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Dancing sprites: detailed analysis of two case studies
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Abstract. During the night of October 29-30, 2013, a lowhtigideo camera installed at Pic du
Midi (2877 m) in the Pyrénées, recorded TLEs almvery active storm over the Mediterranean
Sea. The minimum cloud top temperature reached>-a8*%~1600 UTC while its cloud to ground
(CG) flash rate exceeded 30 fl MinSome sprite eventsave long duratiotast-ere-sesend-or
mereand resemble to dancing sprites. We analyze mldbe temporal evolution and estimated
location of sprite elements fdwo series of sprite sequenced=hem as well as the cloud
structure, the lightning activity, the electriclfieadiated in a broad range of low frequencies and
the current moment waveform of the lightning stiol@ In eaclseries eventsuccessive sprite
elementssequencegeflect the occurrence time and location of indal positive lightning
strokes across the stratiform region. (ii) Tlh@ger time-delayed (> 20 ms) sprite elements
correspond tohe lowerimpulsive charge moment changes (iCMC) of the iastroke(< 200 C
km) and they are shifted few tens of kilometres frémirt SP+CG stroke. However, both short
and long time-delayed spritdementsalso occur after strokes that produce a large iCM@
that arefollowed by a continuing curren(iii) The long time-delayed sprite elements proei
during the continuing current correspond to suigable current moment waveformhey occur
sometimes at an altitude apparently lower thanptieeious short time-delayed sprite elements,

possibly because of the lowered altitude of theosmhmere potential. (iv) The largest and
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brightest sprite elements produce significant cursegnatures, visible when their delay is not
too short (3-5 ms).

1. Introduction

Sprites are luminous discharges observed abovelénstorms and they are classified as one
specific type of transient luminous events (TLHE)cgl the beginning of 1990s when they were
incidentally discoveredFranz et al, 1990). Thereafter, observational campaigns in Ui
provided a wealth of information to understand tinelerlying physical processeSdntman and
Wescott 1993; Lyons 1996; Sentman et al.1995]. The turn of the millenium marked the
observation of sprites almost anywhere in the wpvldughan et a).1992;Boeck et al. 1995;
Fukunishi et al1999;Neubert et al.2001;Su et al.2002;Pinto et al, 2004;Yang et al. 2008,
Chen et al.2008].

Sprite discharges span over an altitude range #48390 km Sentman and Wescpit993;
McHarg et al, 2002;Soula et al. 2014] and they have various shapes that classfietes in
several types, e.g., columnar, carrot, jellyfigige, Lyons et al.2003;Williams 2001;Neubert
et al, 2008; Bor, 2013]. Telescopic imaging revealed that spritageha fine structure of
streamersGerken et al. 2000], and high-speed camera recordings showedekielopment of
complex forms in detail §tanley et a). 1999; Moudry et al, 2003; McHarg et al, 2007;
Stenbaek-Nielsen and McHarg008;Li and Cummer2009;Montanya et al.2010; Stenbaek-
Nielsen et al.2010]. Sprites can also horizontally extend mareral tens of km in the form of
sprite clusters§entman et gl1995;Fullekrug et al, 2001,Soula et al.2014] and they can even
occur over more than ~100 km in the form of segaémtiminous emissions that are called
dancing or jumping spriteS\[inckler et al. 1996;Lyons 1996;Fullekrug et al, 2013al.u et al,
2013;Yang et al. 2015]. These sprite elements that seem to “dance” abdsege area of the
storm, are still enigmatic according lta et al.(2013).These authorsbservedhatthe several
caseof dancing spritesre associated with a single lightning flashd notedhe dancing sprites
could have been produceither by distinct strokes of the flash, by a single lstrahrough a
series of current surges superposed on an int@msmging current, or by both.

Most of the time, sprites occur above stratiforgioas of Mesoscale Convective Systems
(MCS), shortly after parent positive cloud-to-grduisP+CG) strokes that lower a large amount
of charge to the groundBpccippio et al. 1995;Lyons 1996;S&o Sabbas et al2003; 2010;
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Cummer and Lyon2005;Soula et al. 2009]. The rate of sprite production can reacrersd
hundreds of events for a unique storm activity wtihensize and the duration of the storm system
are large llyons 1994;S&ao Sabbas et aR010]. The necessary condition for a storm talpoe
large rates of sprites is a strong charge genergbiossibly related to the convective vigour but
also to favourable conditions of charge generadiom to large concentrations of aerosol particles
within the troposphere as suggested byns et al[1998] andSao Sabbas et §r010].

After the SP+CG stroke, the sprite discharge dep#ehs a streamer, a result of the strong
transient electrostatic field that exceeds thestimokl for dielectric breakdown in the middle
atmosphere, generally around 70 kRagko et al.1997]. The time delay between the SP+CG
stroke and the sprite ranges from a few millisesoteadseveral tens of millisecondBdll et al,
1998;Cummer and Lyon005;van der Velde et g12006]. It depends on the characteristics of
the SP+CG stroke, especially in terms of charge emtntchange (CMC), impulsive CMC
(iICMC) and current waveformsSpula et al. 2015]. It can reach a few tens of ms after a long
lightning continuing current following the strok€Jymmer and Fullekrug2001]. Thanks to a
triangulation of several sprites and a three-dinwerad mapping of the parent lightning flashes,
Lu et al.[2013] showed that short time delayed spritesq48) were less horizontally displaced
(typically <30 km) from the ground stroke than laimge delayed sprites. They showed also that
for any time delay the sprite elements were in geyuatial correspondence with negative stepped
leaders detected during the prior 100 ms interval.

Most of the SP+CG flashes start close to the cdiweecores of the storm and horizontally
extend into stratiform region that consists of salvéayers of alternating charge polarity at
different altitudes. These flashes are supposefbltow trajectories of charged ice particles
rearward of the storm syster@drey et al. 2005;Ely et al, 2008;van der Velde et gl2010;
2014]. Some of these flashes can be consideredider dightning Mazur et al, 1998;Lang et
al., 2004]. According tdMazur et al.[1998] the spider lightning flashes occur in theatform
region of decaying storms and produce negativeelsagropagating over several tens of
kilometres with a speed of 2-4°1th s*. They also noted that the interferometery useccould
not map this kind of negative leader because skvweemches develop simultaneously. The
spider lightning flashes can have several attacksnenthe ground, with positive and negative
polarity, along their horizontal extentgng et al, 2004;Soula et al. 2010]. In a recent work,

van der Veldeet al. [2014] analysed the bidirectional developtref several flashes associated
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with sprite production. They identified differentones of propagation of the negative leaders
throughout the thundercloud that are associatel aviterent location and timing of the positive
+CG strokes. Thus, the negative leaders may propagia various altitudes with different
velocities and over various distances, while geiregaseveral multiple +CG strokes. However,
SP+CG flashes can also initiate in small convectigls, where they generally occur in the
decaying convective regiongn der Velde et 312010].

