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ABSTRACT

Volume visualization software usually has to deal with datasets that are larger than the GPUs may hold. This is especially
true in one of the most popular application scenarios: medical visualization. Typically, medical datasets are available for
different personnel, but only radiologists have high-end systems that are able to cope with large data. For the rest of
physicians, usually low-end systems are only available. As a result, most volume rendering packages downsample the
data prior to uploading to the GPU. The most common approach consists in performing iterative subsampling along the
longest axis, until the model fits inside the GPU memory. This causes important information loss that affects the final
rendering. Some cleverer techniques may be developed to preserve the volumetric information. In this paper we explore
the quality of different downsampling methods and present a new approach that produces smooth lower-resolution
representations, yet still preserves small features that are prone to disappear with other approaches.
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1. INTRODUCTION

Medical datasets are continuously increasing in size. Although larger models may be available for certain
research purposes, in the common clinical practice the models are usually of up to 512 x 512 x 2000 voxels.
These resolutions exceed the capabilities of conventional GPUs, the ones usually found in the medical
doctors’ desktop PCs. As a result, commercial solutions typically reduce the data by downsampling the
dataset iteratively until it fits the available target specifications. The data loss reduces the visualization
quality and this is not commonly compensated with other actions that might alleviate its effects.

Medical datasets are commonly stored as scalar fields, where each scalar represents the properties from
the human anatomy (such as density values in Computational Tomography, CT). Downsampling scalar data
implies an inevitable loss of information that provokes the loss of fine details and the modification of the
original topology. Furthermore, since these scalar values are then used by means of Transfer Functions
(TF, functions that map density values to opacity and color), downsampling a set of density values
(e.g. by averaging) leads to inconsistencies when the transfer function is applied on coarser representations.

The downsampling process appears in many rendering techniques, such as the approaches that render
large datasets by building a multiresolution structure (Boada et al., 2001). In these cases, intermediate nodes
are also generated by subsampling the high resolution dataset. Again, using a simple downsampling scheme
will produce important artifacts, such as the disappearance of small features. Some attempts have been
developed to preserve the data, but they are commonly quite costly in terms of processing or data storage
(Younesy et al., 2006, Sicat et al., 2014), or not suitable for medical datasets, such as when downsampling
color data (Kraus and Briiger, 2008).

In this paper we analyze several downsampling methods and present a new approach that preserves small
features for medical models, while keeping a low computation cost. Our contributions are twofold:

e An analysis of the effect of the most popular downsampling methods for medical datasets.

e A new low-cost downsampling filter tailored to preserve small features that can be combined with

other methods such as multiresolution or bricking approaches.

The rest of the paper is organized as follows: Section 2 presents the previous work, Section 3 provides
visual comparisons of previous techniques, and analyzes the factors that influence the quality of the final
downsampled model. Section 4 presents our feature-preserving technique and discuss its advantages and
shortcomings. Finally, Section 5 concludes this work by discussing the results and presenting some lines of
future research.
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2. PREVIOUS WORK

Medical imaging is challenged by the continuous increase in size of the datasets produced by capture devices
(such as CT scanners). Even though GPUs also evolve, their horsepower lies behind the size of the data.
This is especially true for physicians that receive the data from radiologists, since their workplaces are also
commonly shared with other physicians, and, not being their main task the visualization of such data, they are
not usually equipped with powerful GPUs. Thus, the data must be reduced in order to make it fit into their
commodity GPUs and enable interactive inspection. Note that, this problem appears frequently in the clinical
practice, since the datasets being captured continuously increase in size, and the GPUs cannot keep track with
the growing size of the datasets.

As a result, a common approach is to compress the data and render from it. Since we want a solution that
is applicable to modest PCs, this is often not a possibility since it implies large computation costs, and
modern GPUs to perform the rendering. The interested reader can refer to the recent State of the Art by Balsa
et al. (Balsa et al, 2014) for an introduction on compression for volume models.

Wang et al. (Wang et al., 2011) concentrate on the preservation of features in data reduction. This is done
by assigning importance to the voxels according to the current transfer function. However, this requires an
analysis of the dataset, and it is transfer function (TF) dependent. Therefore, if the TF changes, this computed
data becomes invalid and has to be recomputed.

