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Abstract

This dissertation deals with di¤erent subset selection problems in wireless communi-
cations systems. These type of problems have a combinatorial nature, which makes them
computationally intractable for medium and large-scale sizes. In particular, two di¤erent
types of problems are addressed in this thesis: cardinality minimization and cardinality-
constrained problems. Di¤erent mathematical relaxations are proposed with the aim of
obtaining algorithms that approximately solve the proposed problems with a tractable
computational cost. Namely, to address the NP-hardness of the problems addressed in the
thesis, di¤erent mathematical frameworks are considered, such as, for instance, semide�nite
programming relaxations, Di¤erence-of-Convex-functions (DC) programming, reweighted
norms and the LARS/homotopy algorithm.

The �rst part of the dissertation deals with the angle of arrival estimation in an antenna
array and falls within the so-called sparse signal representation framework. A simple, fast
and accurate algorithm is proposed for �nding the angles of arrival of multiple sources
that impinge on an array of antennas. In contrast to other methods in the literature, the
considered technique is not based on ad-hoc hyperparameters and does not require the
previous knowledge of the number of incoming sources or a previous initialization.

The second part of the thesis addresses the selection of the appropriate subset of coop-
erative nodes in dense relay-assisted wireless networks and constitutes the main focus of
the research activities carried out in this thesis. In order to cope with the huge data tra¢ c
in the next generation of wireless networks, the number of access nodes and communication
links will be densi�ed, having as a result, an increase of the network complexity. Within
this framework, subset selection problems naturally arise to reduce the overall system man-
agement. The activation of many relay links, in dense relay-assisted wireless networks, is
impractical due to the communications and processing overhead required to maintain the
synchronization amongst all the spatially distributed nodes in the wireless network, which
makes the network complexity una¤ordable. The selection of the most suitable subset of
spatially distributed relays, in this context, is a key issue, since it has a dramatic e¤ect
in the overall system performance. In particular, the thesis addresses the joint distrib-
uted beamforming optimization and relay subset assignment in a multi-user scenario with
non-orthogonal transmission and in a scenario with a single source-destination pair. Dif-
ferent design criteria are analyzed, all of them lead to challenging combinatorial nonlinear
problems, which are non-convex and non-smooth.

Dealing with the multiple relay selection problem in an ad-hoc wireless relay network
with a single source-destination pair, a new algorithm is proposed for �nding the best subset
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of cooperative relays, and their beamforming weights, so that the SNR is maximized at
the destination terminal. This problem is addressed taking into account per-relay power
constraints and second-order channel state information. In this context, a sub-optimal
method, based on a semide�nite programming relaxation, is proposed. It achieves a near-
optimal performance with a reduced computational complexity.

The joint relay assignment and distributed beamforming optimization in multi-user
wireless relay networks deserves a special attention. Two major problems are addressed: i)
the selection of the minimum number of cooperative nodes that guarantees some prede�ned
Quality of Service (QoS) requirements at the destination nodes and; ii) the selection of the
best subset of K relays that minimizes the total relay transmit power, satisfying QoS
constraints at the destinations. The mathematical formulations of these problems involve
non-convex objective functions coupled with non-convex constraints. They are �t into the
DC optimization framework and solved using novel path-following methods based on the
penalty convex-concave procedure. The proposed techniques exhibit a low complexity and
are able to achieve high-quality solutions close to the global optimum.
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Resumen

Esta tesis aborda diversos problemas de selección de subconjuntos en comunicaciones
inalámbricas. Este tipo de problemas tiene una naturaleza combinatoria que los hace
computacionalmente intratables. En concreto, se consideran dos tipos de problemas: i)
la minimización de la cardinalidad y ii) la optimización de problemas con restricciones
de cardinalidad. Se proponen diversas relajaciones matemáticas, con el �n de desarrol-
lar algoritmos capaces de obtener un rendimiento casi óptimo y una baja complejidad
computacional.

La primera parte de la tesis se centra en el problema de estimación de los ángulos de
llegada en una agrupación de antenas y se enmarca dentro de los llamados problemas de
representación sparse. En este contexto, se propone un algoritmo rápido, preciso y simple
para la estimación de las direcciones de llegada en una agrupación de antenas. Al contrario
que otras técnicas en la literatura, el método propuesto, no se basa en hiperparámetros y
no requiere el conocimiento a priori del número de fuentes o una inicialización previa.

La segunda parte de la tesis aborda el problema de selección del mejor subconjunto de
nodos cooperativos en una red densa de relays inalámbricos. Con el �n de lidiar con el
inmenso trá�co de datos en las próximas generaciones de redes inalámbricas, la densidad
del número de puntos de acceso y de conexiones aumentará, teniendo como resultado un
incremento de la complejidad de la red y de su optimización. Dentro de este marco, los
problemas de selección de subconjuntos aparecen de modo natural con el �n de reducir la
complejidad de la gestión de la red. La activación de un gran número de terminales, en
redes densas de nodos cooperativos, no es factible debido al gran intercambio de información
adicional que se requiere entre los terminales, que se encuentran espacialmente distribuidos
en diferentes localizaciones. En este contexto, la selección del mejor subconjunto de estos
nodos es de gran importancia dado el elevado impacto que tiene en el rendimiento del
sistema. Esta tesis aborda la optimización conjunta del conformador de haz (beamformer)
y la selección del mejor subconjunto nodos en diversos escenarios cooperativos. Se analizan
diversos criterios de diseño, todos ellos conducen a complejos problemas combinatorios no
lineales y no convexos.

Dentro del contexto de la selección de múltiples nodos en redes inalámbricas cooperati-
vas con un par origen-destino, se propone un algoritmo para encontrar el mejor subconjunto
de terminales cooperativos y sus respectivos pesos, de manera que la SNR se maximice en
el nodo de destino. Este problema se trata teniendo en cuenta restricciones individuales
de potencia en los nodos cooperativos e información estadística de segundo orden de los
canales inalámbricos de la red. En este contexto, se presenta un algoritmo con una baja
complejidad y un rendimiento cercano al óptimo.
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La optimización conjunta de los pesos del conformador distribuido y la selección del
subconjunto de nodos cooperativos en redes inalámbricas multiusuario merece una atención
especial. En esta tesis se abordan dos problemas relevantes: 1) la selección del mínimo
número de nodos cooperativos capaces de garantizar una cierta calidad de servicio en los
nodos destino y; 2) la selección del mejor subconjunto de K terminales repetidores que
minimiza la potencia total transmitida, cumpliendo con ciertas restricciones de calidad de
servicio en los nodos destino. La formulación matemática de estos problemas involucra
funciones objetivo no convexas acopladas con restricciones que tampoco son convexas.
Para aliviar la elevada complejidad de estos problemas se proponen nuevos algoritmos con
una baja carga computacional y un rendimiento casi óptimo.
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Notation
In general, uppercase boldface letters, e.g. A, denote matrices, lowercase boldface letters,
e.g. a, denote column vectors.

AT ;AH Transpose and conjugate transpose of a matrix A, respectively.

A�1 Inverse of A.

A1=2 Positive de�nite Hermitian square-root of A, i.e. A1=2A1=2 = A.

TrfAg Trace of a matrix A.

kAk22 Square of the Frobenius norm of a matrix A, kAk2=
�
Tr
�
AHA

��1=2
.

Aij, [A]ij
(i; j)th entry of a matrix A, corresponding to the ith row
and the jth column.

rank(A) Rank of a matrix A:

jAj Element-wise absolute value of a matrix A.

A �0 Positive semide�nite matrix A.

vec(A)
Vectorization of a matrix A.

kak1, kak2 l1-norm and the Euclidean norm of a vector a, kak , kak2 =
�
aHa

�1=2
:

kak0, card(a) l0-norm, cardinality of the vector a, i.e. the number of non-zero entries of a.

ai; [a]i ; (a)i ith entry of a vector a:

a
 b Kronecker product of two vectors a and b.

a� b Schur-Hadamard of two vectors a and b.
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a 2 f0; 1gN Vector a of length N with binary entries.

a 2 [0; 1]N Vector a of length N with entries ai 2 [0; 1] 8i = 1; :::;N:

1N All-one column vector of length N .

0N All-zero column vector of length N .

IM The M �M identity matrix.

R;C The set of real and complex numbers, respectively.

RN ;CN The set of N -dimensional vectors with entries in R and
C, respectively.

RN+
The set of N -dimensional vectors with non-negative entries.

RM�N ;CM�N The set of M �N matrices with entries in R and
C, respectively.

H+
N

Set of N �N Hermitian positive semide�nite matrices.

Ef�g Expectation operator.

<f�g, =f�g Real and imaginary part operators, respectively.

j Imaginary unit, j =
p
�1:

jSj ; S(i) For a given set S; jSj denotes its cardinality
and S(i) stands for the ith element of the set

iid A set of random variables are independent and identically distributed.

N (�;�) Multivariate Gaussian distribution with mean � and covariance �.

CN (�;�) Multivariate complex Gaussian distribution with mean � and
covariance �.
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X 2(2) Chi-square distribution of two degrees of freedom.

� Distributed according to:

jaj Modulus of a complex number a:

rx f(x) Gradient of a function f(x) w.r.t. x:

varf�g Variance:

arg Argument:

� Subset:

minx f(x) Minimization of an objective function f(x) w.r.t. the variable x:

maxx f(x) Maximization of an objective function f(x) w.r.t. the variable x:

x� Optimal value of a given optimization problem:
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Chapter 1

Introduction

1.1 Scope and research motivation

This dissertation deals with the following types of mathematical optimization problems:

min
x

kxk0
s.t. x 2 Q; (1.1)

and

min
x

f(x)

s.t. x 2 Q
kxk0 = K; (1.2)

where x is the unknown vector of variables, f(x) denotes the objective function, K is a
given constant and Q denotes the feasible set of the problem. This set can be a linear or
nonlinear convex set or even a nonlinear and non-convex set. The operator kxk0 denotes
the l0-norm [1], i.e., the cardinality operator, the counting function that returns the number
of non-zero elements of its argument. As normally used in the literature, throughout this
dissertation, the l0-norm will be denoted as kxk0 or card(x). Both notations will be used
indistinctly to designate the cardinality of a vector x. Furthermore, as a matter of fact,
�nite dimensional spaces, are considered here. Thus, it is assumed that x 2 CNor RN .
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Yet another problem that will be considered in this thesis is the maximization of a
non-convex objective function subject to cardinality constraints

max
x

f(x)

s.t. x 2 Q
kxk0 = K: (1.3)

This type of problems can be reformulated as a cardinality-constrained problem of type
(1.2). Hence, we will focus our attention on problems of type (1.1) and (1.2). Throughout
the present chapter, we will refer to (1.1) as cardinality minimization problem and to (1.2)
as cardinality-constrained optimization problem.

The l0-norm is a non a non-convex, non-smooth and integer-valued function, and opti-
mization problems that involve the cardinality in its objective or constraints are NP-hard [2]
in general and, consequently, computationally intractable. The common approach to deal
with the discontinuity of the l0-norm is to approximate kxk0 by a continuous surrogate
function [3,4,5,6].

The next sections provide a brief overview of some relevant subset selection problems
in the literature and describe the general framework of the dissertation.

1.1.1 The minimum cardinality problem

The optimization problem presented in (1.1) aims to �nd the sparsest solution, i.e., the
vector with lowest number of active entries that satis�es the set of constraints de�ned byQ.
This type of problems appears frequently in the context of sparse signal representation [7,8],
which has been considered in a plethora of �elds, e.g. spectral estimation, array processing,
image reconstruction, channel coding, to name a few. Each of these �elds has developed
its own mathematical tools but there are important resemblances between the di¤erent
disciplines; all of them are based on the fact that discrete signals can be well-represented
by a small number of non-vanishing coe¢ cients in a suitable domain, e.g, space, time
or frequency. The di¢ culty in reconstructing a sparse signal arises from the fact that
the number of non-zero coe¢ cients and the location of these non-vanishing entries is not
known a priori. In order to overcome these di¢ culties a lot of e¤ort has been devoted by
researchers to develop feasible recovery algorithms and to provide rigorous proofs of the
ability of these techniques to achieve a perfect reconstruction.

Sparse signal representation seeks to approximate a target signal by a linear combina-
tion of few elementary signals extracted from a known collection. We will start describing
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the general setup. The most basic problem is the reconstruction of a vector x from an
observation vector y = Ax, where A is the so-called dictionary, a known matrix of size
M �N . This matrix is usually overcomplete, i.e., it has more columns than rows. Under
the assumption that the unknown is sparse, i.e., it has few non-zero entries relative to
its dimension, the natural approach is to seek the maximally sparse representation of the
observed vector y. Formally, this can expressed as

min
x
kxk0 s.t. y = Ax: (1.4)

It is worth noting that without imposing a sparsity prior on x, the system of equations
y = Ax is underdetermined and admits an in�nite number of solutions. This type of
problems have applications across various �elds, including compressive sensing [9,10], image
recovery [11,12] and array processing [13].

The problem exposed in (1.4) is an intractable NP-hard combinatorial problem in gen-
eral [14]. Fortunately, over the past decade, researchers have developed tools for solving
sparse approximation problems with computationally tractable algorithms (for further in-
formation about these methods see [4, 6, 8, 15] and Chapter 2). Among all the proposed
techniques in the literature, the use convex norms that promote sparsity [5,16] and greedy
methods [17], such as Orthogonal Matching Pursuit (OMP), have deserved special atten-
tion. OMP is an iterative method that selects at each step the column that is most cor-
related with the residual signal and can be viewed as Successive Interference Cancellation
(SIC) method, due to its sequential nature [18].