This study investigates a long lifetime storm tipadduced a large number of sprites,

including dancing spritelspa feular—bwo-spH te-eventsare-analyzedd i-dddadauysethey-s
te—be—daneing—sprtedhat are not well characterized and studied in thensifie literature.
Section 2 describes the data used in the studyiose8 provides the characteristics of the
thunderstorm and section 4 describesgbguensesonditionsof spriteproductionesaissieasat

the scale of the storm and in detail for teeries ofdancing sprites. Section 5 discusses the

results and section 6 summarizes the main findimgfse conclusions.

2. Data
2.1. Optical observations

The videos used in this study are recorded withamera installed at Pic du Midi
(42.93N; 0.14E; 2877 m), as indicated in Figur@His camera can be oriented to the storm with
a pan-tilt unit that can be remotely controlled tha Internet. The camera is a low-light Watec
902H (minimum illumination of 0.0001 lux) with aefd of view (FOV) of 31° and a high-
resolution charge-coupled device (CCD). It operdtesa triggered mode provided by the

UFOCaptureV2 software _(http://sonotaco.com/softidek.html#ufocv? accessed date) to

capture luminous events with brightness above argihreshold. The video imagery obtained
has a time resolution of 25 frames (or 50 intediattelds) per second, which corresponds to a
time resolution of 20 milliseconds. The images i videos are de-interlaced for the analysis.
The video camera also records GPS-referenced trddrserts the time in each video frame.
Table 1 displays the terms we use in the paperderdo specify the sprite activity at different
scales of time. Event specifies sprite occurratidée scale of a video that lasts 1 or 2 seconds.
Some videos included several groups of sprite elésneéhus we use sequence for successive

sprite fields following a same lightning stroke {ad_u et al.[2013]) and series for a group of
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sequences that are included in the same videoledate associated to successive strokes that
belong (or not) to the same flash.

The azimuth and elevation of the sprite eventsdatermined with the software “Cartes
du Ciel” (SkyCharts) as describedvan der Veldd2008]. The principle of the software is to
overlay known stars on an image from the video enggstating the date, time and place of
observation. The matching of the stars with thosthé image is manually done and empirically.
This method usually works very well when enouglhrsstare visible. For a sprite event, the
azimuths can be determined for each individual elgrnthat constitutes the sprite event. A sprite
is usually much wider than the read-out of the aimwhich varies typically only within
~0.17°. The altitude is estimated by using the aien and the great circle distance, assuming
that the distance of the sprite is the same distdratween the SP+CG stroke and the video
cameraThus, the vertical scale in the fields is deterdifi@ each sequence of sprite elements
that corresponds to a SP+CG strokais method introduces an error estimated for examp
between 7 and 8 km when the distance of the sfpate the camera is around 400 km and the
error on it of 40 km. The value of 40 km for themlacement of the sprite is the average found
by Sao Sabbas et aJ2003]. For short time delayed sprites (< 20 niBjs displacement is
usually lower than 30 km accordinglta et al.[2013].

The delayAt can be only determined as a value interval:
Ate [0;tt—tJwhent>t>1
Ate [th—t; te—t] whent >t

tp, ts, and ¢ are the times of the beginning and the end ofiteefield with sprite luminosity and

the time of the stroke, respectively.

2.2. Lightning detection

Several location systems monitor the lightningHlastivity within the studied area during
the period of the storm analyzed. First, the Euaopkghtning detection network operated by
European Cooperation for Lightning Detection (EUDB)tecords CG flash characteristics such
as the location, polarity, peak current, and theugence times of CG strokeSdula et al
2010; Poelman et aJ.2016]. The sensors of the network use both magu@tection finding
(MDF) and time of arrival (TOA) techniques to deteme the location of CG stroke€@immins

5
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and Murphy 2009]. EUCLID data allows us to identify lightgirflashes with a temporal and
spatial resolution of ~0.5 s and ~10 k@ummins et al.1998]. However, in this study, both
individual strokes and CG flashes can be used,rdompto the requirements of the study. The
detection efficiency (DE) of this network is ~90%eo land and close to the coastline, but in the
present study and according to the storm locati@r the Mediterranean, the DE can be lower
than 90%.

Second, the Lightning Mapping System XDDE operdigdhe Meteorological Service of
Catalonia (SMC) allows monitoring total lightniniC(+ CG) activity in Catalonia (northeastern
Spain) Pineda and Montany&2009]. This system is composed of four VAISALAG®®O0 and
one TLS200 interferometristations that operate as a very high frequency (MHtierferometer
from ~110-118 MHz. Each station determines azimuth@ctions to sections of a lightning
leader by analyzing the phase differences betwatanaa pairs for bursts of VHF pulse trains.
The triangulation of these spherical hyperbolasitesn the 2D locations and occurrence times
of individual VHF sourcesLlojou et al, 2009]. The azimuthal precision of the sensors is
specified as ~0.5° RMS. The IC flash algorithm siffes each VHF source as part of an IC
stroke or, as an isolated IC source (also knowisiagleton”; Williams et al, 1999) according to
the distance and the time interval separating thesch station LS8000 is also equipped with a
low frequency (LF) sensor to detect and locater¢iiern strokes by using TOA/MDF technique,
which enables discrimination between IC and CGhitas The DE for CG flashes estimated from
previous campaigns can be lower than ~80% for tmaih considered in the present study
[Pineda and Montany&009].

2.3. Broadband EM emissions and charge moment elsang

A system located at University of Bath (51.71N;2A8 ~1400 km from the storm location)
records broadband ELF/VLF/LF/MF electromagnetic s\t consists of a metal plate insulated
from the ground to measure the vertical electmtdfi a precise GPS clock for timing the data
acquisition, and an analogue signal conditionind digital data acquisition unit=(illekrug,
2010). This instrument has the capability to recelettric field magnitudes in the frequency
range from approximately ~4 Hz to ~400 kHz with amgling frequency of 1 MHz, an

amplitude resolution of ~38V m™, and a timing accuracy of ~10-20 ns.



184 The current moment waveforms associated with thefl@shes Hu et al, 2002; Cummer
185 and Lyons 2005] are reconstructed from ELF receiver measargs, by using the method
186  presented in detail byllynarczyk et al[2015]. The ELF recordings are performed by théaby
187  ELF station in PolandKulak et al, 2014]. The CMC and the iCMC for a CG lightningoge

188  are estimated by integrating the current momentefeawn during the whole variation due to the
189  lightning stroke and during its first 2 ms, respegly [Cummer and Lyon2005].

