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Abstract 

Nowadays, reduction in energy use has become an important issue by the vast majority of 

institutions in all the world. Although the energy efficiency of systems and components for 

heating, ventilating, and air conditioning (HVAC) has improved considerably over recent years, 

there is still potential for substantial improvements. Consequently, this project deals with an 

advanced control technique, model predictive control, that can provide significant energy 

savings in comparison with conventional, non-predictive techniques. 

Nevertheless, the main goal is to try a comparison between two possible approaches to obtain 

such building energy control problem: (1) Centralized control, and (2) Distributed control. To 

accomplish this, mathematical software MATLAB has been used. Also YALMIP, which is a 

free MATLAB toolbox for rapid prototyping of optimization problem, has been used. 

Keywords: Energy savings; Building control optimization; Thermal comfort, Centralized 

control, Distributed control, Distributed architectures, Model Predictive Control.  
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1. GLOSSARY 

1.1. Abbreviations 

 

 

 MPC: Model Predictive Control 

 

 EMPC: Economic Model Predictive Control 

 

 DMPC : Distributed Model Predictive Control 

 

 HVAC: Heating Ventilation Air-Conditioning 

 

 VAV: Variable Air Volume 

 

 FCU: Fan Coil Unit 

 

 AHU: Air Handle Unit 

 

 LSS : Large Scale System 
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2. PREFACE 

2.1. Origin of the project 

The origin of this project starts with a first meeting that has held in February 2017 with my tutor 

Vicenç Puig. He was working on an innovative project related with energy optimization with 

cooperation with an another faculty in Nancy, France. 

The proposed idea of analysing and learning more about a new control field seemed very 

interesting to me. I was curious to learn more about the automatic control, after having studied 

the subject of automatic control of my degree. More specifically, I was really interest on learning 

the internal structure of the controllers and how they work. 

2.2. Academic requeriments 

To carry out this project, it was necessary to learn more about the concept of predictive control, 

state space and decomposition in Nonlinear programming. A previous and in-depth study was 

required of how the control strategy works, the energy optimization problem that must be 

formulated in each case, the use of mathematical models within the controllers and how to 

deal with the non-linearity of the predictive models.  

On the other hand, the knowledge acquired in subjects such as Optimization and Simulation 

and Automatic Control have been very useful for carrying out this work. Finally, the learning of 

Matlab software, Yalmip and other solvers such as Gorubi has been indispensable. 

 

2.3. Motivation 

The motivation to start that project was clear: this work is within an innovative field. There are 

several interesting topics of relative relevance and that in the future may have a very positive 

impact for our society. I also consider that doing a job related to the automatic control is very 

interesting since it has many applications in this case environmental, saving energy 

consumption, sustainable consumption ... 
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3. INTRODUCTION 

Energy savings in buildings have gained a lot of attention in recent years. Most of the research 

is focused on the building construction or alternative energy sources in order to minimize 

primary energy consumption of buildings. By contrast, this project deals with an advanced 

process control technique called model predictive control (MPC) that can take advantage of 

the knowledge of a building model and estimations of future disturbances to operate the 

building in a more energy efficient way. 

3.1. Objectives of the project 

Two non-centralized methods building energy optimization are presented in order to make a 

comparison with a centralized solution.  

Moreover, other objectives of this project are:  

i) Evaluate model predictive control energy savings potential on building simulation studies.  

ii) Develop a large-scale centralized formulation that takes into account thermal comfort of 

occupants and weather forecast information.  

iii) Develop and evaluate alternative architectures that takes into account techniques to solve 

modular subproblems which come from the centralized solution.  

Finally, this project was didactic purpose because it wants to introduce new control techniques 

that are currently emerging in the automatic control sector. 

3.2. Scope of the project 

First, the concept of model predictive control will be introduced and the main characteristics of 

this advanced control technique. Then, a discussion will be introduced of how a considerable 

building system can be treated. Secondly, two important sections will explain not only the 

centralized approach given to a heating and ventilation problem in the building but also two 

innovative non-centralized techniques: Optimal Condition Decomposition and Sensitivity-

Based Coordination. 
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4. MODEL PREDICTIVE CONTROL  

4.1 Introduction 

Model based Predictive Control (MPC) is a control technique for dynamic systems that 

computes optimal control set points in order to minimize a predefined cost. For this, the 

controller contains a model, based on dynamical system and its predicted future evolution, that 

is used in an optimization routine. 

The control objective and the mathematical model is formulated as a real-time optimization 

problem that repeatedly generates control inputs. The objective may be related to minimizing 

operational costs, maximizing profit or forcing the system to follow a pre-computed set point 

trajectory. Only the computed inputs associated with the current time step is actuated on the 

physical system. A new current model state is estimated regularly when new measurements 

are available and the real-time optimization procedure is repeated. It is important to realize that 

this repeated optimization procedure provides closed-loop feedback and enables the MPC to 

counteract model uncertainties and external disturbances giving a certain robustness to the 

system. This principle is illustrated in Figure 4.1 and is also often referred to as Receding 

Horizon Control (RHC), explained in detail in next section [1]. 

Traditionally MPC was designed using an objective function that penalizes deviations of a 

given set point. But now with the economic control MPC has emerged as a general approach 

with multiple implementations and numerical stability properties. It has increased its 

prominence in recent years for climate control systems in buildings.  

 

 

 

 

 

 

 

 

 

Fig. 4.1 Schematic of a typical close-loop basic MPC structure 
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4.2 Principles of MPC 

 

Model Predictive Control is a multivariable control algorithm that is based on:  

 Explicit use of an internal dynamic process model 

One of the crucial contributors to the quality of the control is a well identified model which 

will be later on used for control in MPC algorithm. It describes the expected behaviour of 

the system and it can be formulated as lineal or non-lineal, continuous time or discrete time 

and in state variables or input-output approach.  

 
 
 
 
 
 

Fig. 4.2 Discrete-time and state space form system formulation 

The application of models pursues the following key points: 

 

 Prediction of future process output behaviour.  

 Determination of the best future input manipulations to drive the process to 

optimum conditions  

 Feedforward compensation of disturbances  

 Respecting operating constraints and determination of optimum conditions 

 Handling of non-linearities 

Moreover, there are several completely different approaches to system identification:  

 
 Physical modelling using equations. 

Also called white-box concept, it is the most common building engineers approach. It 

is based on using material properties, textbooks and blueprints or by using specific 

software. It requires availability and processing of a large amount of building-specific 

information derived directly from detailed geometry and construction data. 

 

 

 

 

Fig. 4.3 White-box system identification approach. 
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 Statistical modelling using data. 

The model structure and parameters are identified in a statistical-empirical manner 

from on-site measurements. This modelling strategy is called black-box approach and 

it is conceptually simple, but technically tricky, and it crucially depends on the 

availability of appropriate input data sets that encompass sufficient long sequences of 

all relevant excitation-response signal pairs. These are very hard to obtain from a real 

building during normal operation. 

 
 

 
 
 

Fig. 4.4 Black-box system identification approach.  

 
 Hybrid using both data and equations. 

This approach, known as semi-physical or grey-box, describes a building’s thermal 

dynamics based on a thermal resistance capacitance (RC) network.  

Grey-box system identification is a technique which pre-defines the model structure 

based on physical knowledge but which optimizes its parameter values such that the 

model response fits some measurement data. It presents an analogue to an electric 

circuitry, with temperature gradients and heat fluxes replacing electric potentials and 

currents. A plausible model structure (RC network topology) is first specified a priori, 

and then the model parameters are identified from measurements. The advantage of 

this approach is that basic knowledge of possible thermal interactions (e.g., 

neighbourship of building zones) can easily be introduced. However, the parameter 

identification is far from trivial. 

 

 

 

 

 

Fig. 4.5 Grey-box system identification approach: RC network topology. 

 

Physics Structure of the model 

Data  Numerical values of parameters 
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 Predictive evolution of the system behaviour 

The explicit use of a model and the use of historical data helps to predict future outputs of 

the process over a prediction horizon. 

 Cost function (objective function) 

It is the function that indicates the criteria to optimise. Is a define positive function that 

express associate cost J of system over the receding prediction horizon. 

The cost function generally serves two purposes:  

 Stability. It is important to choose a cost function structure that guarantee 

stability for the closed loop system. This requirement can be relaxed for stable 

systems with slow dynamics, such as buildings, which leaves the designer free 

to select the cost strictly on a performance basis.  

 
 Performance target. The cost is generally, but not always, used to specify a 

preference for one behaviour over another, e.g., minimum energy or maximum 

comfort. 

 

 Receding horizon strategy with recomputation in the next time step 

The horizon for which prediction is performed moves ahead in time at each sampling 

instant. It means that at each iteration only the first step of the calculated control strategy 

is implemented and the control signal is calculated again, thus, in fact, the prediction 

horizon keeps being shifted forward. This strategy is known as receding horizon control 

(RHC). 

 

 

 

 
 

 
Fig. 4.6 Receding horizon strategy. 
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 Handling of constraints 

Constraints indicate the limits where the evolution of the system must take place. The 

evolution of the system signals must not exceed certain restrictions that, because of 

physical limits or safety, they are imposed to the system.  

All physical systems have constraints:  

 Physical constrains (actuator limits). 

 Performance constraints (settling time, overshoot). 

 Safety constraints (temperature/pressure or voltage/current limits).  

    

 

 

 

 
Fig. 4.7 Relations between output, set point and constraints  

 

Current needs of working at some set points, generally for economic reasons, near to the 

admissible physical limits of the system has induced the incorporation of the above 

mentioned restrictions in the synthesis of the controllers. So, the ability to specify 

constraints in the MPC formulation and to have the optimization routine handle them 

directly is the key strength of the MPC approach. There can be constraints on the states 

or the output, as well as on the input. Linear constraints are the most common type of 

constraint, which are used to place upper and lower bounds on system variable.  

  

    umin,k ≤ uk ≤ umax,k  

4.3 MPC control strategy 

The basic idea of MPC is to exploit a model of the system to simulate its future evolution over 

a prediction horizon and compute an optimal control action (with respect to a predefined cost 

function) by solving, at each decision time instant, an open-loop optimisation problem in a 

receding horizon fashion. The result is a trajectory of inputs and states into the future, 

respecting the formulate dynamics and constraints. 
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The MPC strategy comprises the following basic steps: 

1. Calculate system output Y: Each time t the future outputs are predicted in an open-loop 

manner using the dynamical model provided information about past inputs, outputs and future 

signals, which are about to be calculated. 

2. Calculate control signals U: The future control signals are calculated by optimizing the 

objective function, and the chosen criterion, which is usually in the form of quadratic function. 

The criterion constituents can be as follows:  

 Errors between the predicted signal and the reference trajectory r(k)  

 Control effort  

 Rate of change in control signals 

Predictions y (t + k | t) for k = 1 ... N depend on known values at time t (past inputs and outputs) 

and future control signals u (t + k | t), k = 0 ... N -1 which are intended to send to the system. 

The result of the optimization is an optimal sequence of future actions:        

 u*= [u (t | t), u (t + 1 | t), u (t + 2 | t), ..., u (t + N -1 | t)] T 

Additionally, an assumption can be formulated such as the control signal may be constant at 

a certain moment.  

3. Apply U to system: The first component of the control sequence u (t | t) is sent to the 

system, whilst the rest of the sequence is disposed. The signal u (t | t) is applied and rejected 

all other u (t + 1 | t). 

 4. Acquisition of new measures of the system: At the next time instant, new output  

y(t + 1 | t +1) is measured, first component u(k+1) is applied to the system and the rest is 

disposed. This principle is repeated continuously at the next sampling time by moving the 

estimation and regulation window, so a new current model state is estimated regularly when 

new measurements are available. This optimization procedure provides closed-loop feedback 

and enables the MPC to counteract model uncertainties and external disturbances. 

 

 

 

 

 

 

 

 

 

 

       Fig. 4.8 MPC control strategy. 
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4.4 Prediction and control horizon 

There are two important horizons in MPC, both of which are expressed in terms of sampling 

instants [2].  

 The prediction horizon: It is the span of time for which the plant outputs are 

predicted. The size of the prediction horizon is generally limited by computation 

speed 

 

 The control horizon: It is the number of control inputs that are calculated in the 

prediction computation, and is always smaller than the prediction horizon.  

Therefore, it is important to choose the control horizon such that the difference between the 

control and prediction horizons is as least as long as it takes for all dynamics in the system to 

settle out  

 

 

 

 

 

 
 
 
 
 
 

Fig. 4.9 Simulation time step and forecast prediction and control horizon. 
 
 
 

4.5 MPC common analogies 

Once it has been presented the basic principles of model predictive controllers, some easy 

analogies are introduced in order to illustrate clearly this powerful control strategy. These 

examples have common elements as car driving in a professional circuit, chess and an 

orientation GPS system. 
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 Car driving in a professional circuit. 

 

 

 

 

 

 
 
 
 
 

   Fig. 4.10 Plan path and real trajectory in a car circuit 
 
 

 GPS System. 

 

 

Prediction model 

Look forward and plan path based on: 

-Road conditions 

-Upcoming corners 

-Abilities of pilot, etc. 

 

Constraints 

Stay on road 

-Do not skid 

-Limited acceleration 

Disturbances Avoid other cars, etc. 

Set point Minimum-time path 

Cost function Minimize circuit time 

Receding horizon mechanism Optimal path recalculated around the corner 

Prediction model How our vehicle moves on the map 

Constraints 
Drive on roads, respect one-way roads, respect 

traffic signals, etc. 

Disturbances Driver’s inattention, road works, etc. 

Set point Desired location 

Cost function 
Minimize time 

Minimize distance, etc. 

Receding horizon mechanism 
Event based-  

(optimal-route recalculated when path is lost) 
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Fig. 4.11 Examples of a GPS System.  

 Chess. 

 

 
 
 
 
 
 
 
 
 
 

 
 
 
 

 

 

 

 
 
 
 
 
 
 
 
 
Fig. 4.12 Chess playing. 

Prediction model Each player has the ability to predict a finite number of 

opponent possible moves, given a fixed starting 

configuration of the chess board. 

Prediction horizon Good players think on long prediction horizon. 

Optimization The player must optimize his time by thinking certain 

number of future movements. 

Apply first considered 

movement 

Only one move is then carried out, leading to a new 

fixed configuration. 

Receding horizon 

mechanism 

The prediction process must be repeated for the new 

fixed configuration, which may differ from the previously 

predicted one. 
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4.6 MPC Advantages and disadvantages  

Predictive controllers have been remarkably successful in the field of industry as well as in the 

research community. This is due to the properties of these control techniques, although there 

are some disadvantages. 

Following advantages of the MPC must be noted: 

 Straightforward formulation, flexible, opened and intuitive based on well understood 

concepts. 

 Extremely configurable, changing model or specifications does not require complete 

redesign. 

 Can add constraints over input, state, output and slew-rate variables.  

 Physical, safety, medium, economical, etc. 

 It allows to treat with linear and not linear, monovariable and multivariable systems 

using the same formulation of the controller. Thus, predictive controllers can be used 

in a wide variety of processes: from simplest to more complex dynamics.  

 Can be easily interpolated from the single-variable case to multi-variable case.  

 Useful when a reference trajectory is available.  

 Presents inherent compensation to dead-time and time delay phenomena. 

 Control law answers are subjected to optimal criteria with well understood tuning 

parameters:  

 Prediction horizon 

 Optimization problem setup. 

On the other hand, some of the disadvantages of this control technique are the following: 

 Requires high level of accuracy in the determination of the system model in order to 

obtain a better closed-loop performance  

 Requires an optimization algorithm, so it can only be implemented by a computer.  

 Moreover, it requires a high computational cost for controller implementation 

(optimiser and model), which makes it difficult to apply to fast systems. 

 Control law computation and controller tuning are not so trivial to perform  

(such as a PID law). 

 It has not been so far, that the stability of the controllers was not guaranteed, 

especially in the case with restrictions. This made a heuristic adjustment of these 

controllers without a knowledge of how parameters could influence in the stability. 

 Uncertainty is complex. 

Observe that, predictive control is a very powerful technique that allows the formulation of 

controllers for complex and constrained systems.  
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This power has an associated price: the computational cost and the controller tuning.  

Recent advances in the field of MPC provide a deeper understanding of these controllers, 

obtaining results that allow to relax these requirements. Thus, for example, general conditions 

have been established to guarantee stability, conditions under which the optimality of the 

controller can be relaxed guaranteeing its stability, and efficient algorithms for solving the 

problem have been developed. 

4.7 MPC history and evolution 

Model based predictive control is a method of advanced control originated in late seventies 

and early eighties in the process industries (oil refineries, chemical plants, etc.). A brief timeline 

of the main events of MPC is introduced [3]: 

 First practical application of MPC algorithms appeared in industry (identified 

models): 

 

o IDCOM (Identification and command) – later MAC (Model algorithmic 

control) at ADERSA (Richalet, 1978).  

o DMC (Dynamic matrix control) at Shell (Cutler and Ramaker, 1980). 

o Many subsequent industrial developments (Setpoint, Honeywell, Pavillion, 

IPCOS, …). 

 

  MPC algorithms were further developed in universities: 

 

o MUSMAR (Multistep multivariable adaptive regulator) – first state-space 

model formulation of MPC (Mosca, 1984). 

o EPSAC (Extended predictive self-adaptive control) – (De Keyser, 1985). 

 

 Most notable generalizations, still used today: 

 

o Empirical (input/output) models: 

 GPC (Generalized predictive control) – (Clarke, 1987). 

 UPC (Unified predictive control) – (Soeterboek, 1992 – PhD student 

at TU/e, Electrical Engineering, Control Systems group). 

o First principle (state-space) models:  

 

 Very active area, many important contributions and many successful 

industrial applications. [4] 
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 The new model predictive control challenges are related with: 

 

o Nonlinear MPC.  

 Just need a computable model (simulation). 

o Hybrid MPC. 

 Discrete and parametric variables. 

 Combination of dynamics and discrete mode change. 

 Mixed-integer optimization (MILP, MIQP). 

o Engine control. 

o Large scale operation control problems. 

 Operations management (control of supply chain). 

 Campaign control. 

 

 

 
 

 
 
 
 
 
 
Fig. 4.13 DMC plus, first powerful practical application of MPC by Shell company 

 

 

4.8 Current MPC use in industry 

The theory of MPC is well developed; most aspects, such as stability, nonlinearity, and 

robustness, have been discussed in the literature (see, e.g., (Bemporad & Morari, 1999) 

(Morari & Lee, 1999). Besides, MPC is very popular in the process control industry because 

the actual control objectives and operating constraints can be represented explicitly in the 

optimization problem that is solved at each control instant. 

 In industry it has become the most used advanced control method [3]:  

o PID – 90% 

o Advanced – 10% 

o MPC – 9% 

o Other – 1%  
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 Majority of applications are in refining and petrochemicals. Chemical and pulp and 

paper are the next areas. 

 

 Major developers/vendors of MPC include (IPCOS - Ton Backx):  

 

 
Fig. 4.14 Today’s important players in MPC industrial use 
 

 In universities it has become one of the most prolific controller design methodologies 

in terms of both research grants and publications (more than 500 papers per year 

on MPC). 

 

 Major universities and famous people in control are MPC developers: ETH Zurich 

(Manfred Morari), Imperial College London (David Mayne), Cambridge (Jan 

Maciejowski), Oxford (David Clarke), TU/e (Ton Backx), etc. 

 

 Particularly suited for problems with: 

 

o Many inputs and outputs. 

o Constraints on inputs, outputs, states. 

o Varying objectives and limits on variables-(e.g.-because-of-faults). 

 

 There are also some emerging MPC applications: 

 

o Vehicle path planning and control. 

 Nonlinear vehicle models. 

 With real world models. 

 Receding horizon preview. 

o Spacecraft rendezvous with space station. 

o Underwater vehicle guidance. 

o Missile guidance. 
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4.9 MPC control strategy applied on building 

MPC principle of controlling house heating and cooling is based on the formulation of the 

building control as an optimization problem. This is archived by reacting on the heating/cooling 

actuators based on current measurements of temperatures and predictions of future 

disturbances (obtained from the weather forecast service).  

 

The aim is mainly to design a control strategy that minimizes the energy consumption (or 

operational costs), while guaranteeing that all comfort requirements are met. The MPC will 

explicitly take into account the constraints of heating/cooling actuators and the temperature 

comfort limits. 

 System to be controlled 

 
Inputs:  

 

 Weather (sun, temperature)  

 Power to the heating  
 

Outputs / States:  
 

 Hot water temperature  

 Room temperature  
 

Constraints: 
 

 Comfort criteria 

 Equipment health aware 
 
Fig. 4.15 Structure of model predictive controllers 
on a multizone building. 

 

A predictive controller installed in a building is the element in charge of computing the 

following key points: 

 Sequence of optimal inputs to the system (power to heating).  

 Receive collected measurement in the building with sensors like temperatures 

and power heat. Also that allows to keep track of the history.  

 Getting prognosis of future inputs from third parties: 

o Weather data (temperature, solar radiation)  
o Electricity price 

 
 Run the following optimization problem: 
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Cost function 

Current state 

Dynamics – state update 

Dynamics – system output 

Constraints 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑢0,…,𝑢𝑁−1
       ∑ 𝑓𝑘

𝑁−1

𝑘=0

(𝑥𝑘 , 𝑢𝑘)    

                                                          𝑠. 𝑡          𝑥𝑜 = 𝑥                                          

                            𝑥𝑘+1 = 𝑓(𝑥𝑘 , 𝑢𝑘 , 𝑤𝑘)                     

 𝑦𝑘 = 𝑔(𝑥𝑘 , 𝑢𝑘 , 𝑤𝑘)                 

                                                                 (𝑥𝑘 , 𝑢𝑘) 𝜖 𝑋𝑘𝑥 𝑈𝑘        

                                                           (𝑢𝑘): 𝐼𝑛𝑝𝑢𝑡𝑠           (𝑥𝑘): 𝑆𝑡𝑎𝑡𝑒𝑠     (𝑦𝑘): 𝑂𝑢𝑡𝑝𝑢𝑡𝑠 

(4.1) 

 

The building physics is formulated in a mathematical model that is used for the prediction 

of the future building behaviour according to the selected operation strategy and weather 

and occupancy forecasts. Using this information, the MPC controller computes the control 

action which minimizes a given cost function, while satisfying a set of constraints.  

 

These constraints are most often: 

 
1) Technical, e.g. they may limit the mass flow rate of a fan to its nominal value 

 
2) Related to occupancy comfort, e.g. there may be a constraint on the building zone 
temperature(s). 

 

The cost function is typically a weighted sum of the conflicting objectives of minimizing the 

energy cost and the thermal discomfort. 

 Control strategy 

In terms of building control, MPC strategy means that at the current control step, a heating 

or cooling plan is obtained for the next several hours or days, based on a weather forecast. 

Predictions of any other disturbances (e.g. internal gains), time-dependencies of the 

control costs (e.g. dynamic electricity prices), or of the constraints (e.g. thermal comfort 

range) can be readily included in the optimization.  

The first step of the control plan is applied to the building, setting all the heating, cooling 

and ventilation elements, then the process moves one step forward and the procedure is 

repeated at the next time instant. This receding horizon approach is what introduces 

feedback into the system, since the new optimal control problem solved at the beginning 

of the next time interval will be a function of the new state at that point in time and hence 

of any disturbances that have acted on the building.  
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Figure 4.16 summarizes the basic principle of MPC for buildings. Time-varying parameters 

(i.e. the energy price, the comfort criteria, as well as predictions of weather and occupancy) 

are inputs to the MPC controller. One can see that the modelling and design effort consist 

of specifying a dynamic model of the building, as well as constraints of the control problem 

and a cost function that encapsulates the desired behaviours. At each sampling interval, 

these components are combined and converted into an optimization problem depending 

on the MPC framework chosen.  