To circumvent the computational bottleneck of the combinatorial problem presented in
(1.4) the most common approach is to replace the non-convex l0-norm by the l1-norm, which
is de�ned as kxk1 =

P
i jxij. This approach leads to problems with a lower computational

complexity

min
x
kxk1 s.t. y = Ax: (1.5)

The conditions that guarantee the equivalence of the solutions of (1.4) and (1.5) were
studied in [19], [20], [21]. In general, the l1-minimization problem in (1.5) is more successful
than OMP algorithms in provinding the sparsest solution of (1.4) [22].

The l1-minimization is considered as one of the most successful methods to �nd sparse
solutions to a linear system of equations. Nevertheless, the l1-norm penalizes large coef-
�cientes to the detriment of smaller entries [23, 24]. While the l0-norm only counts the
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non-zero entries of a vector, the main disadvantage of using kxk1 to approximate the l0-
norm is that the amplitudes of the non-zero entries of the vector x come into play. Thus,
seeking for more e¤ective methods, the iteratively reweighted l1-norm minimization has
been proposed by Candes, Wakin and Boyd in [23]. It is based on the approximation of
the l0-norm by the concave and continuous log-sum surrogate function [23, 3] and yields
the following reweighted algorithm:

x(k+1) = argmin
x

NX
i=1

jxij��xki ��+ "

s.t. y = Ax; (1.6)

where k denotes the iteration number, and xki is the ith component of the solution at the
kth iteration of the algorithm. Note that to compensate the amplitudes of the non-zero
entries of x, the argument of the l1-norm is iteratively normalized to make this norm a
better proxy of the cardinality operator. The weighting updates in the objective function
1=(jxki j+") encourage small entries of the vector x to tend to zero and avoid the inadequate
supression of large entries.

The aforementioned problems are noiseless. However, this is, in general, an oversimpli-
�cation of practical problems. In real problems a non-negligible level of noise is normally
present in the measurement vector y or modelling errors may be relevant. If some noise
is present in the observation, or x can only be assumed to be approximated by a sparse
vector, a natural variation is to relax the exact match between y and Ax to allow some
error tolerance. This leads to the following minimization problem

min
x
ky �Axk22 subject to kxk1 � �; (1.7)

which is the so-called LASSO (Least Absolute Shrinkage and Selection Operator) problem.
It has been proposed by Tibshirani in reference [25]. The unconstrained version of the
LASSO problem is given by

min
x
ky �Axk22 + � kxk1 ; (1.8)

where � is a Lagrange multiplier. This type of problems arises frequently in the context
of sparse regression in statistics [26] and feature selection in statistical learning and data
science [27,28].

So far, some relevant problems in the context of sparse signal representation have been
presented. Nevertheless, the family of cardinality minimization problems is large and
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many possible variations can be considered. Depending on the framework of application
and on performance metric used, many di¤erent convex or non-convex functions can be
considered for the de�nition of the feasible set Q of the minimum cardinality problem
(1.1), such as, for example, quality of service requirements, user rate constraints or bounds
on the available energy or power. In wireless communications, some relevant examples of
cardinality minimization problems can be found in the recent literature of sensor selection
for wireless sensor networks [29,30].

1.1.2 Cardinality-constrained optimization

Cardinality-constrained problems appear across many of the technologies that are nowa-
days under consideration for the next generation of cellular networks. In order to deal
with the huge data tra¢ c in 5G networks, the number of access nodes and the number of
communication links per unit area will be densi�ed [31]. Within this context, subset selec-
tion problems naturally arise in order to reduce the network management and the overall
system complexity. Many of the technology enablers that are currently under investigation
for the next generation of wireless networks consider cardinality-based problems. As an
example, let us enumerate some relevant problems addressed in the literature:

� Cloud-RAN. Cloud Radio Access Network (Cloud-RAN) has been proposed as a
promising network architecture [32] to cope with the immense amount of mobile
data tra¢ c in 5G cellular systems. In Cloud-RAN, the baseband signal processing
is shifted to a single Baseband Unit (BBU) pool, which is in charge of the interfer-
ence management and the resource allocation. Meanwhile, the traditional powerful
base stations are replaced by low-cost and low-power Remote Radio Heads (RRHs)
with limited processing capabilities. The RRHs are connected to the BBU pool
through optical links. In this context, the joint RRH selection and power mini-
mization problem is of paramount important and has been studied in several recent
works [33,34,35].

� Coordinated Multipoint (CoMP). CoMP transmission is an e¤ective mechanism for
mitigating the intercell inteference and increasing the system throughput in single
frequency reuse networks. Reference [36] addresses the joint network optimization
and downlink beamforming design with the objective of minimizing the total base
station power consumption.

� Device-to-device communications. It constitutes a new paradigm in cellular com-
munications. The direct connection between nearby devices is established with the
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minimal intervention of the network. The direct transmission closely located devices
improves the e¢ cient use of resources due to the local spectrum reuse. The clustering
problem in device-to-device assisted Virtual MIMO (VMIMO) systems with limited
feedback that has been presented in [37].

Cardinality-constrained problems have also been considered in many other applications,
such as, for instance in:

� Antenna selection [38,39]. In particular, reference [38] deals with the joint multicast
beamforming and antenna subset selection in multi-group multicasting.

� Sparse Principal Component Analysis (PCA) in statistics [40, 3]. PCA is a popular
tool in statistics for data analysis, data compression and data visualization. PCA is
used to reduce the dimensionality of a model, i.e., to compress data without losing
much information. The consideration of cardinality constraints leads to results that
can be more easily interpreted.

� Sensor selection [41,42,43].

1.1.3 Presentation of the general framework of the thesis

This dissertation addresses various cardinality-based problems in wireless communication
systems. In particular, the �rst part of the thesis deals with the angle of arrival estimation
in an antenna array. This problem falls within the framework of the aforementioned sparse
signal representation problems. The second part is focused on the selection of the appro-
priate subset of cooperative nodes in dense relay-assisted wireless networks and constitutes
the most recent work considered in this dissertation.

As will presented with further detail below, in modern relay-assisted wireless networks,
the number of potential relays could be large. In these scenarios, it is una¤ordable in
terms of network complexity to activate many cooperative nodes due to: i) the huge
signaling overhead needed to transmit control and data signals between the terminals and;
ii) the di¢ culty required to maintain the spatially distributed nodes in the wireless network
synchronized. Choosing a smaller number of relay nodes can enjoy of a performance close
to that of using all the potential cooperative nodes with a reduced complexity.

In order to deal with the combinatorial nature of the subset selection problems pre-
sented in this dissertation, di¤erent relaxations are proposed with the goal of obtaining
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sub-optimal algorithms that approximately solve the proposed problems with a tractable
computational cost. Namely, to address the NP-hardness of the problems addressed in
this thesis, we consider di¤erent mathematical frameworks, such as, for example, semide�-
nite programming relaxations [44], Di¤erence-of-Convex-functions (DC) programming [45],
reweighted norms [23] and the LARS/homotopy algorithm [46].

1.2 Outline of the dissertation and research contribu-
tions

The thesis is structured in six chapters. It addresses di¤erent subset selection problems
in signal processing for communications. In particular, as exposed above, our attention
is focused on two frameworks: dense relay-assisted wireless networks and angle of arrival
estimation in array processing. The next paragraphs summarize the content of each chapter
and the main research contributions. It should be pointed out that the order of chapters
follows the original timeline of the publications. Therefore, the work exposed in the initial
chapters corresponds to the journals published earlier in time, and most recent works are
presented at the end of the dissertation.

Chapter 2

The second chapter introduces some basics on sparse regularization for solving ill-posed
problems and provides a brief overview of methods for solving sparse approximation prob-
lems. This chapter is motivated by the fact that in most of applications where sparsity
plays a signi�cant role, one is dealing with ill-conditioned problems.

Chapter 3

This chapter proposes a simple, fast and accurate algorithm for �nding the angles of arrival
of multiple sources that impinge on an array of antennas. In contrast to other methods in
the literature, the proposed method is not based on ad-hoc regularization parameters and
does not require either the knowledge of the number of sources or a previous initialization.
This technique considers an structured covariance matrix model based on overcomplete
basis representation and tries to �t the unknown signal power to the sample covariance.
The �nal problem is reduced to an iterative algorithm that solves at each iteration a
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reduced-size system of equations until a stopping condition is ful�lled. This stopping
criterion is based on the residual spectrum and, to the best of author�s knowledge, it has
never been considered before in sparse signal representation.

Chapter 4

This chapter addresses the node subset selection problem in dense relay-assisted wireless
networks. In this type of scenarios, the activation of all (or many) relays is impractical or
even unfeasible (see the references [47,48,49,50,51,52]). In many practical situations the
number of potential cooperating nodes could be large, e.g., in device-to-device communi-
cation networks, and the bene�ts of the cooperation with all the relays can be outweighed
by the costs of the cooperation. These costs include the signaling overhead and the e¤orts
needed to maintain the synchronization between all the nodes [47, 48,49,50]. In this con-
text, by considering relay selection, the overall processing in the network can be simpli�ed
achieving a signi�cant reduction in the implementation complexity [47,49,50,51,52]. The
proper selection of the relay nodes is a key issue, since it has a dramatic e¤ect in the overall
system performance.

Chapter 4 deals with the multiple relay selection problem in an ad-hoc wireless relay
network with one source-destination pair. In particular, this thesis proposes a new tech-
nique for the selection of the best subset of K cooperative nodes and their corresponding
beamforming weights so that the signal-to-noise ratio (SNR) is maximized at the desti-
nation. Contrary to other approaches in the literature, the problem is addressed with
per-relay power constraints and considering second-order channel state information of the
relay channels. This problem is computationally demanding and requires an exhaustive
search over all the possible combinations. In order to reduce the complexity, a new sub-
optimal method is proposed. This technique exhibits a near-optimal performance with a
computational burden that is much lower than the one required by the exhaustive search.
The proposed method is based on the use of the l1-norm squared and the Charnes-Cooper
transformation and naturally leads to a semide�nite programming relaxation [44] with an
a¤ordable computational cost.

Chapter 5

In the �fth chapter, the joint relay assignment and beamforming optimization in a multi-
user wireless relay network is analyzed. In particular, it deals with the relay subset selection
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problem in an ad-hoc wireless relay network consisting of M source-destination pairs com-
municating, in a pairwise manner, with the help of N potential cooperative nodes. It
should be remarked that the subset assignment problem in multi-user wireless relay net-
works is challenging [53]. The main reason is that the proper design of a relay subset
selection method has to take into account the interference provoked by the simultane-
ous transmission of multiple users and this requires the development of very sophisticated
techniques.

Chapter 5 adresses two di¤erent problems:

1. The joint selection of the minimum number of relay nodes and the computation
of the corresponding distributed beamforming weights that guarantee a prede�ned
SINR at the destination nodes in a multi-user amplify-and-forward wireless relay
network. This problem is addressed considering individual power constraints at the
relays. The selection of the minimum number of active links is of practical inter-
est in wireless networks because it reduces the overall network complexity as well
as the communications and processing overhead. Furthermore, by considering the
selection of relay nodes, the links with the lowest quality are discarded and this
fact increases the robustness against link failures. The mathematical formulation
of the proposed problem involves a non-convex objective function with non-convex
constraints. This problem is reformulated as a Di¤erence-of-Convex-functions (DC)
programming problem [45] and a low-complexity sub-optimal method, based on the
Convex-Concave Procedure (CCP) [54], is proposed to solve it. The application of
this procedure leads to an iterative reweighted l1-norm [23] over the convexi�ed set
of SINR constraints.

2. The second problem considered in this chapter is the joint design of the distributed
beamforming and the selection of the best subset of K cooperative nodes that mini-
mize the total relay transmit power. This problem is addressed taking into account
the SINR requirements at the destination nodes and individual power constraints
at the relays. It involves non-convex constraints due to the SINR requirements and
binary constraints and constitutes a very challenging non-convex mixed-integer non-
linear program (MINLP) [55]. It should be remarked that leaving aside the subset
selection issue, �nding the optimal beamforming weights that minimize the total re-
lay transmit power with SINR requirements and per-relay power constraints is a hard
non-convex Quadratically Constrained Quadratic Problem (QCQP) [56,57] that has
been analyzed in [58]. In chapter 5, the joint subset selection and distributed beam-
forming computation is rewritten as a DC program and solved with a new iterative
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algorithm based on the penalty convex-concave procedure which has been recently
presented in references [59, 60]. As will be shown in chapter 5, the proposed tech-
nique constitutes a novel approach to binary non-convex MINLPs and leads to a
path-following algorithm which is able to achieve approximate solutions close to the
global optimal solutions.

As a �nal remark, let us point out that contrary to other approaches in the literature of
relay clustering in multi-user wireless relay networks, which are based on perfect channel
state information (CSI), the proposed techniques in chapter 5 can be applied in scenarios
with imperfect CSI as well.

Chapter 6

The �nal chapter presents the conclusions of the thesis and exposes some possible future
research lines.

1.3 List of publications

The work presented in this dissertation has been published or submitted for future publi-
cation in the next journal articles and conference papers [61,62,63,64].

Journal articles:

� L. Blanco and M. Nájar, "Joint distributed beamforming design and relay subset
selection in multi-user wireless relay networks: A novel DC programming approach,"
submitted to IEEE Transactions on Wireless Communications.