190

191  2.4. Cloud structure and characteristics

192 We use the Cloud Top Temperatures (CTT) providedhey Meteosat satellite from the
193  European Organization for the Exploitation of Metdogical Satellites (EUMETSAT). The
194  Meteosat Second Generation (MSG) Spinning Enhakcsitlle and Infrared Imager (SEVIRI)
195 is based on radiometer data in the thermal infrévaad (IR) at ~11-13m. The temperature
196  accuracy is generally better than ~1°. We take adcount the parallax error (estimated to be
197  about 15 km for a cloud top at ~12 km at this lat#) for the Figures that associate the locations

198 of CG strokes with their parent clouds.

199 Observations performed by an AEMET network C-ban&Hz) radar are used in the study.
200 The radar is located in the Balearic Island of Mhaa (39.379°N; 2.785°E; emitter altitude ~111
201 m above mean sea level) and it is operated withranihute cycle producing polar volumes. The
202  configuration allows the retrieval of Doppler rddwinds (DOW) and reflectivity (Z) under
203 different modes of representation: (i) the PlanittwsIndicator (PPIthat shows the distribution
204 of the selected parameter on a constant elevatighe asurface. (i) Constant Altitude PPI
205 (CAPPI) that consists in a horizontal "cut" at &ested altitude, generally used for surveillance
206 and severe storm identification. (iii) Maximum egtivity (MAX) that provides an easy-to-
207 interpret presentation of the echo height and Bitgnin a single display. This product is
208 calculated by first constructing a series of CAPRO span the selectable layer, and then
209 determining the maximum data value for the horiabmirojection. It is especially useful for

210 depicting areas of severe weather.

211 3. Storm development and CG lightning activity
212 On 29 October 2013, a deep low of pressure systémarminimum at 975 hPa located

213 over Northern Europe creates a trough in altitueker drance and North of Spain and organized
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a southeasterly flow that carries unstable air ax@thern Spain and the Mediterranean Sea. A
CAPE value of ~1500 J Kgis reported from a sounding in Mallorca, Balearitands
(39.606°N, 2.707°E) on 29 October at 0000 Wbmero et al[2015] analyzed in detail the
conditions of development of the storm from obskoveal to numerically simulated products.
They showed the convection starts end of morningjrety over the sea between the
northeastern coastline of Spain and the Baledaads in the Mediterranean Sea, resulting from
a progressive upper-level trough and the simultas@alvance of a surface cold front. The storm
organized as a linear structure correspondinggquall line, moves very fast over the Balearic
Islands territory and more to the east at the enthe® day with an indication of a possible
transition into a bow-echo structure.

Figure 1a shows the lightning activity produced thys storm during its eastward
propagation, with the location of two types of Clashes (-CG and +CG) and the SP+CG
strokes detected between 1000 UTC on 29 of Octalper 0400 UTC on 30 of October,
separated in six time windows of three hours. Fglib-c displays the distribution of CTT at
1110 and 1610 UTC, respectively, that are the timfescanning of the area by the infrared
radiometer (10.5/12..um) onboard the MSG satellite. The CG lightning liles detected by
EUCLID during 10 minutes around the time of therseae superimposed in this figure with
white cross for —CG and red plus for +CG. The cative system propagates eastward with an
average velocity of ~40 km ™h Figure 1b-c shows the growth of the cloud system
simultaneously to its propagation during the fédtours of lightning activity. The coldest CTTs
are -68°C and -73°C at 1110 and 1610 UTC, respaygtivThe majority of CG flashes are
located in a restricted area that correspondsaadtdest CTT values, most likely related to the
convective core of the storm. Some +CG flashesseattered in the cloud structure when the
storm system grows significantly in size. The thenatbud encompasses ~350 km x 350 km at
1610 UT and its propagation velocity is estimated30 km R for this first period of the storm
activity.

Figure 2 displays the time series of the -CG an&+@sh rates, J the minimum of the
CTT, A(-40) and A (-65) the areas of the cloud teith a temperature < -40°C and < -65°C,
respectively, to estimate the cloud size and tlze sif the most convective regions. This
evolution exhibits several features that allow aiglistinguish four phases. First, between 1100
and ~1300 UTC the CG flash rate increases rapittiyraaches values around 15-20 fl fhifiy,
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and A(-40) slowly increases, while A(-65) remaiosvl Secondly, between ~1300 and ~1600
UTC, T, decreases up to its lowest value of -73°C, thefl@agh rate increases continuously
(especially the -CG), A(-40) increases more sloamg A(-65) increases markedly to reach its
maximum at 1545 UTC. Then, between ~1600 and ~200CQ, the CG flash continues to
increase and stabilizes around 25-30 fl TiM(-40) increases very slowly and reaches its
maximum value of ~140,000 Knat 1945 UTC, T, becomes less cold, A(-65) fluctuates before
to tend to zero at ~2000 UTC. After 2000 UTC the {&Sh rate decreases; increases, A(-65)
stays close to zero while A(-40) decreases defaliti Thus, the storm storm has a faster growth
during the first hours of its lifetime while ther@hgest convection characterized by A(-65)
occurs between ~1300 and 2000 UTC.

4. Sprite observation
4.1. Overall storm activity

During the night between 1730 UTC and 0300 UT@rge number of videos including
sprite events are recorded by the camera locat®icadu Midi. During a first period between
1745 UTC and 1845 UTC when the storm centers aingitude of ~4°E, the video imagery
provides 22 videos, a video each 2.45 minutes enage. Some of these videos include several
sprite elements associated with distinct SP+CCkefiowhich enables a determination of ~32
stroke/sprite pairs during this first period. Thedluced visibility at Pic du Midi because of
cloudy conditions did not allow performing obsereas between 1842 UTC and 2130 UTC. A
second period of sprite observations that start2180 UTC provides 80 videos of sprite
emissions above the same storm system, until 024D during its eastward displacement. The
rate of sprite videos is especially high betweeA(22nd 2300 UTC with 38 detected sprites
during about one hour i.e. one sprite each 1.5 tminDuring thisperiod segueasemultiple
sprite events are observed, with ~90 stroke/sypaties. Figure 1a displays the location of the
SP+CG strokes detected by the lightning detectystesn EUCLID. The location clearly shows
the two distinct periods of sprite observations amdn though the second period is longer, the
SP+CG strokes appear distributed on a smaller area.