 

 

 

 

 

Fig. 4.16 Basic principle of MPC for buildings 

 

 

 

 

 

 

 

 

 



Centralized and Non-Centralized Model Predictive Control of a Multizone Building Page 27 

 

5. LARGE SCALE BUILDINGS 

5.1 Introduction 

In recent years, there has been a growing concern to develop new control strategies that 

explore in buildings the concept of energy optimization resources in climate control systems. 

This heating, ventilation and air conditioning (HVAC) systems  

have a strong effect on the operating cost of building management and a strong environmental 

impact. 

Approximately, about 40 % of total final energy consumption and more than half of the end 

energy [5] is consumed in heating, ventilation and air conditioning of all stances. Given this 

large share of energy consumed, improvement of buildings energy efficiency is crucial to 

ensure long-term energy security. Model Predictive Control (MPC) framework, due to its 

distinct advantages as reviewed in chapter 4, significantly outstands among other conventional 

methods applicable for the building control design. 

This Chapter 5 is organized as follows. In Section 5.2 we introduce the problem of Large-scale 

systems (LSS) focused in building structures. In Section 5.3 we consider a great mathematical 

tool for the representation of models which is the state space. Then, two different 

configurations of HVAC are presented in Section 5.4 and finally a proper discussion of the 

common presumption of centrality in MPC which may lead to the innovation field of non-

centralised control techniques. Finally, the current need of decomposition of control problem 

is briefly explained in Section 5.5. 

5.2 Buildings energy problem as a Large Scale System 

Modern innovations have increased the inner complexity of human implantations as there are 

more sized and advanced systems to regulate. The challenge of control of such vast 

infrastructures, usually referred as Large Scale Systems (LSS), rose since the last decades 

and its importance is becoming more and more crucial. 

Large Scale Systems (LSS) are complex dynamical systems at service of everyone and in 

charge of industry, governments, and enterprises. The applications are wide. Typical examples 

of such systems are power networks, water networks, urban traffic networks, cooperating 

vehicles, digital cellular networks, flexible manufacturing networks, supply chains, complex 

structures in civil engineering, and many others. 

Hence, the energy optimization problem of this project could be considered as a large-scale 

multi-variable control problem. Then, the global system is so-called Large Scale Building where 

the optimal control of HVAC system aims at providing the desired indoor comfort and 
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environment with least energy input under dynamic outdoor conditions and indoor loads.  

It can be achieved by using suitable local controls of the sub-processes and optimal 

supervisory controls of the system. Also, it mainly depends on configuration of HVAC system 

and type of building. 

For instance, let us consider three types of Large Scale Building such as a hotel, an office and 

an airport (check-in and waiting area. The building behaviour changes according to type of 

HVAC, system coupling between zones and occupancy schedule. The following table 5.1 

illustrate comparison between zones. 

 

Table 5.1 Comparison of different types of buildings. 

According to the fact that MPC can manage a large number of variables in an easy way, this 

controller is also appropriate to be applied in these large-scale complex systems where there 

are many states, control outputs, and constraints.  

 
 

 

Fig. 5.1 Considered types of buildings: Office, hotel and airport terminal 

5.3 Introduction to state space representation 

 

As previously discussed in § 4.2, one of the crucial contributors to the quality of the control 

is a well identified model which will be later on used for control in MPC algorithm. 
The classical control theory and methods are based on a simple input-output description of the 

plant, usually expressed as a transfer function. These methods do not use any knowledge of 

the interior structure of the plant, and limit us to single-input single-output (SISO) systems. 

 Type of HVAC Coupling between zone Occupancy 

Office Variable Air Volume 

Fan Coil Units 

Weak Almost fixed 

Hotel Fan Coil Units Weak Variable 

Airport check-in 

and waiting area 

Variable Air Volume 

Constant Air Volume 

High coupling Highly 

variable 
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However, modern control theory solves many of the limitations by using a much complete 

description of the plant dynamics. The so-called state-space description provide the dynamics 

as a set of coupled first-order differential equations in a set of internal variables known as state 

variables, together with a set of algebraic equations that combine the state variables into 

physical output variables. 

 

5.3.1 System State 

 

The concept of the state of a dynamic system refers to a minimum set of variables, known as 

state variables, that fully describe the system and its response to any given set of inputs.  

In particular, a state-determined system model has the characteristic that:  

 

A mathematical description of the system in terms of a minimum set of variables (called state 

variables) xi(t), i = 1,...,n, together with knowledge of those variables at an initial time t=t0 and 

the system inputs for time t ≥ t0, completely determine the behaviour of the system at any time 

t>t0 [6].  

 

This definition proclaims that the dynamic behaviour of a state-determined system is 

completely characterized by the response of the set of n variables xi(t), where the number n is 

defined to be the order of the system.  

 

There is no unique set of state variables that describe any given system; many different sets 

of variables may be selected to yield a complete system description. However, for a given 

system the order n is unique, and is independent of the particular set of state variables chosen. 

State variable descriptions of systems may be formulated in terms of physical and measurable 

variables, or in terms of variables that are not directly measurable. It is possible to 

mathematically transform one set of state variables to another; the important point is that any 

set of state variables must provide a complete description of the system. In this note we 

concentrate on a particular set of state variables that are based on energy storage variables 

in physical systems. 

 
 
 
 

 

Fig. 5.2 State Space System representation 

5.3.2 State Equations 

In the standard form the mathematical description of the system is expressed as a set of n 

coupled first-order ordinary differential equations, known as the state equations, in which the 

time derivative of each state variable is expressed in terms of the state variables x1(t),...,xn(t) 

and the system inputs u1(t),...,ur(t).  
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{
𝒙𝟏̇ = 𝒇𝟏(𝒙𝟏, 𝒙𝟐, ⋯ , 𝒙𝒏, 𝒖𝟏, 𝒖𝟐, ⋯ , 𝒖𝒎, 𝒕)

⋮
   𝒙𝒏̇ = 𝒇𝟏(𝒙𝟏, 𝒙𝟐, ⋯ , 𝒙𝒏, 𝒖𝟏, 𝒖𝟐, ⋯ , 𝒖𝒎, 𝒕)

 

             (5.1) 

𝑦(𝑡) = 𝑐1𝑥1 + 𝑐1𝑥2 + ⋯+ 𝑐𝑛𝑥𝑛 + 𝑑1𝑢1 + ⋯+ 𝑑𝑟𝑢𝑟           (5.3) 

             

In the general case the form of the n state equations is: 

 
𝒙𝟏̇ = 𝒇𝟏(𝒙, 𝒖, 𝒕)  

𝒙𝟐̇ = 𝒇𝟐(𝒙, 𝒖, 𝒕)     

⋮    =   ⋮           

𝒙𝒏̇ = 𝒇𝒏(𝒙, 𝒖, 𝒕)       
 
It is common to express the state equations in a vector form, in which the set of n state 
variables is written as a state vector x(t)=[x1(t), x2(t),...,xn(t)]T , and the set of r inputs is written 
as an input vector u(t)=[u1(t), u2(t),...,ur(t)]T. Each state variable is a time varying component of 
the column vector x(t). 

This form of the state equations explicitly represents the basic elements contained in the 

definition of a state determined system. Given a set of initial conditions (the values of the xi at 

some time t0) and the inputs for t ≥ t0, the state equations explicitly specify the derivatives of all 

state variables. The value of each state variable at some time ∆t later may then be found by 

direct integration. 

Moreover, one useful visualization of the state vector is to consider its time evolution in a space 

of n dimensions, where axes represent values of state variables xi(t), i = 1,...,n,. The system 

state at any instant may be interpreted as a point in an n-dimensional state space, and the 

dynamic state response x(t) can be interpreted as a path or trajectory traced out in the state 

space, where x(t) starts from the origin to coordinate point x1(t), x2(t); _ _ _; xn (t). 

 In vector notation the set of n equations in Eqs. (1) may be written: 

𝑥̇ = 𝒇(𝒙, 𝒖, 𝒕)             

where f (x, u, t) is a vector function with n components fi (x, u, t).            (5.2) 

5.3.3 Output Equations 

A system output is defined to be any system variable of interest. A description of a physical 

system in terms of a set of state variables does not necessarily include all of the variables of 

direct engineering interest.  

An important property of the linear state equation description is that all system variables may 

be represented by a linear combination of the state variables xi and the system inputs ui.  

An arbitrary output variable in a system of order n with r inputs may be written: 
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𝑦1      = 𝑐11𝑥1    + 𝑐12𝑥2 + ⋯+ 𝑐1𝑛𝑥𝑛 + 𝑑11𝑢1 + ⋯+ 𝑑1𝑟𝑢𝑟         

𝑦2      = 𝑐21𝑥1    + 𝑐22𝑥2 + ⋯+ 𝑐2𝑛𝑥𝑛 + 𝑑21𝑢1 + ⋯+ 𝑑2𝑟𝑢𝑟  

⋮         =    ⋮  

𝑦𝑚     = 𝑐𝑚1𝑥1 + 𝑐𝑚2𝑥2 + ⋯+ 𝑐𝑚𝑛𝑥𝑛 + 𝑑𝑚1𝑢1 + ⋯+ 𝑑𝑚𝑟𝑢𝑟              (5.4)     

        

[

𝑦1

𝑦2

⋮
𝑦𝑚

] = [

𝑐11 𝑐12

𝑐21 𝑐22

⋯ 𝑐1𝑛

⋯ 𝑐2𝑛

⋮ ⋮
𝑐𝑚1 𝑐𝑚2

⋱ ⋮
⋯ 𝑐𝑚𝑛

] [

𝑥1

𝑥2

⋮
𝑥𝑛

]+ [

  𝑑11

  𝑑21

 ⋮
  𝑑𝑚1

    ⋯
    ⋯
   ⋱
    ⋯

    𝑑1𝑟

    𝑑2𝑟

     ⋮
     𝑑𝑚𝑟

] [

𝑢1

𝑢2

⋮
𝑢𝑟

] 

                           

where the ci and di are constants. If a total of m system variables are defined as outputs, the 

m such equations may be written as: 

 

 

 

or in matrix form: 

 

           (5.5) 

The output equations, Eqs. (5), are commonly written in the compact form: 

 𝑦 = 𝐶𝑥 + 𝐷𝑢                          (5.6) 

where y is a column vector of the output variables yi(t), C is an m x n matrix of the constant 

coefficients cij that weight the state variables, and D is an m x r matrix of the constant 

coefficients dij that weight the system inputs. For many physical systems the matrix D is the 

null matrix, and the output equation reduces to a simple weighted combination of the state 

variables: 

 𝑦 = 𝐶𝑥                          (5.7) 

5.3.4 Linear systems 

Definitely, the general case of the n state equations in Eqs. (5.1) allows us to represent a large 

number of systems. However, the mathematical treatment of equations is general 

unfavourable (possibly nonlinear systems) and not very productive. 

 
On the other hand, if we limit ourselves to linear systems, all the tools of linear algebra are 
available: 
 

 (5.8) 
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The linear system in Eq. (5.8) with p inputs, q outputs and n state variables is written in matrix 
form as: 

      (5.9) 
where: 
 
x represents the state vector, x(t) ∈ ℝn  ; 

y represents the output vector, y(t) ∈ ℝp  ; 
u represents the input/control vector, u(t) ∈ ℝp  ; 
A is the state matrix, dim[A] = n x n; 
B is the input matrix, dim[B] = n x p; 
C is the output matrix, dim[C] = q x n; 
D is the feedthrough (or feedforward) matrix, dim[D] = q x p 

 (5.10) 
 
 
 

In this general formulation presented, time-variant (i.e. matrix elements can depend on time) 

is admitted in all matrices. However, in the common Linear Time-Invariant case, matrices will 

be time invariant. Time variable t can be continuous or discrete.  

To sum up, depending on the assumptions taken, the state-space model representation can 

acquire the following forms: 

 

 

https://en.wikipedia.org/wiki/LTI_system
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Table 5.2 Different forms of State Space representation 

 

 

5.3.5 State Space Model and Transfer Function model 

To conclude this section a briefly comparison between the common Transfer Function model 

and the State Space presented: 

 Transfer Function Model 

 

 

Fig. 5.3 System represented by transfer function model 

Advantages 

 Valid for unstable processes. 

 Needs fewer parameters 

 

Disadvantages 

 Some processes may not be described sufficiently by a parametric model with a 

limited number of parameters. 

System type State-space model 

 

Continuous time-invariant 𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) 

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡) 

 

Continuous time-variant 𝑥̇(𝑡) = 𝐴(𝑡)𝑥(𝑡) + 𝐵(𝑡)𝑢(𝑡) 

𝑦(𝑡) = 𝐶(𝑡)𝑥(𝑡) + 𝐷(𝑡)𝑢(𝑡) 

 

Explicit discrete time-invariant 𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘) 

𝑦(𝑘) = 𝐶𝑥(𝑘) + 𝐷𝑢(𝑘) 

 

Explicit discrete time-variant 𝑥(𝑘 + 1) = 𝐴(𝑘)𝑥(𝑘) + 𝐵(𝑘)𝑢(𝑘) 

𝑦(𝑘) = 𝐶(𝑘)𝑥(𝑘) + 𝐷(𝑘)𝑢(𝑘) 
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 The structure of the process is fundamental for identification, especially the order of 

A and B. 

 Transfer function is defined under zero initial conditions. 

 Transfer function approach can be applied only to linear time invariant systems. 

 It does not give any idea about the internal state of the system. 

 It cannot be applied to multiple input multiple output systems. 

 

 State Space Model 

 

Fig. 5.4 Example of a system represented by State Space model 

Advantages 

 Multivariable processes can be presented in a straightforward manner. 

 A large collection of modern control theory and analysis methods can be applied 

 It can be applied to non-linear system. 

 It can be applied to multiple input multiple output systems. 

 Its gives idea about the internal state of the system. 

 

Disadvantages 

 The calculations may be complicated. 

 Some processes may not be described sufficiently by a parametric model with a 
limited number of parameters. 

5.4 Configurations of HVAC system 

5.4.1 VAV based system 

In a building, the air distribution system is responsible for maintaining appropriate levels of 

comfort in air quality, temperature, and moisture level. An example of such HVAC system is a 

Variable Air Volume (VAV), a type of air distribution system, that supplies not only one specific 

supply air stream of constant temperature to each space but also controls the temperatures 

within the building by changing the amount of air supplied to each space. [7] 
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VAV systems were developed to be more energy-efficient and to meet the varying heating and 

cooling needs of different building zones. The different parts of this system include the air-

handling unit (AHU), the supply ductwork system, and the return/exhaust ductwork system. 

 

 Air Handling Unit 

The AHU is responsible for ventilating, mixing, filtering, conditioning, and supplying air 

throughout the building. It contains a mixer, a heating coil and a supply fan. This large air 

handler must have the ability to supply the Variable Air Volume boxes with a variable amount 

of air as the dampers in the Variable Air Volume system will modulate to different positions 

based on set point requirements. 

The first section of the AHU is the mixing box. The mixing box is where outside air is brought 

in, supplied, and mixed with return air, which has been ducted from the building back to the 

AHU. Both the return and ventilation air are controlled by dampers, which help control the 

amount of unconditioned outside air brought into the system based upon minimum 

requirements set. 

The next part of the air handling unit is the heat recovery unit. The heat recovery unit is used 

to transfer energy and moisture from the exhaust air leaving the building to the outside air 

entering the building.   

 

 

 

 

 

Fig. 5.5 Air Handling Unit of a VAV system. 

After traveling through the heat recovery unit, the air passes through the condenser coils, 

heating coils, and cooling coils. The condenser coil is pumped with refrigerant so that as the 

air blows over this coil, any excess moisture will condense on the coil, run into the condensate 

drain, and exit the unit. The heating and cooling coils both accomplish the same job but are 

never in use at the same time. These coils are typically pumped full of steam and refrigerant 

respectively. A thermostat monitoring the outside air temperature operates both coils.  
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Once the air has been properly conditioned to the desired temperature and moisture, a supply 

air fan forces the air from the AHU into the supply ductwork. 

 

 The Supply Ductwork and VAV box 

After leaving the AHU, the conditioned supply air is ducted to the individual rooms for 

distribution. For each separate space within the building, the main supply duct will branch off 

to a VAV box.  

A VAV box is another piece of mechanical equipment that consists of a motor-operated 

damper and a reheat coil. The damper in the VAV box is linked to a thermometer within the 

spaces to which air is supplied. This allows the thermometer to control the amount of air 

supplied in order to properly cool the space. One of the major issues with a VAV system arises 

when considering ventilation requirements for the building. According to the ventilation 

requirements, there is a minimum amount of fresh air that must be brought into the space. 

Whenever the amount of air needed to cool the space is less than the amount of air needed 

to meet ventilation requirements, a reheat coil is required. The reheat coil will slightly heat up 

the air being supplied to the space so that the minimum amount of ventilation air can still be 

supplied without over-cooling the space. Once the amount of air supplied to the space has 

been controlled and the temperature slightly adjusted if necessary, the supply air is ducted 

from the VAV box to diffusers, or air terminals, which distribute the air evenly throughout the 

space. 

 The Return/Exhaust Ductwork  

After the air has been supplied to the building, the excess air must be removed from the spaces 

as well. The return air system is ductwork that removes reusable or unpolluted air from the 

building and transports it back to the AHU. A fan is typically placed within the return ductwork 

to control the amount of air being removed from the spaces. The exhaust ductwork removes 

air from the building as well, but it removes ‘polluted’ air and forces air out of the building using 

an exhaust fan. ‘Polluted’ air is air that has been removed from bathrooms, kitchens, and other 

spaces where unwanted chemicals or fumes are released. This is where the heat recovery 

system is used. By pumping the conditioned exhaust air out of the building, energy is wasted. 

The heat recovery device typically is a slowly spinning wheel that can transfer energy and 

humidity from one source of air to another. By pumping the exhaust air through the energy 

recovery unit, the heat energy from the exhaust air can be transferred to the outside air initially 

entering the AHU. Energy can also be transferred from the outside air to the exhaust air on 

warmer days. By using this system, the overall energy consumption of a building can be 

reduced over time. 
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Fig. 5.5 Variable Volume Air (VAV) system. 

5.4.2 FCU based system 

A Fan Coil Unit (FCU) is a cooling system consisting of a heating or cooling coil and a fan. 

Warm air from the conditioned room is drawn into the fan coil unit, where it is cooled and 

dehumidified using chilled water before being supplied back into the conditioned room. The 

FCU units are equipped with filters that clean the air and hence reduce the level of airborne 

contamination within the air conditioned space. By using fan coil units, rooms can be cooled 

individually. [8]  

The supply air temperature is controlled through the heat exchanger by controlling hot/cold 

water flow, depending on the temperature of space to which FCU serves. Hence unlike, AHU-

VAV based system, zone model includes variables concerning heat exchanger and mixer. 

 

 Design and operation 

Fan Coil Unit design falls principally into two main types: blow through and draw through. As 

the names suggest, in the first type the fans are fitted such that they blow through the heat 

exchanger, and in the other type the fans are fitted after the coil such that they draw air through 

it. Draw through units are considered thermally superior, as ordinarily they make better use of 

the heat exchanger. However, they are more expensive, as they require a chassis to hold the 

fans whereas a blow-through unit typically consists of a set of fans bolted straight to a coil. 

The coil receives hot or cold water from a central plant, and removes heat from or adds heat 

to the air through heat transfer. Traditionally fan coil units can contain their own 

internal thermostat, or can be wired to operate with a remote thermostat.  

Fan coil units circulate hot or cold water through a coil in order to condition a space. The unit 

gets its hot or cold water from a central plant.  
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The equipment used can consist of machines used to remove heat such as a chiller or 

a cooling tower and equipment for adding heat to the building's water such as a boiler or a 

commercial water heater. 

 

 

 

 

 

Fig. 5.6 Fan Coil Units (FCU) system. 

5.5 Limitations of centralized control 

Most of the procedures for controlling dynamical systems developed over the last decade rest 

on the common presupposition of centrality. Centrality means that all measurements and 

information available about the system must be collected in one location to estimate all states 

and to compute all control actions, which give the best possible performance. This information 

is divided into a pre-information about the dynamical model of the system available off-line, 

and a post-information about the system response gathered by different sensors.  

Also, working with traditional MPC means that a global dynamical model of the system must 

be available for control design. 

In this regard, there are some particular critical points to face when designing a centralised 

MPC and which have been object of research in the last years.  

 

 Optimization problems become complicated. Since the number of decision variables 

and constraints in the optimization problem (for an established prediction horizon) is 

generally large, then the problem is computationally costly to solve.  

 

 Coordination and communication between zones. There are some implementation 

issues related to communication availability and reliability. In the traditional MPC 

approach it is necessary to have the information of all system’s states in a 

centralized scheme in order to compute the control outputs, which implies that it is 

necessary to send the decisions to all actuators to complete the closed-loop control. 

In this sense, costs associated to communication channels and operational 

concerns such as delays, noise or the loss of packets must be also considered. 
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 Maintenance. For large number of zones, fault in one zone can be propagated to 

other zones so maintenance is an important issue that requires cumbersome 

maintenance. 

In order to mitigate computational burden, there are some immediate possible solutions such 

as simplify the corresponding model for prediction, reduce the prediction horizon, increase the 

sampling time to dispose of more time for computing the solution, or develop more 

sophisticated solvers in order to reduce computational time. However, this versatility of MPC 

might not be enough to solve this problem in certain design problems or in some complex 

systems.  

5.5.1 Non-Centralized MPC Schemes for Large Scale Buildings 

When considering large-scale systems, the previous presupposition of centrality usually fails 

to hold either because gathering all measurements in one location is not feasible, or because 

the computational needs of a centralised strategy are too demanding for a real-time 

implementation. This fact might lead to a lack of scalability. Subsequently, a model change 

would require the re-tuning of the centralised controller. Thus, the cost of setting up and 

maintaining the monolithic solution of the control problem is prohibitive. 

In view of the above considerations, it is then natural to look for the Non-Centralized Model 

Predictive Control, in which the original large-size optimization problem is replaced by a 

number of smaller and easily tractable ones that work together in a possibly iterative and/or 

cooperative manner towards achieving a common wide system control objective. This type of 

predictive control is designed to operate in a decentralized or distributed way. With those 

techniques a set of local controllers (usually denoted as agents) are in charge of controlling 

partitions of the entire system. 

 

 

 

 

 

 

Fig. 5.7 Example of a global model decomposed into four submodels. Each coloured 

rectangle identifies the states belonging to the corresponding submodel. 
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The main difference between the two terms, decentralized or distributed MPC, depends on the 

type of information exchange among controllers: 

 

 Decentralized MPC: Control agents take control decisions independently on 

each other. Information exchange (such as measurements and previous 

control decisions) is only allowed before and after the decision making 

process. There is no negotiation between agents during the decision 

process. The time needed to decide the control action is not affected by 

communication issues, such as network delays and loss of packets, thus 

easing control computation within the time deadline. 

 

 Distributed MPC: In distributed control structures, it is assumed that some 

information is transmitted among the local control agents, so that each one 

of them has some knowledge on the behaviour of the others. The information 

transmitted typically consists of the future predicted control or state variables 

computed locally, so that any local regulator can predict the interaction 

effects over the considered prediction horizon. 