� L. Blanco and M. Nájar, "Sparse multiple relay selection for network beamforming
with individual power constraints using semide�nite relaxation," IEEE Transactions
on Wireless Communications, vol. 15, no.2, pp. 1206-1217, Feb. 2016.

� L. Blanco andM. Nájar, "Sparse covariance �tting for direction of arrival estimation,"
EURASIP Journal on Advances in Signal Processing, May 2012.
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Conference papers:
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(France).

� L. Blanco and M. Nájar, "Subset relay selection in wireless cooperative networks
using sparsity-inducing norms," in Proceedings of the 11th International Symposium
onWireless Communications Systems (ISWCS), 26-29 Aug. 2014, Barcelona (Spain).

� L. Blanco, M. Nájar, "Multiple relay selection in underlay cognitive networks with
per-relay power constraints," 23rd European Conference on Networks and Commu-
nications (EuCNC), 23-26 June 2014, Bologna (Italy).

� L. Blanco, M. Nájar, F. Rubio, �Estimation of superimposed complex exponentials
using covariance matching and sparsity,�Presentation at the International Confer-
ence on Trends and Perspectives in Linear Statistical Inference (LinStat), 27-31 July
2010, Tomar (Portugal).
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Chapter 2

Sparse signal processing

The aim of this chapter is to describe linear ill-posed inverse problems. In the next chapter,
the classical source location problem will be rewritten as a linear inverse problem that is ill-
posed. The solutions of this type of problems are very sensitive to noise and regularization
methods must be used to stabilize the solutions by considering some additional information
about the data. The structure of the chapter is the following. Quadratic regularization,
which is the classical tool for solving ill-posed problems, is mentioned �rst. Unfortunately,
it does not lead to sparse solutions. Due to this reason, sparse regularization techniques are
introduced and discussed in the context of signal representation with overcomplete basis.

2.1 Linear ill-posed inverse problems

Ill-posed problems appear frequently in many areas of science and engineering. This term
was introduced in the early 20-th century by Jacques Hadamard. Consider the next linear
system

~y = Ax; (2.1)

where ~y 2 RM�1 is the measured vector, A 2 RM�N is a known matrix and x is the
unknown vector that we want to estimate. It models an inverse problem; that is, a situation
where the hidden information is computed from external observations. This linear system
is said to be well-posed if it satis�es the following three requirements:

1. Existence. For each ~y, it exists a vector x such that ~y = Ax.
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2. Uniqueness. The solution is unique. Formally, if Ax1 = Ax2, then x1 = x2:

3. Stability. The solution is stable with respect to perturbations in the measured vector
~y, that is, small perturbations on ~y do not cause an arbitrary large perturbation in
the solution. In other words, the solution depends continuously on the observed data
vector ~y in some reasonable topology.

If one or more of these conditions are not ful�lled, the linear problem is said to be
ill-posed. In practice this happens when the matrix A is theoretically or numerically rank
de�cient.

The model presented in (2.1) is noiseless. This is normally an oversimpli�cation either
because of a modeling error or because a non-negligible level of noise is normally present in
the measurement. The addition of a noise term to the model (2.1) provides a mechanism
for dealing with both situations. A model including an additive noise can be expressed as

y = ~y + n = Ax+ n: (2.2)

Many problems in signal processing can be formulated as an underdetermined linear
system of equations and this is the case of the problem that is addressed in the next chapter.
For this reason, our discussion on ill-posed problems will be focused on the underdetermined
framework.

Consider a linear system of equations that has more unknowns than equations, i.e.
N > M . In this case, the system either has no solution or in�nitely many solutions. These
two situations violate the �rst and the second of the Hadamard�s conditions exposed above
and as a consequence, an underdetermined linear system is, by de�nition, an ill-posed
problem. To avoid the possibility of having no solution, we shall hereafter consider that
the matrix A is full-rank, implying that its columns span the entire space RM . If we have
in�nitely many possible solutions x of (2.1), among which there are some that may "look"
better than the others. Then, how can we �nd the suitable x? As the matrix A cannot
be directly inverted, an alternative objective function must be de�ned to solve the inverse
problem. The goal is to �nd a functional that measures how close the predicted data �ts
the measurement. The standard approach is to minimize the Euclidean distance between
the observed data and the predicted data from the model. Formally, this can be expressed
as

x̂ = min
x
ky �Axk22 : (2.3)
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The solution of this problem is well-known and is given by

x̂ = A#y; (2.4)

where A# denotes the Moore-Penrose pseudo-inverse A# = (ATA)�1AT . Unfortunately,
in presence of noise in the measurement, if the condition number of A# (the ratio between
the largest and the smallest singular value) is too large, the application of the pseudo-
inverse could lead to a solution dominated by noise. Let us analyze hereafter this e¤ect in
more detail. First of all, consider the Singular Value Decomposition (SVD) of the matrix
A

A = U�VT =
MX
i=1

�iuiv
T
i ; (2.5)

where U and V are square matrices of dimensions M and N , respectively, and � is a
M � N matrix. Furthermore, U and V are unitary matrices. Therefore, UUT = IM
and VVT = IN , where IM and IN denote identity matrices of size M and N , respectively.
Bearing in mind (2.5), the pseudo-inverse of the matrix A is given by

A#=
MX
i=1

��1i viu
T
i : (2.6)

By applying the pseudo-inverse, we can �nd the minimum least squares solution. Re-
calling (2.2), (2.5) and (2.6), it yields:

x̂ = A#y =

"
MX
j=1

��1j vju
T
j

#"
MX
i=1

�iuiv
T
i

#
x+

MX
i=1

��1i viu
T
i n: (2.7)

Let us analyze this expression. If the noise is white, the power distribution of the projection
of the noise on all the left singular vectors of A is uniform and, as consequence, Ef

��uTi n��2g
is not a function of i. By applying the pseudo-inverse, the noise components are multiplied
by the inverses of the eigenvalues of the matrix A. This issue is critical if the condition
number of A# is large, because the ampli�cation of the noise components will dominate
the �nal solution and the signal of interest will become hidden under the noise level.

To obtain a meaningful solution of an ill-posed problem, we need to consider regular-
ization methods. Much e¤ort has been devoted in the �eld of discrete ill-posed problems
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to �nd an appropriate solution less sensitive to noise. These methods incorporate some
a priori information about the problem. A possible way of regularizing ill-posed inverse
problems is to impose a constraint on the norm of the solution. If the coe¢ cients of x,
denoted by xi, with i = 1; :::; N , remain unconstrained they are more susceptible to exhibit
a high variance. By controlling the norm of the solution, we can control how large the
coe¢ cients grow. This problem can be formulated as

min
x

ky �Axk22 s.t. kxkpp � �; (2.8)

where kxkp =
"X

i

jxijp
#1=p

, with p � 0; denotes the so-called lp-norm. Consequently,

kxkpp =
X
i

jxijp. Figure 2.1 shows the geometry of lp norm for p = 0:5; 1; 2; 3.

The classical approach to regularize ill-posed problems is to control the energy of the
solution using the squared Euclidean norm (p = 2):

min
x

ky �Axk22 s.t. kxk22 � �: (2.9)

This problem is the so-called Tykhonov regularization or ridge regression [28]. Introducing
the Lagrangian, it is easy to obtain the next closed-form solution

xTikhonov� =
�
ATA+�IN

��1
ATy; (2.10)

where � is a Lagrange multiplier. Note that inclusion of � makes the problem non-singular
even if ATA is not invertible. The use of the Euclidean norm is widespread in a plethora
of �elds of engineering. This is principally due to its simplicity as it has been shown in the
closed-form solution exposed above. Nevertheless, the following question arises: is kxk22
the best choice in (2.8)? It depends. The selection of a proper regularizer depends on
the property of the solution that we want to promote and, consequently, it depends on
the particular application. The traditional approach is to consider energy constraints (as
in the Tykhonov problem) or to promote di¤erent forms of smoothness in the solution,
yielding regularizers based on the l2-norm of x or its derivatives. Unfortunately, Tykhonov
regularization leads to non-sparse solutions which typically have non-zero values associated
to all the coe¢ cients. While the Tykhonov is an e¤ective way of achieving numerical
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stability and increasing the predictive performance, it does not address any problem related
to the parsimony of the model or the interpretability of the coe¢ cient values. On the
contrary, in the last decade, the use of sparsity-promoting norms [5, 16] has attracted
the interest of researchers in many areas. This is the case of lp-norms with 0 � p � 1
in the problem (2.8), which enforce sparsity and promote solutions few non-zero entries.
Unfortunately, the problem (2.8) is not convex for p < 1 and therefore, the l1-norm (p = 1)
is preferred. l1 regularization has many of the bene�cial properties of the l2 regularization,
but yields sparse solutions that can be more easily interpreted.

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5
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p = 0.5

p = 1

p = 2

p = 3

Figure 2.1: Geometry of the lp norm in two dimensions for di¤erent values of p.

2.2 Sparse signal representation

Sparse representation of signals over redundant dictionaries is a hot topic that has at-
tracted the interest of researchers in many �elds during the last decade, such as image
reconstruction [65], variable selection [66] and compressed sensing [67]. The most basic
problem aims to �nd the sparsest vector x such that y = Ax, where y is the measured
vector and A is known. This matrix A is called dictionary and is overcomplete, i.e. it has
more columns that rows. As a consequence, without imposing a sparsity prior on x, the
set of equations y = Ax is underdetermined and admits many solutions. Formally, this
can be expressed as

min
x
kxk0 s.t. y = Ax; (2.11)

18



where k�k0 denotes the l0-norm [1]. In presence of noise, the equality constraint can be
relaxed in order to allow some error tolerance

min
x
kxk0 subject to ky �Axk22 � ": (2.12)

If there are no restrictions on A and y these problems are intractable NP-hard combinato-
rial problems, in general [14]. Nonetheless, the development of computationally tractable
algorithms for solving sparse approximation problems have deserved a lot of attention.
These methods can be classi�ed into �ve major families of techniques:

1. Brute force: Solve the combinatorial problem by searching through all possible sup-
port sets. In general, this approach is not feasible in terms of computational com-
plexity, even for optimization problems of moderate size.

2. Non-convex optimization: Transform the original problem involving the l0-norm into
another related non-convex problem and �nd a stationary point [3,23,68].

3. Bayesian framework : Assume a prior distribution of the coe¢ cients that promotes
sparsity [69,70].

4. Greedy pursuit methods: Iteratively re�ne the solution of the sparse approximation
problem by successively identifying the coe¢ cients that achieve the greatest improve-
ment in the approximation [17,71].

5. Convex relaxations: Replace the NP-hard combinatorial problem with a convex op-
timization problem. The traditional approach is to replace the non-convex l0-norm
with a convex surrogate [6,72,73].

Among all these techniques greedy pursuit methods and convex relaxations have at-
tracted a special interest. Both families of techniques provide computationally feasible al-
gorithms which are able to obtain the correct solution under some well-de�ned conditions.
If the vector x is su¢ ciently sparse, the problem in (2.11) can be relaxed by replacing the
l0-norm by a l1-norm, de�ned as kxk1 =

P
i jxij, leading to a convex optimization problem

with a lower computational burden

min
x
kxk1 s.t. y = Ax: (2.13)
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The conditions that ensure the uniqueness of the solution were studied in [19]. If the
observation vector is contaminated by noise, the aforementioned equality constraint can
be relaxed as

min
x
kxk1 subject to ky �Axk22 � ": (2.14)

This problem can be alternatively expressed as

min
x
ky �Axk22 subject to kxk1 � �; (2.15)

where the constraint kxk1 � �, with � � 0, promotes sparsity. This formulation is
known as LASSO (Least Absolute Shrinkage and Selector Operator) and was originally
proposed by Tibishirani in [74]. The augmented formulation of (2.15) is well-known in
signal processing and is commonly called Basis Pursuit Denoising (BPDN) [73]:

min
x
ky �Axk22 + � kxk1 with � � 0 : (2.16)

The three formulations (2.14)-(2.16) are equivalent in the sense that the sets of solutions
are the same for all the possible choices of the parameters � ; "; �. To go from one formu-
lation to the other we only need a proper correspondence of the parameters. Nevertheless,
even if the mapping between the regularization parameters exists, this correspondence is
not trivial and it is possibly nonlinear and discontinuous [75].