We performed a detailed analysis of the lightr@tjvity associated wittwo cases of
sprite events, each one including several sequeoicesmncing spritesissued from the first

period of observationDuring this period,the convective systemwas relatively close to our
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observational capabilities, i.e. the lightning détn systems, the radar and the video camera.
Figure 3 displays the CTT during two scans of Met@t 1810 UTC and 1825 UTC, two types
of CG flash with white crosses and small red pluses-CG and +CG, respectively, and the
SP+CG strokes with large red pluses, all detectethg 10 minutes around the scan time. The
figure also displays the maximum radar reflectiwitiyhin the cloud system at 1810 UTC (c) and
at 1820 UTC (d), detected with the radar in Makor€he cloud system is growing during the
period of both scans and the coldest temperatuebdasit -71°C. Most CG flashes occur in a
small south-north elongated region of the cloudesyscorresponding to the coldest CTTs. This
region is located between ~4.5°E-5°E of longitudd hetween ~38°E-39.5°E of latitude. The
+CG flashes mainly occur in three groups, while 466 flashes seem to be more uniformly
distributed. The maximum radar reflectivity showsete cores of high reflectivity within the
convective line with values between ~54-60 dBZ. Tiivee cores correspond very well to areas
with high negative and positive flash rates (Fig8eeb). The SP+CG strokes are much more
scattered than other CG flashes in the storm systedeed, out of the 21 SP+CG strokes
included in both figures, 20 are far from the csldeart of the cloud top, i.e. up to 150 km for
the farthest. The radar reflectivity map shows thatSP+CG strokes are located within a region
exhibiting the typical structure of a stratiforngien, as observed in many worksdduze et al.
1990;Carey et al. 2005;Ely et al, 2008;Lang et al, 2010;Soula et al.2009;Lu et al, 2013].
Indeed, the maximum reflectivity is ~36-42 dBZ wiHow horizontal gradient in the main part
of the area. Several SP+CG strokes trigger spetasded in a same video as illustrated in more

detail in the two following case studies.

4.2. Case of a series of dancing sprites at 18h03

Figure 4 illustrates the different phases of thidtiple luminous event, the simultaneous
lightning activity detected by different systemsdahe electromagnetic radiation recorded in
various low frequency ranges. A graph displays @@ pattern with the 2D location of the
detections related to the lightning flash and linésight of the sprite elements from the camera.
Other graphs display the time series of the opge@nts and lightning signals provided by the
different instruments described in section 2. Thption of Figure 4 details the description of
each graphTable 2provides time, location, current and dischargeattaristics inferred from

the signals produced by the luminous events andsbkeciated lightning strokes.

10
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The duration ofhis series of sprite sequendss-1.76 s, i.e., 88 fields of 20 ms including
38 fields with sprite luminosity. The sprite eveansists of four sequences of continuous light
emission, each one with duration ~120-220 ms,fr@em 6 to 11 fields. Each of these sequences
starts after a SP+CG stroke with a varying delaguife 4a displays two fields from each
sequence, including the first field of each seqeefi®ie images show that the horizontal extent
of successive sprite elements covers at least ~60tbie FOV of the camera, i.e., ~18.5°. Figure
4b shows the SP+CG and the lines of sight follovthrysame northeastward displacement. The
lines of sight inferred from the first fields of@asprite sequence (F1, F33, F62 and F82) match
very well with the SP+CG stroke locations, excdp first one that is clearly shifted. The
distance between the first and last SP+CG is ~b8®¥k using the great circle path, which gives
an idea of the large extent of the lightning precdsring the 1.76 second losgries of sprite
sequences.

During the first sprite sequence that starts with bbngest delay ~62-82 ms$apble 2,
several elements are produced during ~200 ms anfirsh one (F1) is found at a distance of ~25
km with respect to the initial stroke at t = 8.829Simultaneously to the sprite emission in F5,
locations of VHF radiation sources are mapped atbedines of sighin F5 (blue in Figure 4b
and upper graph of Figure 4c). There is a gap of4-6 between the first sprite sequence and the
second that starts after a SP+CG stroke with a peaient of ~34 kA detected at t = 9.528 s.
Another gap of ~0.36 s whithout any recorded ligignactivity precedes the third sprite
sequence associated with a SP+CG stroke of ~7hkAaashort delay followed by VHF sources
(yellow in Figure 4b-c)Figure 4bshows that the line of sight of the brightest edamof the
sequence matches very well with the SP+CG stroletltaa VHF emissions that follow it. After
a gap of ~0.2 s the fourth and shorter sprite ssrpistarts with a bright element after a SP+CG
stroke of ~152 kA and simultaneous VHF sourcesn@ean Figure 4b-c).

The 3-second long time series of the optical aghitting records in Figure 4c-d shows
that the four SP+CG strokes are identified in tleetec field signal and that the larger the peak
current, the stronger the radiated electric fi@lde current moment waveform (red curve in
Figure 4c) shows clearly substantial current after SP+CG strokes, either as a continuing
current after the second SP+CG stroke (green syndvods a surge after the other cases of
SP+CG strokes, either associated or not assoaidted/HF sources. These characteristics will

be discussed in more detail in Section 5.

11
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4.3.Case of a series of dancing spria48h08

Figure 5 displays the same set of measurementsfgure 4, but for the second case of
series of dancing sprite¥he numerical values of the most important patamseare shown in
Table 2 The second case consists of three sequencestfiwwaus light emission spread over
~0.86 s, i.e., 43 fields of 20 ms including 33deeMith sprite luminosity. The duration of each
sequence ranges from ~100 ms to ~320 ms, i.e.f@flb fields. Figure 5a displays one field for
each of the two first sequences and six for theltbéquence. The first sequence (F1-F5) starts
between ~40 and ~60 ms after a SP+CG with a peakrdtwf ~26 kA and a small increase of
the electric field in central graph of Figure 5odff red arrow). Figure 5b shows that F2 is ~30
km laterally displaced from the SP+CG locationH{tigplue colour), which coincides with the
line of sight of F17. The second sequence (F9-kF2@)nger than the first one but still weakly
luminous and no SP+CG stroke is detected prioh#ogprite. However, a small electric field
increase can be seen in central graph of Figurésé&wond red arrow) at t = 20.250 s, which
indicates a lightning signal in the VLF/LF rangattltorresponds to the beginning of this sprite
sequence. The third sprite sequence starts at(.612 s,ard—scewrgapidly after a SP+CG
stroke with a peak current of ~97 kA. After thisoke, the luminous sprite emission sustains
relatively bright luminosity levels for ~280 ms asmted with VHF activity detected in the same
area (green colour), until a new SP+CG occurs é890s. This SP+CG stroke has a peak
current of ~84 kA and triggers most of the lumingpste elements visible in F40.

Figure 5b shows that the line of sight in F40 mesclvith the SP+CG stroke (yellow
colour). The horizontal extent of the successiv@esglements covers ~60 % of the FOV of the
camera, i.e., ~18.5°. The figure shows that the(@EPF-and the lines of sight follow again a
northeastward displacement. The distance betwesefirsh and last SP+CG is ~91 km. The three
SP+CG strokedetectedare identified in the electric field radiated IretVLF/LF range shown in
both panels ofigure 5d, and the larger the peak current, the strongeelbetric field. In the
upper panel of Figure 5c, the current moment wawef@ed curve) shows the discharge current
between SP+CG strokes, in particular after therseestroke (green colour) associated with VHF

sources. This sequence will be analyzed in Seétion

5. Discussion
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5.1. Storm characteristics during the sprite prdidac

The storm that produces a large amount of spritemgl the night of 29-30 October of
2013 develops in favorable synoptic conditionsyearlthe day and moves eastward during all
the day and a good part of the night while prodgooontinuously large rates of lightning
flashes. The conditions for sprite observation myiihe nocturnal period are met during two
time intervals; the first interval lasts for onlgehour because of the arrival of clouds around the
camera. During this first period of sprite prodanti the cloud system is close to its maximum
extent at about 140,000 Kpas inferred from its CTT pattern issued from Met imagesThe
radar in Mallorca can cover at that time a largeg pathe storm systenAt any moment of its
lifetime, the large concentrations of CG flashes lacated in the southern part of the cloud
mass.