Both MPC configurations, decentralized and distributed, are described more deeply as follows. 

 

5.5.2 Decentralized MPC  

The structure for the decentralized MPC divides the system as various subsystems. Each sub-

system has an MPC that considers an optimization problem in which the variables are given 

by the actual sub-system parameters and the actual control action, whereas all the other 

elements in the system (i.e., control actions calculated by other sub-system MPC in the system 

or coupled states from other subsystem) are considered as external disturbances. Then at this 

structure, the local controllers do not exchange information each other. This approach allows 

the computation of the control actions with partial information, but it is not the optimal solution 

for the whole system (i.e., the solution is different from an MPC in which all the elements in the 

system are used to compute the control actions). When considering other elements of the 

system as disturbances, it is not taken into account the effects from other control actions that 

affect the behaviour of the total system, and the actual sub-system behaviour.  



Centralized and Non-Centralized Model Predictive Control of a Multizone Building Page 41 

 

However, this decentralized controller is appropriate in cases where there is not coupled 

conditions among the sub-systems or when the influence of exogenous inputs is weak.  

 

 

 

 

 

 

Fig. 5.8 Decentralized configuration. Local controllers dispose of the states of a subsystem 

but there is no exchange of information from others. 

 

5.5.3 Decentralized MPC  

The distributed control configuration is supposed to have a better performance with respect to 

the decentralized control configurations. This is because in the distributed schemes, the 

elements in the system can communicate partially each other, for which a coordination to 

achieve a better result is possible. In literature, the distributed structures have different 

classifications depending on how communication among elements is, and how the order of 

information requirements is (i.e., there are configurations in which the communication is made 

in both ways since sharing information is required, and others in which it is only required to 

have a one direction communication). Distributed schemes are also classified depending on 

the cost function that each element in the system takes into account (i.e., when in a local 

controller the global cost function is considered and cases where each local controller has a 

different cost function in comparison with other local controllers cost function).  
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Fig. 5.9 Distributed configuration. Local controllers dispose of the states of a subsystem but 

does not have access to information from others. In this case, local controllers share partial 

information with other local controllers. 

 

In a typical Distributed MPC (DMPC) framework the steps performed by the local 

controllers at each control instant are the following:  

(i) measure local variables and update state estimates. 

(ii) solve the local receding-horizon control problem. 

(iii) apply the control signal for the current instant 

(iv) exchange some information with other controllers.  

5.5.4 Advantages and disadvantages of Non-Centralized MPC  

Following benefits of non-centralized MPC must be taken into account: 

 

 Reduced and parallel computations. Exist different elements computing control 

outputs, so the computational costs are divided by having different hardware 

processing the problem.  

 

 Reduced communications. When it is not required to have centralized information, 

the reduction of communication channels is possible. It implies that the costs are 

reduced and the reliability improves, having less elements that could suffer a fault. 

 

 Better maintenance. Local maintenance can be carried out by only stopping the 

corresponding local MPC controller. The remaining parts keep operating (possibly 

with reduced performance) in closed-loop with their local controllers, without the 

need of stopping the overall process as in case of centralized control. 

 

 Possible re-design. A partial re-design of the process does not necessarily imply a 

complete re-design of the controller, as it would happen in case of centralized 

control. 
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Despite the benefits of non-centralised control architectures, they also have some drawbacks 

that must be noted: 

 

 System contains coupled dynamics or coupled constraints. The non-centralizing 

task becomes challenging as it exists the difficulty to guarantee feasibility and it is 

possible the loss of performance in comparison with a single centralised controller.  

The solutions to these issues rely on the degree of interaction between the local 

subsystems and the coordination/communication mechanisms between their 

agents.  

 

 Ensuring the asymptotic stability of the overall system. When all the controllers are 

involved in controlling the same large-scale process, it is important to determine 

conditions under which there are a set of appropriate local feedback control laws 

capable of stabilizing the entire system. 

 

5.6 Decomposition aspect 

When designing non-centralised controllers for large-scale buildings, there is a prior problem 

to be solved: the system decomposition into subsystems. 

Usually the plant model is given as an atomic block of finite difference equations, thus a set of 

submodel is to be obtain through a process called “decomposition”. It consists on breaking the 

problem into small problems and solving them synchronous/asychronous way. There are class 

of techniques proposed in literature, to name a few, primal and dual decomposition, Dantzig-

Wolfe decomposition and Augmented Lagrangian Decomposition etc. 

The goal of the decomposition is double: first, each subsystem is much smaller than the overall 

problem (that is, each subproblem has far fewer decision variables and constraints than the 

centralized one), and second, each subsystem is coupled to only a few other subproblems 

(that is, it shares variables with only a limited number other subproblems).  

 

5.6.1 Decomposition issues  

Because of decentralizing the MPC problem may lead to a deterioration of the overall closed-

loop performance due to the suboptimality of the resulting control actions, following key points 

must be noted, 
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 Cost function is convex (resource sharing). 

 Equality constraints are linear or nonlinear (bilinear), depending on system 

dynamics. 

 Equality constraints are complicated in nature. 

 Complicated variables i.e. implicit variables in cost function and constraints. 

 
In this work, it is assumed that the decomposition of the initial large-scale system into small-
scale interacting subsystems is already given. 
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6. CENTRALIZED ECONOMIC MODEL PREDICTIVE 
CONTROL 

6.1 Introduction 

In this Chapter 6 we discuss a Centralised Economic Model Predictive Control structure. As 

explained in § 5.4.1, the predominant approach for controlling dynamical LSS buildings is 

based on the assumption of centrality where all information and control actions are ruled with 

a standard MPC controller designed for tracking economic operational set-points that are 

computed in a single optimisation problem. 

In large non-residential and commercial buildings, the HVAC system must meet the varying 

needs of different spaces since different zones of a building may have different heating and 

cooling needs. In that respect, and facing that a centralised MPC fashion wants to be 

considered in this chapter, variable-air-volume (VAV) systems is a great HVAC configuration 

to meet these requirements. Furthermore, VAV configuration was developed to be more 

energy-efficient and to meet the varying heating and cooling needs of different building zones.  

This Chapter 6 is organized as follows. In Section 6.2 we definitely introduce the HVAC 

configuration for this case. In Section 6.3 we consider the MPC formulation with the 

mathematical model, the economic cost function and the global building problem formulation. 

6.2 Model Predictive Control formulation 

6.2.1 HVAC Building configuration 

The case-base under consideration in this work is properly explained in next Chapter 8 with 

the simulation results.  

     Temperature sensors. 

Each zone is equipped with  VAV box 
 
Return air plenum to recirculate  AHU (Air Handle Unit) 

the air from zones to   
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The variable-air-volume HVAC system works as follows in our building: 

 

Table 6.1 All important elements forming the variable air volume HVAC system in a building 

A mathematical model of the thermal behaviour of the zone and AHU, that is  

effectively used in control design, are properly explained at next subsections. 

 

 

 

 

 

 

 

 

Fig. 6.1 All elements described at the above table in VAV configuration 

Element Function 

 

VAV terminal box 

It receives primary air from the central air handling unit at the 

same constant temperature, known as the supply air-

temperature.  

 

Primary-air damper 

It regulates the volume of hot or cold primary air delivered to 

the box according to the needs of the spaces. 

The damper position is controlled by a local PI type 

controller. 

 

 

 

Air Handle 

Unit 

(AHU) 

Mixer It  mixes the fresh air and the return air from all the zones 

 

Heating Coil 

It  is a water to air heat exchanger, which controls the 

temperature of supply air flow by varying hot water flow of 

constant temperature, supplied by a boiler. 

 

Supply fan 

Fan that must vary its output in order to meet the needs of all 

VAV units. The speed of the central supply fan is 

consequently controlled to meet the changing demands of 

the building.  
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6.2.2 Mathematical model of the building 

 

1) Thermal zone model 

Let n be the number of zones of the building. For each zone i, (i = 1, …n), denote the 

temperature of the zone by Ti, the mass flow rate at the output of the i:th VAV by ṁi  and the 

supply air temperature by Ts. Then, for the winter season, the first law of thermodynamics 

applied to each zone is  

(6.1) 

where: 
 

 Ti is the temperature of zone i; 
 Ts is the supply air temperature; 
 Toa is the outside air temperature; 
 ṁi represents the mass flow rate at the output of the i:th VAV; 
 Vi is the volume of zone i; 
 ρ is the air density; 
 Ci = ρVicp is the thermal capacitance of zone i; 
 qi represents the total internal heat gain, which is the cumulative heat flux due to 

occupants and electronic devices in the zone i; 
 Rij = Rji is the thermal resistance between zone i and zone j; 
 Rext,I is the thermal resistance between zone i and the exterior of the building; 

Clearly, the sensible heating load is the sum of all heat losses and internal heat gains. The 

heat loss for a zone i is due to the heat transfer from the zone i to adjacent zones j and to the 

outside environment. 

Now, writing explicitly equation (6.1) for i = 1, …n, the model for the overall n-zones building is 

described by the system of n first-order differential equations written in matrix form as 

 

     

 

with 

               (6.2) 
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As the diagonal matrix in the left-hand side of (6.2) is not singular, the above equation can be 
written in the state space form, 
 

𝑥 = 𝒜𝑥 + (𝑥 − 𝑢01𝑛)𝑡ℬ𝑢 + 𝒢𝑤 + 𝑞                                              (6.3) 

 
with (.)t as nomenclature of transposition, 

𝑥 = [𝑇1    𝑇2    …     𝑇𝑛]𝑡                                                                         

𝑢 = [𝑚̇1    𝑚̇2    …     𝑚̇𝑛]𝑡                                                                    

𝑢0 = 𝑇𝑠 

𝑤 = 𝑇𝑜𝑎 

where:                      (6.4) 

 1n is the n-dimensional vector with all entries equal to 1.  
 A, B, G the structures of these matrices are straightforward from equation (6.2).  

 

For constant supply air temperature, which is typical to VAV based air-conditioning systems, 
the state equation is a bilinear controlled system, 

𝑥̇ = 𝒜𝑥 + 𝑥𝑡ℬ1𝑢 + ℬ2𝑢 + 𝒢𝑤 + 𝑞                                              (6.5) 

 
Finally, equation (6.5) is linearized around an operating point (x (0); u (0)) and discretized with a 
sampling period h this leads to discrete-time system, 
 

           (6.6) 

where: 
 

 A, Bu, Bd are the resulting discrete-time system matrices of appropriate dimensions; 
 d = [w ,qt] is the disturbance which accounts for outside temperature and internal gains 

q due to occupancy and electronic devices; 
 x,u,d,w,q are the signals in equation(6) that denote currently small variations around 

their operating point values; 
 y is the system output; 

  
 

2) Air Handling Unit 
 
With reference to the following figure 6.3, let Tr denote the temperature of the return air flow 
rate at the input of the mixer. Then assuming that there is no leakage of mass flow rate in the 
duct, i.e., 

𝑚𝑎̇ = (∑𝑚𝑖̇

𝑛

𝑖=1

) 

(6.7) 
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the energy balance in the return duct reads as ṁa Tr = ṁ1T1 + … + ṁnTn. This implies that the 

return temperature in the duct is completely determined by 

𝑇𝑟 =
∑ 𝑚𝑖𝑇𝑖

̇𝑛
𝑖=1

𝑚𝑎̇
 

(6.8) 

Moreover, let Tm denote the temperature at the output of the mixer. The mixer mixes the return 
air at temperature Tr with fresh outdoor air at Toa. Then, again, writing the energy conservation 
law for the mixer, we have 

 
ṁr Tr + ṁoa Toa = ṁaTm    (6.9) 

 

The conservation of mass at the inputs and output of the mixer implies ṁr + ṁoa = ṁa. The return 
mass air flow rate is a fraction δ (0 ≤ δ ≤ 1) of the total mass airflow rate, i.e.,  
ṁr = δ ṁa, which implies that ṁoa= (1- δ) ṁa. Then equation (6.9) reads as 
 

𝑇𝑚 = 𝛿𝑇𝑟 + (1 − 𝛿)𝑇𝑜𝑎 = 𝛿
∑ 𝑚𝑖𝑇𝑖

̇𝑛
𝑖=1

𝑚𝑎̇
+ (1 − 𝛿)𝑇𝑜𝑎 

(6.10) 

Tm depends only on all zone temperatures Ti   and on the outside temperature Toa. 

 

 

 

 

 

 

Fig. 6.3 Schematic of Air Handle Unit 

6.2.3 Economic cost function 

 Economic cost function in the proposed model predictive control refers to the total cost of the 

energy consumed by the building components, mainly by the supply fan and a heating coils in 

the AHU. Let J be the total cost over a time interval of te, 

 

              (6.11) 
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where Jh and Jfan are the costs due to energy consumed by the heating coil and the supply fan 

in the AHU. 

 

1) Energy cost at the heating coil 

  
The power or heat transfer rate (Qcoil) required at the heating coil to deliver an air flow at 

temperature Ts is directly obtained from writing the energy conservation law, 

𝑄̇ 𝑐𝑜𝑖𝑙
𝐴𝐻𝑈

= 𝑚̇𝑎𝑐𝑝(𝑇𝑠 − 𝑇𝑚)                                                                           (6.12) 

Then, the energy cost due to heating is simply given by 

𝐽ℎ = 𝑐1𝑄̇𝑐𝑜𝑖𝑙
𝐴𝐻𝑈

                                                                                         (6.13) 

where c1 represents the related energy cost per kWh. 

2) Energy cost delivered for the mass airflow 

 

All the VAVs require a certain total mass airflow depending on each local (zone) heating load 

as per equation (6.7). This mass airflow is discharged by the power fan which is driven by a 

variable speed drive. The power fan characteristics is given by a cubic law, that is, 

𝑊̇𝑓𝑎𝑛
𝐴𝐻𝑈

= 𝛼𝑚̇𝑎
3 = 𝛼(∑ 𝑚̇𝑖

𝑛
𝑖=1 )3                                                                       (6.14) 

 

With the above power characteristics, the cost the energy for a supply fan reads as follows, 

𝐽𝑓𝑎𝑛
𝐴𝐻𝑈

= 𝑐2𝑊̇𝑓𝑎𝑛
𝐴𝐻𝑈

                                                                                         (6.15) 

where c2 represents the related energy cost per kWh .  
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6.2.4 Formulation of Problem 

The overall optimization problem for Model Predictive Control is formulated as below, 

ℑ(𝑥, 𝑢) = 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑢,𝑥       𝐽(𝑢, 𝑥)    

     𝑠. 𝑡       ℎ(𝑢, 𝑥, 𝑑) = 0 

                 𝑥𝑙 ≤ 𝑥 ≤ 𝑥𝑢 

           𝑢𝑙 ≤ 𝑢 ≤ 𝑢𝑢       (6.16) 

 
 
where: 
 

 J(u,x) is economic cost of HVAC system, explained in section 6.3.2; 
 x,u are temperatures and supply airflow rates as states and inputs of system explained 

in section 6.3.1; 
 xl, xu are lower and upper temperatures bounds which assures thermal comfort in the 

zones; 
 ul, uu are lower and upper bounds on supply air ow actuators/temperatures 
 d is disturbance vector; 

The cost function is convex while equality constraints are linear (system dynamics linearized 

at an operating point given in equation (6)), hence the optimization problem can be solved with 

existing optimization techniques e.g. interior point methods. 
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7. DISTRIBUTED ECONOMIC MODEL PREDICTIVE 
CONTROL  

7.1 Introduction 

With regard to the previous discussion introduced in section § 5.4, LSS Buildings are able to 

be either controlled by a single centralized (multi-variable) controller or by a set of decentralized 

control systems. Complexity in controlling these systems motivates the development of 

different architectures in the distributed control. 

Typically, the design of the controllers of such a decentralized control structure does not 

account for the interactions between the subsystems explicitly. However, there is a desire to 

guarantee nominal stability, feasibility, optimality, reliability and maintainability for the control 

systems implemented in the plant. Distributed model predictive control (DMPC) methods are 

expected to contribute towards this aim because they can combine the optimality properties of 

centralized predictive controllers and the modularity and flexibility of decentralized control 

systems by means of communication, cooperation, or coordination. 

In this chapter 7 we develop two techniques to solve the centralized problem thanks to 

decompose in a modular way the problem into small sized blocks. The first one, is based on 

optimality condition decomposition (OCD) and it is explained in Section 7.2. Secondly, in 

Section 7.3, it comes a new distributed model predictive control based on a distributed dynamic 

optimization algorithm. This technique is known as sensitivity-based coordination (S-DMPC) 

scheme. Finally, Section 7.5 explain the HVAC configuration for the non-centralised problems. 

7.2 Optimal Conditions Decomposition in distributed model 
predictive control 

7.2.1 Introduction 

This section presents a partitioning technique based on decomposing the optimality conditions 

of the original problem, which is denominated optimality condition decomposition (OCD) [9]. It 

is based on the special structure of Karush-Kuhn-Tucker (KKT) system of the centralized large 

scale problem. The KKT system is carefully analysed and crucially modified in an efficient 

manner to obtain separable subsystems. These separable KKT subsystems imply the 

structure of the decomposed subproblems. The degree of modification in the original KKT 

system will define the convergence of the decomposed solution to the centralized solution. 
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7.2.2 Decomposition aspect 

 

First of all, we consider a discrete time state space for a Large Scale System as, 

  
𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘) 

(7.1) 

where: 
 

 x represents the states of system, x(k) ∈ ℝn  ; 

 u represents the input/control of system, u(t) ∈ ℝm  ; 
 n is the number of the states of the system, 
 m is the number of the inputs of the system, 

Then, let us remind this proposed technique aims to give a solution of the optimal control 

problem for the overall system, Centralised Model Predictive Control (CMPC), introduced in § 

6.3.3, 

ℑ(𝑥, 𝑢) = 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑢,𝑥       𝐽(𝑢, 𝑥)    

     𝑠. 𝑡       ℎ(𝑢, 𝑥, 𝑑) = 0 

                 𝑥𝑙 ≤ 𝑥 ≤ 𝑥𝑢 

           𝑢𝑙 ≤ 𝑢 ≤ 𝑢𝑢        (7.2) 

 J(x,u) is the overall cost function; 
 h(u,x,d) are equality constraints that represents the dynamics of system in Eq.1; 

 xl, xu, are lower and upper temperatures bounds (thermal comfort in the zones); 

 ul, uu are lower and upper bounds on supply air ow actuators/temperatures; 

 
1) Decomposition Structure 

Once the main problem (7.2) is formulate, the decomposition process is introduced. First, we 

rewrite this problem into the equivalent general mathematical form to avoid cumbersome 

notations to simplify our system presentation, 

𝐹(𝑧) = 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑧       𝑓(𝑧) 

𝑠. 𝑡       ℎ𝑗(𝑧) = 0   𝑗 = 1,… , 𝑛ℎ 

𝑧𝑚𝑖𝑛 ≤ 𝑧 ≤ 𝑧𝑚𝑎𝑥           (7.3) 

where z ∈ ℝn is the vector of the optimization variables (x,u) and f is the convex twice 

differentiable objective function. The Lagrange function for the problem (7.3) with Lagrange 

multipliers λ (λ1, …, λnh) reads as,  

ℒ(𝑧) = 𝑓(𝑧) + ∑𝜆𝑗ℎ𝑗(𝑧)

𝑛ℎ

𝑗=1

 

                         (7.4) 
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Moreover, if we consider A be the number of subproblems with partitioning the vector z as za 

(a = 1, 2, …, A) groups, za turn into the variables for each block k in which the original problem 

decomposes. Then, problem (7.3) can be written as: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒       ∑ 𝑓𝑎(𝑧𝑎)𝐴
𝑎=1   

                                                                                   𝑧𝑎(𝑧)   𝑎 = 1,… , 𝐴      (7.5.1) 

 

                                                                  𝑠. 𝑡       ℎ(𝑧1, … , 𝑧𝐴) ≤ 0       (7.5.2) 

𝑔𝑎(𝑧𝑎) ≤ 0      𝑎 = 1,… , 𝐴  (7.5.3) 

The sets of equations (7.5.2-7.5.3) in that optimization problem represent both equality and 

inequality constraints. 

It should be noted that these equations contain variables from different blocks and prevent 

each subproblem from being solved independently. This concept is known as overlapping and 

is an important issue to take into account when preparing decomposition of a main optimization 

problem. If these equations were removed from problem (7.5.1-7.5.3), the resulting problem 

could be trivially decomposed into one subproblem for each block. In this case, constraints 

would contain only variables belonging to block a for a = 1, . . ., A.  

Considering that the optimal values of the Lagrange multipliers in problem (7.5.1-7.5.3) are 

known, the problem can be stated in an equivalent form as follows: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒       ∑ 𝑓𝑎

𝐴

𝑎=1

(𝑧𝑎) + ∑ 𝜆𝑎
𝑇

𝐴

𝑎=1

ℎ𝑎(𝑧1, … , 𝑧𝐴) 

           𝑧𝑎(𝑧)   𝑎 = 1,… , 𝐴            (7.6.1) 

 

                                                𝑠. 𝑡       ℎ𝑎(𝑧1, … , 𝑧𝐴) ≤ 0      𝑎 = 1,… , 𝐴      (7.6.2) 

𝑔𝑎(𝑧𝑎) ≤ 0      𝑎 = 1,… , 𝐴   (7.6.3) 

 

where constraints (7.5.2) have been separated in different blocks. Note that the way in which 

these constraints are distributed does not affect the solution of the problem, i.e., they can be 

distributed based on engineering insight. Given trial values to all variables and multipliers 

different than those in block a, problem (7.6.1) -(7.6.3) reduces to: 

ℱ𝑎
𝑡(𝑧𝑎) = 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒   𝑘 +  𝑓𝑎(𝑧𝑎) + ∑ 𝜆𝑏

̅̅ ̅

𝐴

𝑏=1
𝑏≠𝑎

ℎ𝑏(𝑧1 ,̃ … , 𝑧𝐴, 𝑧̃𝑎+1, … , 𝑧𝐴̃)  

 

                                                𝑠. 𝑡       ℎ𝑎(𝑧𝑎) ≤ 0          

                                                           𝑧𝑚𝑖𝑛 ≤ 𝑧𝑎 ≤ 𝑧𝑚𝑎𝑥                          (7.7) 
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where 
 

 𝑘 = ∑ 𝑓𝑏
𝐴
𝑏=1
𝑏≠𝑎

(𝑧𝑏̃)   is a constant 

 (𝑧1 ,̃ … , 𝑧𝐴, 𝑧̃𝑎+1, … , 𝑧𝐴̃) 𝑎𝑛𝑑 𝜆𝑏
̅̅ ̅(𝑏 = 1,… , 𝐴; 𝑏 ≠ 𝑎) represents the optimal solution of 

other subproblems of previous (t -1) instants i.e. optimal solutions of 
 ℱ𝑎

𝑡(𝑧𝑎) (𝑏 = 1,… , 𝐴; 𝑏 ≠ 𝑎) 

 
Please note, inequality constraint can be transformed into equality constraints by adding 
slack variables. 

This reduced problem (7.7) can be obtained for every block of the original problem. The 

proposed decomposition technique is actually based on the solutions of these reduced block-

related problems. In fact, the selection of the suitable partition of the vector z into A groups and 

the decomposition of the set of equality constraints into ha (a = 1,…, A) groups are important 

issues that the proposed algorithm try to face. 

