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An enduring rapidly moving storm as a guide to
Saturn’s Equatorial jet’s complex structure
A. Sánchez-Lavega1, E. Garcı́a-Melendo1,2, S. Pérez-Hoyos1, R. Hueso1, M.H. Wong3, A. Simon4,

J.F Sanz-Requena5, A. Antuñano1, N. Barrado-Izagirre1, I. Garate-Lopez1, J.F. Rojas1, T. del Rı́o-Gaztelurrutia1,

J.M Gómez-Forrellad2, I. de Pater3, L. Li6 & T. Barry7

Saturn has an intense and broad eastward equatorial jet with a complex three-dimensional

structure mixed with time variability. The equatorial region experiences strong seasonal

insolation variations enhanced by ring shadowing, and three of the six known giant

planetary-scale storms have developed in it. These factors make Saturn’s equator a natural

laboratory to test models of jets in giant planets. Here we report on a bright equatorial

atmospheric feature imaged in 2015 that moved steadily at a high speed of 450 ms� 1 not

measured since 1980–1981 with other equatorial clouds moving within an ample range of

velocities. Radiative transfer models show that these motions occur at three altitude levels

within the upper haze and clouds. We find that the peak of the jet (latitudes 10� N to 10� S)

suffers intense vertical shears reaching þ 2.5 ms� 1 km� 1, two orders of magnitude higher

than meridional shears, and temporal variability above 1 bar altitude level.
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A
t the upper cloud level, the giant planets Jupiter and
Saturn display a permanent system of alternating
eastward and westward zonal jets whose intensity and

width show few temporal changes since the first detailed
measurements in 1979–1980 (refs 1–9). One exception is
Saturn’s broad equatorial jet that extends from planetographic
latitudes B35� N to 35� S reaching eastward peak velocities
B450–500 ms� 1 (refs 7–9) (Fig. 1). The velocity field that traces
the equatorial jet is much more complex than at other latitudes10,
showing a vertical structure and temporal variability that
have been so far not well-characterized, since a key part of
the measurements at different altitudes were obtained in
different epochs11–15. The Equatorial jets of Jupiter and Saturn
are particularly relevant to atmospheric dynamics because of
their eastward flow (contrary to the equatorial westward flows
that occur in other rapidly rotating planets, as Earth, Mars,
Uranus and Neptune) and because of their intensity
(Saturn Equatorial peak velocities reach Bone-third of the
sound speed). The origin of Jupiter’s and Saturn’s jets is not
well understood, and it is an open issue if they are deep or
shallow in vertical extent and if they have deep or shallow
forcing sources, or a mixture of both (solar heating, internal
energy and latent heat release)1,2,16. Distinguishing between
these possibilities requires a good characterization of the energy
balance in the atmosphere, a quantification of the contribution
of each of the above sources to forcing, a precise determination
of the wind field, and knowledge of the structure of the deep
atmosphere by gravity field measurement1,2,16,17.

The winds are measured by tracking features in the upper
hazes and clouds close to the tropopause (at the altitude pressure
level PB100 mbar) and upper troposphere (PB1–4 bar) where
most solar radiation is deposited18. This layer has a thickness
of B100–150 km and acts as the coupling between the deep
troposphere and the stratosphere. Interestingly, the equatorial
region of Saturn experiences strong seasonal insolation variations
enhanced by ring shadowing periods18. In addition, Saturn’s
Equator has been the place of three of the six known Great White
Spot (GWS) events that have been observed in the last 134
years19–22. These giant planetary-scale storms influence the zonal
winds giving insight on jet stability and forcing mechanisms23,24.
Finally, a semiannual oscillation (SAO) in the temperature and
wind fields (occurring in the stratosphere between latitudes 15�N
and 15�S) and its role in the upper troposphere represents
another open issue of Saturn’s equatorial dynamics25,26. All these

factors make Saturn’s equator a natural laboratory where to
test models of jet stability and generation in giant planets, a
major open issue in geophysical fluid dynamics1,2,16,
whose implications extend to the case of gas giant exoplanets27.