Figure 6 displays the horizontal distribution oé thnaximum reflectivity at a close time
to the dancing sprites, i.e., at 1800 and 1810 UTKe reflectivity highlights precipitation
structures with convective cells within the cloudss that correspond to the strong densities of
CG flashes in a south-north oriented line and @elastratiform region northwest of the
convective line. This stratiform region exhibitslaa reflectivity lower than ~42 dBZ. Figure 7
displays the storm system with CTT (Figure 7a,lg) araximum radar reflectivity (Figure 7c,d),
~2 hours and ~1 hour earlier (Figure 7a,c and Eigdb,d, respectively)lt shows both
convective and stratiform regions described abdive,first one characterized by a large CG
flash density and maximum values of reflectivitywvibeen 54 and 60 dBZ, the second one by
very few CG flashes and maximum reflectivity valwés-42 dBZ. A line of some small cells is
visible at 1710 UTC in the radar pattern, southvish the stratiform region, but these cells do
not produce any CG flash at that moment. The SPsékes are mainly detected within the
stratiform region, while very few CG flashes ocaurit. Thus, during this first sprite period
between about 1750 and 1840 UTC, the flash ratdusexl by the whole storm system is high
but that of the storm structure really active fug sprite production is very low.

As illustrated in other studies, the convectiveioagssociated with the stratiform region
in a sprite-producing MCS produces a lower flagh véhen the sprites are observedrig et al,
2010; Soula et al. 2014; Soula et al. 2015]. However, the correspondence between the
convective activity and sprite occurrences can demn the storm morphology as explained by

Lang et al.[2010]. These authors considered two cases dfesproducing storms, and found a
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good correlation between convective intensity apidtes production, in a large and symmetric
MCS that produced 282 sprites in 4 hours, whiley tbbserved an anti-correlation for an
asymmetric storm that produced 25 sprites in 2 fiddowever, in the first case most of SP+CG
strokes were located in the stratiform region desthie strong correlation between convective
intensity and sprite production. As notedlbypns[2006] the more intense the storm system, the
higher the sprite occurrence rate. In our casesttwn system produces a very high sprite rate
between 2200 and 2300 UTC with 38 sprite videosleathe CG lightning flash rate decreases,
the minimum CTT increases, and the spatial extémhe whole storm system decreases. This
seguenceperiod corresponds to the behaviour pointed lang et al.[2010] for the second
example of storm. On the contrary, during the fastite period of sprite production (1748 UTC
— 1842 UTC), the convective intensity is high Wi T lower than -40°C because of a region of
the storm, independent of the stratiform regionceoned by the sprite production, as illustrated

in Figure 3. Thigeriodsegdeneeorresponds to the first storm described_bypg et al.[2010].

5.2. Lightning/Sprite timing and location

In both cases dfhe dancing spriteseries a similar behaviour is observed. The sprite
event starts with a SP+CG stroke that triggersra¢gprite elementsiat-appeartipropagating
north-eastwardand followed by new pairs SP+CG stroke/sprite eleméhtt alsoappearto
propagate north-eastwaknesideabovethe-cloud-systenThe simultaneous propagation of both
events, the SP+CG stroke and the sprite elementebserved across the stratiform region.
Indeed, Figure 6 indicates the locations of the @B+strokes relative to the precipitation
detected by the radar. In both cases, the duahaige phenomenon (stroke/sprite) crosses the
stratiform region, from a convective region withahtonvective cells, up to the opposite end of
the storm system. It seems that this progressidgheoflischarge processes follows a pattern, i.e.,
the initial discharge is close to the region of gterm where convective cells are locatedd
subsequently, the leader processes propagate &irgiidorm region as shown by VHF sources
detected by the XDDE.

Similar observations were made in several studised on LMA detectiond fing et al,
2010;Lu et al, 2013;van der Velde et 312014,Soula et al. 2015]. However, in botkeriesof
the dancing sprites reported hetee VHF sources are natontinuouslydetectedbetween the

areaswhere the SP+CG strokes are located or betweerirtes of sight where the sprite
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elementsare observedWe have to keep in mind the XDDE interferometeesinot map leaders
as the LMA doesMazur et al.[1997] compared data from two systems that detebtdF
radiations produced by storms in Florida. One @& $lystems, the LDAR that uses the TOA
technique, showed continuity in time and a thremeafision structure of radiation sources. On
the contrary, the data from an interferometric exystequivalent to the XDDE were more
intermittent in time and hadraeretwo dimensional structure. In the present study,axtension
and the duration (up to ~180 km and 1.76 s, resmdyt for the sprite event at 1803 UTC) of the
lightning processes associated with both spritentsveeem consistent with the three cases of
spider lightning flashes described Bbyazur et al.[1998]. Indeed according to this description,
they occurred in the stratiform region of decaystgrms and consisted of negative leaders
propagating over several tens of kilometres wittpaed of 2-4 10m s'. Furthermore, one of
them lasted 2.4 s. According to these authorsintieeferometer cannot map this kind of negative
leader when several branches develop simultaneousigh could explain the discontinuity of
the VHF source production in the present casedolh cases omultiple-sequencalancing
sprites, the most luminous elements occur at tlteoérthe event, i.e. when the SP+CG is far

from the convective region.

5.3. Lightning stroke current and sprite relatiapsh

According toTable 2,each sprite sequence starts wittielay significantly larger than 40
ms (>62 ms for one and >40 ms for the other) thatlze considered as a long time-delajyad
et al., 2013].

Furthermore, the first sprite elements of each eae® seen to be more shifted from the SP+CG

stroke, than the following elements. As indicatgdLin et al.[2013] we observe that the long
time-delayed sprites are more significantly dispthérom the parent stroke. The iCMC of the
lightning stroke at the origin of the first spréequence at 1803 UTC has a value as low as 174 C
km. The iCMC of the first SP+CG stroke for the set@prite sequence at 1808 UTC cannot be
calculated. For the successive sprite emissioreaah sequence a common behaviour appears,
i.e., theshorterdelays(< 15 ms)correspond to thiargervalues of the ICMG> 400 C km) The
same observation was reportedLim et al [2013] from a set of 26 flashes producing sprites
abovean asymmetric MCSIn addition, thelarger values of iCMC produce the brightest sprite
elements, typically in fields F82 and F41 for thprites at 1803 and 1808 UTC, respectively.
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This finding is similar to that inSoula et al.[2015] for several triangulated sprites in
southeastern France, insofar as the long delay#eéspre produced after a positive stroke with
a low value of iCMC.