 

2) KKT system matrix 

The notion of the decomposition is based on the partition of KKT system obtained from 

Lagrange function in equation (7.4). 

KKT optimality conditions are first-order necessary conditions that must satisfy a solution of 

non-linear optimization problems with inequality constraints to be optimal. These conditions 

are a generalization of the Lagrange multiplier method for inequality constraints.  

In general, KKT matrix can be derived by two ways,  

KKT system matrix Using developments in the primal dual interior point method  

   Gradient based approach 

In this work only Primal-Dual procedure is applied, so it is presented briefly as follows. 

Primal-Dual Approach (Interior point method) 

Let us reconsider a general optimization problem from equation (7.3) and its Lagrange function 

from equation (7.4), where z (z1, …, zA), and λ (λ1, …, λnh) are primal and dual variables 

respectively. We assume the problem is strictly feasible then the KKT optimality conditions can 

be written as follows, 

∇𝐿(𝑧∗, 𝜆∗) = ∇𝑓(𝑧∗) + 𝜆∗𝑇∇ℎ(𝑧∗) = 0                                               (7.8) 

ℎ𝑎(𝑧∗) = 0                       𝑎 = 1,2,… , 𝐴                                            (7.9) 
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Above set of the KKT conditions can be solved for (𝑛̃ + 𝑛ℎ) variables with respect to (𝑛̃ + 𝑛ℎ) 

nonlinear equations. Interior point method solves the equations (7.6.1-7.6.3) and (7.7) by 

applying newton's method. This implies that this procedure seeks the search direction for both 

primal and dual variables, hence it is termed as Primal-Dual Interior Point Method. 

Nevertheless, the hierarchical procedure is described here to obtain KKT system as follows, 

Let us define residual for the given time instant t as, 

    𝑟𝑡 (𝑧, 𝜆) = (
𝑟𝑑𝑢𝑎𝑙

𝑟𝑝𝑟𝑖𝑚
) = (

∇𝑓(𝑧) + 𝜆𝑇∇ℎ(𝑧)

ℎ(𝑧)
)                                              (7.10) 

where, 𝑟𝑑𝑢𝑎𝑙 is dual residual, 𝑟𝑝𝑟𝑖𝑚 is primal residual. Consider residual 𝑟(𝑦) in with search 

direction of ∇𝑟(𝑦) , then Newton's step ∆𝑦 is characterized by the linear equations as, 

𝑟(𝑦 + ∆𝑦) = 𝑟(𝑦) + ∇𝑟(𝑦)∆𝑦                                                           (7.11) 

Then, if  𝑦 = (𝑧, 𝜆) and ∆𝑦 = (∆𝑧, ∆𝜆), the set of linear equations can be given as, 

(
∇2𝑓(𝑧) + 𝜆𝑇∇2ℎ(𝑧) 

∇ℎ(𝑧)𝑇 
∇ℎ(𝑧)

0
) (

∆𝑧
∆𝜆

) =  −(
𝑟𝑑𝑢𝑎𝑙

𝑟𝑝𝑟𝑖𝑚
)                                          (7.12) 

Please note that the values of primal and dual search directions depend on feasible initial 

values of  𝑧 and 𝜆. Newton’s method can be extended in the case if the initial point is not 

feasible. 

Furthermore, the matrix at the left hand side is termed as KKT system matrix which has a 

particular structure depending on the couplings in the dynamics of the system. The significance 

of the KKT matrix coefficients is concisely described in later key point of this subsection. 

 

3) Significance of KKT system in the decomposition 

KKT system matrix from Eq. (7.12) holds a crucial information structure about the system. It is 

symmetric and lower diagonal elements are zeros. Hence, two significant blocks are identified 

from which one block represent hessian of Lagrange function and other block represents the 

sensitivity of dynamic system. 

 Hessian of Lagrange Function 

The upper triangular block from the KKT system (7.12) represents the separability of cost 

function with respect to the variable z and it is the hessian of lagrange function with respect 

to variable z i.e. ∇2𝑓(𝑧) + 𝜆𝑇∇2ℎ(𝑧). If this block is in triangular form, then cost function is 

said to be separable.In that case, every sub-block represents the nature of cost function 

for the decomposed subproblems. 
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 Sensitivity matrix 

The block matrix (∇ℎ(𝑧)) from the KKT system (12) represents the sensitivity of the system 

dynamics with respect to the vector z.  

(
∇𝑧1ℎ1(𝑧) ⋯ ∇𝑧𝑛̃ℎ𝑛ℎ(𝑧)

⋮ ⋱ ⋮
∇𝑧1ℎ𝑛ℎ(𝑧) ⋯ ∇𝑧𝑛̃ℎ𝑛ℎ(𝑧)

)                                                      (7.13) 

The off-diagonal coefficients in this block matrix represent the degree of coupling between 

variables z (z1, …, zn). The values of these coefficients have important role in the 

partitioning of constraints into a sets. If the coupling between the variables is weak, then 

those variables can be assigned to different groups. 

 

 

 

 

 

 

Fig. 7.1 Both blocks in KKT system matrix  

Observe that, from the above key points, partitioning of the KKT system matrix achieves both 

the objectives of decomposition of the problem (7.3) on the control level as well as on the 

dynamics/constraints level. Hence the symmetric KKT matrix should be synthesized in the 

block diagonal form. In the literature, various methods describe the transformation of a 

symmetric matrix into block-diagonal matrix form.  

 

 

 

 

Fig. 7.2 Example of transformation of KKT 

matrix in “block-diagonal form” 

 

 

Hessian of 

Lagrange 

Sensitivity 

Matrix 
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In order to avoid the loss of information, it is advised to reorder the original KKT matrix into the 

block-diagonal structure. We use the Sparse Reverse Cuthill-McKee (CM) ordering algorithm. 

This algorithm permutes the rows/columns of sparse symmetric matrix to result in a narrow 

bandwidth band matrix. With this algorithm, it is possible to extract overlapping block diagonal 

matrices from the KKT system matrix. This algorithm is illustrated with an example as shown 

in Figure 7.3, where M is the sparse symmetric matrix and p is the permutation of rows/columns 

by sparse reverse Cuthill-McKee method. 

 

 

 

 

 

Fig. 7.3 Reordering KKT matrix into 𝐾𝑇𝑇 ̅̅ ̅̅ ̅̅ ̅with Reverse Cuthil-McKee Algoritm 

Depending on the degree of coupling, a combination of decomposition method with CM 

algorithm results in more promising separable matrix structure. 

In conclusion, we define the matrix 𝐾𝐾𝑇̅̅ ̅̅ ̅̅  as the modified block diagonal matrix which can be 

decomposed into a smaller overlapping matrices.  

The decomposed matrices explain the variable and constraints selection to obtain the 

subproblem as shown in the equation (7.5). The column in the decomposed matrix symbolizes 

the group of variables while the rows denote the constraints set to be considered in the 

respective subproblem. 

 

4) Example 

In order to understand the proposed procedure, we consider a simplified optimization problem. 

Please note, this is a case in which we have only two groups (n=2) of variables and additionally 

all constraints are equality ones. 

 

ℑ(𝑧) = 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑧       𝑓(𝑧)    

     𝑠. 𝑡       ℎ𝑖(𝑧) = 0         𝑖 = 1,2…𝑛   (7.14) 

where: 
 

 x is vector in ℝn; 
 f and h are convex functions; 
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Let x be vector in ℝ2 and equality conditions as ℎ1(𝑧1, 𝑧2) = 0  𝑎𝑛𝑑 ℎ2(𝑧1, 𝑧2) = 0 ∶ 
 

ℑ(𝑧1, 𝑧2) = 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑧1,𝑧2       𝑓(𝑧1, 𝑧2)    

     𝑠. 𝑡       ℎ1(𝑧1, 𝑧2) = 0   

𝑠. 𝑡       ℎ2(𝑧1, 𝑧2) = 0         (7.15) 
 
 
Therefore, the decomposed problem with OCD method is written as, 
 

ℑ1(𝑧1) = 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑧1,𝑧2       𝑓(𝑧1, 𝑧2̃) + 𝜆2
̅̅ ̅ ℎ1(𝑧1, 𝑧2̃)    

     𝑠. 𝑡       ℎ1(𝑧1, 𝑧2̃) = 0         (7.16) 

 

ℑ2(𝑧2) = 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑧1,𝑧2       𝑓(𝑧1̃, 𝑧2) + 𝜆1
̅̅̅ ℎ2(𝑧1̃, 𝑧2)    

     𝑠. 𝑡       ℎ1(𝑧1̃, 𝑧2) = 0         (7.17) 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.4 Schematic of data exchange in case of overlapping decomposition 

7.2.3 Convergence Properties 

 
If the system in equation (7.3) is solved by computing optimal solutions for modular 
problems as shown in equation (7.7), the convergence criterion must be established. For 
following hypothesis, we assume that the problem in equation (7.3) holds the following 
properties, 
 

1. The cost function f(z) is convex and twice differentiable; 
 

2. The constraints functions h(z) (h1; …; hA) are convex. 
 

‖𝜆𝑒𝑣(𝐾𝐾𝑇) − 𝜆𝑒𝑣(𝐾𝐾𝑇̅̅ ̅̅ ̅̅ )‖2 ≤ ‖𝜆𝑒𝑣(𝜁)‖
2 

where: 
 
𝜆𝑒𝑣 is used represents as the symbolic representation to denote eigenvalues of the matrix; 

𝜁 is the user defined tolerance matrix ; 
 

Another way to prove convergence of the above method based on necessary condition of 
optimality (NCO). Let the Lagrange function for the subproblem from equation (7.5), 
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ℒ𝑎(𝑧𝑎) = 𝑓𝑎(𝑧𝑎, 𝑧𝑏̃) + 𝜆𝑏
̅̅ ̅ℎ𝑏(𝑧𝑎, 𝑧𝑏̃) + 𝜆𝑎ℎ𝑎(𝑧𝑎 , 𝑧𝑏̃)  a ≠ b                       (7.17) 

 

The necessary condition of optimality (NCO) of the local problem is given by,  

 
𝑑𝑓𝑎(𝑧𝑎,𝑧𝑏̃)

𝑧𝑎
+ 𝜆𝑏

̅̅ ̅ 𝑑ℎ𝑏(𝑧𝑎,𝑧𝑏̃)

𝑧𝑎
+ 𝜆𝑎

𝑑ℎ𝑎(𝑧𝑎,𝑧𝑏̃)

𝑧𝑎
= 0  𝑎 ≠ 𝑏                             (7.18) 

 
And considering NCOs for all A subproblems, 
 

∑
𝑑𝑓𝑎(𝑧𝑎,𝑧𝑏̃)

𝑧𝑎

𝐴
1 + 𝜆𝑏

̅̅ ̅ 𝑑ℎ𝑏(𝑧𝑎,𝑧𝑏̃)

𝑧𝑎
+ 𝜆𝑎

𝑑ℎ𝑎(𝑧𝑎,𝑧𝑏̃)

𝑧𝑎
= 0  𝑎 ≠ 𝑏                              (7.19) 

 

The equation (??) is the same as NCO of the centralized problem. As centralized problem and 
subproblems are convex, optimization solution obtained from subproblems converges to the 
centralized solution. 
 
If the constraints are linear i.e. when the second order differential matrix of constraint set h 
(h1; … ; hA) shown in equation is a diagonal or null matrix, the optimal solution for the 
subproblems can be argued as same with the centralized solution. 
 

∇2ℎ = (
∇𝑧1ℎ1(𝑧) ⋯ ∇𝑧𝑛̃ℎ𝑛ℎ(𝑧)

⋮ ⋱ ⋮
∇𝑧1ℎ𝑛ℎ(𝑧) ⋯ ∇𝑧𝑛̃ℎ𝑛ℎ(𝑧)

)                                               (7.20) 

7.2.4 Algorithm OCD 

A summary of the proposed algorithm is as follows. 

 

 

 
 
 
 
 
 
Step 0: KKT matrix. 
 

Formulate KKT system matrix for ℱ(𝑧). 
 
Step 2: Partitioning of KKT system matrix. 
 

a) Modify KKT system matrix into 𝐾𝐾𝑇̅̅ ̅̅ ̅̅  using sparse reverse CM methods. 
b) Until the condition ‖𝜆𝑒𝑣(𝐾𝐾𝑇) − 𝜆𝑒𝑣(𝐾𝐾𝑇̅̅ ̅̅ ̅̅ )‖2 ≤ ‖𝜆𝑒𝑣(𝜁)‖

2  is satisfied.  
 
Step 3: Overlapping / Nonoverlapping blocks 
 

Identify overlapping / nonoverlapping separable blocks from modified  𝐾𝐾𝑇̅̅ ̅̅ ̅̅  system matrix. 
 

Algorithm 1:  Decomposition of Centralized Model Predictive Control 

                       (Optimality condition decomposition) 

Input Data {ℎ (ℎ1, … , ℎ𝐴 ; 𝑧0 (𝑧1
0 , … , 𝑧𝑛

0); 𝑓(𝑧)} →  ℱ(𝑧)    

Result  ℱ𝑎
𝑡(𝑧𝑎) (a = 1,… , A)   
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Step 4: Decomposed subproblems 
 

Determine the decomposed subproblems ℱ𝑎
𝑡(𝑧𝑎) (a = 1,… , A) based on the identified 

separable blocks. 
 

 
Step 0: Initialization. 

Each block (a = 1, . . . , A) initializes its variables and parameters, 𝑧𝑎̃  , 𝜆𝑎
̅̅ ̅̅ . 

 
Step 1: Single iteration. 
 
Each block (a = 1…, A) carries out one single iteration for its corresponding subproblem 
obtained in Step 4.  
 

ℱ𝑎
𝑡(𝑧𝑎) = 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑧𝑎

   𝑓𝑎(𝑧𝑎) + ∑ 𝜆𝑏
𝑇̅̅ ̅

𝐴

𝑏=1
𝑏≠𝑎

ℎ𝑏(𝑧1 ,̃ … , 𝑧𝐴, 𝑧̃𝑎+1, … , 𝑧𝐴̃)  

 

                                                𝑠. 𝑡       ℎ𝑎(𝑧𝑎) ≤ 0          

                                                           𝑧𝑚𝑖𝑛 ≤ 𝑧𝑎 ≤ 𝑧𝑚𝑎𝑥                         (7.21) 

 

And obtain search directions Δ𝑧𝑎, Δ𝜆𝑎. 
 
The proposed approach has the advantage that convergence properties do not require to 
attain an optimal solution of the subproblems at each iteration of the algorithm. It is enough 
to perform a single iteration for each subproblem, and then to update variable values. 
 
Step 2: Updating. 

Each block (a = 1…, A) updates its variables and parameters. 

 

𝑧𝑎̃ +  Δ𝑧𝑎 → 𝑧𝑎̃ 

                           𝜆𝑎̃ +  Δ𝜆𝑎 → 𝜆𝑎̃     𝑎 = 1,2…𝐴                                 (7.22) 
 

Step 3: Stopping criterion. 
 
The algorithm stops if variables do not change significantly in two consecutive iterations. 
Otherwise, it continues in Step 1. 
 
 
 

Algorithm 2:  The optimality condition decomposition 

Input Data {𝑧̃𝑎(𝑧1̃, … , 𝑧𝐴̃ ;  𝜆𝑎
̅̅ ̅( 𝜆1

̅̅̅, … , 𝜆𝐴
̅̅ ̅); 𝐼𝑛𝑠𝑡𝑎𝑛𝑡(𝑡 − 1)} →   ℱ𝑎

𝑡(𝑧𝑎) (a = 1,… , A)     

Result 𝑧𝑎̃  , 𝜆𝑎
̅̅ ̅ (a = 1,… , A); 𝐼𝑛𝑠𝑡𝑎𝑛𝑡 𝑡 
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7.3 Sensitivity-based coordination in distributed model 
predictive control 

7.3.1 Introduction 

In this section, we will introduce a new sensitivity-driven distributed model predictive control 

(S-DMPC) scheme [10], which is based on a novel distributed dynamic optimization algorithm 

motivated by so-called “goal-interaction operators”. We assume the objective function of the 

complete system to be separable.  

Coordination and therefore overall optimality is achieved by means of a linear approximation 

of the objective functions of neighboring controllers within the objective function of each local 

controller. The objective functions of the subsystems are modified using information on the 

complete system to achieve optimality of the distributed control scheme. 

Hence, coordination of the subsystem controllers is based on first order sensitivities. Each of 

the distributed controllers considers only a part of the full objective function and a reduced set 

of constraints and decision variables. We prove, that the distributed optimization method 

converges under given assumptions to the solution of the complete system. As for most of the 

distributed optimization methods, an iterative solution of the distributed optimal control 

problems is required. 

 

7.3.2 Optimization control problem formulation 

 

As the previous technique proposed, S-DMPC aims at the solution of the optimal control 

problem for the overall system, i.e. 

ℑ(𝑥, 𝑢) = 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑢 𝜙(𝑢, 𝑥) = ∑𝜙𝑖(𝑢𝑖 , 𝑥𝑖)

𝑁

𝑖=1

 

                                   𝑠. 𝑡       𝜙𝑖 =
1

2
∫ 𝑥𝑖

𝑇𝑄𝑖
𝑡𝑓

𝑡0
𝑥𝑖 + 𝑢𝑖

𝑇𝑅𝑖𝑢𝑖        𝑖 = 1,2…𝑁 

𝑥̇ = 𝐴𝑥 + 𝐵𝑢 

𝑥(𝑡0) = 𝑥0 

0 ≤ 𝐷(𝑢, 𝑥) + 𝑒 

where:                (7.23) 

 
𝜙𝑖(𝑢, 𝑥) represent separable (or additive) quadratic objective function. 

𝑄𝑖  𝑎𝑛𝑑 𝑅𝑖 are symmetric positive definite weighting matrices.  
[𝑡0, 𝑡𝑓] is the finite (receding) horizon. 

𝐷 = 〈𝐷1, … , 𝐷𝑁〉. 
𝑒 = 〈𝑒1, … , 𝑒𝑁〉. 
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In this case, objective function is formulated as a quadratic objective function because is one 

of the simplest form of non-linear programming. The open-loop optimal control problem (7.23) 

is transcribed into a Quadratic Programming problem (QP), that is the process of solving a 

special type of mathematical constrained optimization problem with a quadratic objective 

subject to linear constraints on these variables. 

 

Following steps must be applied in the transcription into QP:  

 

1. Discretize the input variables 

2. Solve the state variables x(k) for the input parameters z , 𝑧 = 〈𝑧1, … , 𝑧𝑁〉 represents 

the overall control inputs ,and the initial condition xo in discrete time.  

3. Transform continuous-time cost function into discrete cost function. 

4. Substitute x(k) in the discrete cost function. 

This transcription is straightforward to result in the quadratic program (QP) 

𝐹(𝑧) = 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑧  ∑𝜙𝑖(𝑧)

𝑁

𝑖=1

 

                  𝑠. 𝑡       𝜙𝑖(𝑧) =
1

2
𝑢𝑇𝐴𝑖𝑧 + 𝑧𝑇𝐵𝑖 + 𝐶𝑖         

                     𝑐𝑖 = 𝐷𝑖 𝑇𝑧 + 𝐸𝑖 ≥ 0 

with 

𝐴𝑖 = (
𝐴11

𝑖 ⋯ 𝐴11
𝑖

⋮ ⋱ ⋮
𝐴𝑁1

𝑖 ⋯ 𝐴𝑁𝑁
𝑖

) ∈ ℝ𝑛𝑝𝑥𝑛𝑝 

𝐵𝑖 = 〈𝐵1
𝑖 , … , 𝐵𝑁

𝑖 〉 ∈ ℝ𝑛𝑝 

𝐶𝑖 ∈ ℝ 

𝐷𝑖 = 〈𝐷1
𝑖 , … , 𝐷𝑁

𝑖 〉 ∈ ℝ𝑘𝑖𝑥𝑛𝑝 

𝐸𝑖 ∈ ℝ𝑘𝑖 

       ∀ 𝑖 = 1,2…𝑁       (7.24) 

where: 
 

 𝑘𝑖 refers to the number of constraints associated with subsystem i. 

 𝑛𝑝𝑖 is the number of control parameters related to input vector ui  𝑘𝑖 ≤ 𝑛𝑝𝑖. 

 𝑛𝑝 denotes the number of control parameters of the overall system 𝑛𝑝 = ∑ 𝑛𝑝𝑖
𝑁
𝑖=1 . 

 𝐴𝑖 , 𝐵𝑖 , 𝐶𝑖, 𝐷𝑖, 𝐸𝑖 are computed from the matrices and vectors A, B, D, and e 
appearing in the optimal control problem (7.23) 

7.3.3 Sensitivity-based coordination 

 

The distributed solution of QP () requires its decomposition and the coordination of the resulting 

subproblems, which are described for a convex non-linear program (NLP). 

 

https://en.wikipedia.org/wiki/Mathematical_optimization
https://en.wikipedia.org/wiki/Optimization_problem
https://en.wikipedia.org/wiki/Constrained_optimization
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Hence, a sensitivity-based coordination mechanism is proposed, where the overall objective 

𝜙 is approximated in each of the local optimal control problems by a linearization of the 

contributions 𝜙𝑗 𝑗 ≠ 𝑖, of the neighbouring subsystems to the overall objective 𝜙 while the local 

quadratic objective function 𝜙𝑖 of the subsystem considered is retained.A convergence 

analysis is provided subsequently for the convex quadratic program. 

 

 
For the sake of simplicity, we consider a more general Non-Linear Program: 
 

𝐹(𝑧) = 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑧  ∑𝜙𝑖(𝑧)

𝑁

𝑖=1

 

                  𝑠. 𝑡       𝑐𝑖(𝑧) ≥ 0         

Step 0: Initialization.             (7.25) 

Set k=0. Feasible parameters 𝑧[0] and an initial guess of the Lagrange parameters 𝜆[0] are 

chosen. 

Step 1: Parameters sent. 
 

The control parameters 𝑧𝑖
[𝑘]

 and Lagrange parameters 𝜆𝑖
[𝑘]

, ∀ ∈ {1, . . . , N}, are 

communicated to all local controllers. 
 
Step 2: Solve the local optimization problems. 
 

𝑓(𝑧𝑖) = 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑧 𝜙𝑖
∗(𝑧) 

𝑠. 𝑡       𝑐𝑖(𝑧) ≥ 0 
 

𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑠𝑡𝑟𝑖𝑐𝑡𝑙𝑦 𝑐𝑜𝑛𝑣𝑒𝑥 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 
 

𝜙𝑖
∗(𝑧) = 𝜙𝑖(𝑧) + [∑

𝜕𝜙𝑗

𝜕𝑧𝑖
‖

𝑧[𝑘]

𝑇
𝑁
𝑗=1
𝑗≠𝑖

− 𝜆𝑗
[𝑘]𝑇 𝜕𝑐𝑗

𝜕𝑧𝑖
‖

𝑧[𝑘]
] (𝑧𝑖 − 𝑧𝑖

[𝑘]
)                    (7.26) 

where: 
 

 k refers to the iteration index. 

 𝑐𝑗 are the constraint functions related to system j. 

 𝜆𝑗
[𝑘]

 are the Lagrange multipliers at iteration k related to the j-th NLP. 

 
𝜕𝜙𝑗

𝜕𝑧𝑖
 are the first-order sensitivities of the objective function corresponding to 

subsystem j, 𝑗 ≠ 𝑖 with respect to the control parameters 𝑧𝑖. 