When the vector x is real, the LASSO problem (2.15), or its equivalent formulation
(2.16), can be solved with standard quadratic programming techniques [74]. However,
these techniques are time demanding and faster methods are preferred. Osborne et al. [76]
and later Efron et al. [46] proposed an e¢ cient algorithm for solving the LASSO. This
algorithm is known as "homotopy method" [76] or LARS (Least Angle Regression) [46].
In this thesis this technique will be referred to as LARS/homotopy. A variant of the
traditional LASSO, that will be specially useful for the covariance �tting problem that will
be addressed later in Chapter 3, is the so-called positive LASSO. In this case, an additional
constraint on the entries of the vector x is considered in the LASSO problem to enforce
the components of the vector to be non-negative:

min
x
ky �Axk22

subject to kxk1 � � and xi � 0 8i:
(2.17)

The positive LASSO problem (2.17) can be solved in a e¢ cient way introducing some
slight modi�cations in the traditional LARS/homotopy. This approach was proposed by
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Efron et al. in [46], but is not as widely known as the traditional one. Brie�y, the algorithm
starts with a very large value of � , and gradually decreases the regularization parameter,
until the desired value is attained. As � evolves, the optimal solution for a given � ,
x (�) moves on a piecewise a¢ ne path. As the minimizer x (�) is a piecewise-linear function
of � we only need to �nd the critical regularization parameters � 0; � 1; � 2; :::; � stop where the
slope changes [75], these values are the so-called breakpoints. The algorithm starts with
x = 0 and operates in an iterative fashion calculating the critical regularization parameters
� 0 > � 1 > � � � > � stop � 0 and the associated minimizers x (� 0) ; x (� 1) ; :::;x (� stop) where
an inactive component of x becomes positive or an active element becomes equal to zero.
Normally, the number of active components increases as � decreases. Nevertheless, this
fact cannot be guaranteed: at some breakpoints, some entries may need to be removed
from the active set.
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Chapter 3

Sparse covariance �tting for source
location

This chapter proposes a new algorithm for �nding the angles of arrival of multiple uncor-
related sources impinging on a uniform linear array of sensors. The method is based on
sparse signal representation and does not require either the knowledge of the number of the
sources or a previous initialization. The proposed technique considers a covariance matrix
model based on overcomplete basis representation and tries to �t the unknown signal pow-
ers to the sample covariance matrix. Sparsity is enforced by means of an l1-norm penalty.
The �nal problem is reformulated as an l1-penalized least-squares functional with non-
negative constraints that can be solved e¢ ciently using the LARS/homotopy algorithm.
The method described herein is able to provide high resolution with a very low computa-
tional burden. It proceeds in an iterative fashion, solving at each iteration a small linear
system of equations until a stopping condition is ful�lled. The proposed stopping criterion
is based on the residual spectrum and arises in a natural way when the LARS/homotopy
is applied to the considered objective function.

3.1 State of the art

3.1.1 Classical methods for �nding the angles of arrival

The estimation of the Directions of Arrival (DoA) of multiple sources using sensor arrays
is an old problem and plays a key role in array signal processing. During the last �ve
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decades, a plethora of methods have been proposed for �nding the directions of arrival of
di¤erent narrowband signals impinging on a passive array of sensors. These methods can
be divided into two categories: parametric and nonparametric estimators.

Nonparametric methods include beamforming and subspace methods. The former relies
on scanning the power from di¤erent locations. Exponents of this category are conventional
beamformer [77] and Capon�s method [78]. Conventional beamformer, a.k.a. Bartlett
beamformer, su¤ers from poor spatial resolution and cannot resolve sources within the
Rayleigh resolution limit [77]. As it is well known, this lack of resolution can be miti-
gated only by increasing the number of sensors of the array because improving the SNR
or increasing the number of time observations does not increase the resolution. On the
contrary, Capon�s minimum variance method can resolve sources within the Rayleigh cell
if the SNR is high enough, the number of observations is su¢ cient and the sources are not
correlated. Unfortunately, in practice, Capon�s power pro�le is strongly dependent on the
beamwidth, which, on its turn, depends on the explored direction and in some scenarios
this could lead to a resolution loss. To counteract this drawback, an estimator of the
spectral density obtained from the Capon�s power estimate was derived in [79] achieving
better resolution properties. Here, this method will be referred as Normalized Capon.
Another well-known category of nonparametric DoA estimators is the one composed by
subspace methods. These algorithms are able to provide high-resolution and outperform
beamforming methods. The most prominent member of this family is MUSIC (MUltiple
SIgnals Classi�cation) [80], it relies on an appropriate separation between signal and noise
subspaces. This characterization is costly and needs a previous estimation of the number
of incoming signals.

Parametric methods based on the Maximum Likelihood criterion [81] exhibit a good
performance at expenses of a high computational cost. These techniques estimate the
parameters of a given model instead of searching the maxima of the spatial spectrum.
Unfortunately, they often lead to di¢ cult multidimensional optimization problems with a
heavy computational burden.

An interesting algorithm that lies in between the class of parametric and nonparametric
techniques is the CLEAN algorithm. This method was �rstly introduced by Högbom in [82]
and have applications in several areas: array signal processing, image processing, radar and
astronomy. Recently, Stoica and Moses have shed light on the semiparametric nature of
the algorithm [83]. Broadly speaking, it operates in a recursive manner subtracting at each
iteration a fraction of the strongest signal from the observed spatial spectrum.

For those readers interested on a more detailed and comprehensive summary of angle
of arrival estimators, the authors refer them to [77] and [84].
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3.1.2 Sparse representation in source location

Although there are some pioneering studies carried out in the late nineties, e.g. [85] and
[86], the application of sparse representation to direction �nding has gained noticeable
interest during the last decade. Recent techniques based on sparse representation show
promising results that outperform conventional high-resolution methods such as MUSIC.
In [85] a recursive weighted minimum-norm algorithm called FOCUSS was presented. This
algorithm considers a single snapshot and requires a proper initialization. The extension
to the multiple-snapshot case was carried out in [87] and it is known as M-FOCUSS.
Unfortunately, as it is described in [88], this technique is computationally expensive and
requires the tuning of two hyperparameters that can a¤ect the performance of the method
signi�cantly.

If multiple snapshots can be collected in an array of sensors, they can be used to im-
prove the estimation of the angles of arrival. Several approaches for summarizing multiple
observations have been proposed in the literature. The �rst of these approaches is the
so-called l1-SVD presented by Malioutov et al. in [89]. This method is based on the appli-
cation of a Singular Value Decomposition (SVD) over the received data matrix and leads
to a second-order cone optimization problem. This algorithm requires an initial estima-
tion of the number of sources. Although it does not have to be exact, a small error is
needed for a good performance. An underestimation or an overestimation of the number
of sources provokes a degradation in the performance of the method. Even if the e¤ect
of an incorrect determination of the number of sources has no catastrophic consequences,
such as the disappearance of the sources in MUSIC, the performance of the algorithm can
be considerably degraded. Another important drawback is that l1-SVD depends on a user-
de�ned parameter which is not trivial to select. An alternative approach to summarize
multiple snapshots is the use of mixed norms over Multiple Measurement Vectors (MMV)
that share the same sparsity pattern [87], [90]. This formulation is useful in array signal
processing, specially, when the number of snapshots is smaller than the number of sensors.
If we assume that the snapshots are collected during the coherence time of the angles, the
position of the sources keep identical among the snapshots; the only di¤erence between
them resides in the amplitudes of the impinging rays. Basically, this approach, which is
out of the scope of this chapter, tries to combine multiple snapshots using the l2 norm and
to promote sparsity on the spatial dimension by means of the l1-norm. Unfortunately, this
joint optimization problem is complex and requires a high computational burden. When
the number of snapshots increases, the computational load becomes too high for practical
real-time source location. Recently, new techniques based on a covariance matrix �tting
approach have been considered to summarize multiple snapshots, e. g. [91], [92] and [93].
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Basically, these methods try to �t the covariance matrix to a certain model. The main ad-
vantage of covariance �tting approaches is that they lead to convex optimization problems
with an a¤ordable computational burden. Moreover, they do not require a previous esti-
mation of the number of incoming sources or heavy computations such as SVD of the data.
It should be also pointed out that since these methods work directly with the covariance
matrix, less storage space is needed because they do not need to store huge amounts of
real-time data. The technique proposed by T. Yardibi et al. in [91] leads to an optimization
problem that can be solved e¢ ciently using Quadratic Programming (QP). In the case of
the approach exposed by J. S. Picard et al. in [92], the solution is obtained by means of
Linear Programming (LP). The main drawback of this last method is that it depends on
a user de�ned parameter that is di¢ cult to adjust. In the same way, the authors of [94]
propose a new method which is based on a hyperparameter that has been heuristically
determined. On the contrary, Stoica et al. propose in [93] and [95] an iterative algorithm
named SPICE (SParse Iterative Covariance-based Estimation approach), that can be used
in noisy data scenarios without the need for choosing any hyperparameter. The major
drawback of this method is that it needs to be initialized.

3.2 Chaper contribution

This chapter proposes a simple, fast and accurate algorithm for �nding the angles of arrival
of multiple sources impinging on a uniform linear array. In contrast to other methods in
the literature, the proposed technique does not depend on user-de�ned parameters and
does not require either the knowledge of the number of sources or initialization. It assumes
white noise and that the point sources are uncorrelated.

The method considers a structured covariance matrix model based on over-complete
basis representation and tries to �t the unknown signal powers of the model to the sample
covariance. Sparsity is promoted by means of a l1-norm penalty imposed on the powers.
The �nal problem is reduced to an objective function with a non-negative constraint that
can be solved e¢ ciently using the LARS/homotopy algorithm, which is, in general, faster
than QP [46] and LP [75]. The method described herein proceeds in an iterative manner
solving at each iteration a small linear system of equations until a stopping condition is
ful�lled. The proposed stopping criterion is based on the residual spectrum and arises in
a natural way when the LARS/homotopy is applied to the considered objective function.
To the best of our knowledge this stopping condition has never been considered before in
sparse signal representation.
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3.3 The proposed method

Consider L narrowband signals fxi [k]gLi=1 impinging on an array of M sensors. The kth
observation can be expressed as:

y [k] = S (�)x [k] +w [k] k = 1; : : : ; N; (3.1)

where x [k] =
�
x1 [k] � � � xL [k]

�T
is the vector of unknown source signals, the matrix

S (�) 2 CM�L is the collection of the steering vectors corresponding to the angles of arrival
of the sources � = [�1; : : : ; �L]

T , that is, S (�) = [s (�1) � � � s (�L)]; andw [k] 2 CM�1 denotes
a zero-mean additive noise, spatially, and temporally white, independent of the sources with
covariance matrix �2wIM , where IM denotes the identity matrix of size M .

Taking into account (3.1) the spatial covariance matrix can be expressed as

R = E
�
y [k]yH [k]

	
= S (�)PSH(�)+�2wIM ; (3.2)

where P = E
�
x [k]xH [k]

	
. The classical direction �nding problem can be reformulated

as a sparse representation problem. With this aim, let us consider an exploration grid
of G equally spaced angles � = f�1; : : : ; �Gg with G � M and G � L. If the set of
angles of arrival of the impinging signals � is a subset of �; the received signal model (3.1)
can be rewritten in terms of an overcomplete matrix SG constructed by the horizontal
concatenation of the steering vectors corresponding to all the potential source locations.

y [k] = SGxG [k] +w [k] ; (3.3)

where SG 2 CM�G contains the steering vectors corresponding to the angles of the grid
SG = [s1 � � � sG], with si = s(�i), and xG [k] 2 CG�1 is a sparse vector. The non-zero entries
of xG [k] are the positions that corresponds to the source locations. In other words, the
nth element of xG [k] is di¤erent from zero and equal to the qth component of the vector
x [k] de�ned in (3.1), denoted by xq [k] ; if and only if �n = �q. It is important to point
out that the matrix SG is known and does not depend on the source locations.

The assumption that the set of angles of arrival is a subset of � is only required for
the derivation of the algorithm. Obviously, it does not always hold. Actually, this is a
common assumption in many exploration methods in the direction �nding literature (e.g.,
Capon, Normalized Capon, MUSIC, etc). In the case that � * �; the contribution of the
sources leaks into the neighboring elements of the grid.

Bearing in mind (3.3) and assuming a white noise with covariance matrix �2wIM , the
spatial covariance matrix of (3.1) can be rewritten in terms of SG
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R = E
�
y [k]yH [k]

	
= SGDS

H
G + �2wIM ; (3.4)

with D =E
�
xG [k]x

H
G [k]

	
. An important remark is that D 2 CG�G is di¤erent to the

source covariance matrix P 2 CL�L introduced in (3.2). Actually, since only L2 entries out
of G2 can di¤er from zero, D is a sparse matrix.

A common assumption in many direction �nding problems is that sources are uncor-
related. Under this assumption, the matrix D is a diagonal matrix with only L non-zero
entries given by diag (D) =

�
p1 � � � pG

�T
= p, where p 2 RG�1+ . Note that p is a

G�1 sparse vector with non-zero entries at positions corresponding to source locations.
Furthermore, the elements of p are real-valued and non-negative.

To cast the problem into a positive LASSO with real variables let us make some manipu-
lations on (3.4). Applying the next property of vectorization vec fABCg = AT
B vec fBg
to (3.4), it yields

vec fRg = S�G 
 SG vec fDg+ �2w vec fIMg ; (3.5)

where 
 and vec f�g denote the Kronecker product and the vectorization operator, respec-
tively. It should be remarked that the result of S�G 
 SG 2 CM

2�G2 :

Since D is a diagonal matrix because the sources are uncorrelated, only G columns of
S�G
SG have to be taken into account. Using this fact, the dimensionality of the problem
can be reduced. Hence, it is straightforward to rewrite the expression (3.5) in terms of
vector p just removing some columns of S�G 
 SG:

vec fRg = ~Ap+ �2w vec fIMg ; (3.6)

with ~A= [ s�1
s1 s�2
s2 � � � s�G
sG ]. Note that ~A 2 CM2�G:

The complex-valued equality in (3.6), can be transformed into a real-valued one by
separating the real and the imaginary parts of the matrices involved in expression (3.6).
The last equation can be reformulated as

�
rr
ri

�
=

�
~Ar

~Ai

�
p+

�
�2w vec fIMg

0M 2

�
; (3.7)

where

rr = <fvec [R]g ~Ar = <f~Ag
ri = =fvec [R]g ~Ai = =f~Ag

:
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In the expression (3.7), vecfIMg denotes the vectorization of the identity matrix of
dimensions M �M and 0M2 is a column vector of zeros of lengthM2. The operators <f�g
and =f�g denote the real and the imaginary part of its argument, respectively.
More compactly, the expression (3.7) can be rewritten as

r = Ap+ n; (3.8)

with obvious de�nitions for r,A, p, and n. Note that r and n 2 R2M2�1 andA 2 R2M2�G.