The brightest sprite elements (F82 and F41) cooms$plsoto large CMC values for the

SP+CG strokes, 6935 C km and 5277 C km, respeyglivelto-large-valuesolcMEA{839-C
kim-ahd-440-C-km,respective)\gs indicated ifable 2 As inYaniv et al[2014], the brightness

is correlated with the CMC value of the parent lsttoHowever, in the present case, the first
sprite element for the case at 1803 UTC is prodwddda long delay after a SP+CG stroke with
a very large value of CMG~5000 C km calculated over ~60 ms after the strakech
corresponds to the first field with sprite lumirtgsi1) as shown in Figure 8a. Indeed, the panel
with the current moment waveform shows a curretéeat 1803:8.829 UTC (t = 0 in Figure

8a), i.e., ~60 ms before £

ity According to the current
moment waveform, the discharge continues duringvatens of ms that may correspond to a
lightning continuing current. An increase of cutrastarts at 1803:8.829 UTC (t = 100 ms in
Figure 8a), lasts a few tens of milliseconds amdesponds to the fields F3, F4 and F5 with new
sprite elements with the shape of carrot spritdsus] the current produced can be due to
lightning processes that sufficiently discharges toud to produce new sprite elements,
especially as VHF sources are detected by the XBiafem along the line of sight of F5 as
indicated in Figure 4b,clt could be also produced by the sprite itself, huseems more
consistent with a current waveform due to M-compd®iesuperimposed to a long continuing
current, as observed lhy et al.[2013] for a dancing spritd.his observation is quite consistent
with the study byLi et al. [2008] about delayed sprites. Their data showatl46% of the sprite
elements were triggeredith a delay larger thatO ms after the SP+CG strokes and associated
with a substantial continuing current. Furthermaéhese authors found that an intensification of
the continuing current can play a major role in peite triggering and that the sferic burst
simultaneously recorded is another consequendeedfurrent intensification.

Figure 8b displays the current moment waveform #nred CMC for another period of
~600 ms during the spriteeriesseguencat 1803 UTC. In this case, the bright sprite eleime
(F82) is produced with a short delay after theksdrat 1803:10.516 UTC (t = 0 in Figure 8b).
The current pulse of this stroke is followed by @rent signature 100 ms long that may
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correspond to a continuing current ghdtincludes a current pulse ~60 ms after that steoick

a new sprite element is detected in F85 in the fofm carrot sprite that is still bright in F86. In
this case, no VHF source is detected by the XDDdtesy after the stroke, but we can infer that
the current intensificatiors due to a M-component superimposed to the comgncurrent that
triggers the sprite elements in F85-F86 cannot exclude the sprite itself makes a cautioh

to the current signatur®y comparing the sprite elements in F85 to thasile in F82, their
structure seems vertically different. Actually &etlocation of two bright bodies of sprite
elements at about 70 and 75 kmA®2-F84(b, and b in Figure 8b) the new sprite elements in
F85 and F86 exhibit a diffuse capi(and c, respectively) while their bright body developsaat
lower altitude, 60-65 km (B} and 55-65 km (b), respectivelygithelocation-cfilamentisiron

e—elementsThus, several characteristics of these new capmteselements in
F84 — their simultaneity with the current surgeidgrthe continuing current following the
SP+CG stroke and their common lines of sight wijhits elements issued from the first and
bright elements following the SP+CG stroke (t sn@rigure 8b) — suggest an initiation favoured
by the local change of the conductivity due toithigal sprite elementseach-the-alitude-etthe

struetyre Since these new sprites correspond to carrot elismireir extension at lower altitude
is consistent with the observations \mn der Veldg2008] andStenbaek-Nielsen et §2010]
that show carrots start at a lower altitude ancetigvupward streamers from the body for 10-15
km. This assumption is supported by the horizontahatignt of initial and new streamers all the
more so the initial ones last for several field83#84) and therefore the electric field is
maintained during the same time interval. The disgé process indicated by the current surge
during the continuing current can reinforce thigecéic field and trigger new streamers.
However, because the sprite elements are not teggae cannot conclude definitively that the
different streamers correspond at the same redibus, as irLi et al. [2008], we observe an

altitude a few kilometres lower for the delayeditgsy, triggered a few tens of milliseconds after

previous spritesi
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Figure 9 displays the current moment waveform &ed@MC for another case of sprite
with a long light emission after a SP+CG strok&&Q28:20.626 UTC. Six fields out of nine over
a period of 180 ms show the light emission. Aftes field associated with the SP+CG stroke
(F27), two other fields exhibit re-enforced liglR30 and F35) and correspond each one with an
increase of the current moment waveform, at abeub® ms and t = 150 ms after 1808:20.626
UTC. No lightning stroke was detected by the déférsystems, between F27 and F35 (180 ms),
as indicated in Figure 5. However, the XDDE systecorded VHF activity, especially during
the first 50 ms after 1808:20.626 UTC and more agically up to 1808:20.899 UTC, when a
new SP+CG stroke triggers the brightest spritehefdvent. Likewise for this case, both current
moment waveform and light emission correlate veglfiwrhe delayed sprite elements in F35
appear clearly at a lower altitude compared topttevious sprite elements in F27 and in F30.
Indeed, the bright body of the sprite elements appaccessively at altitudes around 70 km in
F27, between 60 and 70 km in F30 and between 506@rkin in F35. This observation also

H:FRecent theories suggest that mesospheric irretyesar
might be a necessary condition for the initiatiésrite streamerd_[u et al, 2012;Kosar et al,
2012;Qin et al, 2014], and that the sprite streamers can probhwedrequency electromagnetic
radiation Rin et al, 2012; Fullekrug et al, 2013b]. Our observations of delayed sprites
associated to current surges during the continaurgent and following initial sprite elements

can support this theory.