 
𝜕𝑐𝑗

𝜕𝑧𝑖
 are the first-order sensitivities of the inequality constraints corresponding to 

subsystem j, 𝑗 ≠ 𝑖 with respect to the control parameters 𝑧𝑖. 

 

Algorithm 3:  The sensitivity-based coordination 
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This procedure is applied to obtain the local minimizers 𝑧𝑖
[𝑘+1]

and the Lagrange multipliers 

𝜆𝑖
[𝑘+1]

, ∀i ∈ {1, . . . , N}. Note, that the solution of the local optimization problems for 𝑧𝑖
[𝑘+1]

 

assumes that all other control parameters are fixed at the previous iterates 𝑧𝑗
[𝑘]

, ∀𝑗 ≠ 𝑖. 

Step 3: Set k = k+1. 

Go back to Step 1. 

Step 4: Stop. 

If 𝑧[𝑘] satisfies some convergence criterion. There exist several possibilities for the choice of 

the stopping criterion in this step. In order to limit the deviation of the parameters 𝑧[𝑘] from the 

optimal parameters 𝑧∗, a relative change of the parameters can be calculated as a simple 

measure for convergence, i.e.𝜖𝑟𝑒𝑙 =
‖ 𝑧[𝑘]−𝑧[𝑘−1]‖

2

‖ 𝑧[𝑘]‖
2

 . 

 

In conclusion, we are adding at each local controller in the objective function a “sensitive 

term” that is taking into account the coupling variables between subproblems. This strategy 

guaranties that the local optimization solutions separately converge to a global solution.  

 

 
 
 
 
 
 
 
 
 

Fig. 7.5 Linearization term based on the contributions 𝜙𝑗  𝑗 ≠ 𝑖, of the neighbouring 

subsystems to the overall objective 𝜙. 

 

7.3.4 Convergence Properties 

First of all, some assumptions in centralized NLP (7.25) must be formulated: 

 Cost functions  𝜙𝑖 are strictly convex. 

 Constraint functions  𝑐𝑖 are concave. 

 

 

Sensitivity-driven term 
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Then, the minimizer 𝑧[𝑘], k→∞, of the local problems (7.26) and the minimizer 𝑧∗,  of the 

centralized problem (7.25) are the same, i.e. lim k→∞𝑧[𝑘] = 𝑧∗.  

Proof of optimality requires comparison of the NCO for the centralized problem and the 

decomposed problem: 

Lagrange functions for the centralized problem 

ℒ(𝑧) = ∑(𝜙𝑖(𝑧) − 𝜆𝑖
𝑇𝑐𝑖(𝑧))

𝑁

𝑗=1

 

Lagrange functions for the centralized problem     (7.27) 

ℒ𝑖(𝑧) = 𝜙𝑖(𝑧) +

[
 
 
 
 

∑
𝜕𝜙𝑗

𝜕𝑧𝑖
‖

𝑧[𝑘]

𝑇𝑁

𝑗=1
𝑗≠𝑖

− 𝜆𝑗
[𝑘]𝑇 𝜕𝑐𝑗

𝜕𝑧𝑖
‖

𝑧[𝑘]

]
 
 
 
 

(𝑧𝑖 − 𝑧𝑖
[𝑘]

) − 𝜆𝑖
𝑇𝑐𝑖(𝑧) 

           (7.28) 

At convergence, the necessary conditions of optimality (NCO) of the local problems are 

given by 

0 =
𝜕𝜙𝑖(𝑧)

𝜕𝑧𝑖
+ ∑(

𝜕𝜙𝑗(𝑧)

𝜕𝑧𝑖
−

𝜕𝑐𝑗(𝑧)
𝑇

𝜕𝑧𝑖
𝜆𝑗) −

𝑁

𝑗=1
𝑗≠𝑖

𝜕𝑐𝑖(𝑧)
𝑇

𝜕𝑧𝑖
𝜆𝑖 = ∑(

𝜕𝜙𝑗(𝑧)

𝜕𝑧𝑖
−

𝜕𝑐𝑗(𝑧)
𝑇

𝜕𝑧𝑖
𝜆𝑗)

𝑁

𝑗=1

 

  

                     𝑐𝑖(𝑧) ≥ 0 

                     𝜆𝑖 ≥ 0 

                     𝜆𝑖
𝑇𝑐𝑖(𝑧) = 0 

                        ∀𝑖 ∈ (1,… ,𝑁)                                                         (7.29) 

which are the same as the NCO of the centralized problem. Since the NCO of the 

centralized and the local problems are the same and both problems have been assumed to 

be strictly convex, the minimizer computed from the iteration in Algorithm 3 is the same as 

the global minimizer of the centralized problem (7.25), provided the iterative solution of the 

former converges. 
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Since the convex NLP (7.26) and (7.25) generalize QP (7.23) and (7.24), if the latter are 

convex, convergence properties are also valid for the distributed solution of convex QP. For 

each of the local optimization problems (7.25), the overall objective function is considered, 

though all nonlocal contributions (i.e. those which result from other subsystems) are 

simplified by linear approximation. 

In order to improve the convergence properties or even enforce convergence of the 

iteration, the objective function (7.25) can be extended to become: 

𝜙𝑖
+ = 𝜙𝑖

∗ +
1

2
(𝑧𝑖 − 𝑧𝑖

[𝑘]
) 𝑇Ω 𝑖 (𝑧𝑖 − 𝑧𝑖

[𝑘]
)               (1,… ,𝑁)                                                         (7.30) 

𝛀 𝒊 ∈ ℝ𝒏𝒑𝒊𝒙𝒏𝒑𝒊
 is a symmetric positive definite matrix. 

7.3.5 Algorithm S-DMPC 

 
Here, the results are extended to the closed-loop S-DMPC formulation for the general QP 
(24). S-DMPC relies on the distributed optimization method discussed in the preceding 
section on a moving horizon [𝑡0(ℎ), 𝑡𝑓(ℎ)], where h is the horizon index. 

A summary of the proposed algorithm is as follows. 

 

 

 
 
 
 
Step 0: Initialization. 
 

 Set h : = 0 and fix the initial system state 𝑥(𝑡0(0)). 

 Transcribe the optimal control problem to compute 𝐴𝑖 , 𝐵𝑖(ℎ), 𝐶𝑖(ℎ), 𝐷𝑖, 𝐸𝑖(ℎ); 
𝐴𝑖  𝑎𝑛𝑑 𝐷𝑖 do not depend on the initial state 𝑥(ℎ) = 𝑥(𝑡0(ℎ)) and need to be 
computed only once. 

 Select initial parameters 𝑧[0] (h) and an estimate of the initial Lagrange multipliers 

𝜆[0] (h) and set k:=0. 

 
Step 1: Send control parameters to local controllers. 
 

Send the control parameters 𝑧𝑖
[0](ℎ) and the Lagrange multipliers 𝜆𝑖

[0](ℎ), ∀i ∈ {1, . . . , N}, to 
the distributed controllers. 
 
Step 2: Iterative process. 
 

Solve the following QP on horizon [𝑡0(ℎ), 𝑡𝑓(ℎ)] to obtain the minimizer 𝑧𝑖
[𝑘+1] and the 

Lagrange multiplier 𝜆𝑖
[𝑘+1]

: 
 

Algorithm 4:  Closed-loop S-DMPC formulation 

Input Data {𝑧[0] ; 𝜆[0]} →  𝜙(𝑧)    

Result  𝜙𝑖
+(𝑧𝑖)(i = 1,… , N), 𝑧𝑖

[𝑘]
, 𝜆𝑖

[𝑘]
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𝐹𝑖(𝑧𝑖) = 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑧𝑖 𝜙𝑖
+ 

𝑠. 𝑡       𝜙𝑖(𝑧) =
1

2
𝑧𝑖̃

𝑇𝐴𝑖𝑧𝑖̃
𝑇 + 𝑧𝑖̃

𝑇𝐵𝑖(ℎ) + 𝐶𝑖(ℎ) 

+[∑ [𝐴𝑖
𝑖1 …𝐴𝑗

𝑖𝑁]𝑧[𝑘] + 𝐷𝑖
𝑗(ℎ)𝑁

𝑗=1
𝑗≠𝑖

− 𝐷𝑗
𝑖(ℎ)𝜆𝑗

[𝑘]
] (𝑧𝑖 − 𝑧𝑖

[𝑘]
)+

1

2
(𝑧𝑖 − 𝑧𝑖

[𝑘]
) 𝑇Ω 𝑖 (𝑧𝑖 − 𝑧𝑖

[𝑘]
) 

𝑐𝑖(𝑧𝑖̃
[𝑘]) = 𝐷𝑖 𝑇𝑧𝑖̃

[𝑘] + 𝐸𝑖(ℎ) ≥ 0 

       ∀ 𝑖 = 1,2…𝑁     (7.31) 

Step 3: Updating. 
 
Increase k : = k + 1 and go back to 1. 
 
Step 4: Stopping criterion. 
 

Stop iteration, if 𝑧[𝑘] satisfies some convergence criterion. 
 
Step 5: Send calculated optimal controls to the system 
 

 Apply the calculated optimal control inputs to the plant 𝑢𝑖𝑗(𝑡). 

 Set h : = h + 1, determine the new initial state 𝑥(𝑡0(ℎ))either from measurements 

or from state estimation, and go back to 0. 

 

 

 

 

 

 

 

 

 

 

 

  
 

Fig. 7.6 Overview of the S-DMPC method.  
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7.4 Model Predictive Control formulation 

7.4.1 HVAC Building configuration 

The case-base under consideration in this work is properly explained in next Chapter 8 with 

the simulation results too. In this case, as we are analysing a distributed control, the FCU 

configuration can be applied to this type of system by considering every zone with its fan coil 

unit as a single subsystem. 

 
     Temperature sensors. 

Each zone is equipped with  Fan Coil Unit 
 
Return air plenum  

 

The FCU based heating, ventilation and air conditioning system works as follows in our 

building: 

 

Table 6.1 All important elements that forms the fan coil units HVAC system in a building 

 

 

 

 

Element Function 

 

 

 

Fan Coil 

Unit 

(FCU) 

Mixer 
It  mixes the fresh outside air with the return air flow from the 

plenum. 

 

Heating Coil 

It  is a water to air heat exchanger, which maintains the 

temperature of supply air flow at the required value by 

manipulating hot water flow from a boiler or heat pump. 

 

Supply fan 

Fan maintains the constant supply air flow though the 

heating coil.  

Return air plenum 
It recirculates the fraction of the return air to FCU. 

PID controller 
It controls temperature by modulating supply air temperature 

in heating coil. 
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Just a mathematical model of the thermal behaviour of each zone is formulated and it is 

properly explained at next subsection. 

 

 

 

 

Fig. 6.1 Example of an implemented FCU configuration 

7.4.2 Mathematical model of the building 

 

1) Thermal zone model 

For each zone i, (i = 1, …n), denote the temperature of the zone by Ti, the mass flow rate at 

the output of the ith FCU by ṁi  and the supply air temperature by Tsi. Then, the first law of 

thermodynamics applied to each zone is  

 

 

(7.32) 

 
where: 
 

 Ti is the temperature of zone i; 
 Tsi is the supply air temperature; 
 Toa is the outside air temperature; 
 ṁi represents the mass flow rate at the output of the i:th VAV; 
 Vi is the volume of zone i; 
 ρ is the air density; 
 Ci = ρVicp is the thermal capacitance of zone i; 
 qi represents the total internal heat gain, which is the cumulative heat flux due to 

occupants and electronic devices in the zone i; 
 Rij = Rji is the thermal resistance between zone i and zone j; 
 Rext,I is the thermal resistance between zone i and the exterior of the building; 
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Equation (7.32) is written in general form as, 

𝑥̇𝑖 = 𝒜𝑖𝑥𝑖 + ∑ 𝒜𝑖𝑗𝑥𝑗
𝑁
𝑗=1
𝑗≠𝑖

+ ℬ𝑖𝑢𝑖 + 𝒢𝑖𝑇𝑜𝑎 + 𝑞 𝑖                                             (7.33) 

Now, continuous-time model (7.33) for i = 1, …n, is discretized with a sampling period h and 

linearized around an operating point (xi (0); ui (0)) which leads to discrete-time system, 

𝑥𝑖(𝑘 + 1) = 𝐴𝑖𝑥𝑖(𝑘) + 𝐴𝑖𝑗𝑥𝑗(𝑘) + 𝐵𝑖𝑢𝑖(𝑘) + 𝒢𝑖𝑑(𝑘)                                          (7.33) 

 
here: 
 

 Ai, Aij Bi, Gi are the resulting discrete-time system matrices of appropriate dimensions; 
 di = [w ,qi]T is the disturbance which accounts for outside temperature and internal gains 

q due to occupancy and electronic devices; 
 xi,xj,ui,di, are the signals in equation(7.33) that denote currently small variations around 

their operating point values; 

7.4.3 Economic cost function 

 Economic cost function in the proposed model predictive control refers to the total cost of the 

energy consumed by the building components, mainly by the supply fan and a heating coils in 

the FCUs. Let Ji be the total cost over a time interval of [t0,tf] for ith zone, 

𝐽𝑖 = ∫ (𝐽ℎ𝑖 + 𝐽𝑓𝑎𝑛 𝑖)𝑑𝑡
𝑡0

𝑡𝑓
                                            (7.34) 

where Jhi and Jfani are the costs due to energy consumed by the heating coil and the supply 
fan in the FCU of the ith zone. 
 

1) Energy cost at the heating coil 

  

The power or heat transfer rate (𝑄̇𝑐𝑜𝑖𝑙 𝑖) required at the heating coil to deliver an air flow at 

temperature Ts is directly obtained from writing the energy conservation law, 

𝑄̇𝑐𝑜𝑖𝑙 𝑖 = 𝑚̇𝑖𝑐𝑝(𝑇𝑠𝑖
− 𝑇𝑚𝑖

)                                                                           (7.35) 

Then, the energy cost due to heating is simply given by 

𝐽ℎ𝑖
= 𝑐1𝑄̇𝑐𝑜𝑖𝑙 𝑖                                                                                         (7.36) 

where c1 represents the related energy cost per kWh 

2) Energy cost delivered for the mass airflow 

 

The FCUs require a certain total mass airflow depending on each local (zone) heating load. 
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This mass airflow is discharged by the power fan which is driven by a variable speed drive. 

The power fan characteristics is given by a cubic law, that is, 

𝑊̇𝑓𝑎𝑛𝑖
= 𝛼𝑚̇𝑖

3                                                                      (7.37) 

 

With the above power characteristics, the cost the energy for a supply fan reads for the ith 

zone-FCU as follows, 

𝐽𝑓𝑎𝑛𝑖
= 𝑐2𝑊̇𝑓𝑎𝑛𝑖

                                                                (7.38) 

 

where c2 represents the related energy cost per kWh   

7.4.4 Formulation of Problem 

The overall optimization problem for Model Predictive Control is formulated as below, 

ℑ(𝑥, 𝑢) = 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑢,𝑥        𝑉(𝑢, 𝑥) 

𝑠. 𝑡  𝑥𝑖(𝑘 + 1) = 𝐴𝑖𝑥𝑖(𝑘) + 𝐴𝑖𝑗𝑥𝑗(𝑘) + 𝐵𝑖𝑢𝑖(𝑘) + 𝒢𝑖𝑑(𝑘) 

𝑥𝑙 ≤ 𝑥 ≤ 𝑥𝑢 

    𝑢𝑙 ≤ 𝑢 ≤ 𝑢𝑢        

(7.39) 

 
 
where: 
 

 V(u,x) is the total power consumption in the operational stage of the building; 
 xi,xj,ui are temperatures and supply airflow rates as states and inputs of system; 
 xl, xu are lower and upper temperatures bounds which assures thermal comfort in the 

zones; 
 ul, uu are lower and upper bounds on supply air ow actuators/temperatures 
 d is disturbance vector; 
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8. SIMULATION RESULTS AND COMPARATIVE 
ANALYSIS  

8.1 Introduction 

This chapter aims to compare the two distributed model predictive control approaches with the 

centralised solution in a LSS Building. To verify the performance of the controllers, we 

simulated the combination of controller and plant. In this work MATLAB software is used with 

the modelling language YALMIP, optimizer solver Gurobi] and the semidefinite-quadratic linear 

programing solver SDPT3. 

However, the main issue of this work is that both distributed model approaches are already 

formulated but in different type of building. This is because we take as a point of departure the 

previous work done by Tejaswinee Darure [11], which is part of Energy in Time project 

funded by the European Union. Table 8.1 give evidence of this inconvenient that disables 

a direct comparative.  

 

 

 

 

 

 

Table 8.1 Initial situation of DMPC formulated but in different type of buildings. 

Joined to the above problem, a solution was considered. It consists on the reformulation of the 

MPC formulation of one case into the other that is missing. For example, an option was to 

reformulate the OCD-DMPC to S-DMPC in order to have both approaches at the same type 

of building.  

Next, all model predictive control approaches starts from a detailed dynamic non-linear building 

model, which is a physical modelling using heat transfer equations. These equations are 

describing the thermal behaviour of the building envelope and are non-linear. Hence, 

equations are linearized around an operating point to obtain a state space controller model.  

 Case 1 Case 2 

Type of building School of 8 zones Office of 6 zones 

Coupling between zone Coupling of u Coupling of states x 

Initial MPC available 

formulation 

S-DMPC CMPC 

OCD-DMPC 



Page 74  Report 

 

In conclusion, in this chapter we present simulation results for the 8 and 6 zones building of 

available MPC formulations. 

This Chapter 8 is organized as follows. In Section 8.2 we introduce the benchmark building 

description of both buildings. Then, as an introduction to all MPC configurations we want to 

implement an illustrative example is presented in Section 8.3 where all centralized a non-

centralized algorithm are formulated. In Section 8.4 we analyse simulation result for the 

centralized solution. Finally, the simulation results for the two different configurations of DMPC 

are presented in Section 8.5. 

 

 

8.2 Benchmark Building Description 

8.2.1 Eight zones building 

The first case-base under consideration in this section consist on a school building of 8 zones. 

It is distributed in four central zones each of size 6m x 6m flanked of two right and left wings 

each of one is composed of two zones of size 12m x 12m. It has a total area of 720 m2. Figures 

8.1-8.2 show the layout of the building.  

Fig. 8.1 Distribution and sizes of all zones in the building layout 

 

 

 

 

Fig. 8.2. General plant view of this school of eight zones  
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8.2.2 Six zones building 

The second case-base under consideration in this section consist on an office building of 6 

zones. The type of occupancy is that of an office building where the working time is from 8:00 

to 18:00 with a midday break of two hours starting at 12:00. It is distributed in four central zones 

each of size 6m x 6m flanked of two zones of size 12m x 12m. It has a total area of 432 m2. 

Figures 8.3-8.4 show the layout of the building. 

 

 

 

 

 

Fig. 8.3 Distribution and sizes of all zones in the building layout 

 

 

 

 

 

 

 

Fig. 8.4 A general view of this office of eight zones  

 

8.3 Simulation study: Illustrative example 

In this section we introduce an example obtained from the book of A.Conejo[9]. In this book 

only the OCD approach is presented. A deeper analysis is considered by also computing the 

centralised solution and the sensitivity-based coordination approach too.  

8.3.1 Centralized solution 

 

 

 

12 m 

36 m 
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The problem to be solved is  

ℑ(𝑥1, 𝑥2,𝑦1, 𝑦2) = 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑥1,𝑥2,𝑦1.𝑦2    𝑥1
2 + 𝑥2

2 + 𝑦1
2 + 𝑦2

2    

     𝑠. 𝑡       ℎ1(𝑥1, 𝑥2,𝑦1, 𝑦2) = 4𝑥1 + 𝑦2 − 1 = 0  

                ℎ2(𝑥1, 𝑥2,𝑦1, 𝑦2) = 𝑥1 + 4𝑦2 − 1 = 0         (8.1) 

 

The variables, constraint and function vectors are, 

 

𝑥 = (
𝑥1

𝑥2
) 𝑦 = (

𝑦1

𝑦2
)                                                                (8.2) 

ℎ(𝑥, 𝑦) = (
4𝑥1 + 𝑦2 − 1
𝑥1 + 4𝑦2 − 1

)                                                                (8.3) 

𝑓(𝑥, 𝑦) = (
4𝑥1 + 𝑦2 − 1
𝑥1 + 4𝑦2 − 1

)                                                                (8.4) 

 

The Lagrangian function is written as, 

 

ℒ𝑥,𝑦(𝑥1, 𝑥2,𝑦1, 𝑦2,𝜆1, 𝜆2) = 𝑥1
2 + 𝑥2

2 + 𝑦1
2 + 𝑦2

2 + 𝜆1 (4𝑥1 + 𝑦2 − 1) + 𝜆 2(𝑥1 + 4𝑦2 − 1)        (8.5)    

 

Finally, the solution for this problem is 

 

𝝏𝓛𝒙,𝒚

𝝏𝒙𝟏
= 𝟐𝒙𝟏 + 𝟒𝝀𝟏 + 𝝀𝟐 = 𝟎  

𝝏𝓛𝒙,𝒚

𝝏𝒙𝟐
= 𝟐𝒙𝟐 = 𝟎     

𝝏𝓛𝒙,𝒚

𝝏𝒚𝟏
= 𝟐𝒚𝟏 = 𝟎     

𝝏𝓛𝒙,𝒚

𝝏𝒚𝟐
= 𝟐𝒚𝟐 + 𝜆1 + 𝟒𝝀𝟐 = 𝟎  𝑥∗ = (

0.2
0.0

)    𝑦∗ = (
0.0
0.2

)   𝜆∗ = (
−0.08
−0.08

) 

𝝏𝓛𝒙,𝒚

𝝏𝝀𝟏
= 𝟒𝒙𝟏 + 𝒚𝟐 − 𝟏 = 𝟎  

𝝏𝓛𝒙,𝒚

𝝏𝝀𝟐
= 𝒙𝟏 + 𝟒𝒚𝟐 − 𝟏 = 𝟎                (8.6) 

8.3.2 Optimal Conditions Decomposition (OCD) solution 

 

Using the proposed methodology in § 7.2, the subproblems to be solved in Step 6 of the 

OCD decomposition algorithm 1 are, respectively, 
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ℑ1(𝑥1, 𝑥2,) = 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑥1,𝑥2    𝑥1
2 + 𝑥2

2 + 𝜆2
̅̅ ̅ (𝑥1 + 4𝑦2̅̅ ̅ − 1)    

     𝑠. 𝑡       4𝑥1 + 𝑦2̅̅ ̅ − 1 = 0           (8.7)

    

ℑ2(𝑦1, 𝑦2) = 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑦1.𝑦2  𝑦1
2 + 𝑦2

2 + 𝜆1
̅̅̅ (4𝑥1̅̅ ̅ + 𝑦2 − 1)    

     𝒔. 𝒕       𝒙𝟏̅̅ ̅ + 𝟒𝒚𝟐 − 𝟏 = 𝟎          (8.8) 

In this example there only two groups (a = 1,2) of subsystems and additionally all constraints 

are equality ones. 

 

The OCD algorithm 2 is applied below. 

 

Step 0: Initialization. 

Variables and multipliers are initialized in each block (a = 1,2), i.e, 

𝑥 = (
0.4
0.4

) 𝑦 = (
0.4
0.4

) 𝜆 = (
−0.01
−0.01

)                                         (8.9) 

Step 1: Single iteration. 
 