Here we address the vertical structure and temporal variability
of the puzzling Equatorial jet. Using ground-based and Hubble
Space Telescope (HST) images obtained in 2015 in the visual
range, we were able to measure wind speeds using cloud tracking
at three different altitude levels in the peak of the Equatorial jet
between latitudes B20�N and 20�S. The altitude of the tracers
was retrieved using radiative transfer modelling of the spectral
and geometrical dependence of the absolute reflectivity across the
equatorial zone. By combining these wind measurements and
altitude determinations with those previously reported during the
last three decades, we constrain the temporal variability of the jet
at different altitudes from 1980 to present, encompassing more
than 1 Saturn’s year (29.5 years). Finally we discuss these results
in the context of the Equatorial dynamics.

Results
Cloud morphology and long-term motion. Ground-based
observations of Saturn obtained during the first half of 2015
showed the presence of a conspicuous white spot (WS) at red
wavelengths (B 610–950 nm) in the Equatorial Zone (planeto-
graphic latitude 6�N). The spot was easily detected by observers
using telescopes in the range of 25–40 cm in diameter contri-
buting to the PVOL database of planetary images28 (Supple-
mentary Table 1, ref. 29) and with PlanetCam instru-
ment on the 2.2 m telescope at Calar Alto Observatory30

(Fig. 2a). Its motion, tracked from April to October, revealed
a steady linear drift in longitude relative to the rotating refer-
ence frame System III31 with a rapid zonal velocity of
u¼ 447±1 ms� 1 (Fig. 2b). The bright feature was accom-
panied by a dark spot moving at the same speed and 2� to its East
(Fig. 3). A similar bright spot was found in PVOL images in July–
August 2014, close to the predicted position, moving rapidly with
a velocity of u¼ 445±1 ms� 1. The drift rate in the longitudinal
position of both spots in System III was steady at a rate of
� 37.05� per day (for the white spot in 2015). To determine
whether these two similar features are in fact the same one tracked
on different periods of time we used a reference system in which
the 2015 spot is nearly stationary (Fig. 2b). The long-term linear
drifts of both spots in System III longitude allows to determine the

500

400

300

200

100

0

40 30 20 10 0 –10 –20 –30 –40

Planetographic latitude (°)

500

400

300

200

100

0

40 30 20 10 0 –10 –20 –30 –40

Planetographic latitude (°)

a b

Z
on

al
 w

in
d 

ve
lo

ci
ty

 (
m

 s
–1

)

Z
on

al
 w

in
d 

ve
lo

ci
ty

 (
m

 s
–1

)

Figure 1 | Saturn’s Equatorial jet in time traced by cloud motions. (a) Voyager 1 and 2 in 1980–1981 (turquoise line, ref. 7); Hubble Space Telescope (HST)

in 1990–1991 in the 889 nm methane absorption band (violet filled circles) and in 547 nm (empty circles) corresponding to the development of the 1990

GWS20; Ground-based historical GWS storms in 1876, 1933 and 1990 (magenta dots)22. (b) Cassini ISS in 2004-09 in the methane band at 889 nm

(magenta line, refs 9,13), and in 752 and 939 nm (black line, refs 9,13); HST in 1994–2003 in the 889 nm methane band (blue dots)11.
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mean speed of both spots with an accuracy of ±1 ms� 1. With the
data in hand, we cannot definitively conclude if the 2014 white
spot changed slightly its drift velocity (being the same as the 2015
white spot feature), or if these are different spots which emerged
separated in time but at close longitudinal positions. In both cases,
these speeds are well above the 380 ms� 1 measured during the
Cassini epoch at this latitude8,9. These high speeds at the Equator
were only observed in 1980–1981 (ref. 7) during the Voyager
flybys (Fig. 1), suggesting one of the following possibilities: the
spot is at a deeper level where faster winds are present15,32, or a
change in the jet system have occurred since the last accurate wind
measurements based on Cassini ISS data in 2009.