5.4. Sprite current signature

Previous studies reported pulse-shaped currenatsign related to sprites, in particular
when they are very brigh€Cummer et a).1998;Flllekrug et al, 2001 Hu et al, 2008;Soula et
al., 2014;Mlynarczyk et al.2015]. Figure 10 displays the electric field eddd in ELF/VLF/LF
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(upper/central/lower graphs) during 120 ms, 25 ef®te and 95 ms after the SP+CG in both
casef seriesof dancing sprites: a) at 1803:10.123 UTC thatesponds to the brightest sprite
element in F62 of Figuréa; b)at 1808:20.899 UTC that corresponds to the brgjhterite
element in F40 of Figure 5a. Current signaturesssreby visible in the upper graph of Figures
10a and 10b, a few milliseconds after the ELF mumeduced by the SP+CG return strokes, that
corresponds to t = 5 ms in the graphs (t = 10.12Bdst = 20.899 s, respectively). The time
intervals between the SP+QiGIseand this current pulséatefthesprii@re consistent with the
values ofAt issued fromrable 1for both cases, since they are included within§0ms] and [0

- 15 ms], respectivelylhese current pulses observed in ELF range omntylasito the signatures
shown inCummer et al[1998] andSoula et al[2014] with a short duration of about ~2-3 ms,
can be attributed to spriteThey can also last longer times as observed fameke in
Mlynarczyk et al[2015] andFullekrug et al.[2001] with a few tens of milliseconds. Figure 11
displays three cases of current moment changehfee tSP+CG strokes, each associated with a
bright and short time-delayed sprite. We can cjedidtinguish the sprite current in Figure 11c,
less clearly in Figure 11a and not at all in Figlid. It seems that the impulsive current from
the sprite itself can overlap with the current frdm parent stroke if the delay after the trigger i

very short (< 2ms) such that the sprite currentaiesrobscured.

6. Conclusion

We consider data relative to different aspectshefdctivity of a storm that produced a
large number of sprite events, especially to amaly® series of sprite sequendbat strongly
resemble to dancing sprites. The dataset inclugigsab emissions recorded by a low-light video
camera, characteristics of the CG strokes (timeation, peak currenlCMC calculated from
ELF signals and current moment wavefor’dHF radiations relative to the lightning flashes,
electric field radiated by lightning flashes inaade band of low frequencieME-caleulated

] : TT issued from the radiometer onboard the MSG

satellite, andields of the maximum radar reflectivitfhe storm starts at the end of the morning
over Mediterranean Sea close to northeastern 3paoastline, then moves eastward during its
lifetime estimated at ~18 hours. The CG lightnilagh rate of this storm reaches more than 30 fl
min™, while the CTT reaches a minimum value of -73°G-H00 UTC. The size of this storm
system reaches 140,000 kby considering the region with a CTT <-40°C. Welgze in detail
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the complex structure of the storm and the lighgnaetivity associated with sprites recorded
during a firstperiod seguere®f production at the beginning of the night. Aatimoment, the
region of the storm involved in the sprite prodactis around 400 km from the camera that
records several sprite events including dancingespi=asthermere \We analyze in detaitwo
series of successive sequences of dancing spates of bothwith a duration exceeding 1
second

Several results can be put forward from this cdadys (i) The first period of sprite
production is clearly associated with a regionha storm system characterized by a stratiform
structure and a very low CG lightning flash ratg. ffor each series of dancing sprites analyzed
the luminous emissions repeat the timing and tlation of several lightning strokepread
alongthe stratiform region of the storm. (iii) The ditgst sprite elements produce significant
current signatures a few milliseconds (< 5 ms)rédfie parent stroke, visible if the delay is not
too short. (iv) Longime-delayedsprite elements correspond to low values of iCM@e parent
strokes and most of tinteey are associated with surges in the current mbmaveform during
the continuing current(v) Several of these long time-delayed spritenelets trigger after a
previous short time-delayed sprite andparentlyat a lower altitude Faedewerng—etthe
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Term Signification Typical order of duration
Period Part of the storm lifetime during which hour
several sprites are detected
Event Video including sprite elements second
Sequence Succession of video fields with sprite tenth of second

elements following a same stroke

Field de-interlaced video frames 20 ms

Table 1. Terminology used for the sprite activitygaveral scales of time.
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853

854

Sprite event SP+CG stroke

Time (UTC) Time Distance Peak At CMC iCMC
(s) camera current sprite (Ckm) (Ckm)

ty t, dt  Frame (km) (kA) (ms)

hh:mm  (s) (s) (ms)

8.891 9.091 200 F1-F1(g 8.829 465 57 62-82 8755 174
18:03 9.531 9.751 220 F33-F43 9.528 432 34 3-23 1611 121
10.11110.311 200 F62-F7] 10.123 400 79 0-8 5009 460
10.51110.631 120 F82-F8Y 10.516 367 152 0-15 6935 839
20.09420.194 100 F1-F5| 20.054 420 26 40-60 - -

18 :08 20-25420.494 240 F9-F2Q - - - -
20.61420.894 280 F27-F4( 20.626 379 97 0-8 5277 440
20.89420.934 40 F41-F42% 20.899 370 84 0-15 3831 543

Table 2 Characteristics of thevo series of sprite sequencasd SP+CG strokes associated. For
the timing of the optical events;, t, and dt are times of beginning and end, and duraifoa
sprite sequence with continuous luminosity, respelst For each SP+CG stroke: time in
second, distance to the camera, peak current,detay At between the stroke and the beginning

of the sprite sequence, CMC and impulsive CMC (iQMC
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Figure captions

Figure 1. a) Location of the -CG, +CG flashes afdGG strokes detected during the storm
lifetime. The color indicates the time for everyaé hours. b) and ¢) CTT at 1110 and 1610
UTC, respectively. The CG flashes detected duridigninutes around the time of the scan are

plotted with white crosses and red pluses for —-GG€CG, respectively.

Figure 2: Time series of rates of the CG flash {eviistogram for —CG, grey histogram for
+CG), minimum value of the cloud top temperatugg(3olid line), and areas withTT < -40°C
A(-40) (dashed line) and A(-65) (line with dotshéTscale for the areas is in*n” and A(-65)
values are multiplied by 10. The periods indicavath arrows correspond to observation of
sprite events between 1749 and 1841 UTC, betwe2d 2dd 0239 UTC, and presence of cloud
at the Pic du Midi site between 1841 and 2130 UTC.

Figure 3.CTT at the Meteosat scan times: 1810 UTC (a) and 18P5 (b). The CG flashes
(strokes) detected during 10 minutes centered artuntime of the scan are reported with white
crosses and small (large) red pluses for -CG an@ $®€P+CG), respectively. Maximum radar
reflectivity in the same area: (c) at 1810 UTC w8R+CG strokes (red crosses) between 1800
UTC and 1815 UTC and (d) at 1820 UTC with SP+CGksas between 1815 UTC and 1830
UTC. The SP+CG strokes are indicated with red essghe colored scale in dBZ for the radar

reflectivity is indicated below the graphs.