Subsystem 1:  System X  

 

Subsystem 1 carries out one single iteration. It computes a movement direction for the first 

decomposed subproblem, using Newton’s method, for 𝑥 = 𝑥̅. The Lagrangian function for this 

problem is 

 

ℒ𝑥(𝑥1, 𝑥2,𝜆1) = 𝑥1
2 + 𝑥2

2 + 𝜆2
̅̅ ̅ (𝑥1 + 4𝑦2̅̅ ̅ − 1) + 𝜆 1(𝑥1 + 4𝑦2̅̅ ̅ − 1)   

ℒ𝑥(𝑥1, 𝑥2,𝜆1) = 𝑥1
2 + 𝑥2

2 − 0.01𝑥1 + 𝜆 1(𝑥1 + 0.4 − 1)    
      (8.10) 

 
 
Then, 

∇𝑥1,𝑥2,𝜆1ℒ𝑥(𝑥1, 𝑥2,𝜆1) = (
2𝑥1 − 0.01 + 4𝜆 1

2𝑥2

4𝑥1 + 0.4 − 1
) 

 

∇𝑥1,𝑥2,𝜆1ℒ𝑥(0.4,0.4,−0.01) = (
0.75
0.80
1.00

) 

      (8.11) 
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∇2
𝑥1,𝑥2,𝜆1ℒ𝑥(𝑥1, 𝑥2,𝜆1) = (

2
0
4

  0
  2
  0

  4
  0
  0

)                                           (8.12) 

If the Newton’s method is applied 

∇2
𝑥1,𝑥2,𝜆1ℒ𝑥 (

Δ𝑥1

Δ𝑥2

Δ𝜆1

) = −∇𝑥1,𝑥2,𝜆1ℒ𝑥 

(
2
0
4

  0
  2
  0

  4
  0
  0

)(

Δ𝑥1

Δ𝑥2

Δ𝜆1

) = −(
0.75
0.80
1.00

)                                                     (8.13) 

where the result is 

(

Δ𝑥1

Δ𝑥2

Δ𝜆1

) = (
−0.25
−0.40

−0.0625
)                                                 (8.14) 

 

Subsystem 2:  System Y 

 
Subsystem 2 carries out one single iteration. It computes a movement direction for the first 

decomposed subproblem, using Newton’s method, for 𝑦 = 𝑦̅. The Lagrangian function for this 

problem is 

 

ℒ𝑦(𝑦1, 𝑦2,𝜆2) = 𝑦1
2 + 𝑦2

2 + 𝜆1
̅̅̅ (4𝑥1̅̅ ̅ + 𝑦2 − 1) + 𝜆 2(𝑥1̅̅ ̅ + 4𝑦2 − 1)   

ℒ𝑦(𝑦1, 𝑦2,𝜆2) = 𝑦1
2 + 𝑦2

2 − 0.01𝑦2 + 𝜆 2(0.4 + 4𝑦2 − 1)    

 
     (8.15) 

Then, 

∇𝑦1,𝑦2,𝜆2ℒ𝑦(𝑦1, 𝑦2,𝜆2) = (

2𝑦1

2𝑦2 − 0.0796 + 4𝜆 2
4𝑦2 − 0.8

) 

 

∇𝑦1,𝑦2,𝜆2ℒ𝑦(0.4,0.4,−0.01) = (
0.80
0.75
1.00

)                                                  (8.16) 

 

∇2
𝑦1,𝑦2,𝜆2ℒ𝑦(𝑦1, 𝑦2,𝜆2) = (

2
0
0

  0
  2
  4

  4
  4
  0

)                                                (8.17) 

If the Newton’s method is applied 

∇2
𝑦1,𝑦2,𝜆2ℒ𝑦 (

Δ𝑦1

Δ𝑦2

Δ𝜆2

) = −∇𝑦1,𝑦2,𝜆2ℒ𝑦 

(
2
0
0

  0
  2
  4

  4
  4
  0

)(

Δ𝑦1

Δ𝑦2

Δ𝜆2

) = −(
0.80
0.75
1.00

)                                                     (8.18) 

where the result is 
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(

Δ𝑦1

Δ𝑦2

Δ𝜆2

) = (
−0.40
−0.25

−0.0625
)                                         (8.19) 

 
Step 2: Updating. 

Each subsystem (a = 1, 2) updates its variables and parameters 

 

Subsystem 1:  System X  

 

𝑥 = 𝑥 +  Δ𝑥 = (
0.4
0.4

) + (
−0.25
−0.40

) = (
0.15
0.00

)                                                                                           (8.20) 

 

𝜆1 = 𝜆1 +  Δ𝜆1 = (−0.01) + (−0.0625) = (−0.0725)                                                                    (8.21) 
 

Subsystem 2:  System Y 

 

𝑦 = 𝑦 +  Δ𝑦 = (
0.4
0.4

) + (
−0.40
−0.25

) = (
0.00
0.15

)                                                                                           (8.22) 

 

 𝜆2 = 𝜆2 +  Δ𝜆2 = (−0.01) + (−0.0625) = (−0.0725)                                                                   (8.23) 
 
 
Step 3: Convergence. 
 
The algorithm stops if variables do not change significantly in two consecutive iterations.  

In this exercise we assume that the selected convergence condition ‖ℎ(𝑥, 𝑦)‖ < 10−4  is 

satisfied (h(x,y) from Eq. ) 

ℎ(𝑥1, 𝑥2, 𝑦1, 𝑦2) = ℎ(0.15,0,0,0.15) = (
−0.25
−0.25

) 

‖ℎ‖ = 0.3536 > 10−4                                                  (8.24) 
 
As the convergence condition is not satisfied, variables and multipliers are fixed and Steps 1, 
2, and 3 of the algorithm are repeated until convergence is achieved, 
 

𝑥̅ = 𝑥 = (
0.15
0.00

)          𝑦̅ = 𝑦 = (
0.00
0.15

)              𝜆̅ = 𝜆 = (
−0.0725
−0.0725

)                    (8.25) 

Finally, the algorithm stops for k=7, with tolerance ‖ℎ‖ = 8.6317 10−5. The solution is 

 

𝑥∗ = (
0.2
0.0

)    𝑦∗ = (
0.0
0.2

)   𝜆∗ = (
−0.08
−0.08

) 
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At the following table 8.2, the obtained results are presented: 

 

 

 

 

 

Table 8.2 Evolution of the optimality condition decomposition (OCD) algorithm. 

 

8.3.3 Sensitivity-based Coordination solution 

 

Following the notation presented in § 7.3, the overall system optimal control problem is written 

as, 

ℑ(𝑥1, 𝑥2,𝑦1, 𝑦2) = 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑥1,𝑥2,𝑦1,𝑦2
 𝜙(𝑥1, 𝑥2,𝑦1, 𝑦2) = ∑𝜙𝑖(𝑥𝑖 , 𝑦𝑖)

𝑁

𝑖=1

 

                                   𝑠. 𝑡       𝜙1(𝑥1, 𝑥2) = 𝑥1
2 + 𝑥2

2      

                                                  𝜙2(𝑦1, 𝑦2) = 𝑦1
2 + 𝑦2

2 

                                                                                           𝑐1(𝑥1, 𝑥2,𝑦1, 𝑦2) = 4𝑥1 + 𝑦2 − 1 = 0  

        𝑐2(𝑥1, 𝑥2,𝑦1, 𝑦2) = 𝑥1 + 4𝑦2 − 1 = 0 

                 (8.26) 

 

Then, after a decomposition process, the resulting subproblems to be solved could be 

summarized in two groups (i = 1,2): 

ℑ1(𝑥1, 𝑥2,) = 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑥1,𝑥2    𝑥1
2 + 𝑥2

2    

     𝑠. 𝑡       4𝑥1 + 𝑦2 − 1 = 0                                (8.27)

         

ℑ2(𝑦1, 𝑦2) = 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑦1.𝑦2  𝑦1
2 + 𝑦2

2    

     𝒔. 𝒕       𝑥1 + 4𝑦2 − 1 = 0                                (8.28) 

 

With subproblems (8.27-8.28), the sensitivity-based coordination algorithm is applied below. 

 
 
 

Iteration 𝑓(𝑥, 𝑦) 𝑥1 𝑥2 𝑦1 𝑦2 𝜆1 𝜆2 

1 0.045 0.150 0.000 0.000 0.150 -0.010 -0.010 

2 0.090 0.212 0.000 0.000 0.212 -0.072 -0.072 

3 0.077 0.197 0.000 0.000 0.197 -0.088 -0.088 

4 0.081 0.201 0.000 0.000 0.201 -0.076 -0.076 

5 0.079 0.200 0.000 0.000 0.200 -0.081 -0.081 

6 0.080 0.200 0.000 0.000 0.200 -0.079 -0.079 

7 0.080 0.200 0.000 0.000 0.200 -0.080 -0.080 
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Step 0: Initialization. 
 

Set k=0. Feasible parameters 𝑧𝑖
[0] and an initial guess of the Lagrange parameters 𝜆[0] are 

chosen. 

𝑧1
[0] = (

𝑥1

𝑥2
) = (

0.4
0.4

) 𝑧2
[0] = (

𝑦1

𝑦2
) = (

0.4
0.4

) 𝜆 = (
𝜆1

𝜆2
) = (

−0.01
−0.01

)               (8.29) 

 
Step 1: Parameters are communicated to all local controllers 
 
Step 2: Solve the local optimization problems 
 

𝑓(𝑧𝑖) = 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑧 𝜙𝑖
∗(𝑧) 

𝑠. 𝑡       𝑐𝑖(𝑧) ≥ 0 
 

𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑠𝑡𝑟𝑖𝑐𝑡𝑙𝑦 𝑐𝑜𝑛𝑣𝑒𝑥 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 
 

𝜙𝑖
∗(𝑧) = 𝜙𝑖(𝑧) + [∑

𝜕𝜙𝑗

𝜕𝑧𝑖
‖

𝑧[𝑘]

𝑇
𝑁
𝑗=1
𝑗≠𝑖

− 𝜆𝑗
[𝑘]𝑇 𝜕𝑐𝑗

𝜕𝑧𝑖
‖

𝑧[𝑘]
] (𝑧𝑖 − 𝑧𝑖

[𝑘]
)                    (8.30) 

 
 

Subsystem 1:  System Z1  

 

𝑓(𝑧1) = 𝑓(𝑥1, 𝑥2) = 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑧1
 𝜙1

∗(𝑥1, 𝑥2) 

𝑠. 𝑡       4𝑥1 + 𝑦2 − 1 = 0 
 

𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑠𝑡𝑟𝑖𝑐𝑡𝑙𝑦 𝑐𝑜𝑛𝑣𝑒𝑥 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 
 

𝜙1
∗(𝑥1, 𝑥2) = 𝜙1(𝑥1, 𝑥2) + [(

𝜕𝜙2

𝜕𝑥1

𝜕𝜙2

𝜕𝑥2

)

𝑥1
[𝑘]

,𝑥2
[𝑘]

𝑇

− 𝜆2
[𝑘]𝑇 (

𝜕𝑐2

𝜕𝑥1

𝜕𝑐2

𝜕𝑥2

)

𝑥1
[𝑘]

,𝑥2
[𝑘]

𝑇

] (
𝑥1 − 𝑥1

[𝑘]

𝑥2 − 𝑥2
[𝑘]

)                          (8.31) 

 

Subsystem 1 carries out one single iteration. We use Newton’s method to solve this 

subsystem.The Lagrangian function for this problem is 

 

ℒ𝑧1(𝑥1, 𝑥2,𝜆1) = 𝜙1
∗(𝑥1, 𝑥2) + 𝜆 1(4𝑥1 + 𝑦2 − 1)   

 (8.32) 
 
Then, 

∇ℒ𝑧1(𝑥1, 𝑥2,𝜆1) = (
2𝑥1 + 0.1330 + 4𝜆 1

2𝑥2

4𝑥1 + 𝑦2 − 1
)                                                  (8.33) 

 

∇𝑥1,𝑥2,𝜆1ℒ𝑧1(0.4,0.4, −0.01) = (
0.77
0.80
1.00

)                                                  (8.34) 
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∇2
𝑥1,𝑥2,𝜆1ℒ𝑧1(𝑥1, 𝑥2,𝜆1) = (

2
0
4

  0
  2
  0

  4
  0
  0

)                                                (8.35) 

If the Newton’s method is applied 

∇2
𝑥1,𝑥2,𝜆1ℒ𝑧1 (

Δ𝑥1

Δ𝑥2

Δ𝜆1

) = −∇ℒ𝑧1 

(
2
0
4

  0
  2
  0

  4
  0
  0

)(

Δ𝑥1

Δ𝑥2

Δ𝜆1

) = −(
0.77
0.80
1.00

)                                              (8.36) 

where the result is 

(

Δ𝑥1

Δ𝑥2

Δ𝜆1

) = (
−0.25
−0.40

−0.0675
)                                          (8.37) 

 

Subsystem 2:  System Z2  

 

𝑓(𝑧2) = 𝑓(𝑦1, 𝑦2) = 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑧2
 𝜙2

∗(𝑦1, 𝑦2) 

𝑠. 𝑡       𝑥1 + 4𝑦2 − 1 = 0 
 

𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑠𝑡𝑟𝑖𝑐𝑡𝑙𝑦 𝑐𝑜𝑛𝑣𝑒𝑥 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 
 

𝜙2
∗(𝑦1, 𝑦2) = 𝜙1(𝑦1, 𝑦2) + [(

𝜕𝜙1

𝜕𝑦1

𝜕𝜙2

𝜕𝑦2

)

𝑦1
[𝑘]

,𝑦2
[𝑘]

𝑇

− 𝜆1
[𝑘]𝑇

(

𝜕𝑐1

𝜕𝑦1

𝜕𝑐1

𝜕𝑦2

)

𝑦1
[𝑘]

,𝑦2
[𝑘]

𝑇

] (
𝑦1 − 𝑦1

[𝑘]

𝑦2 − 𝑦2
[𝑘]

)                         (8.38) 

 

Subsystem 1 carries out one single iteration. We use Newton’s method to solve this 

subsystem.The Lagrangian function for this problem is 

 

ℒ𝑧2(𝑦1, 𝑦2,𝜆1) = 𝜙2
∗(𝑦1, 𝑦2) + 𝜆 2(𝑥1 + 4𝑦2 − 1)   

 (8.39) 
Then, 

∇ℒ𝑧2(𝑦1, 𝑦2,𝜆1) = (

2𝑦1

2𝑦2 + 0.01 + 4𝜆 2
𝑥1 + 4𝑦2 − 1

)                                                      (8.40) 

 

 ∇𝑦1,𝑦2,𝜆2ℒ𝑧2(0.4,0.4,−0.01) = (
0.80
0.77
0.75

)                                         (8.41) 

 

∇2
𝑦1,𝑦2,𝜆2ℒ𝑧2(𝑦1, 𝑦2,𝜆2) = (

2
0
0

  0
  2
 4

  0
  4
  0

)                                              (8.42) 

 

If the Newton’s method is applied 
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∇2
𝑦1,𝑦2,𝜆2ℒ𝑧2 (

Δ𝑦1

Δ𝑦2

Δ𝜆2

) = −∇ℒ𝑧2 

(
2
0
0

  0
  2
 4

  0
  4
  0

)(

Δ𝑦1

Δ𝑦2

Δ𝜆2

) = −(
0.80
0.77
0.75

)                                       (8.43) 

 

where the result is 

(

Δ𝑦1

Δ𝑦2

Δ𝜆2

) = (
−0.40

−0.1875
−0.0988

)                                           (8.44) 

Step 3: Set k = k + 1 
 

Each subsystem (i = 1, 2) updates its variables and parameters 

 

Subsystem 1:  System X  

 

𝑧1
[1] = (

𝑥1

𝑥2
) = (

𝑥1

𝑥2
) +  Δ𝑥 = (

0.4
0.4

) + (
−0.25
−0.40

) = (
0.15
0.00

)                                                               (8.45) 

 

𝜆1 = 𝜆1 +  Δ𝜆1 = (−0.01) + (−0.0625) = (−0.0775)                                                        (8.46) 
 

Subsystem 2:  System Y 

 

𝑧2
[1] = (

𝑦1

𝑦2
) +  Δ𝑦 = (

0.4
0.4

) + (
−0.40
−0.25

) = (
0.00

0.2125
)                                                             (8.47) 

 

 𝜆2 = 𝜆2 +  Δ𝜆2 = (−0.01) + (−0.0625) = (−0.1088)                                                                  (8.48) 
 

Step 4: Stop. 

The algorithm stops if variables do not change significantly in two consecutive iterations.  

In this exercise we assume that the selected convergence condition  

𝜖𝑟𝑒𝑙 =
‖ 𝑧[𝑘]−𝑧[𝑘−1]‖

2

‖ 𝑧[𝑘]‖
2

 < 10−4  is satisfied. 

𝜖𝑟𝑒𝑙 = 2.4846 > 10−4                                                     (8.49)  

As the convergence condition is not satisfied, variables and multipliers are fixed and Steps 0,1, 
2, and 3 of the algorithm are repeated until convergence is achieved, 
 

Finally, the algorithm stops for k=5, with tolerance ‖𝜖𝑟𝑒𝑙‖ = 4.1706 10−5. The solution is 

 

𝑥∗ = (
0.2
0.0

)    𝑦∗ = (
0.0
0.2

)   𝜆∗ = (
−0.1332
−0.1332

)                            (8.50)  
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At the following table 6.1 obtained results are presented: 

 

 

 

 

 

Table 8.3 Evolution of the sensitivity-based coordination decomposition algorithm. 

8.4 Centralised MPC Simulation results 

In this section centralised simulation results will be exposed and commented for both building 

description. 

First the operating point is defined as: 

 

 Zone temperature : 𝑇𝑖
(0)

= 23℃(𝑖 = 1,… ,4) 

 Supply mass airflows: 𝑚̇𝑖
(0)

= 0.192(𝑖 = 1,… ,4) 

 Supply air-temperature : 𝑇𝑠
(0)

= 26℃(𝑖 = 1,… ,4) 

 Initial outside air temperature: 𝑇𝑜𝑎
(0)

= 5℃ 

 Outside temperature variation is represented in Fig. (8.5) 

 Internal heat gain, accumulative heat flux due to occupants and electronic devices, 

are shown in Fig. (8.5) 

As explained in § 6.3.1, the continuous-time Non-Linear state space model is linearized 

around the above operational point. This linearized model is discretized with a sampling 

period h=60s. 

Thermal comfort range is stipulated in 23℃ ± 0.5 and supply airflow to each zone varies 

between 0.0192 kg/s and 0.31 kg/s. 

Iteration 𝑓(𝑥, 𝑦) 𝑥1 𝑥2 𝑦1 𝑦2 𝜆1 𝜆2 

1 0.068 0.150 0.000 0.000 0.213 -0.077 -0.109 

2 0.079 0.197 0.000 0.000 0.201 -0.125 -0.127 

3 0.079 0.199 0.000 0.000 0.200 -0.132 -0.132 

4 0.080 0.200 0.000 0.000 0.200 -0.133 -0.133 

5 0.080 0.200 0.000 0.000 0.200 -0.133 -0.133 
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Fig. 8.5 Heat flux due to occupancy and outside temperature  

Simulation results are provided for VAV-type building configuration, in which CMPC controls 

the thermal comfort in the building. The test is performed during 5 days and model predictive 

controller solves the energy optimization problem over a prediction horizon of 24 hours. Also 

related energy cost per kWh are presented: 

 

 Related energy cost per kWh required at the heating coil to deliver an airflow at 

temperature Ts is  𝑐1 = 0.5 

 Related energy cost per kWh for central supply fan at AHU is 𝑐2 = 1 

 

8.4.1 Building of 8 zones CMPC 

 
Temperature responses Ti of the eight zones building 

There is a clearly defined pattern to the following figure 8.6, and this can be taken to mean that 

the supply air-temperature is constantly maintained within the desired comfort band. So a 

tendency to remain steady is observed in all zones with any significant change thanks to a 

well-adjusted control strategy. As it can be seen from figure 8.7, this tendency is confirmed in 

zone 1 for example with more detail. Temperature is set in 23℃ and there is no tentative to 

exceed thermal comfort limits. 
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Fig. 8.6 Temperature response for all 8 zones 

 

 

 

 

 

 

 

 

 

Fig. 8.7 Temperature for zone 1 without exceeding comfort range 

 

 

 

Computed optimal set points for the supply airflows of the eight zones 

It is worth observing that the supply air-temperature is modified in a way such that that the 

temperature in all zones are effectively maintained within the comfort band. For this reason, 

figure 8.8 shows a relevant comparative between the supply air flow rate sent and the internal 

heat gain in one zone. Undoubtedly, one can interpret how the computed supply airflows set 

points fall when a climbing tendency starts at the internal gains heat flux and vice versa. This 

well-suited airflow compensation strategy is observed during all  

middays and let us confirm that temperature of zone is maintained at comfort levels. 
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Fig. 8.8 Effect of occupancy on temperature and supply air flow in one zone 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8.9 Supply air flow set points in all 8 zones 
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8.4.2 Building of 6 zones CMPC 

 
Simulation results for the VAV centralised 6 rooms office building are quite similar from the 
above case.  
 
Temperature responses Ti of the six zones building 
 
It can be seen that zone temperatures are maintained at the thermal comfort range during the 
presence of occupants. This tendency is observed in all 6 zones. Fig. 8.10, that represents 
zone 1, is set as an example for this explained behaviour. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8.10 Temperature for zone 1  
 

Computed optimal set points for the supply airflows of the six zones 

The supply air flow suffers modifications in order to compensate changes of heat flux due to 

occupancy. Fig. 8.11, that represents zone 1, is set as an example for this explained behaviour. 

 

 

 

 

 

 

Fig. 8.11 Supply air flow rate in zone 1 
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8.5 Distributed MPC Simulation results 

8.5.1 Optimal Conditions Decomposition (OCD) (Coupling of states x) 

In this section simulation results will be exposed for the proposed distributed control approach 

on benchmark building of six zones. Applying OCD algorithm for the centralised problem, we 

evaluate KKT system matrix for initial values of (𝑥(0), 𝑢(0)). Partitioning the KKT matrix, we 

obtain the subproblems with the following two groups (p = 2) of zones as {1,2,3} and {4,5,6}. 

In this case the coupling between subsystems is made throw the state temperatures x. The 

simulation results for the achieved decomposition are explained as follows. 

 
OCD Temperature responses Ti of the six zones building 

In general, with the decentralized techniques we can observe that temperature is no longer 

constant. So there is in Figure 8.12 a sharp decrease in temperature during hours where there 

is not a strong comfort solicitation. Then, a substantial rise appears when the desired comfort 

band must be followed and temperature define nervous pattern trajectory. Temperature 

changes between 22 − 23℃  and approaches dangerously thermal comfort limits. This 

tendency compared with the centralized solution is an important issue to improve. 

As it can be seen from figure 8.13, this tendency confirmed in all six zones with more detail.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8.12 Temperature for zone 1 
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Fig. 8.13 Temperature response for all 6 zones 

 
Computed optimal setpoints for the supply airflows u of the six zones 

It is worth observing that the supply air-temperature is modified in a way to meet the irregular 

variation of temperature in all zones. We can observe in Figure 8.14 how supply air flow fall 

and drop constantly during the presence of occupants in the respectively zone.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8.14 Supply air flow rate in zone 1 
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Fig. 8.15 Supply air flow set points in all 6 zones 

 

8.5.2 Sensitivity-based coordination (Coupling of input u) 

In this section simulation results will be exposed for the sensitivity- based coordination 

distributed control on the benchmark building of eight zones. Applying S-DMPC algorithm, 

explained in § 7.3.3, the overall optimality is archived by extending the local objective functions 

by linear approximations of the contributions of the neighbouring systems. 