To gain further insight, we observed Saturn with the HST
Wide Field Camera 3 (WFC3) on 29, 30 June and 1 July 2015
over a broad spectral range spanning from 255 to 937 nm
(Supplementary Table 2). A maximum resolution of B260 km
per pixel at the sub-observer point is reached in these images.
Figure 3 show maps of the Equatorial Zone at wavelengths
sensitive to different altitude levels where the cloud morphology
becomes distinct and conspicuous. Images in the continuum band
centered at 750 nm shows a variety of features with the white
spot morphology dominating the scene. The dark spot locates
South-East of the white spot (equator ward of it). A similar
pattern of cloud morphologies, although with a smaller contrast
brightness, is visible at 689 and 937 nm. In the 890 nm
methane absorption band the visible cloud patterns, located
higher in the atmosphere, are different to those seen in the red
continuum. Dark and white filamentary areas spread along the
Equator with a dark region situated close to the dark spot. In the
ultraviolet (336 nm), the contrast between the features is small
and reverses in brightness when compared with the 727 and
890 nm bands. For example, the dark area in 890 nm becomes
brighter than its surroundings at 336 nm. This is consistent
with the dark spot being a region depleted in aerosol particles
relative to its surroundings, which becomes dark in the methane
bands due to gas absorption and bright in the ultraviolet due
to the increasing effect of Rayleigh scattering by the gas at
shorter wavelengths.

Observed at 750 nm at the HST resolution the white spot
shows its cloud morphology with detail (Fig. 4). The white spot
is a complex feature consisting of a cluster of bright clouds with a
size of B300–500 km, extending from latitudes B2�N to 8�N
forming the single spot, white spot observed at ground-based
resolution, being its full size B7,000 km. At the HST resolution
morphology changes and local motions in the white spot are
noted in just two Saturn rotations (20.6 h). However, the white
spot preserved globally its coherence during the observing
period, in agreement with the long-term ground-based
observations. With so few observations and data, we cannot
assign the dynamical nature of this structure (for example, if it is
a convective storm, some kind of Equatorial wave, or the result of
a zonal flow instability).

The equatorial zone is broad and uniform in reflectivity from
latitude B8�S (where the rings projection limits the visibility) to
latitude B16�N (where a narrow dark belt locates), in the UV
(225 nm), blue (410 nm) and green (502 and 547 nm), as observed
with the HST-WFC3 (Supplementary Table 2). The white spot
cloud morphology is similar at the nearby red continuum
wavelengths of 689 and 937 nm although the contrast between
the features decreases at 689 nm when compared with 750 nm
(Figs 4 and 5). We will show later that this dark belt is placed at the
latitude where the wind profile at the upper haze has a strong
change in the velocity. The bland aspect of the equatorial zone at
these wavelengths, with almost no contrast between the few
detected features, results from the sunlight multiple-scattered in an
optically dense haze at depth, quantitatively shown in next section.

Cloud altitudes. The ample HST wavelength coverage allows to
sense different altitudes within the hazes and clouds. In our
radiative transfer model the gas optical depth (t) is due to
Rayleigh scattering by a mixture of H2 plus He and to absorption
by CH4 with absorption coefficient keff (refs 33–35). The pressure
level at which the gas reaches optical depth unity is given in
Table 1 and serves as a first step to constraint the altitude of the
cloud features as a function of wavelength or filter employed).

A radiative transfer model was employed to quantify the effect
of the particles on the cloud altitudes that we sense at these
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Figure 2 | Ground-based images and motion of Saturn’s white spot in