Unfortunately, the spatial covariance matrix is unknown in practice and is normally re-
placed by the sample covariance matrix R̂ obtained from a set of N observations fy [k]gNi=1,
given by R̂ = 1

N

PN
k=1 y [k]y

H [k] : To estimate p, let us consider the following constrained
least-squares problem

min
p
kr̂�Apk22

subject to pi � 0 i = 1; : : : ; G

kpk1 =
GP
j=1

pj � � with � � 0;
(3.9)

where r̂ =

24 <nvec(R̂)o
=
n
vec(R̂)

o 35 :
Note that (3.9) is a positive LASSO problem. The main idea behind the formulation

presented in (3.9) is to �t the unknown powers to the model such that the solution is
sparse. The method tries to minimize the residual, or in other words, tries to maintain the
�delity of the sparse representation with the estimated sample covariance matrix subject
to a non-negative constraint on the powers and

PG
j=1 pj � �: This last constraint promotes

sparsity, as it was exposed in (2.15), but also imposes a bound on the received signal power.
Unfortunately, the parameter � is unknown and has to be estimated.

The solution of the problem (3.9) is very sensitive to the value of �, a little error in
the estimation of this parameter can lead to a wrong solution vector. To overcome this
drawback, instead of solving (3.9), let us consider the next equivalent formulation

min
p
kr̂�Apk22 + � kpk1

s.t. � � 0; pi � 0 i = 1; : : : ; G:
(3.10)

Problems (3.9) and (3.10) are equivalent in the sense that the path of solutions of (3.9)
parameterized by a positive � matches with the solution path (3.10) as � varies. To go
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from one formulation to the other one, we need to �nd the proper correspondence between
the parameters � and �.

The problem (3.10) can be solved with the LARS/homotopy algorithm for the positive
LASSO problem. This method operates in an iterative fashion computing the critical
regularization parameters � 0 > � 1 > � � � > � stop � 0 and the associated minimizers p (� 0),
p (� 1),� � �, p (� stop), where an inactive component of p becomes positive or an active element
becomes equal to zero. Let us remark that there is only one new candidate to enter or
leave the active set at each iteration (this is the �one at a time condition�exposed by Efron
et al. in reference [46]).

The algorithm is based on the computation of the so-called vector of residual correla-
tions, or just residual correlation, b (�)= AT (r̂�Ap (�)) at each iteration. The method
starts with p = 0, which is the solution of (3.10) for all the � � � 0 = 2max

i

�
AT r̂

�
i
,

where
�
AT r̂

�
i
denotes the ith component of the vector AT r̂, and proceeds in an iterative

manner, solving at each iteration a linear system of equations with a reduced order. The
whole algorithm is described in Appendix 3.A.3 and summarized in Algorithm 1 (See the
references [46,96,97,28] for further details). This iterative procedure must be halted when
a stopping condition is satis�ed. This stopping criterion, will be presented in the next
Section.

It should be pointed out that the least squares error of the covariance �tting method
exposed in (3.10) decreases at each iteration of the LARS/homotopy algorithm. This result
is justi�ed by the next two theorems.

Theorem 3.1 The sum of the powers increases monotonically at each iteration of the
algorithm. Given two vectors with non-negative elements p(�n+1) and p(�n) that are min-
imizers of (3.10) for two breakpoints �n+1 and �n, respectively, with �n > �n+1, it can be
stated that



p(�n+1)

1�kp(�n)k1 :
Proof: See Appendix 3.A.1.

Theorem 3.2 The least squares error kr̂�Ap(�)k22 decreases at each iteration of the
LARS/homotopy algorithm. Given two vectors with non-negative elements p(�n) and
p(�n+1) that are minimizers of (3.10) for two consecutive breakpoints �n and �n+1 of the
LARS/homotopy, with �n > �n+1, it can be stated that kr̂�Ap(�n+1)k22 � kr̂�Ap(�n)k

2
2 :

Proof: See Appendix 3.A.2.
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Algorithm 1 Proposed method
INITIALIZATION: p = 0, � 0 = 2max

i

�
AT r̂

�
i
, n = 0

J = active set = ? ; I = inactive set = J c

while 6=stopping criterion and 9 i 2 I such that bi > 0 do
1) Compute the residual correlation b = AT (r̂�Ap)
2) Determine the maximal components of b. These will be the non-zero elements of
p(�n) (active components).

J = argmax fbjg, I = J c

3) Calculate the update direction u such that all the active components lead to an
uniform decrease of the residual correlation (equiangular direction).

uJ =
�
AT
JAJ

��1
1J

4) Compute the step size 
 such that a new element of the b becomes equal to the
maximal ones (9 i 2 I such that bi (�n+1) = bj2J (�n+1)) or one non-zero component
of p becomes zero (9 j 2 J such that pj (�n+1) = 0).
5) Actualize p p+ 
u; �n+1 = �n � 2
; n = n+ 1

end while

3.3.1 Stopping criterion: the cumulative spectrum

The de�nition of an appropriate stopping criterion is of paramount importance because it
determines the �nal regularization parameter � stop and consequently the number of active
positions in the solution vector. In general, larger values of � produce sparser solutions.
Nevertheless, this fact cannot be guaranteed: at some breakpoints, some entries may need
to be removed from the active set.

Most of the traditional approaches exposed in the literature for choosing the regular-
ization parameter in discrete ill-posed problems are based on the norm of the residual error
in one way or another, e. g. discrepancy principle, cross validation and the L-curve. Nev-
ertheless, recent publications [98], [99] suggest the use of a new parameter-choice method
based on the residual spectrum. This technique is based on the evaluation of the shape of
the Fourier transform of the residual error. To the best of our knowledge, this approach
has never been used as a stopping criterion in sparse representation problems. The method
exposed herein is inspired in the same idea with some slight modi�cations. The main di¤er-
ence resides in the fact that no Fourier transform needs to be computed over the residual,
as it will be exposed later on, the spatial spectrum of the residual arises in a natural way
when the LARS/homotopy is applied to (3.10). The following result is the key point of
the stopping criterion proposed in this chapter.
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Theorem 3.3 When the LARS/homotopy is applied to the problem (3.10), the residual
correlation at the k-th iteration of the algorithm, expressed as b (� k)=AT (r̂ � Ap(� k)),
is equivalent to the Bartlett estimator applied to the residual covariance matrix Ĉk =

R̂�
GP
i=1

pi (� k) sis
H
i
. Then, the ith component of the vector of residual correlations satis�es

bi(� k) = s
H
i
Ĉksi.

Proof: See Appendix 3.A.4

This theorem provides an alternative interpretation of the residual correlation at the
kth iteration b (� k) which can be seen as a residual spatial spectrum. Bearing in mind
this idea and under the assumption that the noise is zero-mean and spatially white, the
following parameter-choice method is proposed: to stop as soon as the residual correlation
resembles white noise.

Under the assumption that the noise is spatially white, the power is distributed uni-
formly over all the angles of arrival and the spatial spectrum has to be �at. To determine
whether the residual correlation corresponds to a white noise spectrum a statistical tool
has to be considered. Several tests are available in the literature to test the hypothesis of
white noise. Herein, the metric that will be considered to see if the residual looks like noise
is:

ck (l) =

lP
i=1

jbi (�k)j

GP
i=1

jbi (�k)j
l = 1; � � � ; G; (3.11)

where the subindex k denotes the kth iteration of the LARS/homotopy algorithm, with
k = 0; � � � ; kstop. The metric ck is a slight modi�cation of the conventional normalized
cumulative periodogram proposed by Bartlett in [100] and later by Durbin in [101] . Tra-
ditionally, the cumulative periodogram has been de�ned for real-valued time series. In the
real case, the spectrum is symmetric and only half of the spectrum needs to be computed.
However, it can be easily extended to embrace complex-valued vectors as it is shown in
(3.11). Throughout this entire chapter, the metric presented in (3.11) will be referred to
as Normalized Cumulative Spectrum (NCS).

For an ideal white noise the plot of the NCS is a straight line and resembles the cu-
mulative distribution of a uniform distribution. Thus, any distributional test, such as
the Kolmogorov-Smirnov (K-S) test, can be considered to determine the �goodness of �t�
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between the cumulative spectrum and the theoretical straight line. In [100] Bartlett pro-
posed the use of the Kolmogorov-Smirnov test which is based on the largest deviation in
absolute value between the cumulative spectrum and the theoretical straight line. The K-S
test rejects the hypothesis of white noise whenever the maximum deviation between the
cumulative spectrum and the straight line is too large. On the contrary, the cumulative
spectrum is considered white noise if it lies within the Kolmogorov-Smirnov limits. The
upper and the lower K-S limits, as a function of index l; are given by

l

G
� �p

MN
; (3.12)

where � = 1:36 for the 95% con�dence band and � = 1:63 for the 99% band.

Notice that the NCS does not require an accurate estimation of the noise power at the
receiver. Since the cumulative spectrum (3.11) is normalized with respect to the average
power at each kth iteration, the decision metric only depends on the shape of the spatial
spectrum.

The proposed stopping condition is: to stop as soon as the residual correlation resembles
white noise, that is, when the NCS lies within the Kolmogorov-Smirnov limits.

3.4 Numerical results

The aim of this Section is to analyze the performance of the covariance �tting method
proposed in this chapter. To carry out this objective, some simulations have been done
in Matlab. Throughout the simulations, a uniform grid with 1o of resolution has been
considered for all the analyzed techniques. Furthermore, a zero-mean white Gaussian noise
with power �2w = 1 has been considered. The generated source signals are uncorrelated
and distributed as circularly symmetric i.i.d. complex Gaussian variables with zero mean.
Since the same power P will be considered for all the sources, throughout this entire section
the signal to noise ratio (SNR) is de�ned by SNR(dB) = 10 log10(

P
�2w
):

To illustrate the algorithm and the new stopping condition based on the cumulative
spectrum, we have considered four uncorrelated sources located at -36o, -30o, 30o, 50o

that impinge on a uniform linear array (ULA) with M = 10 sensors separated by half
the wavelength. The SNR is set to 0 dB and the sample covariance matrix is computed
with N = 600 snapshots. Figure 3.1 and Figure 3.2 show the evolution of the normal-
ized cumulative spectrum and the vector of residual correlations, respectively. As it is
shown in Figure 3.1, the algorithm stops after 16 iterations, when the NCS lies within the
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Kolmogorov-Smirnov limits of the 99% con�dence band. The �nal solution p is shown in
the Figure 3.3. Note that the residual spectrum of the �nal solution in Figure 3.2 is almost
�at and the residual correlation resembles white noise.
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Figure 3.1: Cumulative Spectrum as a function of the angle index. The scenario is composed by four
sources located at � = [�36 o ;�30 o ; 30 o ; 50 o ]; M = 10 sensors; N = 600 snapshots, SNR = 0 dB. The
�nal solution is achieved after 16 iterations of the LARS/homotopy and it is chosen as the �rst one that
lies within the Kolmogorov-Smirnov limits of the 99% con�dence band.

Next, the probability of resolution of the covariance �tting method as a function of the
SNR is investigated. With this aim, we have considered two uncorrelated sources located
at -36o and -30o that impinge on a ULA with M = 9 sensors. Both sources transmit with
the same power and the sample covariance has been computed with N = 1000 snapshots.
Figure 3.4 shows the results of the covariance �tting method compared to other classical
estimators: MUSIC [80], Capon [78] and Normalized Capon [79]. In order to make a
fair comparison between the di¤erent techniques, the number of sources of the MUSIC
algorithm has been estimated with the Akaike Information Criterion (AIC) [83]. The
curves in Figure 3.4 are averaged over 300 independent simulation runs. From this �gure,
it is clear that the proposed covariance �tting technique outperforms the other classical
estimators and it is about 6 dB better than the MUSIC algorithm and about 12 dB better
than the Normalized Capon method.
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Figure 3.2: Evolution of the vector of residual correlations b with the iterations. The �nal solution is
achieved after 16 iterations and is chosen as the �rst one that lies within the Kolmogorov-Smirnov limits
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Figure 3.3: The power estimate of the proposed covariance matrix �tting method. Final solution
p obtained by the LARS/homotopy after 16 iterations. The settings are: four sources located at
� = [�36 o ;�30 o ; 30 o ; 50 o ]; M = 10 sensors; N = 600 snapshots, SNR = 0 dB.
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Next, the performance of the proposed method in terms of Root Mean Square Error
(RMSE) is analyzed and presented in Figure 3.5. Two uncorrelated sources separated
by �� = 6o that impinge on an array of M = 9 sensors were taken into account in the
simulations. In this case, the positions of the sources do not correspond to the angles of
the grid. With this aim, the angle of the �rst source �1 is generated as a random variable
following a uniform distribution between -80o and 80o and the angle of the second source is
generated as �2 = �1+��: The sample covariance has been computed with 900 snapshots.
Figure 3.5 shows the RMSE of the proposed method and MUSIC as a function of the SNR
as long as the two sources are resolved with a probability equal to 1. In the case of MUSIC
the determination of the number of signal sources is performed by the AIC. The two curves
are based on the average of 300 independent runs. From Figure 3.5 it can be concluded
that at low SNR the proposed method outperforms MUSIC. When the SNR increases both
methods tends to exhibit the same performance.

