) * Consumo \(\frac{\text{kW-h}}{\text{año}}\)

Precio anual = 0,148€/kWh * 1.452 \(\frac{\text{kW-h}}{\text{año}}\) = 214,9€/año

- Consumo anual opción convencional:

Precio anual = Precio (€/kWh) * Consumo \(\frac{\text{kW-h}}{\text{año}}\)

Precio anual = 0,148€/kWh * 4536 \(\frac{\text{kW-h}}{\text{año}}\) = 671,33€/año

Por lo tanto desde el punto de vista de consumo de electricidad se ha conseguido reducir el coste anual un 68%, 456,43€.

- Comparación coste económico

- Consumos:

En este punto se realizará una comparación de costes del consumo económico entre el sistema convencional y el sistema renovable.

De esta manera se podrá ver el efecto de los cálculos anteriores en un periodo de tiempo de 10 años.
Podemos ver que el consumo del sistema convencional será 3 veces más grande y después de 10 años significará un ahorro de energía importante.

- Consumo + material e instalación de la opción renovable.

En este punto se realizará una comparación entre el coste económico anual del sistema convencional y el coste económico acumulado considerando el material y la instalación del nuevo sistema renovable.
Comparación de diferentes sistemas aplicados a un edificio residencial
Jordi Marcé Cortés

En este gráfico podemos ver que a diferencia del sistema de calefacción, después de 10 años solo se habrá recuperado la mitad de la inversión. Pero como se ha indicado en ocasiones anteriores, la finalidad de instalar el sistema VRF para refrigeración es el gran aumento de confort, la facilidad de instalación y la reducción de consumo eléctrico.

7.2.3 Comparación del impacto mediambiental

A continuación se efectúa el mismo estudio para los sistemas de refrigeración, se realizará mediante la demanda de consumo eléctrico y su correspondiente contaminación de CO2 según los datos de IDAE.

En este caso mediante el valor de energía eléctrica, como vemos será directamente proporcional al consumo.

- Sistema convencional:

\[
4536 \text{ kWh/año} \times 0,399 \text{kg CO2/ Kwh} = 1829,9 \text{kg CO2}
\]

- Sistema renovable:

\[
1452 \text{ kWh/año} \times 0,399 \text{kg CO2/ Kwh} = 579,35 \text{kg CO2}
\]

A continuación se indica una gráfica representativa de la comparación entre el sistema convencional y el renovable. En esta gráfica podemos ver la cantidad de CO2 que genera cada año los diferentes sistemas. Esta generación de CO2 será directamente proporcional al consumo del electricidad anual.

Ilustración 66. Comparación Kg CO2/año
CONCLUSIONES

En este capítulo se realizarán las conclusiones extraídas después de la realización del proyecto, teniendo en cuenta los objetivos establecidos en el arranque de su realización.

El objetivo principal de este proyecto era diseñar una nueva instalación de calefacción, refrigeración y ACS para una vivienda de más de 20 años de manera correcta respetando las especificaciones de la normativa y con el claro objetivo de mejorar la eficiencia y el confort de los residentes consiguiendo una aportación de energía renovable.

Durante el inicio del proyecto se estudiaron todas las posibles opciones para llevar a cabo este objetivo, y se escogió la opción correcta para el tipo de vivienda que se ha estudiado. Dado este punto, se debían cumplir ciertos objetivos específicos para poder conseguir el objetivo principal.

La evaluación teórica de diferentes sistemas renovables y no renovables de calefacción y refrigeración se ejecutó dando los primeros datos teóricos totalmente necesarios para el resto del proyecto.

El diseño de la vivienda e instalación antigua con el programa Cype Ingenieros se completó con éxito y fue una labor que ayudó posteriormente a visualizar la estructura de la vivienda y la distribución de la instalación y a la vez para observar analíticamente la mejora de la rehabilitación de la envolvente.

El cálculo de cargas térmicas de cada habitación a climatizar fue una de las partes más laboriosas del proyecto ya que influyen diferentes elementos estructurales con diferentes componentes que modifican la transmitancia para el cálculo final de cargas.

Una vez se consiguió el cálculo de cargas térmicas para cada habitación se pudo proceder al diseño de las diferentes instalaciones. En este punto se prestó mucha atención en seguir las especificaciones marcadas por la normativa, lo cual ayudó a realizar este dimensionado de manera correcta.

Posteriormente, una vez se había obtenido las especificaciones que debería tener cada elemento se realizó la asignación, donde se prestó mucha atención en el fabricante a elegir.

Como se puede comprobar en todo momento se seleccionaron fabricantes de máxima fiabilidad como pueden ser Baxi de Roca para los elementos de calefacción y ACS y Mitsubishi Electric para los elementos de aire acondicionado entre otros.
La última parte del proyecto, posiblemente la más importante del proyecto para extraer conclusiones, consistía en realizar el presupuesto de los elementos seleccionados para las instalaciones y realizar un estudio comparativo económico y medioambiental de los sistemas antiguos y los nuevos.

En la comparación económica para calefacción se confirmó lo que se había planteado como objetivo que es una mejora del sistema convencional tanto económicamente como medioambientalmente, ya que se demuestra en el tiempo que se tarda en recuperar la inversión y la gran diferencia de producción de CO2 entre los dos sistemas.

En la comparación para los sistemas de refrigeración no se consigue una mejora económica (al menos a corto plazo) ya que no se recupera la inversión, pero si que se consigue una reducción de la producción de CO2 sustancial.

En resumen creo que se han conseguido los objetivos propuestos de manera satisfactoria, ya que se ha conseguido diseñar un sistema alternativo a un sistema convencional, con aporte renovable y que se demuestra su viabilidad económica y la reducción de impacto medioambiental, algo muy importante en nuestro presente.
AGRADECIMIENTOS

En primer lugar, quisiera agradecer al profesor David Pujol su constante y rápida ayuda y asesoramiento durante este proyecto.

También quiero mostrar gratitud hacia el apoyo que me han brindado mis amigos durante este tiempo, conscientes de la importancia que este proyecto supone para mí.

Por último, agradecer el apoyo psicológico que he tenido por parte de mi familia, no solo durante esta última etapa elaborando el proyecto sino durante los últimos años cursando este grado, ya que sin su ayuda el poder presentar este proyecto actualmente, sería imposible.
BIBLIOGRAFÍA

- **IDAE.** Instituto para la diversificación y ahorro de la energía. *Guía técnica instalaciones de climatización por agua, 2008.*

- **RITE.** Reglamento de Instalaciones Térmicas en Edificios.

- **Mitsubishi Electric.** Manuales técnicos y "Databook". Acceso online: http://doc.mitsubishielectric.es/lodotec/lodotec_clientes_beta.asp

- **Carrier.** Historia del aire acondicionado. Acceso online: www.carrier.es

- **Bhatia, A.** "Design Options for HVAC Distribution System", 2012.

- **Lautour, Miguel.** Alder ventilación. *Ventilación de viviendas.*

- **Atecy.** Asociación Técnica Española de Climatización y refrigeración. Fundamentos de climatización para instaladores e ingenieros recién titulados.