2014–2015. (a) June 21 (left, Aula EspaZio 28 cm telescope, wavelength

615–950 nm) (ref. 29) and July 13 (right, PlanetCam at the 2.2 m telescope

Calar Alto Observatory, 750–950 nm (ref. 30)); (b) Residuals in the

longitude position of spots measured relative to a reference system rotating

with a period of 10 h 11 min 26.3 s (horizontal black continuous line), found

from the mean zonal drift of white spot between 18 April and 12 October

2015 (� 37.05� per day in System III (ref. 31) or u¼447 ms� 1). (c) Detail

of the residuals in longitude measured in 2015. The error bar of each

individual longitude measurement is given by the image resolution at the

location of the spot in the disk (typically 1�).
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wavelengths. We model the absolute reflectivity I/F (I radiant
intensity; pF the solar flux) determined along latitude circles from
limb to terminator (center to limb reflectivity variation, CTLV) in
the equatorial zone at each observed wavelength (Methods
section). We used a forward atmospheric model based in a
doubling-adding scheme that assumes a plane–parallel atmo-
sphere with three standard separated aerosol layers (from top to
bottom, a stratospheric haze, a tropospheric haze and a
cloud deck)33,35–38. In Fig. 6 we show the best case of the
model fit to the observed reflectivity for the equatorial zone and
for the white spot and dark spot, and in Table 2 we present the
resulting model parameters. The best fitting models for the
white spot and dark spot features when compared with their
measured spectral reflectivity are given in Supplementary Fig. 1.
A sensitivity analysis has been performed for the white spot to
test the effect on I/F when varying the altitude of the bottom
cloud as shown in Supplementary Fig. 2. We have also studied
how sensitive the 889 nm reflectivity measurements are to the top

pressure and optical thickness of the tropospheric haze around
the fitted value given in Table 2 (Supplementary Fig. 3). All this
allowed us to fix the best fit model and the error bars for the
parameters given in Table 2.

According to our radiative transfer modelling, the features seen
in the wavelength range 336–727–889 nm are located close to the
top of a dense tropospheric haze at 60±30 mbar altitude level.
Cloud elements observed in the red continuum at 689–750–937 nm,
outside the white spot feature, are located within the tropospheric
haze at altitude levels between 400–700 mbar in agreement with our
previous works15,33. The white spot high brightness requires single-
scattering albedo o0Z0.997 and the cloud top of the feature to be
at a pressure PWS¼ 1.4±0.7 bar.

Wind measurements. Tracking the motions of small features in
images at different wavelengths on the three dates when the HST
images were obtained, allowed us to retrieve the zonal wind
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Figure 3 | Maps of Saturn’s Equator from Hubble Space Telescope. The images were obtained with the WFC3 on 29 June 2015 at the following

wavelengths: (a) 750 nm (red continuum); (b) 889 nm (methane band); (c) 336 nm (ultraviolet). Image details are given in Supplementary Table 2.
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Figure 4 | Morphology of the white spot and dark spot. Morphology and changes in the white (WS) and dark (DS) spots as observed with the

HST-WFC3 at a wavelength of 750 nm in images separated by 20.6 h on: (a) 29 June and (b) 30 June. Image details are given in Supplementary Table 2.
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profiles (velocity as a function of latitude) at three different
altitudes in the peak of the Equatorial jet (latitudes from 20�N to
20�S, Fig. 1). In addition, we measured wind speeds in Cassini ISS
images taken in April, September and October 2014 at similar
wavelengths, namely red continuum (752 and 939 nm) and the
strong methane absorption bands (728 and 890 nm)39 (Methods
section). We then compared those winds with our previously
published Cassini ISS wind profiles13 (Fig. 7). First, in the
336–727–890 nm wavelength group the retrieved winds from
HST data globally agree with the Cassini profile at 728–890 nm
for 2014. The narrow central equatorial jet persists but a
meridional broadening seems to have occurred between 2004
and 2009 (ref. 13) and during the current epoch 2014–2015
(Fig. 7a). Second, at red continuum wavelengths (689–750–