Finally, the resolution capability of the method as a function of the number of snapshots
is investigated. The scenario considered for this purpose is the following: two sources
located at �1 = �36o and �1 = �30o that impinge on a ULA with M = 9 sensors. In
this case, the transmitted signals have constant modulus, which is a common situation
in communications applications, s1(t) = ej'1(t) and s2(t) = ej'2(t). The signal phases
f'k(t)g2k=1 are independent and follow a uniform distribution in [0; 2�]. Figure 3.6 shows
the probability of resolution of the proposed method and MUSIC as a function of the
number of snapshots N . In this case the signal to noise ratio is �xed to 1 dB. As in
the previous cases, in order to make a fair comparison between the two techniques, the
number of sources of the MUSIC algorithm has been determined using AIC. The curves
were obtained by averaging the results of 500 independent trials. Note that the covariance
�tting method clearly outperforms MUSIC and is able to resolve the two sources with a
probability greater than 95% if N � 30:
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3.5 Conclusions

A new method for �nding the directions of arrival of multiple sources that impinge on
a ULA has been presented in this chapter. The proposed technique is based on sparse
signal representation and outperforms classical direction �nding algorithms, even subspace
methods, in terms of RMSE and probability of resolution. The proposed technique assumes
white noise and uncorrelated point sources. Furthermore, it does not require either the
knowledge of the number of sources or a previous initialization.
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3.A Appendix

3.A.1 Proof of Theorem 3.1

The LARS/homotopy provides all the breakpoints � 0 > � 1 > � � � > � stop � 0 and the
associated solutions p(� 0);p(� 1); : : : ;p(� stop) where a new component enter or leaves the
support (the set of active elements) of p(�): It can be proved that the sum of powers
increases monotonically at each iteration of the algorithm. Suppose two non-negative
vectors p(�n) and p(�n+1) that are minimizers of (3.10) for the regularization parameters
�n and �n+1, respectively, with �n > �n+1 � 0: The following inequality holds for the
breakpoint �n

kr̂�Ap (�n)k22 + �n kp (�n)k1 � kr̂�Ap (�n+1)k
2
2 + �n kp (�n+1)k1 : (3.13)

Note that the regularization parameter �n is the same on both sides of the inequality. The
expression on the right-hand side of the inequality (3.13) is equal to kr̂�Ap (�n+1)k22 +
�n+1 kp (�n+1)k1 +(�n� �n+1) kp (�n+1)k1 : Therefore, the expression (3.13) can be rewrit-
ten as

kr̂�Ap (�n)k22+�n kp (�n)k1 � kr̂�Ap (�n+1)k
2
2+�n+1 kp (�n+1)k1+(�n��n+1) kp (�n+1)k1 : (3.14)

By using minimization properties, if p (�n+1) is the minimizer of (3.10) for the regular-
ization parameter �n+1. Then, next inequality holds

kr̂�Ap (�n+1)k22 + �n+1 kp (�n+1)k1 � kr̂�Ap (�n)k
2
2 + �n+1 kp (�n)k1 : (3.15)

Note that the regularization parameter �n+1 is the same on both sides of the inequality.
Bearing in mind (3.15) and (3.14), it is straightforward to obtain

kr̂�Ap (�n)k22 + �n kp (�n)k1 � kr̂�Ap (�n)k
2
2 + �n+1 kp (�n)k1 + (�n � �n+1) kp (�n+1)k1 : (3.16)

If the term �n kp (�n)k1 is added and subtracted from expression on the right-hand side
of the inequality (3.16), the next expression is obtained

kr̂�Ap (�n)k22 + �n kp (�n)k1 � kr̂�Ap (�n)k22 + �n kp (�n)k1
+(�n � �n+1) (kp (�n+1)k1 � kp (�n)k1) :

(3.17)

Therefore, we can conclude that (�n��n+1)( kp(�n+1)k1�kp(�n)k1 ) � 0. As �n > �n+1 �
0; then kp(�n+1)k1�kp(�n)k1� 0. Finally, we obtain kp(�n+1)k1�kp(�n)k1 :
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3.A.2 Proof of Theorem 3.2

If p(�n+1) is a vector with non-negative components that minimizes the problem (3.10) for
�n+1 > 0, then the following inequality is ful�lled

kr̂�Ap(�n+1)k22 + �n+1 kp(�n+1)k1 � kr̂�Ap(�n)k22 + �n+1 kp(�n)k1 ; (3.18)

which can be rewritten as

�n+1(kp(�n+1)k1 � kp(�n)k1) � kr̂�Ap(�n)k22 � kr̂�Ap(�n+1)k
2
2 : (3.19)

Since �n+1 > 0 and kp(�n+1)k1 � kp(�n)k1 � 0, as it was proved in Theorem 3.1, the

following inequality is ful�lled kr̂�Ap(�n)k22 � kr̂�Ap(�n+1)k
2
2 � 0. Finally, we obtain

kr̂�Ap(�n)k22 � kr̂�Ap(�n+1)k
2
2 :

3.A.3 The LARS/homotopy for source location

The method operates in an iterative fashion computing the critical regularization parame-
ters � 0 > � 1 > � � � > � stop � 0 and the associated minimizers p (� 0) ; p (� 1) ; :::;p (� stop)
where an inactive component of p becomes positive or an active element becomes equal
to zero. The algorithm is based on the computation of the so-called vector of residual
correlations, or just residual correlation, b (�) = AT (r̂�Ap (�)) at each iteration.
By considering the subgradient, it straightforward to obtain the variational equations

that describe the minimizer p (�) of the problem (3.10) [28,97], which are given by�
(AT (r̂�Ap (�)))i = �

2
if pi (�) 6= 0��(AT (r̂�Ap (�)))i

�� � �
2
if pi (�) = 0;

(3.20)

where (AT (r̂�Ap (�)))i is the ith entry of the vector AT (r̂�Ap (�)).
Let J = fi : pi 6= 0g denote the support of p (�) or active set and let I = fi : pi =

0g denote the inactive set. Residual correlations on the support J must all have equal
magnitude �

2
, i.e. bj(�) = �

2
for j 2 J , whereas the residual correlations for the inactive

elements satisfy bi � �
2
for i 2 I:
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The LARS/homotopy starts with p = 0, which is the solution of (3.10) for all the
� � � 0 = 2max

i

�
AT r̂

�
i
, where

�
AT r̂

�
i
denotes the ith component of the vector AT r̂,

and proceeds in an iterative manner, solving at each iteration a small linear system of
equations. Given the solution at one breakpoint �n, denoted by p (�n), it is possible to
construct the solution at the next breakpoint p (�n+1) as follows

p (�n+1) = p (�n) + 
u (�n+1) ; (3.21)

where u (�n+1) denotes the update direction and 
 > 0 is the walking step. It is important
to remark that 
 depends also on �n+1. However, herein this dependency is omitted for
notational convenience. This step results in a change in the residual correlation given by

b (�n+1) = b (�n)� 
ATAu (�n+1) = b (�n)� 
v (�n+1) : (3.22)

The update direction for the subset of active entries uJ is given by the solution of the
following reduced-order linear system

AT
JAJuJ (�n+1) = 1J ; (3.23)

and ui (�n+1) = 0 for the components o¤ of the active set (ui (�n+1) = 0 for i =2 J at �n).
Where AJ denotes a submatrix of A consisting of the columns of the elements of the set
J and 1J denotes a column vector of ones with length equal to the cardinality of the set
J . The update direction uJ (�n+1) =

�
AT
JAJ

��1
1J , which is called equiangular direction

by Efron et al. in [46], ensures that the maximal components of the residual correlation,
those corresponding to the active set, decline equally.

The step size 
 > 0 is calculated as the smallest real number that makes a component
of the new residual (3.22) become equal in size to the maximal ones or an active component
of p become equal to zero. Formally, the step size is determined by (see [75] and [96] for
further details)


 = min f
1; 
2g ; (3.24)


1 is de�ned as 
1 = min
i2I

�n
2
�bi(�n)

1�vi(�n+1) and is the minimum step that implies the activa-

tion of a zero component of p: The parameter 
2 is related with the second scenario
leading to a breakpoint: when an active component crosses zeros. This occurs when

2 = min

j2J

n
� pj(�n)

uj(�n+1)

o
. It is important to remark that there is only one new candidate
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to enter or leave the active set at each iteration of the algorithm (this condition is the
so-called �one at a time condition�[46]).

Once the new step size 
 is computed, the next breakpoint can be obtained as �n+1 =
�n� 2
 (since 
 > 0, then �n > �n+1) and the associated minimizer as p (�n+1) = p (�n)+

u (�n+1) : This iterative procedure must be halted when a stopping condition is satis�ed.

3.A.4 Proof of Theorem 3.3: An alternative interpretation of the
residual

The residual correlation b that appears when the LARS/homotopy algorithm is applied to
the problem (3.10) has a clear physical interpretation.

Recall (3.7). The residual correlation b of the LARS/homotopy applied to the problem
presented in (3.10) is given by

b(�) = AT (r̂�Ap(�)) =
�
~AT
r

~AT
i

��� r̂r
r̂i

�
�
�
~Ar

~Ai

�
p(�)

�
; (3.25)

which can be rewritten in terms of the complex matrix ~A exposed in (3.6) and the sample
covariance R̂

b(�) = <
n
~AH
�
vec
h
R̂
i
� ~Ap(�)

�o
: (3.26)

The term ~Ap(�) in (3.26) can be expressed as

~Ap(�) =
�
s�
1

s

1
s�
2

s

2
� � � s�

G

s

G

�
26664
p1 (�)
p2 (�)
...

pG (�)

37775 =
GX
i=1

pi (�) s
�
i

 si : (3.27)

Since s�
i

 s

i
=vec(s

i
sH
i
), then ~Ap(�) = vec

�
GP
i=1

pi (�) sis
H
i

�
. By applying this equality

to (3.26), the residual correlation evaluated at � is given by

b(�) = <
(
~AH

 
vec
h
R̂
i
� vec

"
GX
i=1

pi (�) sis
H
i

#!)
= <

(
~AH vec

 
R̂�

GX
i=1

pi (�) sis
H
i

!)
: (3.28)
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Bearing in mind the matrix ~A presented in (3.6), the last expression can be reformulated
as

b(�) = <

8>>><>>>:
26664
sT
1

 sH

1

sT
2

 sH

2

...
sT
G

 sH

G

37775 vec hĈ�i
9>>>=>>>; = <

8>>>>>><>>>>>>:

26666664

�
sT
1

 sH

1

�
vec
h
Ĉ�

i
�
sT
2

 sH

2

�
vec
h
Ĉ�

i
...�

sT
G

 sH

G

�
vec
h
Ĉ�

i

37777775

9>>>>>>=>>>>>>;
= <

8>>><>>>:
26664
sH
1
Ĉ�s1

sH
2
Ĉ�s2
...

sH
G
Ĉ�sG

37775
9>>>=>>>; ; (3.29)

where Ĉ� = R̂�
GP
i=1

pi (�) sis
H
i
.

The ith component of b(�) ful�lls sH
i
Ĉ�si = sH

i
ĈH
� si and, as a consequence, is real.

Hence, the residual correlation b(�) can be expressed as

b(�) =
�
sH
1
Ĉ�s1 ; sH

2
Ĉ�s2 ; � � � ; sH

G
Ĉ�sG

�T
: (3.30)

This result provides an alternative interpretation of the residual correlation. At each
breakpoint � , the corresponding residual b(�) can be seen as the Bartlett estimator applied

to the residual covariance matrix Ĉ� = R̂�
GP
i=1

pi (�) sis
H
i
:
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Chapter 4

Sparse multiple relay selection and
network beamforming with
individual power constraints using
semide�nite relaxation

This chapter deals with the multiple relay selection problem in two-hop wireless coopera-
tive networks with individual power constraints at the relays. In particular, it addresses the
problem of selecting the best subset of K cooperative nodes and their corresponding beam-
forming weights so that the signal-to-noise ratio (SNR) is maximized at the destination.
This problem is computationally demanding and requires an exhaustive search over all the
possible combinations. In order to reduce the complexity, a new sub-optimal method is
proposed. This technique exhibits a near-optimal performance with a computational bur-
den that is far less than the one needed in the combinatorial search. The proposed method
is based on the use of the l1-norm squared and the Charnes-Cooper transformation and
naturally leads to a semide�nite programming relaxation with an a¤ordable computational
cost. Contrary to other approaches in the literature, the technique exposed herein is based
on the knowledge of the second-order statistics of the channels and the relays are not
limited to cooperate with full power.
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4.1 Introduction

As it is well-known, relay systems increase the spatial diversity and the reliability of wire-
less communications systems. The simplest relay network consists of a single source and
N relays that cooperate to send to a destination node the message transmitted by the
source. Relay communications systems can be classi�ed taking into account how the
relays process the information received from the source node. The most popular coop-
erative schemes available in the wireless relay literature are: amplify-and-forward (AF),
decode-and-forward [102], compress-and-forward and coded-cooperation [103]. Nonethe-
less, amplify-and-forward has attracted special interest due to its simplicity. In this con-
text, distributed relay beamforming, also known as cooperative beamforming, has been
shown to be a powerful technique which provides power e¢ ciency and is able to increase
the communications reliability. In general terms, in distributed beamforming the relays co-
operate acting as virtual antenna and adjust their transmission weights to form a beam to
the destination. Since each relay multiplies its received signal by a complex weight and re-
transmits it, the beamforming weights have to be determined according to some optimality
criterion. Di¤erent beamforming approaches have been considered in the literature [104].
One such criteria is the minimization of the total transmitted power subject to a given con-
straint on the quality of service at the receiver. The second approach is the maximization
of the received SNR subject to certain power constraints, i.e., individual power constraints
in each relay or on the total power transmitted by the relays. Due to the fact that relay
nodes have particular constraints on the battery lifetimes, individual power constraints in
each relay are of practical interest. It is worth noting that the optimal solution of this
maximization problem results in relay powers which do not correspond, in general, to their
maximum allowable values, i.e., to achieve the maximum SNR at the receiver, the relays
may not use their maximum allowable power.