Figure 4: Case dhe series of sprite sequen@tsl803:08. (a) 8 specific fields issued from the
video imagery numbered from F1 that is the firstdfiwith sprite luminosity. The altitude is in
km. The white line indicates the line of sight o§prite element (sometimes the brightest one,
sometimes a central one) from the camera also texpon (b). (b) CTT at 1810 UTC with
different symbols superimposed for the lines ofsigeported in each field of (a), the -CG
strokes (colored small cross), the +CG stroke filad), the SP+CG strokes (colored large plus)
and the IC strokes (colored circles). (c) Peakerndrwversus time for -CG strokes (blue cross),
+CG strokes (red plus), SP+CG strokes (large atwmrexb plus) and VHF sources detected by

the XDDE (colored dots plotted with an arbitraryremt value of 120 kA) versus time for 3
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seconds. The red curve displays the current wawefor the secondary axis. (d) Electric field
radiated in VLF/LF range for the same period ofe8ands (t = O corresponds to t = 9.528 s in

the graph of c)) at a resolution of 1 ms (uppeplgyand 10 ms (lower graph).

Figure 5: As in Figure 4 fahe series of sprite sequen@<1808:20. In (a) F2 is the second field
with sprite luminosity. In (d), t = O corresponastt= 20.626 s in the graph of c)).

Figure 6. Maximum radar reflectivity with the ligiihg activity, SP+CG strokes (white crosses),
VHF sources (red dots), and -CG strokes (white )dassociated with both case studies of
dancing sprite: (a) at 1803 UTC and (b) at 1810 UTke colored scale in dBZ is indicated
below the graphs.

Figure 7. (a) and (b) Maximum radar reflectivitytab times of the cloud system at 1610 UTC
and 1710 UTC. The scale in dBZ is indicated in Feg8. (c) and (d) CTT at the Meteosat scan
times at 1610 UTC and 1825 UTC. The CG flashesctededuring 10 minutes centered around
the time of the scan are reported with white cresaad red pluses for -CG and +CG,

respectively.

Figure 8. a) Left: Current moment waveform (uppeapp) and charge moment change (lower
graph) for a period of 600 ms during the dancingtsgvent at 1803 UTC (t = O corresponds to
1803:8.829s). Right: four fields from the video geay with sprite elements at times marked in
the graphs (one field is 20 ms). The altitude ikrm b) Same as a) for another period of 600 ms
(t = O corresponds to 1803:10.5168e arrows in the fields show the caps (c and g the

bodies (b and b’) for short (c and b) and longaed b’) time-delayed sprite elements. The scale

altitude is determined according to the conditiexglained in section 2.1.

Figure 9. Same as Figure 8 for a period of 500 unsgd the dancing spriteventat 1808 UTC (t
= 0 corresponds to 1808:20.626s).

Figure 10. Electric field radiated in ELF/VLF/LFrge (for upper/central/lower graphs) versus
time during 120 ms. a) case of the dancing sprueneat 1803 UTC (t = 5 ms corresponds to

31



917 1803:10.123). b) case of the dancing sprite evént888 UTC (t = 5 ms corresponds to
918  1808:20.899).

919

920 Figure 11. A detailed view of the current momenw&farm for three cases of lightning strokes
921 selected from Figures 4c and 5c: a) t = 0 corredpan 1803:10.123 UTC, b) t = 0 corresponds
922 10 1803:10.516 UTC, c) t = 0 corresponds to 180829 UTC.
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Figure 1: a) Location of the -CG, +CG flashes af#SG strokes detected during the storm
lifetime. The color indicates the time for everyaé hours. b) and ¢) CTT at 1110 and 1610
UTC, respectively. The CG flashes detected duridgninutes around the time of the scan are

plotted with white crosses and red pluses for —-8G€CG, respectively.
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Figure 3.CTT at the Meteosat scan times: 1810 UTC (a) and 18P6 (b). The CG flashes

(strokes) detected during 10 minutes centered drthatime of the scan are reported with white

crosses and small (large) red pluses for -CG an@ {&P+CG), respectively. Maximum radar
reflectivity in the same area: (c) at 1810 UTC w8R+CG strokes (red crosses) between 1800
UTC and 1815 UTC and (d) at 1820 UTC with SP+CGk&s between 1815 UTC and 1830
UTC. The SP+CG strokes are indicated with red e®s§he colored scale in dBZ for the radar

reflectivity is indicated below the graphs.
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Figure 4. Case dhe series of sprite sequen@sl803:08. (a) 8 specific fields issued from the
video imagery numbered from F1 that is the firstdfiwith sprite luminosity. The altitude is in
km. The white line indicates the line of sight frahe camera reported in (b). (b) cloud top
temperature at 1810 UTC with different symbols supgosed for the lines of sight reported in
each field of (a), the -CG strokes (colored smaiks), the +CG stroke (red plus), the SP+CG
strokes (colored large plus) and the IC strokeb(ed circles). (c) peak current versus time for -
CG strokes (blue cross), +CG strokes (red plusy,C&P strokes (large and colored plus) and
VHF sources detected by the XDDE (colored dotst@ibwith an arbitrary current value of 120
kA) versus time for 3 seconds. The red curve digpthe current waveform on the secondary
axis. (d) Electric field radiated in VLF/LF rangerfthe same period of 3 secoradsa resolution

of 1 ms(t = 0 corresponds to t = 9.5281sc).
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Figure 5: As in Figure 4 for the sprite event a@8®20. In (a) F2 is the second frame with sprite
luminosity.In (d), t = 0 ms corresponds to t = 20.626 s in c).
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Figure 6. Maximum radar reflectivity with the lighihg activity, SP+CG strokes (white crosses),

VHF sources (red dots), and -CG strokes (white )dassociated with both case studies of
dancing sprite: (a) at 1803 UTC and (b) at 1810 UTke colored scale in dBZ is indicated
below the graphs.
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Figure 7. (a) and (b) Maximum radar reflectivitytab times of the cloud system at 1610 UTC
and 1710 UTC. The scale in dBZ is indicated in Fg8. (c) and (d) CTT at the Meteosat scan
times at 1610 UTC and 1825 UTC. The CG flashesctededuring 10 minutes centered around
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respectively.
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Figure 8. a) Left: Current moment waveform (uppep) and charge moment change (lower
graph) for a period of 600 ms during the dancingtespt 1803 UTC (t = 0 corresponds to
1803:8.829s). Right: four fields from the video geay with sprite elements at times marked in
the graphs (one field is 20 ms). The altitude iknm b) Same as a) for another period of 600 ms
(t = 0 corresponds to 1803:10.5168he arrows in the fields show the caps (c and g the
bodies (b and b’) for short (c and b) and longafad b’) time-delayed sprite elements.
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Figure 10. Electric field radiated in ELF/VLF/LFnge (for upper/central/lower graphs) versus
time during 120 ms. a) case of the sprite evenil@i3 UTC (t = 5 ms corresponds to
1803:10.123). b) case of the sprite event at 1808 ( = 5 ms corresponds to 1808:20.899).
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Figure 11. A detailed view of the current momenvefarm for three cases of lightning strokes
selected from Figures 4c and 5c: a) t = 0 corredpan 1803:10.123 UTC, b) t = O corresponds
to 1803:10.516 UTC, c) t = 0 corresponds to 180829 UTC.
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