937 nm) the HST data show two groups of velocities (Fig. 7b).
One group is related to white spot and the wind speeds cluster
atB450 ms� 1 at latitudes from 2N� to 8�N. The individual
spots within the complex structure of white spot moved with
speeds in the range u¼ 425–475 ms� 1, agreeing with ground-
based data. We assume that all the points that follow these fast
motions (black line in Fig. 7b) are located at the same altitude
level than that of the white spot, i.e. deeper relative to the other
tracers. Globally, these rapidly moving features captured in HST
images match the Voyagers mean profile, also added for
comparison in Fig. 7b (green line)7. Close to latitude 8�S, in a
region where wind data from the Voyagers are not available, we
find a group of tracers with high velocities. Tentatively, one can
identify these features as delineating a southern jet peak,
symmetric in latitude to the northern one. If so, Saturn’s
Equatorial jet at the lowest levels sampled has a similar shape to
the Jupiter equatorial jet, that is, exhibiting a ‘double symmetric
peak’ relative to Equator1,3–6. Third, the red continuum 689–750–
937 nm wavelengths show a second group of lower velocities that
follow the 2014 profile from Cassini ISS (blue and violet lines,
Fig. 7b). This profile (Cassini 2014 and HST 2015) exhibits a
velocity shift by Bþ 20 ms� 1 above those measured with
Cassini ISS in 2004-2008 (red line, Fig. 7). The presence in
2015 of the two different velocity profiles at red continuum
wavelengths can be interpreted as the detection of clouds moving
at two different altitude levels. According to radiative transfer
modelling the profile showing low velocities corresponds to the
400–700 mbar level whereas the profile with higher velocities
corresponds to the 1.4 bar level (in agreement with the white spot
velocity). We rule out waves as an explanation for the dual profile
since no periodic structures are seen on the albedo patterns
(Fig. 3). Finally, as a further comparison, we have included in
Fig. 7b a smoothed version of the wind profile derived from 5-mm
images obtained by Cassini VIMS32 that senses cloud features as
opacity sources to the infrared emission from the planet at deeper
levels (1–3 bar) in the atmosphere 40,41.

Vertical wind shear of the zonal winds. The above results can be
used to retrieve the vertical structure of the zonal wind in the
peak of the Equatorial jet in 2014–2015 at cloud level. We selected
representative latitudes between 15�N and 10� S to draw the zonal
velocity u as a function of altitude as shown in Fig. 8a where
for completeness we also include published data on the
deeper winds from Cassini VIMS32. Outside the latitude band
from B15�N to 15�S the zonal winds exhibit low vertical shears
(see also Figs 1 and 7). The largest vertical wind shears are
concentrated in the latitude band from 10� S to 10� N and in
altitude between the tropospheric haze and the cloud deck
(from levels 0.5 bar to 1–4 bar). The most intense shears occur in
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f

Figure 5 | Multi-wavelength aspect of Saturn’s Equatorial Zone.

HST-WFC3 images obtained on 29 June at the following wavelengths:

(a) 225 nm; (b) 420 nm; (c) 502 nm; (d) 547 nm; (e) 689 nm; (f) 937 nm.

Image details are in Supplementary Table 2.

Table 1 | HST filter list and atmospheric altitude sensitivity.

Filter keff (nm) keff (1/km-am) P (s¼ 1) (bar)

F225W 237.8 o10� 6 0.112
F336W 335.9 o10� 6 0.515
F410M 410.8 7.2� 10� 5 1.210
F502N 501.0 0.0017 2.760
F547M 545.2 0.0221 3.815
F689M 688.0 0.2456 5.772
FQ727N 727.7 3.2302 0.993
FQ750N 750.2 0.0211 13.183
FQ889N 889.4 23.733 0.138
FQ937N 937.7 0.0397 24.866

HST, Hubble Space Telescope.
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the equatorially symmetric jets at latitudes B5�S and 5�N where
@u/@z¼ 100 ms� 1/H¼ 2.6� 10� 3 s� 1 (for H¼ 40 km being the
scale height) orB2.5 ms� 1 km� 1 (2.5� 10� 3 s� 1). This shear
is two orders of magnitude higher than the maximum meridional
shear of the zonal flow found at Saturn’s Equator @u/
@y¼ 3� 10� 5 s� 1 (Figs 1 and 7).

To explore the long-term behaviour of the vertical profile we
have combined all the available wind data gathered during the
last 35-year period (1980–2015), that is, over B1 Saturn year
(29.5 years). We concentrate into a single-latitude band from 4�N
to 8�N, that is, the latitudinal range occupied by the white spot
which is also the latitude where the 1990 GWS developed19–21,42

(Fig. 8b). A conclusion we reach is that large changes in the speed
of the zonal flow occurred above the B1 bar altitude level. We
have also taken into account retrieved thermal winds available for
the Voyager and Cassini periods at these latitudes and altitudes43