Younesy et al. (Younesy et al., 2006) improve the quality of the renderings in a multiresolution scheme
by storing extra information for each node. Their initial analysis states that the ideal condition would be to
store local histograms per coarse voxel, but in their implementation, these are substituted by an average
density and its standard deviation. This multiplies the size of the dataset by three or four (depending on the
precision of both values), and thus is impractical again for our case.

Sicat et al. (Sicat et al., 2014) present a technique for the storage of large datasets in a compressed way.
They improve the consistent visualization of multiresolution volume datasets in comparison with the method
of Younesy et al. by means of sparse pdf volumes. Again, this method does not suit our needs because it
requires a higher amount of precomputation to generate their sparse structure, and uses important GPU
resources for the decompression and rendering.

Diaz-Garcia et al., (Diaz-Garcia et al., 2016) perform a good work at improving the compressed dataset
by applying what they call adaptive transfer functions, an algorithm that consists in using a small auxiliary
structure that allows computing fitted TFs for the inner nodes in a multiresolution dataset. Their method
succeeds at improving the final quality, but it is somewhat orthogonal to the analysis performed here. In any
case, their approach can be combined with the filtering we present here, that can be used on the computation
of the initial internal nodes dataset.

Kraus and Burger (Kraus and Biirger, 2008) improve the reduction of the models, but using RGBA data.
Since the medical models store the information as density values, and render them through the Transfer
Functions, using colors has several shortcomings. First, using direct colors would multiply the model sizes by
4. Second, as already said, the interpolation in color space may produce larger artifacts than in density space,
and therefore this plain interpolation is not suitable for medical models.

Kraus and Ertl. (Kraus and Ertl, 2001) also presented a method (named topology-guided downsampling)
for downsampling volumetric datasets that tries to preserve the topology of the models. However, when
applied to medical datasets, the results are limited, since, although the small features are preserved,
the appearance of the subsampled models presents strong staircase artifacts and distort the position of the
features (as shown later in this paper).

There is another family of methods tailored to improve the quality of the volumetric datasets by reducing
noise. These are more suitable for datasets with high amount of noise and low resolution, such as the ones
from ultrasound imaging. In general, such techniques are more focused on noise reduction, but sometimes
they also combine the noise reduction with downsampling. Kwon et al. (Kwon et al., 2016), for instance,
filter and denoise ultrasound images using a fast bilateral filter. As we will see in the next section, bilateral
filter usually produces undesirable results for downsampling medical datasets such as the ones obtained from
CTs. Another technique, more focused on noise reduction, is the method by Wang et al. (Wang et al., 2012).
In our analysis, using noise reduction previous to subsampling does not improve the quality of the
downsampled volumes.
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There is also related bibliography about feature preserving downsampling methods for 2D images.
Although these methods have not been designed specifically for volumetric datasets, their idea could be
easily adapted to such case. For instance, Kopf et al. (Kopf et al. 2013) implement a content-adaptive
downscaling method that uses a bilateral combination of two Gaussian kernels defined over space and color,
calculated by means of an iterative process that can take long to finish. Oztireli and Gross (Oztireli and Gross
2015), on the other hand, formulate image downscaling as an optimization problem that maximizes a
perceptual image quality metric based on the difference between the input and the output images. Also, more
recently, Weber et al. (Weber et al. 2016) present an algorithm based on convolutional filters where input
pixels contribute more to the output image the more their color deviates from their local neighborhood.
They use a guidance image based on a preliminary downscaled image to be able to define pixel contributions,
and a parameter A that has to be manually adjusted, depending on the image, to provide the best results.

Besides these improved approaches, other typical filtering methods, such as averaging or Gaussian
filtering will also be analyzed in the following section together with some of the aforementioned algorithms.