In the conventional cooperation strategies exposed above, all the relays cooperate in
relaying the signals. This is the optimal strategy from the point of view of the end-to-end
performance. Nevertheless, in practical scenarios, the bene�ts of the cooperation could be
o¤set by the cost of the cooperation and the consumption of additional system resources.
In many cases, it is impractical or even unfeasible to activate all (or many) relays (see
the references [47, 48, 49, 50, 51, 52]). For instance, in many practical situations the num-
ber of potential cooperating nodes could be large, e.g., in device-to-device communication
networks or in wireless sensor networks, and the bene�ts of the cooperation with all the
relays can be outweighed by the costs of the cooperation. These costs include the sig-
naling overhead and the e¤orts needed to maintain the synchronization between all the
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nodes [47,48,49,50]. In this context, by considering relay selection, the overall processing
in the network can be simpli�ed achieving a signi�cant reduction in the implementation
complexity [47,49,50,51,52].

There exist a vast literature devoted to relay selection. Most of these schemes are based
on single relay selection, i.e., only one of the relay nodes can be selected to cooperate in the
retransmission, e.g. [105] and [106]. Nevertheless, in adverse environments, transmitting
over a single relay may not be su¢ cient to achieve the desired performance at the desti-
nation. This has motivated the generalization of this idea, allowing more than one node
to cooperate. Multiple relay selection for a single source-destination pair has attracted
attention in some references [107, 108, 52, 109]. In all these approaches, for simplicity, the
relays are not allowed to adjust their transmit power arbitrarily, i.e., each relay has only
two choices: to cooperate with full power or not to cooperate at all. In [52], the authors
propose several SNR-suboptimal multiple relay selection techniques based on some ordering
functions. In [108], Laneman et al. proposed a Decode-and-Forward protocol that allow the
relays to cooperate if the channel between the source and the relays, the so-called backward
channel, exceeds a �xed threshold. On the contrary, the scheme proposed in [107] is based
on the full Channel State Information (CSI) of the backward and the forward channels
of each relay. Therein two di¤erent problems have been tackled: the minimization of the
end-to-end error performance under a total power constraint, and the dual problem, the
minimization of the total power consumption constrained to a maximum error probability.
These problems fall within the class of the so-called 0-1 Knapsack problems and are solved
by taking use of several greedy algorithms. A similar approach was proposed for cognitive
relay networks in [109].

This chapter deals with problem of multiple relay selection for distributed beamforming
under individual power constraints at the relay nodes. In particular, it addresses the
problem of �nding the best subset of cooperative nodes, and their beamformer weights,
so that the SNR is maximized at the destination. The selection of the best subset of K
nodes out of a set of N potential relays with individual relay power constraints is a NP-hard
problem which requires an exhaustive search over all the possible sparsity patterns. In order
to reduce the computational burden, this chapter proposes a sub-optimal method which
exhibits a performance which is very close to the SNR-optimal multiple relay scheme with
a reduced complexity. The proposed method is based on the knowledge of the second-order
statistics of the CSI and in contrast to other approaches in the relay selection literature
[107,108,52,109], in the technique proposed herein, the relays are not limited to cooperate
only with full power. Interestingly enough, this optimization leads to results in which the
powers of the selected set of relays do not correspond to the maximum allowable values.
The proposed algorithm is based on the Charnes-Cooper transformation and the l1-norm
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squared [39], a surrogate of the l0-norm which enforces zeros in the relay powers, and
naturally yields a semide�nite programming problem (SDP).

It is important to remark that the sparse multiple relay selection problem described in
this chapter does not belong to the class of the so-called sparse recovery problems in which
a solution vector with few non-zero elements has to be estimated and the conditions that
ensure the exact recovery of the true sparsity pattern need to be studied. The adjective
sparse herein relates to the fact that the algorithm proposed for the selection of the relays
uses a sparsity-inducing norm, the l1-norm squared, that promotes the appearance of zeros
in the �nal solution and consequently performs the subset selection.

The chapter is organized as follows. Section 4.2 describes the signal model and presents
the multiple relay selection problem. The algorithm proposed for the selection of the
cooperating nodes is derived in Section 4.3 and the analysis of its performance is shown in
Section 4.4. Finally, some concluding remarks are provided in Section 4.5.

4.2 System model and problem formulation

Consider a two-hop wireless cooperative network which consists of a source, a destination
and N potential relays as it is shown in Fig. 4.1. Each of the nodes of this scheme
is equipped with a single antenna. For sake of simplicity it is assumed that due to the
poor quality of the channel between the source and the destination, there is no direct link
between them. The channel between the source and the ith relay and the channel between
the ith relay and the destination are denoted by hi and gi, respectively.

Even though, the pioneering studies on network relay beamforming have assumed that
the instantaneous CSI is perfectly known at the relays or at the destination node [110].
Unfortunately, this assumption is often violated in practical scenarios. To avoid the need
to know the instantaneous CSI, the �at fading channel coe¢ cients fhigNi=1 and fgig

N
i=1 can

be modeled as random values. Similar to [104], [111], [112] and [113], in this chapter it
is assumed that the joint second-order statistics of these channels are known at a central
node, for instance, at the destination node, which is the one in charge of computing the
relay weights taking into account past observations, and then distributing them to the relay
nodes via a dedicated channel. This assumption allows us to consider some uncertainty
in the channel models through introducing the covariance matrices of the channel gains.
Since the coe¢ cients of the channels are relatively stable in stationary environments and
can be estimated using past observations, it is reasonable to assume the availability of the
second order statistics of the channels.
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Figure 4.1: Wireless relay network

In the scheme presented herein, we have considered a two-step amplify-and-forward
protocol for the communication between the source and the destination. During the �rst
step (slot) the source broadcasts the signal

p
Pss to the relays, where Ps denotes the

transmit power and s is the information symbol. Without loss of generality it is assumed
that Efjsj2g = 1. The signal received at the ith relay is given by

xi =
p
Pshis+ �i; (4.1)

where �i denotes the additive noise at the ith relay whose variance is known to be �
2
r. In

the second step the ith relay transmits a weighted version of its received signal. This can
be expressed as

yi = wixi: (4.2)

The received signal at the destination node is given by

r =
p
Ps

NX
i=1

wihigis+
NX
i=1

wigi�i + nd; (4.3)

where nd is the noise at the destination which has a known variance �2d. Note that whereas
the �rst term in (4.3) corresponds to the desired signal component, the sum of the second
and the third term is the total noise received at the destination.
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4.2.1 SNRmaximization with individual power constraints with-
out relay selection

The aim of this subsection is to brie�y describe the classical design problem presented
in [104]. The maximization of the SNR at the destination under transmit power constraints
at each relay is given by

max
w

SNR s.t. pi � Pi 8i = 1; :::; N; (4.4)

where w = [w1 : : : wN ]
T is the network beamforming vector and pi and Pi are the actual

transmit power and the maximum allowable transmit power of the ith relay, respectively.
Note that in the problem exposed above relay selection is not considered.

The expected power of the desired signal component in the expression (4.3), that is,
the expected power of the �rst term in the sum is given by

Pd= E

8<:
�����pPs

NX
i=1

wihigis

�����
2
9=;=wHAw; (4.5)

where A =PsE
n
(h� g) (h� g)H

o
. In the latter expression, the operator � represents

the Schur-Hadamard product and h = [h1 : : : hN ]
T , g = [g1 : : : gN ]

T . This matrix can be
decomposed as a diagonal matrix plus a rank-one matrix [112] (DPR1). Assuming that the
coe¢ cients of the backward and the forward channels, fhigNi=1 and fgig

N
i=1, are statistically

independent, the (i; j)th element of A, denoted by Ai;j, can be expressed as follows

Aij=

�
PsEf jhij2 gEf jgij2 g if i = j
PsEfhigEfgigEfh

�
jgEfg

�
jg 8i 6= j:

(4.6)

Let �hi = Efhig, �gi = Efgig, �i = Ef
��hi � �hi��2g and �i = Efjgi � �gij2g: It is straight-

forward to rewrite A as
A = �+ vvH ; (4.7)

with � = Psdiag( �1
���h1��2 + �1 j�g1j2 + �1�1; :::;�N

���hN ��2 + �N j�gN j2 + �N�N) and v =p
Ps[�h1�g1; :::;�hN �gN ]

T .

The total noise power, denoted as Pn, is de�ned as
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Pn=E

( 
NX
i=1

wigi�i+nd

! 
NX
j=1

wjgj�j+nd

!�)
: (4.8)

Assuming that �i is a zero-mean additive noise and that f�ig
N
i=1 and nd are mutually

independent random variables, then the noise power can be formulated as

Pn=w
HBw + �2d: (4.9)

where
B= �2rdiag(Ef jg1j

2 g; Ef jg2j2 g; : : : ; Ef jgN j2 g): (4.10)

Hence, the SNR at destination node is de�ned as

SNR =
Pd
Pn
=

wHAw

wHBw+�2d
: (4.11)

In order to specify the power constraints at the relays in (4.4), the average transmit
power of the ith relay, denoted as pi, is de�ned as follows

pi= E
�
jxij2

	
jwij2= Dii jwij2 ; (4.12)

where Dii is the ith element of diagonal of the matrix D given by

D= P s diag
�
E
�
jh1j2

	
; : : : ; Ef jhN j2 g

�
+ �2rI: (4.13)

The maximization of the SNR under individual relay power constraints exposed in (4.4)
can be formally expressed as

max
w

wHAw

wHBw+�2d
s.t. Dii jwij2� P i 8i = 1; :::; N: (4.14)

Note that since B is diagonal and A is a diagonal plus rank-one matrix, the phases of
the optimal beamformer only depend on the entries of the vector v de�ned in (4.7). In
particular, the phases of the optimal weights can be obtained as \wi = \vi, where vi
denotes the ith element of v:
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Considering X = wwH , the problem (4.14) can be rewritten as

max
X

TrfAXg
TrfBXg+�2d

s.t. Xii� P i=Dii 8i = 1; :::; N
X� 0; rank(X) = 1; (4.15)

where Xii denotes the ith diagonal element of X. Following the idea of semide�nite relax-
ation and dropping the non-convex rank constraint, the problem presented above can be
relaxed as follows

max
X;t

t

s.t. TrfX(A�tB)g � �2dt

Xii� P i=Dii 8i = 1; :::; N ; X� 0: (4.16)

The latter problem is quasiconvex and the standard approach is to solve it by means of a
bisection search method in which the optimal solution is obtained iteratively after solving
a sequence of (often many) semide�nite programming problems (for further information
see reference [104]).

4.2.2 Multiple relay selection for SNR optimization with indi-
vidual constraints

Let us consider the joint problem of selecting the best subset of K nodes out of the set
of N potential relays and the estimation of the weights which maximize the SNR at the
destination, subject to individual power constraints at the relays. Mathematically, this
problem can be expressed as

max
w

wHAw

wHBw+�2d
s.t. Dii jwij2� P i 8i = 1; :::; N

card(w) = K; (4.17)

where K > 0 is a given constant and card(w) = K is the number of non-zero coe¢ cients in
the vector w. It is worth mentioning that adding zeros in the network beamforming vector
is equivalent to selecting the best subset of relays. Note that the kth relay is excluded
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from the transmission if the kth component of the solution vector w is equal to zero. The
problem in (4.17) is a NP-hard problem and requires an exhaustive search over all the
possible

�
N

K

�
sparsity patterns. This search is computationally una¤ordable and this fact

motivates the pursuit of an e¢ cient algorithm with a near-optimal performance.