(Fig. 8b). When considering the whole data set we first conclude
that winds dropped between the 1980–1981 and 1990–1991
(following the GWS storm eruption) by B150 ms� 1 at the cloud
top level (B60 mbar) and by B100 ms� 1 at mid-altitude levels
(B350–700 mbar). Second, at the top level a wind speed increase
of B50 ms� 1 is detected between 1996–2008 and 2014–15.
Third, at the mean altitude level winds kept nearly constant after
1990–1991, but an intensification of the jet speed by B25 ms� 1,
preserving its meridional structure, occurred between 2004–2008

and 2014 at B500 mbar (latitudes 10� S and 10� N; Fig. 8b). We
cannot determine if this is a real change or simply a vertical shift
in the altitudes where the tracers are located within the
tropospheric haze (this will correspond to a downward shift of
the tracers by about one scale height). Finally, temporal variability
at deeper levels (below B1.4 bar) cannot be constrained with the
present data. New wind measurements using VIMS images at 4–5
microns are necessary to sound this level.

Discussion
Our results indicate that Saturn’s broad Equatorial jet, spanning
from B35� N to 35� S (Fig. 1), has a central peak (from latitudes
B10� N to 10� S) that has an intense vertical wind shear in its
upper cloud and haze layers (from the tropopause at B0.06 bar to
the upper cloud at B1–2 bar) and that has experienced temporal
variability in the velocity of the upper cloud and haze levels. There
are at least three known sources that can be involved in the
variability and vertical structure. First, three of the six rare Saturn
giant planetary-scale GWS storms have originated in the peak of
the equatorial jet in 1876, 1933 and 1990 (refs 2 and 19–21), the
last one accompanied by large activity in 1994 (refs 42 and 44).
They probably represent one of the sources for major and long-
lasting changes in the area although the operating mechanisms are
not yet well understood2,45. New ‘shallow water layer’ dynamical
simulations of the 1990 GWS show the effect of changing the
equatorial jet structure on the storm evolution (therefore fixing
the jet structure at the epoch of the storm’s outbreak) and
the generation of abundant Rossby waves affecting the structure of
the jet peak46. The upward propagation of this wave activity could
have formed ‘an equatorial beacon’ in the upper stratosphere
similar to that observed in the GWS 2010 (refs 47 and 48).

Second, since the solar radiation penetrates down to
altitudes B2 bars18, variability in the vertical upper cloud and
haze distributions33–38 coupled to seasonal radiative effects

Table 2 | Cloud altitudes from radiative transfer modelling.

Layer Parameter EZ WS DS

Stratospheric
haze

P1 (mbar) 10±10

P2 (mbar) 24±12
t1 (937nm) 0.1±0.1

mr 1.43
mi 0.001

a (mm) 0.4±0.2
b 0.1

Tropospheric
haze

P3 (mbar) 30±10

P4 (mbar) 300±100 600±300
t2 9±4 12±5

$0 (225 nm) 0.84±0.03
$0 (336 nm) 0.7±0.1
$0 (410 nm) 0.85±0.02
$0 (502 nm) 0.98±0.06
$0 (547 nm) 0.99±0.05

$0

(4689 nm)
1.000

f 0.8
g1 0.8
g2 0.3

Bottom cloud P5 (bar) 1.4 1.0±0.3 5.0±4.0
P6 (bar) 1.5 2.0±1.0 5.0±4.0

t3 4 10
$0 0.998±0.001 (1.000)

EZ, equatorial zone; DS, dark spot; WS, white spot.
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Figure 6 | Radiative transfer models compared with the observed

reflectivity. Best-fitting model (blue dots) of the Equatorial Zone center to
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enhanced at these latitudes by ring-shadowing is the most
plausible second source for changes49. Seasonal variability is
observed in the temperature field above B400 mbar (refs 40
and 41). The 2004–2014 Cassini temperature retrievals shows
that aerosol heating produces a ‘kink’ in the vertical temperature
profiles from 100 to 400 mbar in the Equator40. This indicates
that variability should occur in the thermal winds as retrieved
from a modified thermal wind balance equation at Equator50,
although large uncertainty exists in these retrievals40,43,48
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compared with an average from 2004 to 2009 (red line, ref. 13). (b) Mid

level winds purple and blue lines) and low altitude winds (black line) in

2014-2015. The HST low speed points are binned and fitted by the purple
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dots in Fig. 7a), 60 mbar (336 nm, circles in Fig. 7a), B500 mbar
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(689–750–937 nm, black line in Fig. 7b), B2.5 bar (dashed line in Fig. 7b;
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transfer model (refer to Fig. 6). The horizontal (velocity) error bar is from