3. DOWNSAMPLING METHODS FOR MEDICAL DATASETS

We have analyzed several downsampling methods with volumetric datasets that range from the typical pure
subsampling (e.g. taking one of the samples of the original dataset) to more elaborate approaches such as the
topology-guided downsampling by Kraus and Ertl (Kraus and Ertl, 2001). The most important problem with
most of the techniques is the lack of preservation of fine details. The analyzed techniques are:

Subsampling

Averaging

Gaussian filtering

Bilateral filtering

Topology-guided downsampling (Kraus and Ertl, 2001)

For completeness, we have also experimented with other possibilities such as combining any of the
previous downsampling methods with an extra previous noise reduction stage. Unfortunately, no significant
gains are obtained. So, for the sake of clarity, we only comment the tested methods that exhibit noteworthy
behavior and analyze the reasons behind their results. The results shown in the Figures of this paper have
been obtained by ray-casting the volume models with appropriate transfer functions (TF). The density of
samples along rays has been set to 1 sample per voxel of the original model, more than enough for the
downsampled models. It should be observed that we are not performing an intrinsic analysis of these
downsampling techniques, but an analysis of the resulting visual quality when they are used in the context of
TF’s and ray-casting volume rendering.

Subsampling refers to the method that, when downsampling a volume, for each subvolume of 8 voxels
(2x2x2), chooses as the representative for the downsampled subvolume just one of the original values. In our
case, we select one of the corners, although we did experiments with other samples with equivalent results.

The averaging filter simply consists in creating a new value by averaging all the values from the original
volume. In our case, for one-level downsampling, this would consist in averaging the 8 values
(2x2x2 subvolumes) of the upper level.

Besides those two simple methods, more elaborated techniques include Gaussian filtering and bilateral
filtering. Both techniques have been extensively used in image processing algorithms. The core feature of
Gaussian filtering is the noise reduction, at the cost of blurring edges. On the contrary, the bilateral filter is
intended to preserve edges. In the following, we introduce both filters using the notation by Paris et al.
(2007).

Gaussian filtering is a typical operation in image processing that consists in applying a low-pass filter
over the image samples. Given an image |, the filtered version is computed as a weighted average of the
neighboring pixels. So pixel p will have a value that depends on the pixels around a neighborhood g of the
original pixel. Typically, this is denoted as:

GB[I], = Gollp —al) Lq,

qes
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where S is the kernel support and G is a two-dimensional filter kernel expressed as:

1 x?
G (1) = —
o(7) o o2 P ( 202 )

In our case, to downsample volumetric models, we apply this transformation in 3D, so the neighborhood,
instead of consisting of a rectangular region, corresponds to a cube.

The bilateral filter, similarly to the Gaussian filter, is a weighted average of a neighborhood of pixels.
The main difference is that the bilateral filter, besides using a spatial Gaussian kernel, takes into account the
variation in the values of the pixels to preserve the edges. The rationale behind this is that two pixels should
be weighted similarly, not only if their positions are similar, but also if their intensities are comparable too.
This results in a formulation such as:

1
BF[I]p T Z Go(lp —d|) Go.(Ip — Iq) I
p qes
where W is a normalization kernel defined as:

Wo = Go,(lp —al) Go.(Ip — Io)
qeS

The bilateral filter appeared in several independent publications (Aurich and Weule, 1995, Smith and
Brady, 1997, Tomasi and Manduchi, 1998), and has since then further improved, especially for speed (Paris
and Durand, 2009).

Topology-guided downsampling is a method by Kraus and Ertl (Kraus and Ertl, 2001) that better
preserves the topology of the scalar field by preferably selecting the values of critical points. To do this,
every voxel in the original dataset is classified as a regular, a saddle, or an extremum point. Then, during
dowsampling, the most representative sample in the neighborhood of each voxel is taken.

i
&8\
y-Guided
Figure 1. Effect of downsampling on the head model (5123) dataset to 1283. The algorithms applied are b) simple
subsampling (taking one of the samples from the original model), c) averaging the 8 voxels from the higher resolution
model, d) Gaussian filtering (6=0.7 in voxel units), e) bilateral filtering (here we take 6=0.7 in voxel units, and c=6 for
the intensity-based Gaussians, in a range from 0 to 255), and f) topology-guided downsampling. The examples show that
none of the most elaborate filters improve over the average or Gaussian filtering

d) Gaussian Filter e) Bilateral Filter f) Topo]og
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d) Gaussian Filter (6=0.7)  e) Bilateral Filter (¢’s=0.7 & 6) f) Topology-Guided