Like other approaches, problem is linearized around an operating point (𝑥𝑖
(0), 𝑢𝑖

(0)). Main 

problem is also decomposed in the following two groups (p = 2) of zones as {1,2,3} and {4,5,6}. 

However, in this case the coupling between subsystems is made throw the inputs u. The 

simulation results for the achieved decomposition are explained as follows. 

 
S-DMPC Temperature responses Ti of the eight zones building 

With this decomposition technique we can observe that overall temperature is maintained in 

the thermal comfort during the presence of occupants in the building. Nevertheless, it is 

important to remark that there is a slight decrease of temperature during hours where there is 

not a strong comfort solicitation helping to save energy. Also, temperature follow a steady 

rise at the comfort band. Figure (8.16) show the temperature in zone 1 as an example for the 

explained behaviour. 
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Fig. 8.16 Temperature for zone 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8.17 Temperature response for all 8 zones 
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S-DMPC Computed optimal setpoints for the supply airflows of the eight zones 

In this section key point values of the required supply airflow controlled by heating coil in FCU 

are shown. In fact, the supply air-temperature is modified in a way to meet variation 

requirements of temperature in all zones. In this case, supply flow fall sharply when there is 

more presence of occupants in order to compensate the internal gains heat flux. 

 

 

Fig. 8.18 Supply air flow rate in zone 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8.19 Supply air flow set points in all 8 zones 
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Conclusions 

The main objective of this project was to try to make a complete comparison for all explained 

techniques throughout the memory for a single type of building. As discussed in Chapter 8, we 

started the project with a considerable disadvantage as having different building results with 

different variable couplings and functions. 

The key to overcome these difficulties was to maintain the structure of the MPC control loop, 

but it was necessary to prepare changes in the internal optimization models and problems of 

each controller in order to solve the same energy optimization problem. This is why the author, 

after understanding all decomposition techniques with illustrative examples, tried to modify the 

codes of simulation problems to achieve this goal. 

Finally, it was not possible to achieve a single LSS Building problem with all non-centralized 

and centralized configuration because in fact these problems are not equivalent. Although the 

codes were successfully modified, the result were not concluding. (See Appendix for more 

details on Matlab-Yalmip MPC code formulation) 

Future work should be to concrete in which cases it is possible to a stablish a close relation 

between two different energy optimization problems as to analyse coupling, type of separable 

or non-separable objective function and a proper analysis of linear and nonlinear problems. 
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Abstract 

These are the appendices from the final degree project Centralized and Non-Centralized 

Model Predictive Control of a Multizone Building. This part describes the details Matlab-Yalmip 

codes that have been formulated in order to have centralized CMPC configuration, Optimal 

Conditions Decomposition and Sensitivity-Coordination DMPC at the same building 

configuration. In this case, the author has tried to work with the 8 zones building because the 

coupling of state variables in the other office building make much more difficult to work with. 
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APPENDIX A: Codes of Illustrative Example  

A.1 Centralized Illustrative example 

% Inicialitzation 
Z1 = 2; 
Z2 = 3; 
l1 = 5; 
l2 = 6; 
Z = [ Z1, Z2, l1, l2]; 
syms z1 z2 lambda1 lambda2 
h1 = z1^2+z2^2-12.5572; 
h2 = z1 + z2 - 5; 
h = 0 
f = - (20*z1 + 16*z2 - 2*(z1)^2 - (z2)^2) 
% Lagrangian functions 
L = -(20*z1 + 16*z2 - 2*(z1)^2 - (z2)^2)+ lambda2*(z1+z2-5)+ 

lambda1*(z1^2+z2^2-12.5572); 
for k = 1 : 20 
    Gradz1 = diff(L,z1); 
    gz1=double(subs(Gradz1,{z1,z2,lambda1,lambda2},{Z1,Z2,l1,l2})); 
    Gradz2 = diff(L,z2); 
    gz2=double(subs(Gradz2,{z1,z2,lambda1,lambda2},{Z1,Z2,l1,l2})); 
    Gradl1 = diff(L,lambda1); 
    gl1=double(subs(Gradl1,{z1,z2,lambda1,lambda2},{Z1,Z2,l1,l2})); 
    Gradl2 = diff(L,lambda2); 
    gl2=double(subs(Gradl2,{z1,z2,lambda1,lambda2},{Z1,Z2,l1,l2})); 
    G = [gz1 ;gz2 ; gl1 ;gl2]; 
    modG = sqrt ( gz1^2 + gz2^2 + gl1^2 + gl2^2) 
    if modG < 10^(-4) 
        'Problema has finished' 
        break; 
     end 
    % Matriu hessiana 
    Hz1z1 = diff(Gradz1,z1); 
    hz1z1=double(subs(Hz1z1,{z1,z2,lambda1,lambda2},{Z1,Z2,l1,l2})); 
    Hz1z2 = diff(Gradz1,z2); 
    hz1z2=double(subs(Hz1z2,{z1,z2,lambda1,lambda2},{Z1,Z2,l1,l2})); 
    Hz1l1 = diff(Gradz1,lambda1); 
    hz1l1=double(subs(Hz1l1,{z1,z2,lambda1,lambda2},{Z1,Z2,l1,l2})); 
    Hz1l2 = diff(Gradz1,lambda2); 
    hz1l2=double(subs(Hz1l2,{z1,z2,lambda1,lambda2},{Z1,Z2,l1,l2})); 
    H1 = [hz1z1 ,hz1z2 ,hz1l1 ,hz1l2]; 

     
    Hz2z1 = diff(Gradz2,z1); 
    hz2z1=double(subs(Hz2z1,{z1,z2,lambda1,lambda2},{Z1,Z2,l1,l2})); 
    Hz2z2 = diff(Gradz2,z2); 
    hz2z2=double(subs(Hz2z2,{z1,z2,lambda1,lambda2},{Z1,Z2,l1,l2})); 
    Hz2l1 = diff(Gradz2,lambda1); 
    hz2l1=double(subs(Hz2l1,{z1,z2,lambda1,lambda2},{Z1,Z2,l1,l2})); 
    Hz2l2 = diff(Gradz2,lambda2); 
    hz2l2=double(subs(Hz2l2,{z1,z2,lambda1,lambda2},{Z1,Z2,l1,l2})); 
    H2 = [hz2z1 ,hz2z2 ,hz2l1 ,hz2l2]; 

     
    Hl1z1 = diff(Gradl1,z1); 
    hl1z1=double(subs(Hl1z1,{z1,z2,lambda1,lambda2},{Z1,Z2,l1,l2})); 
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    Hl1z2 = diff(Gradl1,z2); 
    hl1z2=double(subs(Hl1z2,{z1,z2,lambda1,lambda2},{Z1,Z2,l1,l2})); 
    Hl1l1 = diff(Gradl1,lambda1); 
    hl1l1=double(subs(Hl1l1,{z1,z2,lambda1,lambda2},{Z1,Z2,l1,l2})); 
    Hl1l2 = diff(Gradl1,lambda2); 
    hl1l2=double(subs(Hl1l2,{z1,z2,lambda1,lambda2},{Z1,Z2,l1,l2})); 
    H3 = [hl1z1 ,hl1z2 ,hl1l1 ,hl1l2]; 

     
    Hl2z1 = diff(Gradl2,z1); 
    hl2z1=double(subs(Hl2z1,{z1,z2,lambda1,lambda2},{Z1,Z2,l1,l2})); 
    Hl2z2 = diff(Gradl2,z2); 
    hl2z2=double(subs(Hl2z2,{z1,z2,lambda1,lambda2},{Z1,Z2,l1,l2})); 
    Hl2l1 = diff(Gradl2,lambda1); 
    hl2l1=double(subs(Hl2l1,{z1,z2,lambda1,lambda2},{Z1,Z2,l1,l2})); 
    Hl2l2 = diff(Gradl2,lambda2); 
    hl2l2=double(subs(Hl2l2,{z1,z2,lambda1,lambda2},{Z1,Z2,l1,l2})); 
    H4 = [hl2z1 ,hl2z2 ,hl2l1 ,hl2l2]; 
    H =  [H1 ;H2 ;H3 ;H4]; 

     
    % Metode Newton 
    h = -inv(H) * G ; 
    Z = Z + h'; 
    Z1=Z(1,1); 
    Z2=Z(1,2); 
    l1=Z(1,3); 
    l2=Z(1,4); 
end 
Z 
f=double(subs(f,{z1,z2},{Z1,Z2})) 

A.2 Optimal Conditions Decomposition Illustrative example 

% Inicialization 
x1 = 0.4; 
x2 = 0.4; 
y1 = 0.4; 
y2 = 0.4; 
l1 = -0.01; 
l2 = -0.01; 
XP1 = [x1,x2,l1]; 
XP2 = [y1,y2,l2]; 
syms X1 X2 L1 
LG1 = X1^2 + X2^2 + l2*(X1 + 4*y2 -1)+ L1*(4*X1 + y2 -1); 
syms Y1 Y2 L2 
LG2 = Y1^2 + Y2^2 + l1*(4*x1 + Y2 -1)+ L2*(x1 + 4*Y2 -1); 
for k = 1 : 10 
    LG1 = X1^2 + X2^2 + l2*(X1 + 4*y2 -1)+ L1*(4*X1 + y2 -1); 
    LG2 = Y1^2 + Y2^2 + l1*(4*x1 + Y2 -1)+ L2*(x1 + 4*Y2 -1); 
    % Gradient System1 
    DLG1x1 = diff(LG1,X1); 
    dlg1x1=double(subs(DLG1x1,{X1,X2,L1},{x1,x2,l1})); 
    DLG1x2 = diff(LG1,X2); 
    dlg1x2=double(subs(DLG1x2,{X1,X2,L1},{x1,x2,l1})); 
    DLG1l1 = diff(LG1,L1); 
    dlg1l1=double(subs(DLG1l1,{X1,X2,L1},{x1,x2,l1})); 
    G1 = [dlg1x1;dlg1x2;dlg1l1]; 
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    % Hessiana System1 
    H1x1 = diff(DLG1x1,X1); 
    h1x1=double(subs(H1x1,{X1,X2,L1},{x1,x2,l1})); 
    H1x2 = diff(DLG1x1,X2); 
    h1x2=double(subs(H1x2,{X1,X2,L1},{x1,x2,l1})); 
    H1l1 = diff(DLG1x1,L1); 
    h1l1=double(subs(H1l1,{X1,X2,L1},{x1,x2,l1})); 
    H11 = [h1x1,h1x2,h1l1]; 

     
    H2x1 = diff(DLG1x2,X1); 
    h2x1=double(subs(H2x1,{X1,X2,L1},{x1,x2,l1})); 
    H2x2 = diff(DLG1x2,X2); 
    h2x2=double(subs(H2x2,{X1,X2,L1},{x1,x2,l1})); 
    H2l1 = diff(DLG1x2,L1); 
    h2l1=double(subs(H2l1,{X1,X2,L1},{x1,x2,l1})); 
    H12 = [h2x1,h2x2,h2l1]; 

     
    H3x1 = diff(DLG1l1,X1); 
    h3x1=double(subs(H3x1,{X1,X2,L1},{x1,x2,l1})); 
    H3x2 = diff(DLG1l1,X2); 
    h3x2=double(subs(H3x2,{X1,X2,L1},{x1,x2,l1})); 
    H3l1 = diff(DLG1l1,L1); 
    h3l1=double(subs(H3l1,{X1,X2,L1},{x1,x2,l1})); 
    H13 = [h3x1,h3x2,h3l1]; 
    H1 = [H11;H12;H13]; 

     
    % Newton's Method System 1 
    h1 = -inv(H1) * G1 ; 
    XP1 = XP1 + h1' 
    x1=XP1(1,1); 
    x2=XP1(1,2); 
    l1=XP1(1,3); 

     
    % Gradient System2 
    DLG2y1 = diff(LG2,Y1) 
    dlg2y1=double(subs(DLG2y1,{Y1,Y2,L2},{y1,y2,l2})); 

     
    DLG2y2 = diff(LG2,Y2) 
    dlg2y2=double(subs(DLG2y2,{Y1,Y2,L2},{y1,y2,l2})); 

     
    DLG2l2 = diff(LG2,L2) 
    dlg2l2=double(subs(DLG2l2,{Y1,Y2,L2},{y1,y2,l2})); 
    G2 = [dlg2y1;dlg2y2;dlg2l2]; 

     
    % Hessiana System2 
    H1y1 = diff(DLG2y1,Y1); 
    h1y1=double(subs(H1y1,{Y1,Y2,L2},{y1,y2,l2})); 
    H1y2 = diff(DLG2y1,Y2); 
    h1y2=double(subs(H1y2,{Y1,Y2,L2},{y1,y2,l2})); 
    H1l2 = diff(DLG2y1,L2); 
    h1l2=double(subs(H1l2,{Y1,Y2,L2},{y1,y2,l2})); 
    H21 = [h1y1,h1y2,h1l2]; 

     
    H2y1 = diff(DLG2y2,Y1); 
    h2y1=double(subs(H2y1,{Y1,Y2,L2},{y1,y2,l2})); 
    H2y2 = diff(DLG2y2,Y2); 
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    h2y2=double(subs(H2y2,{Y1,Y2,L2},{y1,y2,l2})); 
    H2l2 = diff(DLG2y2,L2); 
    h2l2=double(subs(H2l2,{Y1,Y2,L2},{y1,y2,l2})); 
    H22 = [h2y1,h2y2,h2l2]; 

     
    H3y1 = diff(DLG2l2,Y1); 
    h3y1=double(subs(H3y1,{Y1,Y2,L2},{y1,y2,l2})); 
    H3y2 = diff(DLG2l2,Y2); 
    h3y2=double(subs(H3y2,{Y1,Y2,L2},{y1,y2,l2})); 
    H3l2 = diff(DLG2l2,L2); 
    h3l2=double(subs(H3l2,{Y1,Y2,L2},{y1,y2,l2})); 
    H23 = [h3y1,h3y2,h3l2]; 
    H2 = [H21;H22;H23]; 

     
    % Newton's Method System 2 
    h2 = -inv(H2) * G2 ; 
    XP2 = XP2 + h2' 
    y1=XP2(1,1); 
    y2=XP2(1,2); 
    l2=XP2(1,3); 
    % Convergence 
    hP1 = 4*x1 + y2 - 1; 
    hP2 = x1 + 4*y2 - 1; 
    conver = sqrt ( hP1^2 + hP2^2); 
    if conver < 10^(-4) 
        'Problem has finished' 
        break; 
     end 
end 

A.3 Sensitivity-based coordination on Illustrative example 

% Inicialization 
x1 = 0.4; 
x2 = 0.4; 
y1 = 0.4; 
y2 = 0.4; 
l1 = -0.01; 
l2 = -0.01; 
X = [x1,x2,l1]; 
Y = [y1,y2,l2]; 
for k = 1 : 10 
    x1old = x1; 
    x2old = x2; 
    y1old = y1; 
    y2old = y2; 
    syms X1 X2 Y1 Y2 
    f1 = X1^2 + X2^2; 
    c1 = 4*X1 + Y2 -1; 
    f2 = Y1^2 + Y2^2; 
    c2 = X1 + 4*Y2 -1; 
    %% System 1 %% 
    m11x1 = diff(f2,X1); 
    m11x2 = diff(f2,X2); 
    m11 = [m11x1,m11x2]; 
    m12x1 = diff(c2,X1); 
    m12x2 = diff(c2,X2); 
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    m12 = -l2*[m12x1,m12x2]; 
    m1 = m11 + m12; 
    m2 = [X1-x1 , X2-x2]; 
    m = m1*m2'; 
    F1 = f1 + m; 
    syms L1 
    LG1 = F1 + L1*(c1); 
    % Gradient System1 
    DLG1x1 = diff(LG1,X1); 
    dlg1x1=double(subs(DLG1x1,{X1,X2,L1},{x1,x2,l1})); 

     
    DLG1x2 = diff(LG1,X2); 
    dlg1x2=double(subs(DLG1x2,{X1,X2,L1},{x1,x2,l1})); 

     
    DLG1l1 = diff(LG1,L1); 
    dlg1l1=double(subs(DLG1l1,{X1,X2,L1,Y1,Y2},{x1,x2,l1,y1,y2})); 
    G1 = [dlg1x1;dlg1x2;dlg1l1]; 

     
    % Hessiana System1 
    H1x1 = diff(DLG1x1,X1); 
    h1x1=double(subs(H1x1,{X1,X2,L1},{x1,x2,l1})); 
    H1x2 = diff(DLG1x1,X2); 
    h1x2=double(subs(H1x2,{X1,X2,L1},{x1,x2,l1})); 
    H1l1 = diff(DLG1x1,L1); 
    h1l1=double(subs(H1l1,{X1,X2,L1},{x1,x2,l1})); 
    H11 = [h1x1,h1x2,h1l1]; 

     
    H2x1 = diff(DLG1x2,X1); 
    h2x1=double(subs(H2x1,{X1,X2,L1},{x1,x2,l1})); 
    H2x2 = diff(DLG1x2,X2); 
    h2x2=double(subs(H2x2,{X1,X2,L1},{x1,x2,l1})); 
    H2l1 = diff(DLG1x2,L1); 
    h2l1=double(subs(H2l1,{X1,X2,L1},{x1,x2,l1})); 
    H12 = [h2x1,h2x2,h2l1]; 

     
    H3x1 = diff(DLG1l1,X1); 
    h3x1=double(subs(H3x1,{X1,X2,L1},{x1,x2,l1})); 
    H3x2 = diff(DLG1l1,X2); 
    h3x2=double(subs(H3x2,{X1,X2,L1},{x1,x2,l1})); 
    H3l1 = diff(DLG1l1,L1); 
    h3l1=double(subs(H3l1,{X1,X2,L1},{x1,x2,l1})); 
    H13 = [h3x1,h3x2,h3l1]; 
    H1 = [H11;H12;H13]; 

     
    % Newton's Method System 1 
    h1 = -inv(H1) * G1;  
    X = X + h1' 
    x1=X(1,1); 
    x2=X(1,2); 
    l1=X(1,3); 
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%% System 2 %% 
    n11y1 = diff(f1,Y1); 
    n11y2 = diff(f1,Y2); 
    n11 = [n11y1,n11y2]; 
    n12y1 = diff(c1,Y1); 
    n12y2 = diff(c1,Y2); 
    n12 = -l2*[n12y1,n12y2]; 
    n1 = n11 + n12; 
    n2 = [Y1-y1 , Y2-y2]; 
    n = n1*n2'; 
    F2 = f2 + n; 
    syms L2 
    LG2 = F2 + L2*(c2); 
    % Gradient System2 
    DLG2y1 = diff(LG2,Y1); 
    dlg2y1=double(subs(DLG2y1,{Y1,Y2,L2},{y1,y2,l2})); 

     
    DLG2y2 = diff(LG2,Y2); 
    dlg2y2=double(subs(DLG2y2,{Y1,Y2,L2},{y1,y2,l2})); 

     
    DLG2l2 = diff(LG2,L2); 
    dlg2l2=double(subs(DLG2l2,{Y1,Y2,L2,X1,X2},{y1,y2,l2,x1,x2})); 
    G2 = [dlg2y1;dlg2y2;dlg2l2]; 

     
    % Hessiana System2 
    H1y1 = diff(DLG2y1,Y1); 
    h1y1=double(subs(H1y1,{Y1,Y2,L2},{y1,y2,l2})); 
    H1y2 = diff(DLG2y1,Y2); 
    h1y2=double(subs(H1y2,{Y1,Y2,L2},{y1,y2,l2})); 
    H1l2 = diff(DLG2y1,L2); 
    h1l2=double(subs(H1l2,{Y1,Y2,L2},{y1,y2,l2})); 
    H21 = [h1y1,h1y2,h1l2]; 

     
    H2y1 = diff(DLG2y2,Y1); 
    h2y1=double(subs(H2y1,{Y1,Y2,L2},{y1,y2,l2})); 
    H2y2 = diff(DLG2y2,Y2); 
    h2y2=double(subs(H2y2,{Y1,Y2,L2},{y1,y2,l2})); 
    H2l2 = diff(DLG2y2,L2); 
    h2l2=double(subs(H2l2,{Y1,Y2,L2},{y1,y2,l2})); 
    H22 = [h2y1,h2y2,h2l2]; 

     
    H3y1 = diff(DLG2l2,Y1); 
    h3y1=double(subs(H3y1,{Y1,Y2,L2},{y1,y2,l2})); 
    H3y2 = diff(DLG2l2,Y2); 
    h3y2=double(subs(H3y2,{Y1,Y2,L2},{y1,y2,l2})); 
    H3l2 = diff(DLG2l2,L2); 
    h3l2=double(subs(H3l2,{Y1,Y2,L2},{y1,y2,l2})); 
    H23 = [h3y1,h3y2,h3l2]; 
    H2 = [H21;H22;H23]; 

     
    % Newton's Method System 2 
    h2 = -inv(H2) * G2; 
    Y = Y + h2' 
    y1=Y(1,1); 
    y2=Y(1,2); 
    l2=Y(1,3); 
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    %% Convergence %% 
    P  = [x1,x2,y1,y2]; 
    Pold = [x1old,x2old,y1old,y2old]; 
    E = P - Pold; 
    e1 = sqrt ( E(1)^2 + E(2)^2 + E(3)^2 + E(4)^2); 
    e2 = sqrt ( P(1)^2 + P(2)^2 + P(3)^2 + P(4)^2); 
    erel = e1 / e2 
    if erel < 10^(-4) 
        'Problem has finished' 
        break; 
     end 
end 
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APPENDIX B: Codes of Building of 8 zones 