Fig. 7 profiles (one s.d. from the mean, Methods section); (b) Vertical profiles
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equatorial tropopause44. The vertical (altitude) error bar is from the radiative

transfer model (refer to Fig. 6). The horizontal (velocity) error bar for cloud
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(Fig. 8b). However, radiative-dynamical modelling points to the
seasonal variability and vertical wind shear occurring in the
peak of the jet just at the right latitudes and altitudes we
observed49,51. A three-dimensional Outer-Planet General
Circulation Model (OPGCM) applied to Saturn showed that a
meridional circulation develops at Equator and was found to be
dominated by a seasonally reversing Hadley circulation51. The
temporal changes are predicted to occur at altitudes above B200
mbar, with the reversion of the Hadley circulation taking place at
latitude B25�. In the altitude range B55–200 mbar the model
generates a symmetric jet at both sides of the Equator (latitudes
B8�N and 8�S) with a seasonally variable speed ofB60 ms� 1

and whose maximum value isB350 ms� 1. Maximum vertical
shears in this altitude range predicted by the model are
Bþ 0.6 ms� 1 km� 1 (6.2� 10� 4 s� 1) agreeing with other
model predictions49. These models do not exactly match the
observations (for example they do not reproduce the central jet
observed at 60 mbar) but they show, in agreement with the
observations, that the velocity changes forced by the seasonal
insolation cycle occur in the center of the Equatorial jet at the
expected altitudes (B55–200 mbar).

The Semi-Annual Oscillation (SAO) that has been detected in
the stratosphere at altitudes above 20 mbar (refs 25,26) could
be the third mechanism involved in the velocity changes
affecting winds at least down to the top of the upper haze
atB60 mbar. We suspect that the changes at 60 mbar observed in
2004–2009 and 2014–2015 might be related to the SAO cycle.
However, the observed downward propagation of the SAO damps
at this level52,53. The lack of measurements of the amplitude and
vertical extent of the SAO below 20 mbar does not allow
searching for its implication or coupling with the wind changes
we observe at 60 mbar.

Our results show that to constrain the coupling of the SAO
(as derived from temperature measurements) to the wind field
(as measured by cloud tracking) in the upper troposphere
(50–200 mbar) we need more long-term simultaneous
observations of both magnitudes, along with the characterization
of the vertical structure of cloud and hazes where the winds are
measured. In addition, to characterize the vertical structure, it
would be highly desirable to accompany these data with
long-term wind measurements at deeper levels (1–3 bar) using
the 5 micron window as in Cassini VIMS images32. Theoretical
modelling will probably require a refinement of the GCM
models51 that should be able to capture the SAO cycle
and vertical structure of the Equatorial jet across the
stratosphere and upper troposphere. For example they should
be able to reproduce the intense jet centered at the Equator as
observed at 60 mbar and the mechanisms that transport and
concentrate momentum in such narrow latitude band. Latent heat
release by water condensation at the level PB10 bar in Saturn54,
and radiative relaxation effects on the zonal flow have been
proposed as elements in the generation of such narrow Equatorial
jets in shallow layers55. Another important issue in modelling the
upper troposphere dynamics is the imposed lower wind boundary
condition, that is, how winds behave below the accessible region
to remote observations (PZ3–4 bar). For example, models of
deep extending winds under deep forcing56–58 reproduce the
double jet peak we observe in the Equator of Jupiter1 and
Saturn (Fig. 7, ref. 32). Radiative-dynamical models50,51

should take this into consideration.
To complete the research it would be very interesting to

explore with the GCM51 how the dynamics of the Equatorial
great storms (the GWS phenomenon) influenced both the
stratospheric SAO and the global wind field in the region.
This could be done injecting a heat or mass source at the
appropriate latitude46. A reanalysis of the available infrared

data for the GWS 1990 (ref. 25) and the following up activity
across 1994–1995 will serve to search for ‘beacon’ activity in
equatorial storms.