Figure 2. Effect of downsampling on the body model (5123) dataset to 1283. Compared to the previous example, here the
lack of preservation of small features is clearly visible: note how some tube-shaped elements disappear partially or even
completely (in b-e). The results for the topology-guided downsampling are far from satisfactory. Even if the small
features are in general preserved, the staircase artifacts make the result not usable for medical visualization

The effect of those algorithms onto medical data is illustrated in Figures 1 and 2. Note that the supposedly
better choices, such as the bilateral filter and the topology-guided downsampling produce worse results than
simpler approaches such as the Gaussian filter or the average filtering. Even just subsampling the model
seems to produce comparable or even better results than those approaches. This is in part due to the fact that
the relation between the filtered volume and the final rendered image is TF-dependent and highly non-linear,
with the consequence that such successful image processing techniques show poor performance in terms of
the quality of the final images. These artifacts are more visible for models that have small features such as the
body model in Figure 2, where the loss of small features is evident. Furthermore, even though
Topology-guided downsampling preserves some fine details, it produces undesirable, bumpy images, due to
the fact that its sampling strategy modifies the location of the critical points.

Summarizing, the main disadvantages of the exposed methods for downsampling are the loss of details
and the bumpiness of the produced results. The images shown in Figures 1 and 2 are just a subset of the
experiments we carried out, but they are representative.

In order to overcome these problems, we have developed a new, Gaussian-based downsampling
method that attempts to preserve small features and still produces smooth results at a low cost, and that
requires no parameterization, so it runs completely unattended, without any need for user intervention.
The implementation details of the proposed technique are presented in the next section.
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4. FEATURE-PRESERVING VOLUME DOWNSAMPLING FILTER

4.1 Overview

The main objectives of our downsampling filter are:

e  Preservation of details

e Fully automatic

e Low cost

In order to preserve details, our algorithm first simulates a downsampling step based on Gaussian
filtering, and uses this information as a guidance image to give more importance to those regions that would
previously suffer from excessive degradation so that features are preserved. Then, the real downsampling is
performed. Another important factor is that the process should run unattended, that is, it should not require
manual tweaking of parameters for good results. The rationale behind this is that the filter is intended for use
with medical models, to rapidly downsample larger models that would not fit into the GPU.
This downsampling should be done automatically, since no expert supervision can be carried out. As a result,
the process must be robust to different models, and automatic.

4.2 Implementation

Given a volumetric scalar field V, of resolution 2", to compute a coarser representation V,; k > 0,
our downsampling technique proceeds in three steps:
e  First, a simulated coarser volume S, is computed by means of Gaussian-filtering and subsampling.
o Secondly, the distance between V, and S, provides hints about the loss of features in the simulated
downsampling step. Using this information we generate a filtered output F, using Local Feature
Kernels, which better preserve features that would otherwise disappear with standard filtering and
subsampling.
e Finally, F, is subsampled to obtain V.
At a more detailed level, to compute the filtered value F, at each discrete sample position x we perform
the following convolution:

Fa(x) = Y Valx+i)- f(i)

i EB,
where f, is the normalized Local Feature Kernel at the position x with support B, a ball of radius r centered at
the origin. f, is in turn a product of a normalized global Gaussian kernel g and a distance kernel d,:

1
fuli) = p +8(i) - du(i), Vie B

The denominator is computed as:

=3 ep 8(J) du())
and it ensures the sum of weights in f, equals one. The distance kernel d, is defined as the normalized
absolute distance of values in the neighborhood of x between the original scalar field V, and the simulated

Gaussian-downsampled scalar field S;.:
. 1 . . .
dx(i) = B\Vn(x—i—l)—Sn_k(x—i—l)L Vi€ By