B.1 Dynamic for 8 zone Building Matlab code  

Schoolmodel 8 zones 
 

%%  variables declaration 
nx=8;nu=8;nh=8; 
x=sym('x', [nx 1]);    % states == temperature of each zone 
u=sym('u', [nu 1]);    % input == supply air flow  
lambda=sym('lambda', [nh,1]); % lagrange multiplier  
q=sym('q', [nx 1]); % hea flux due to occupancy  
syms Tsa Toa % supply air temperature  
%% building properties  
rhoaCpa=1.25625*1.005; % density of air * heat capacity of air 
Uw1Aw1=5*9*0.0010/1000; % heat trnasfer rate for walls shared by both the 

rooms (1/Rij from equation 2, systol paper) 
Uw2Aw2=5*9*0.0010/1000; % heat trnasfer rate for walls shared by both the 

rooms (1/Rij from equation 2, systol paper) 
URAR=12*0.001/1000; % heat trnasfer rate for walls shared by both the 

roof (1/Rext from equation 2, systol paper) 
Cz=47.100; % heat capacity of zone/room (Ci in equation 2 ) 

  
h1=((u(1)*rhoaCpa*(Tsa-x(1)))+(2*Uw1Aw1*(x(2)-x(1)))+(2*Uw1Aw1*(x(5)-

x(1)))+(2*Uw2Aw2*(x(3)-x(1)))+q(1)+(URAR*(Toa-x(1))))/Cz; %energy balance 

equation for room 1 
h2=((u(2)*rhoaCpa*(Tsa-x(2)))+(2*Uw1Aw1*(x(1)-x(2)))+(2*Uw1Aw1*(x(5)-

x(2)))+(2*Uw2Aw2*(x(4)-x(2)))+q(2)+(URAR*(Toa-x(2))))/Cz;%energy balance 

equation for room 2 
h3=((u(3)*rhoaCpa*(Tsa-x(3)))+(2*Uw1Aw1*(x(1)-x(3)))+(2*Uw1Aw1*(x(6)-

x(3)))+(2*Uw2Aw2*(x(4)-x(3)))+q(3)+(URAR*(Toa-x(3))))/Cz; %energy balance 

equation for room 3 
h4=((u(4)*rhoaCpa*(Tsa-x(4)))+(2*Uw1Aw1*(x(3)-x(4)))+(2*Uw1Aw1*(x(6)-

x(4)))+(2*Uw2Aw2*(x(2)-x(4)))+q(4)+(URAR*(Toa-x(4))))/Cz;%energy balance 

equation for room 4 
h5=((u(5)*rhoaCpa*(Tsa-x(5)))+(2*Uw1Aw1*(x(2)-x(5)))+(2*Uw2Aw2*(x(1)-

x(5)))+(2*Uw1Aw1*(x(7)-x(5)))+q(5)+(URAR*(Toa-x(5))))/Cz; %energy balance 

equation for room 5 
h6=((u(6)*rhoaCpa*(Tsa-x(6)))+(2*Uw1Aw1*(x(3)-x(6)))+(2*Uw2Aw2*(x(4)-

x(6)))+(2*Uw1Aw1*(x(8)-x(6)))+q(6)+(URAR*(Toa-x(6))))/Cz; %energy balance 

equation for room 6 
h7=((u(7)*rhoaCpa*(Tsa-x(7)))+(2*Uw1Aw1*(x(5)-x(7)))+q(7)+(URAR*(Toa-

x(7))))/Cz; %energy balance equation for room 6 
h8=((u(8)*rhoaCpa*(Tsa-x(8)))+(2*Uw1Aw1*(x(6)-x(8)))+q(8)+(URAR*(Toa-

x(8))))/Cz; %energy balance equation for room 6 
h=[h1;h2;h3;h4;h5;h6;h7;h8]; 

  

  
%% Calculation of Jacobian matrix 
A=jacobian(h,x); 
B=jacobian(h,[u ;Tsa ;q  ;Toa ]); 
C=jacobian(x,x); 
D=jacobian(x,[u ;Tsa ;q  ;Toa ]); 
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%% finding operating point  
Tsa=26; % supply air temperature Ts in equation 2 
Toa=5; % outside/weather tempearture  
x1=23;x2=23;x3=23;x4=23;x5=23;x6=23;x7=23;x8=23; % states OP initial 

temperature of romm is 23 deg  
u1=0.192;u2=0.192;u3=0.192;u4=0.192;u5=0.192;u6=0.192;u7=0.192;u8=0.192; 

% input OP 
q1=0.65;q2=0.65;q3=0.65;q4=0.65;q5=0.65;q6=0.65;q7=0.65;q8=0.65; % dist 

OP 
A1=eval(A); 
B1=eval(B); 
C1=eval(C); 
D1=eval(D); 
sys=c2d(ss(A1,B1,C1,D1),60);% sampling time 60sec for discretization 

B.2 Centralized MPC Matlab code  

 

Main program code 
 

%%% MPC program for 8 zones with economic/energy minimization: 
clc 
yalmip('clear') 
clear all 
close all  

 
 

%% import the dynamic mode for 8 zones- building  
run('schoolmodel_3_8zones'); 
clearvars -except sys nx nu Tsa Toa 
A=sys.a ; 
Bu1=sys.b(:,1:nu); 
Bu2=sys.b(:,nu+1);  
Bd=sys.b(:,nu+2:end);  
C=sys.c;  
tsim=24*4*5; 
run('generate_reference') % generate setpoint-comfort range  
nd=nx+1; 
%% MPC data 
k1 = [1 1 1 1 1 1 1 1]*0.5;  % cost per kw for central supply fan  
k2= 1; % cost per kj by central heating coil 
Np =24;  % horizon as one day 
uop=ones(nu,1)*0.192; 
 

%% Controller code 
%%  Initialization and variable declaration 
uu = sdpvar(repmat(nu,1,Np),ones(1,Np)); 
xx = sdpvar(repmat(nx,1,Np),repmat(1,1,Np)); 
dd = sdpvar(repmat(nd,1,Np),repmat(1,1,Np)); 
zeta = sdpvar(1,1); 
constraints = []; 
objective = 0; 
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for k = 1:Np-1 
 objective = objective 

+k1*((uu{k}+uop).^2)+k2*sum(uu{k}+uop)+zeta;%+norm(R*(uu{k}+uop),2); 
 

constraints = [constraints, xx{k+1} == A*xx{k} + Bu1*uu{k}+Bd*dd{k}]; 
constraints = [constraints, -0.192 <= uu{k}<= 0.31,-zeta<=xx{k}<=zeta, zeta <= 

1,zeta >= -1]; 

 
end 
parameters_in={xx{1},[dd{:}]}; 
solutions_out = {[uu{:}], [xx{:}],objective}; 
controller = optimizer(constraints, 

objective,[],parameters_in,solutions_out); 

  
%% MPC Control loop 
x=zeros(nx,1);pastu=zeros(nu,1); 
for t=1:tsim 
% load disturbance  
    [distp,distt,distds]=distpredicition8zone(t,Np);       

  
% solving an ptimization problem  
    [solutions,diagnostics] = controller{{x,distp}}; 
     if diagnostics == 1 
        error('The problem is infeasible'); 
        break; 
     end 
     U = solutions{1}; X = solutions{2};      

    
% Applying on building  
  x=A*x+Bu1*U(:,1)+Bd*distt; %%  x=(dx+x); 
  y=C*x+0.07*rand(nx,1); 

    
% save data 

  
UU(:,t)=U(:,1)+uop; 
XX(:,t)=x+ones(nx,1)*23; 
YY(:,t)=y+ones(nx,1)*23; 
Dist(:,t)=distt+[ones(nx,1)*0.65 ;Toa]; 

  
end  
xl=Ulb(1:tsim)+23;xu=Uub(1:tsim)+23; 

 

 
Reference trajectory 
 
%% generate a refernce trajectory  
clc 
load('dist')% loading disturbace 
l=length(dist(:,1)); 
for i=1:l 
if (dist(i,1)>0) 
    Ulb(i)=-0.5;Uub(i)=0.5; 
else 
    Ulb(i)=-8.5;Uub(i)=8.5; 
end 
end  
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B.3 Sensitivity-based coordination D-MPC Matlab code 

 

Main program code 
 

%%% MPC program for 8 zones with economic/energy minimization: 
clc 
yalmip('clear') 
clear all 
close all  

 
 

%% import the dynamic mode for 8 zones- building  
run('schoolmodel_3_8zones'); 
A=sys.a ; 
Bu1=sys.b(:,1:nu); 
Bu2=sys.b(:,nu+1); 
Bd=sys.b(:,nu+2:end);  
C=sys.c;  
tsim=24*4*5; 
run('generate_reference') % generate setpoint-comfort range  
Np =24;  % horizon as one day 
uop=ones(nx/2,1)*0.192; 
k1 = ones(1,nx/2)*1;  % cost per kw for central supply fan  
k2= 1; % cost per kj by central heating coil 
k3= 20; %weight to supress oscillation 

  
A11=[A(1:2,1:2) A(1:2,5) A(1:2,7);A(5,1:2) A(5,5)  A(5,7);A(7,1:2) A(7,5) A(7,7)];  

A12=[A(1:2,3:4) A(1:2,6) A(1:2,7); A(5,3:4) A(5,6) A(5,8);A(7,3:4) A(7,6) A(7,8) ];  
B1=[Bu1(1:2,1:2) Bu1(1:2,5)  Bu1(1:2,7);Bu1(5,1:2) Bu1(5,5) Bu1(5,7);Bu1(7,1:2) Bu1(7,5) 

Bu1(7,7)]; 
Bd1=[Bd(1:2,1:2) Bd(1:2,5) Bd(1:2,7) Bd(1:2,9);Bd(5,1:2) Bd(5,5) Bd(5,7) Bd(5,9);Bd(7,1:2) 

Bd(7,5) Bd(7,7) Bd(7,9)]; 
A22=[A(3:4,3:4) A(3:4,6)  A(3:4,8);A(6,3:4) A(6,6) A(6,8);A(8,3:4) A(8,6) A(8,8)]; 
A21=transpose(A12); 
B2=[Bu1(3:4,3:4) Bu1(3:4,6)  Bu1(3:4,8);Bu1(6,3:4) Bu1(6,6) Bu1(6,8);Bu1(8,3:4) Bu1(8,6) 

Bu1(8,8);]; 
Bd2=[Bd(3:4,3:4) Bd(3:4,6) Bd(3:4,8)  Bd(3:4,9);Bd(6,3:4) Bd(6,6) Bd(6,8) Bd(6,9);Bd(8,3:4) 

Bd(8,6) Bd(8,8) Bd(8,9) ]; 

 

%% %%%%%%%%%%%%%%%%%%%%%%%% controller for zone 1 %%%%%%%%%%%%%%%%%%%%%  

%% decomposiiton into subsystems in overalapping structure  
xl = sdpvar(1,1); 
xu = sdpvar(1,1); 
% Initial state 
uu1 = sdpvar(repmat(nu/2,1,Np),ones(1,Np)); 
xx1 = sdpvar(repmat(nx/2,1,Np),repmat(1,1,Np)); 
dd1 = sdpvar(repmat(5,1,Np),repmat(1,1,Np)); 
zeta1=sdpvar(1,1);  
u2old=sdpvar(4,1); 
u1oldp=sdpvar(4,1); 
constraints1 = []; 
objective1 = 0; 
xx12= sdpvar(4,1); 
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for k = 1:Np-1 
 

objective1=objective1+k1*((uu1{k}+uop).^2)+k2*sum(uu1{k}+uop)+zeta1^2+k3*

norm((uu1{1}-u1oldp),1)+k3*norm((uu1{k+1}-uu1{k}),1); 
constraints1 = [constraints1, xx1{k+1} == A11*xx1{k}+B1*uu1{k}+Bd1*dd1{k}+A12*xx12]; 
constraints1 = [constraints1, -0.192 <=uu1{k}<= 0.31,-zeta1+xl<=xx1{k}<=zeta1+xu, 0 <= 

zeta1,zeta1 <= 0.5]; 

end 
parameters_in1={xx1{1},[dd1{:}],u2old,xl,xu,xx12}; 
solutions_out1 = {[uu1{:}], [xx1{:}],objective1}; 
controller1 = optimizer(constraints1, 

objective1,[],parameters_in1,solutions_out1); 

  
%% %%%%%%%%%%%%%%%%% controller for zone 2%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Initial state 
uu2 = sdpvar(repmat(nu/2,1,Np),ones(1,Np)); 
xx2 = sdpvar(repmat(nx/2,1,Np),ones(1,Np)); 
dd2 = sdpvar(repmat(5,1,Np),ones(1,Np)); 
zeta2=sdpvar(1,1); 
u1old=sdpvar(4,1); 
u2oldp=sdpvar(4,1); 
constraints2 = []; 
objective2 = 0; 
xx34= sdpvar(4,1); 
 

for k = 1:Np-1 
objective2 = objective2 + 

k1*((uu2{k}+uop).^2)+k2*sum(uu2{k}+uop)+zeta2^2+k3*norm((uu2{1}-

u2oldp),1)+k3*norm((uu2{k+1}-uu2{k}),1); 
constraints2 = [constraints2, xx2{k+1} == A22*xx2{k}+B2*uu2{k}+Bd2*dd2{k}+A21*xx34]; 
constraints2 = [constraints2, -0.192 <= uu2{k}<= 0.31,-zeta2+xl<=xx2{k}<=zeta2+xu, 0 <= 

zeta2,zeta2 <= 0.5 ]; 

end 
parameters_in2={xx2{1},[dd2{:}],u1old,xl,xu,xx34}; 
solutions_out2 = {[uu2{:}], [xx2{:}],objective2}; 
controller2 = optimizer(constraints2, 

objective2,[],parameters_in2,solutions_out2); 

  
%%   %%%%%%%%%%%%%%%%%% Control starts here %%%%%%%%%%%%%%%%%%  
xx=zeros(nx,1); 
xx1=zeros(nx/2,1); 
xx2=zeros(nx/2,1); 
u1old=zeros(4,1); 
u2old=zeros(4,1); 
enerd=zeros(1,tsim); 
for t=2:tsim  
%% load disturbance  
    [distp,distt,distds]=distpredicition8zone(t,Np);       
%   
%% solving an optimization problem for subsystem 1 
    [solutions1,diagnostics1] = controller1{{xx1,distds,u2old,Ulb(t),Ulb(t),xx2}}; 

     if diagnostics1 == 1 
        error('The problem is infeasible'); 
        break; 
     end 
     U1 = solutions1{1};  
     X1 = solutions1{2};   
     Z1=solutions1{3};  
     u1old=(U1(:,1)+2*uop); 
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     u1oldp=U1(:,1); 

      
%% solving an optimization problem for subsystem 2 
 

    [solutions2,diagnostics2] = controller2{{xx2,distds,u1old,Ulb(t),Ulb(t),xx1}}; 

     if diagnostics2 == 1 
        error('The problem is infeasible'); 
        break; 
     end 
     U2 = solutions2{1};  
     X2 = solutions2{2};    
     Z2=solutions2{3} ;   
     u2old=(U1(:,1)+2*uop); 

      
%% Applying on building  
  

xx=A*xx+Bu1*[U1(1:2,1);U2(1:2,1);U1(3,1);U2(3,1);U1(4,1);U2(4,1)]+Bd*dist

t; %%  x=(dx+x); 
  y=C*xx+0.007*rand(nx,1); 

    
% % save data 

  
UU1(:,t)=[U1(1:2,1);U2(1:2,1);U1(3,1);U2(3,1);U1(4,1);U2(4,1)]+[uop;uop]; 
XX(:,t)=xx+ones(nx,1)*23; 
YY(:,t)=y+ones(nx,1)*23; 
Dist(:,t)= distt+[ones(nx,1)*0.65 ;Toa]; 
enerd(:,t)=enerd(:,t-1)+sum((UU1(:,t)).^2)+sum(UU1(:,t)); 
xx1=[y(1:2);y(5);y(7)]; 
xx2=[y(3:4);y(6);y(8)]; 

  
 end  
xl=Ulb(1:tsim)+22;xu=Uub(1:tsim)+24; 
save('enerd','enerd'); 
  

Reference trajectory 
 
%% generate a refernce trajectory  
clc 
load('dist')% loading disturbace 
l=length(dist(:,1)); 
for i=1:l 
if (dist(i,1)>0) 
    Ulb(i)=-0.5;Uub(i)=0.5; 
else 
    Ulb(i)=-8.5;Uub(i)=8.5; 
end 
end  
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B.4 Optimal Conditions Decomposition D-MPC Matlab code  

%%% MPC program for 8 zones with economic/energy minimization : 
%%% Distributed OCD with state sinformation exchnage  
clc 
clear all 
yalmip('clear') 
close all  

 
 

%% import the dynamic mode for 8 zones- building  
run('schoolmodel_3_8zones'); 
A=sys.a ; 
Bu1=sys.b(:,1:nu); 
Bu2=sys.b(:,nu+1:2*nu+1);  
Bd=sys.b(:,nu+2:end);  
C=sys.c;  
tsim=24*4*5; 
run('generate_reference') % generate setpoint-comfort range  
nd=nx+1; 
Np =24;  % horizon as one day 
uop=ones(nx/2,1)*23; 
k1 = ones(1,nx/2)*1;  % cost per kw for central supply fan  
k2= 1; % cost per kj by central heating coil 
R = diag(ones(1,nu/2)*1); % decide imporatnce of inputs as chnage in 

airflow will be at priority  
%% decomposiiton into subsystems in overalapping structure  
A11=[A(1:2,1:2) A(1:2,5) A(1:2,7);A(5,1:2) A(5,5)  A(5,7);A(7,1:2) A(7,5) A(7,8)];  
A12=[A(1:2,3:4) A(1:2,6) A(1:2,7); A(5,3:4) A(5,6) A(5,8);A(7,3:4) A(7,6) A(7,8) ];  
A21=[A(3:4,1:2) A(3:4,5) A(3:4,7); A(6,1:2) A(6,5) A(6,7);A(8,1:2) A(8,5) A(8,7)]; 
A22=[A(3:4,3:4) A(3:4,6)  A(3:4,8);A(6,3:4) A(6,6) A(6,8);A(8,3:4) A(8,6) A(8,8)]; 
B1T=[Bu1(1:2,1:2) Bu1(1:2,5)  Bu1(1:2,7);Bu1(5,1:2) Bu1(5,5) Bu1(5,7);Bu1(7,1:2) Bu1(7,5) 

Bu1(7,7)]; 
B2T=[Bu1(3:4,3:4) Bu1(3:4,6)  Bu1(3:4,8);Bu1(6,3:4) Bu1(6,6) Bu1(6,8);Bu1(8,3:4) Bu1(8,6) 

Bu1(8,8);]; 
B1F=[Bu2(1:2,1:2) Bu2(1:2,5)  Bu2(1:2,7);Bu2(5,1:2) Bu2(5,5) Bu2(5,7);Bu2(7,1:2) Bu2(7,5) 

Bu2(7,7)]; 
B2F=[Bu2(3:4,3:4) Bu2(3:4,6)  Bu2(3:4,8);Bu2(6,3:4) Bu2(6,6) Bu2(6,8);Bu2(8,3:4) Bu2(8,6) 

Bu2(8,8);]; 
Bd1=[Bd(1:2,1:2) Bd(1:2,5) Bd(1:2,7) Bd(1:2,9);Bd(5,1:2) Bd(5,5) Bd(5,7) Bd(5,9);Bd(7,1:2) 

Bd(7,5) Bd(7,7) Bd(7,9)]; 
Bd2=[Bd(3:4,3:4) Bd(3:4,6) Bd(3:4,8)  Bd(3:4,9);Bd(6,3:4) Bd(6,6) Bd(6,8) Bd(6,9);Bd(8,3:4) 

Bd(8,6) Bd(8,8) Bd(8,9) ]; 

 

xl = sdpvar(1,1); 

xu = sdpvar(1,1); 

 



Page 18   Appendices 

 

 
%% %%%%%%%%%%%%%%%%% controller for zone 1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Initial state 
uu1 = sdpvar(repmat(nu/2,1,Np),ones(1,Np)); 
xx1 = sdpvar(repmat(nx/2,1,Np),repmat(1,1,Np)); 
lambda1 = sdpvar(repmat(3,1,Np-1),ones(1,Np-1)); 
dd1 = sdpvar(repmat(5,1,Np),repmat(1,1,Np)); 
zeta1=sdpvar(1,1);  
u2old=sdpvar(4,1); 
constraints1 = []; 
objective1 = 0; 
xx34= sdpvar(4,1); 
uf1=ones(4,1)*0.192; 
for k = 1:Np-1 
 objective1=objective1+k1*((uu1{k}+uop).^2)+k2*sum(uu1{k}+uop)+zeta1^2; 
 constraints1 = [constraints1, xx1{k+1} == 

A11*xx1{k}+B1T*uu1{k}+Bd1*dd1{k}+A12*xx34+B1F*uf1]; 
 constraints1 = [constraints1, -0.192 <=uu1{k}<= 0.31,-

zeta1+xl<=xx1{k}<=zeta1+xu, 0 <= zeta1,zeta1 <= 0.5]; 
end 
parameters_in1={xx1{1},[dd1{:}],u2old,xx34,xl,xu}; 
solutions_out1 = {[uu1{:}], [xx1{:}],objective1}; 
controller1 = optimizer(constraints1, 

objective1,[],parameters_in1,solutions_out1); 

  
%% %%%%%%%%%%%%%%%%% controller for zone 2%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Initial state 
uu2 = sdpvar(repmat(nu/2,1,Np),ones(1,Np)); 
xx2 = sdpvar(repmat(nx/2,1,Np),ones(1,Np)); 
dd2 = sdpvar(repmat(5,1,Np),ones(1,Np)); 
xx12= sdpvar(4,1); 
zeta2=sdpvar(1,1); 
u1old=sdpvar(4,1); 
constraints2 = []; 
objective2 = 0; 
uf2=ones(4,1)*0.192; 

 
for k = 1:Np-1 
 objective2 = objective2 + 

k1*((uu2{k}+uop).^2)+k2*sum(uu2{k}+uop)+zeta2^2; 
constraints2 = [constraints2, xx2{k+1} == 

A22*xx2{k}+B2T*uu2{k}+Bd2*dd2{k}+A21*xx12+B2F*uf1]; 
constraints2 = [constraints2, -0.192 <= uu2{k}<= 0.31,-

zeta2+xl<=xx2{k}<=zeta2+xu, 0 <= zeta2,zeta2 <= 0.5 ]; 
end 
parameters_in2={xx2{1},[dd2{:}],u1old,xx12,xl,xu}; 
solutions_out2 = {[uu2{:}], [xx2{:}],objective2}; 
controller2 = optimizer(constraints2, 

objective2,[],parameters_in2,solutions_out2); 

  
%%%%%%%%%%%%%%%%% Control start here %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
xx=zeros(nx,1); 
xx1=zeros(nx/2,1); 
xx2=zeros(nx/2,1); 
xx12=zeros(nx/2,1); 
xx34=zeros(nx/2,1); 
u1old=zeros(4,1); 
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u2old=zeros(4,1); 
enerd=zeros(1,tsim); 
for t=2:tsim  
%% load disturbance  
    [distp,distt,distds]=distpredicition8zone(t,Np);       
%   
%% solving an optimization problem for subsystem 1 
    [solutions1,diagnostics1] = 

controller1{{xx1,distds,u2old,xx34,Ulb(t),Uub(t)}}; 
     if diagnostics1 == 1 
        error('The problem is infeasible'); 
        break; 
     end 
     U1 = solutions1{1};  
     X1 = solutions1{2};  
    [solutions2,diagnostics2] = controller2{{xx2,distds,u1old,xx12,Ulb(t),Uub(t)}}; 

     if diagnostics2 == 1 
        error('The problem is infeasible'); 
        break; 
     end 
     U2 = solutions2{1};  
     X2 = solutions2{2};    

       
%% Applying on building  
  

xx=A*xx+sys.b(:,1:2*nu)*[U1(1:2,1);U2(1:2,1);U1(3,1);U2(3,1);U1(4,1);U2(4

,1);uf1;uf2]+Bd*distt; %%  x=(dx+x); 
  y=C*xx+0.007*rand(nx,1); 

    
%% save data 

  
UU1(:,t)=[U1(1:2,1);U2(1:2,1);U1(3,1);U2(3,1);U1(4,1);U2(4,1)]+[uop;uop]; 
XX(:,t)=xx+ones(nx,1)*23; 
YY(:,t)=y+ones(nx,1)*23; 
Dist(:,t)= distt+[ones(nx,1)*0.65 ;Toa]; 
enerd(:,t)=enerd(:,t-1)+sum((UU1(:,t)).^2)+sum(UU1(:,t)); 
xx1=[y(1:2);y(5);y(7)]; 
xx2=[y(3:4);y(6);y(8)]; 

  
 end  
xl=Ulb(1:tsim)+22; 
xu=Uub(1:tsim)+24; 
save('enerd','enerd'); 
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