Methods
Image navigation and wind velocity measurements. Ground-based observations
and HST and Cassini ISS images were navigated for limb position and features
location with software LAIA and PLIA59,60. We used three different techniques to
retrieve wind speeds: Cloud-tracking of individual features; Latitudinal correlation
of longitudinal brightness patterns; Supervised two-dimensional brightness
correlation61,62. Wind measurements on Cassini ISS images are fully described in
previous works9,13. For the HST we used image pairs separated by 20.6 h but in
some cases for the cloud tracking method, the tracking was possible in three images
with time separations of B20 h between each pair. Typically we resolve cloud
elements with a size of B500 km giving a formal error of B7 ms� 1. The HST data
points were classified in two groups of low and high speed by visual inspection and
when their velocity separation from the mean (in a latitude band of 1–2�) is above
15 ms� 1. The points for each group are then binned in boxes with a width of 1�–2�
in latitude to get zonal profiles and then the mean values, with standard deviation
of B10 ms� 1, joined to simple straight lines.

Photometric calibration. HST observations were photometrically calibrated
following the WFC3 handbook instructions63. Radiances were converted into
absolute reflectivity I/F using the solar spectrum64,65. The resulting I/F as a
function of planetary geographical coordinates was confirmed against values given
by other authors for selected locations of the planet and with geometric albedo
values of the planet34.

Radiative transfer model. We selected center to limb scans along latitude 5�N
where the bright spot resides. However, we extrapolated these results to the
observable Equatorial Zone (latitude range between 15�N and 10� S) in view of the
similar photometric behaviour at all wavelengths. The forward modelling allows
retrieving the haze and aerosol vertical structure in the region down to the
ammonia ice cloud at 1.4 bar. The reference vertical structure we found is similar to
those retrieved in previous works10,12–33. The forward model has been described in
previous papers33,36 with details given in what follows. It assumes a plane-parallel
atmosphere and it is based in a doubling-adding scheme. The model includes
gaseous absorption by CH4 and scattering by a mixture of H2 and He. Methane
absorption coefficients were calculated through a convolution of the system
throughput curves with methane absorption spectrum35. The model also
accommodates particle absorption and scattering by means of a number of possible
phase functions. For the altitude location of the two particular fast moving
features (white spot and dark spot) we consider two model scenarios: higher
single-scattering albedo o0(l) and different cloud top pressure level (P) of the
feature, always within the tropospheric haze. Under this model, the white spot high
brightness gives o0¼ 1 and puts the cloud top of the feature down to
PWS¼ 1.4±0.7 bar. For the dark feature, instead, the model indicates a lower
particle density due to a deeper location of the tropospheric haze bottom.

Inversion of atmospheric parameters. To determine the atmospheric parameters
that most likely reproduce the observed reflectivity as a function of wavelength and
scattering angles we computed the mean square deviation for each model. The goal
was to minimize this function in the multi-dimensional space of free parameters,
for doing so we used a Nelder-Mead simplex method66. A number of runs were
performed from some initial states in the free parameter space to ensure that the
retrieved minimum of the function was the absolute minimum in the range of
confidence. Sensitivity and error bars are explored uni-parametrically following
previous works67. An example of the exploration of model sensitivity for some key
parameters is shown in Supplementary Figs 2 and 3.

Data availability. The codes for radiative transfer models are available on request
from S.P.H. This includes the forward model (FORTRAN 77), high-level interfaces
for plotting and interacting with the minimization routines and a trivial call to
native simplex algorithms (Python and MATLAB).

Details about the HST images (available at PDS NASA) and ground-based
observations from contributors to the PVOL and ALPO Japan databases are listed
in the Supplementary Information. Cassini ISS images are available at NASA PDS.
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Hueso, R. Vertical shears in Saturn’s eastward jets at cloud level. Icarus 201,
818–820 (2009).
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