Again, the denominator B ensures the normalization of weights in d,. Note that V,, and S, have different
resolutions; sample positions in the kernel domain happen to be aligned with the center of V,’s voxels,
but density values from S, must be computed by tri-linear interpolation. The distance kernel assigns larger
weights to those samples in V, that are prone to disappear (those which most differ with S,.). As both g and
dy are combined into f,, smoothing or sharpening is done depending on their weights, which are local to the
filtered sample position x. Homogeneous regions will provoke homogeneous distance kernels, thus letting g
filter the most part, whereas feature regions will provide more characteristic distance kernels for the feature
selection task. Figure 3 shows a visual overview of the algorithm.
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Figure 3. Overview diagram of our feature-preserving downsampling filter using Local Feature Kernels. As seen in the
image, the technique first needs to perform a Gaussian-based downsampling to generate a guidance downsampled
dataset. Then, the original dataset can be filtered with Local Feature Kernels, which are made of a combination of a
Gaussian kernel and a distance kernel computed from the sample-by-sample neighbourhood differences between the
original and the guidance datasets

4.3 Results

Without any optimization, running on a commodity PC (Intel Core i7 CPU, 8GB RAM) our algorithm takes
up to 4 minutes in order to compute the downsampling for the thorax model from 5123 to 128% voxels.
Although it is a few times more costly than standard Gaussian-downsampling, it’s affordable for a preprocess
and scales linearly with the input dataset resolution, plus it clearly achieves higher quality results.

In all the comparisons, we reduce the models a ratio of 64:1, going from 512° to 128° in Figures 1, 2 and
5, and from 256° to 64° in Figure 4, for an aneurysm model with a lot of small features. Note how our method
improves over all the others.

a) Original b) Average c) Bilateral filter ~ d) Gaussian e) Topology-guided f) Our approach

Figure 4. Performance of our downsampling filter for an aneurysm, a model with a lot of small features. Most methods
lose a lot of details, or result in overly exaggerated features, leading to undesirable visual artefact effects. Our system
(shown in f) is the one that performs best

Figure 5 shows the effect of our downsampling filter compared to the averaging and Gaussian filtering
methods for the previous shown models. We can see that for large models with small features, such as the
thorax model on top, many of those details are preserved. Note how the ribs have softer shape, and the
kidneys are not so transparent as in Figures 5b and 5c. The catheter going from the left shoulder to the hip is
also quite preserved, such as the ureter.
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a) Original \b) Average ¢) Gaussian d) Our approach

Figure 5. Our improved feature-preserving filter (d) improves the downsampling of the other approaches by preserving
more small details and avoiding the ugly staircase effect that may appear using other techniques. The original dataset (a)
has 5123 resolution, while the downsampled models have 1283. The Gaussian filter uses again the 6=0.7 as compared to
voxel size. Notice how in the thorax model (top) some of the small features such as the catheter and some of the vessels
are better preserved than with the other filters. The head model again preserves smaller features such as the creases of the

bones better, while partially avoiding the staircase effects that are more noticeable in (b) both in the skin and the skull

5. CONCLUSIONS AND FUTURE WORK

Since medical models are now commonly available (you can get the data of your CT or MRI in a DVD after
a medical test), the need of rendering such models in commodity PCs has grown. So downsampling is a key
step in several scenarios, such as when the data must fit a small GPU, and when the models are huge enough
that even the best GPU in the market cannot hold it. In these last cases, building a multiresolution scheme
also involves downsampling the models to build the intermediate nodes.

In this paper we have analyzed several techniques for downsampling volumetric models and we have
developed a new filtering method that adaptively smooths or preserves features depending on the topology of
the surrounding region of the voxel being filtered. We do this by generating Local Feature Kernels. These are
the product of a smoothing Gaussian kernel and a local distance kernel derived from the absolute distance
between the full resolution dataset and a previous downsampling simulation. Our proposed heuristic
identifies zones which are potentially likely to disappear, and gives them more importance when filtering.
As a result, they are preserved after subsampling. We have shown that the technique improves the quality of
several models with respect to other downsampling techniques, and it is especially suited for models with
small features, such as the aneurysm. In our experiments we also found that the improvement over some
models was more limited, but in any case, the quality was at least analogous to Gaussian filtering. Thus, our
filter can be safely used in a vast majority of models.

Since the key of this filtering method resides in suitably adjusted Local Feature Kernels, we believe that
our process can still be improved. In this line, we plan to further explore additional ways to determine their
weights, variance, and radius.
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