4.3 The proposed method

4.3.1 Selection of the subset of relays

The problem considered in (4.17) is non-convex and the aim of this subsection is to derive
a convex relaxation of this problem in order to obtain a new algorithm with a lower compu-
tational complexity. The traditional way of deriving convex approximations of cardinality-
constrained problems in combinatorial optimization is to replace the cardinality operator
by the l1-norm [72], [4], de�ned as kwk1 =

Pi=N
i=1 jwij. As it is well-known, the l1-norm is

the tightest convex relaxation of the cardinality operator [4] and has a sparsifying e¤ect
that has long been observed in statistics and signal processing [25]. Nonetheless, a di¤er-
ent approach is considered in this chapter. Similar to [39] and [38], the l1-norm squared,
denoted as kwk21, is considered instead of the traditional l1-norm. The rationale behind
the use of the l1-norm squared as a surrogate of the cardinality is twofold. First, it is a
sparsity-inducing norm which encourages the appearance of null components in the net-
work beamforming vector and, consequently, performs the subset selection. Second, the
problem that results after considering the l1-norm squared naturally yields a semide�nite
programming relaxation, something that is not obvious when the l1-norm is considered
instead. Therefore, let us relax the problem presented in (4.17) rewriting it in terms of the
l1-norm squared

max
w

wHAw

wHBw+�2d
(4.18a)

s.t. Dii jwij2� P i 8i = 1; :::; N (4.18b)

kwk21 � 
; (4.18c)

where 
 is a positive parameter that controls the sparsity of the beamforming vector, i.e.,
the number of active components in w. Let us skip now the discussion about how to
adjust the parameter 
 to properly perform the subset selection. Later, in the following
subsection, this problem will be addressed and it will be explained how to adjust the
parameter 
 to obtain a solution of (4.18) with only K active entries.
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Unfortunately, the problem in (4.18) is still NP-hard and this motivates the use of a

semide�nite relaxation to handle it. First, let us de�ne X , wwH 2 H+
N , i.e., a N � N

Hermitian positive semide�nite matrix. Then, the constraint (4.18c) can be rewritten as

kwk21 =
�
NP
i=1

jwij
�2
= 1TN jXj1N ; (4.19)

where jXj denotes the element-wise absolute value of the matrix X and 1N the all-one col-
umn vector of length N . By substituting the l1-norm squared by its equivalent formulation
(4.19), the problem in (4.18) can be expressed as

max
X

TrfAXg
TrfBXg+�2d

s.t. Xii� qi 8i = 1; :::; N
1TN jXj1N � 
; X� 0
rank (X) = 1; (4.20)

where qi is the ith component of the vector q de�ned as q = [P1=D11; :::; PN=DNN ]
T . By

dropping the rank-one constraint the following problem is obtained

max
X

TrfAXg
TrfBXg+�2d

(4.21a)

s.t. Xii � qi 8i = 1; :::; N (4.21b)

1TN jXj1N � 
; X� 0: (4.21c)

Unfortunately, the semide�nite relaxation does not immediately yield a semide�nite pro-
gramming. Due to the fractional structure of its objective (4.21a), this problem is a quasi-
convex problem in the variableX. The standard approach for solving this type of problems
in the signal processing literature is to use a bisection search method [104], [114] in which
the solution is sequentially searched by solving a sequence of (often many) semide�nite pro-
gramming problems. A di¤erent approach has been considered herein. The main idea is to
reformulate the quasi-convex problem presented in (4.21) into a convex semide�nite prob-
lem using a slight modi�cation of the conventional Charnes-Cooper transformation [115].
Consider the following transformation of variables:

z =
1

TrfBXg+�2d
; Y =

X

TrfBXg+�2d
= zX: (4.22)
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By using (4.22), the quasi-convex problem (4.21) can be rewritten as the following
semide�nite program (SDP)

max
Y; z

TrfAYg (4.23a)

s.t. Yii� z qi 8i = 1; :::; N (4.23b)

1TN jYj1N � z
 (4.23c)

TrfBYg+�2dz = 1 (4.23d)

Y� 0; z � 0; (4.23e)

with z 2 R and Y 2 H+
N=

�
Y 2 CNxN jY = YH ;Y �0

	
; under the assumption that the

optimal solution, denoted by (Y�; z�), has z� > 0. Actually, z� = 0 cannot be a solution of
this problem, because if z� = 0, then according to (4.23c), we have Y� = 0, which violates
the constraint (4.23d). This proves the equivalence between the quasi-convex problem
in (4.21) and the SDP presented in (4.23). Hence, if (Y�; z�) is the optimal solution of
(4.23), then X�= Y�=z� is the optimal solution of (4.21). The problem presented in (4.23)
can be solved using the standard interior point methods implemented in solvers such as
SeDuMi [116].

To determine the subset of selected nodes the following procedure is considered. The
non-zero elements of diagonal Y� correspond the selected relays. On the contrary, the null
diagonal entries correspond to the relays that should be left out of the transmission. Note
that since the active elements of the diagonal of Y� are the same than those of the matrix
X�, then the change of variables does not need to be undone.

4.3.2 Computation of the network beamforming weights

Once the subset of K relays is selected, the network beamforming weights which maximize
the SNR have to be computed. Due to the in�uence of the l1-norm squared behind the
constraint (4.23c), these weights cannot be directly extracted from the solution of (4.23).
To compute the beamformer weights this constraint and the subset of inactive relays have
to be removed from this problem. Let us denote by S � f1; : : : ; Ng the subset of K nodes
selected for the retransmission and by ~w =

�
wS(1); :::;wS(K)

�T
the weights of the active

relays. To �nd the coe¢ cients of the optimal beamforming, the following reduced-size

53



problem has to be solved:

max
~Y; z

Trf ~A ~Yg (4.24a)

s.t. ~Yii� z ~qi 8i = 1; :::; K (4.24b)

Trf ~B ~Yg+�2dz = 1 (4.24c)
~Y� 0 (4.24d)

z � 0; (4.24e)

where ~A and ~B are the submatrices of A and B formed by selecting the rows and columns
which correspond to the active relays. Note that ~B and ~A preserve the special structure of
the original matrices, i.e., ~B is a diagonal matrix and ~A is DPR1 which can be decomposed
as ~A = ~�+ ~v~vH , with obvious de�nitions of ~� and ~v. In the same way, ~qi denotes the ith
entry of the vector ~q which is obtained by removing the inactive relays from the vector q.
Note that ~Y is a square matrix of size K formed by the active rows and columns of Y.

Theorem 4.1 At least one of the inequalities in (4.24b) has to be ful�lled with equality.

Proof: See Appendix 4.A.1.

Due to the semide�nite relaxation, the solution of the problem described above may
not be rank-one in general. Interestingly, it can be proved that: i) when ~A is a diagonal
matrix the solution of the problem (4.24) can be computed exactly by means of a linear
programming problem (LP); ii) when the matrix ~A is not diagonal the beamformer weights
can be extracted from the diagonal elements of the solution. Notice that no eigendecom-
position or randomization is needed to extract the coe¢ cients. In what follows both cases
are analyzed.

When the matrix ~A is diagonal, it is straightforward to rewrite the problem in (4.24)
as the following linear programming problem

max
u2RK ;z

aTu

s.t. ui� z ~qi 8i = 1; :::; K
bTu+�2dz = 1

ui � 0 8i = 1; :::; K; z � 0; (4.25)
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where vectors a and b contain the diagonal entries of the matrices ~A and ~B respectively,
i. e., a = [ ~A11; :::; ~AKK ]

T , b = [ ~B11; :::; ~BKK ]T and the ith entry of the vector u is given
by ui = z

��wS(i)��2. Note that when ~A is a diagonal matrix, the maximization of the SNR
does not depend on the phase of the beamforming vector. Thus, the optimal beamformer
can be directly obtained as ~w = [

p
u1=z; :::;

p
uK=z]

T :

If the matrix ~A is not diagonal but ful�lls the condition exposed in the following
theorem, the solution of the problem exposed in (4.24) always has rank one.

Theorem 4.2 If the matrix ~A is not diagonal, but all the elements of the vector ~v are
di¤erent from zero and ( ~Y�; z�) is the solution of the problem in (4.24), then ~Y� has rank
one.

Proof: See Appendix 4.A.2.

If the conditions exposed in the last theorem are ful�lled, ~w can be obtained directly
from the eigendecomposition of the rank-one matrix Q = ~Y�=z�. Nonetheless, the com-
putational cost of the eigendecomposition can be avoided as is described next. Since the
phase of the complex weights can be obtained from ~v by considering \ ~wi = \~vi, where
~wi and ~vi denote the ith entries of the vectors ~w and ~v, respectively, then it only remains
to compute their moduli. These can be obtained from the elements of the diagonal of the
matrix Q. Therefore, it is straightforward to show that the ith entry of ~w is given by

~wi =

s
~Y �
ii

z�
ej\~vi 8i = 1; :::; K; (4.26)

If some of the entries of ~v are zero, the optimal weights can be obtained in a similar way.
This is justi�ed by the following theorem.

Theorem 4.3 If some of the elements of ~v are zero and ( ~Y�; z�) is the solution of (4.24),
then the ith entry of ~w is given by:

~wi =

8<:
q

~Y �ii
z� if ~vi = 0q
~Y �ii
z� e

j\~vi if ~vi 6= 0:
(4.27)

Proof: See Appendix 4.A.3.
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This result can be seen as a generalization of (4.26) if one assume that \~vi = 0 when
~vi = 0. Notice that even if ~A is not diagonal the entries of the vector can be directly
obtained from the solution of (4.24) and no randomization or eigendecomposition is needed.

A direct consequence of the Theorems 4.1 - 4.3 is that at least one of the relays has to
transmit with the maximum allowable power.

4.3.3 Parameter selection

A crucial part of the algorithm is the proper choice of the parameter 
 in (4.23c) because
it performs the selection of the subset of relays. This parameter controls the amount of
shrinkage applied to the estimates and, consequently, the number of the active nodes in
the optimal beamformer. It is worth noting that sparser solutions are obtained when 
 is
decreased. The goal of this subsection is to propose a method based on a binary search over
the parameter 
 that successively increase the sparsity of the vector w until the desired
number of relays is selected.

Recall the inequality in (4.18c), i.e., kwk21 � 
 and consider the following useful bounds
on the l1-norm squared [117]

kwk22 � kwk
2
1 � K kwk22 : (4.28)

This last expression connects the l1-norm squared with the l2-norm and the desired cardi-
nality of the vector w, which is K. First of all, we need to determine an initial value of the
parameter 
 in the binary search procedure. This value, which is denoted by 
max, has to
ensure that the obtained solution will have, at least, K active relays. With this aim in mind
let us focus on the right side of the inequality, i.e., kwk21 � K kwk22. If an upper bound on
l2-norm squared of w can be determined, it can be used to compute 
max. To obtain this
bound consider the problem in (4.24) assuming that all the relays are active, i.e., consider
~A = A and ~B = B and ~q = q and let w(0) be the optimal beamformer obtained from the
solution of this problem. From (4.18c) and (4.28), it is clear that 
 = K



w(0)


2
2
ensures

that at least K relays will be active. This is due to the fact that by decreasing 
 one is also
decreasing kwk21 and, consequently, kwk

2
2. Thus, 
max = K



w(0)


2
2
will be used as initial

value in the search process. Unfortunately, 
 = 
max often enforces solutions with more
than K active entries in the solution vector. Therefore, we need to decrease the parameter

 by considering a binary search until a solution with the desired number of active relays is
obtained. The whole algorithm is summarized in the following subsection. Note that this
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binary search requires solving the problem in (4.23) for di¤erent values of 
 until a solution
with the desired degree of sparsity is obtained. Nevertheless, the number of semide�nite
programming problems which needs to be solved with this binary search is far less than in
the exhaustive search which requires solving

�
N

K

�
problems of type (4.24). This fact will

be further analyzed in Section 4.4.

4.3.4 Description of the algorithm

The whole method is summarized in Algorithm 2.

Algorithm 2 Proposed method
STEP 1) INITIALIZATION: Solve (4.24) assuming that all the relays are active and obtain

w(0). Initialize the values for the binary search: 
max = K


w(0)

2

2
, 
low = 0, 
 = 
max.

STEP 2) SELECTION OF THE SUBSET OF RELAYS:
while number of active relays 6= K do

A) Solve (4.23) for the corresponding 
 and determine the active relays (non-zero entries of
the diagonal of Y)
B) Compute the new value of 
 as follows
if number of active relays > K then

up = 
 and 
  (
low + 
)=2

else
if number of active relays < K then

low = 
 and 
  (
up + 
)=2

end if
end if

end while

STEP 3) COMPUTATION OF THE WEIGHTS: Solve the reduced-size problem (4.24) with
the selected subset and extract the weights ~w.

The extension of this algorithm to cognitive relay networks has been proposed by the
authors in [63]. Compared to the problem addressed in this chapter, it requires the addition
of new constraints in order to keep the interference radiated to the users of the primary
network below the maximum tolerable level. Since the extension is straightforward, the
details are omitted in this chapter.
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4.3.5 Relationship between total relay transmit power and pa-
rameter 


To analyze this relationship let us explore the expression of the total relay transmit power
which is given by

PT =
i=NP
i=1

jyij2 =
i=NP
i=1

E
�
jxij2

	
jwij2 = wHDw; (4.29)

where yi and the diagonal matrix D have been de�ned in (4.2) and (4.13) respectively.
Applying the Cauchy-Schwarz inequality

PT = w
HDw =



D1=2w


2
2
�


D1=2



2
2
kwk22 : (4.30)

Bearing in mind (4.30), the left side inequality in (4.28) and (4.18c), it is straightforward
to show

PT �


D1=2



2
2
kwk22 �



D1=2


2
2
kwk21 �



D1=2


2
2

: (4.31)

From this inequality one can conclude that if the parameter 
 is shrunk to promote the
desired degree of sparsity, the power transmitted by the relays PT is also decreased.

4.4 Numerical Results

The goal of this section is to analyze the performance of the algorithm exposed above by
numerical simulations. To solve the semide�nite problems presented in (4.23) and (4.24),
CVX [118], a MATLAB package for disciplined convex programming, is used. Next, we
describe the set of parameters considered throughout the simulations.

The �rst scenario under consideration is a wireless network composed of a source, which
transmits with a power Ps = 0 dBW, a destination and N = 20 potential relays whose
individual power constraints are uniformly given by

Pi =
P

N
(in W) for i = 1; :::; N: (4.32)

with P = 20W (which implies Pi = 0 dBW). The noise variances are set to �2d = �2r = �3
dBW.

Figure 4.2 plots the achieved SNR as a function of the number of selected relaysK. The
curves were obtained by averaging the results of 500 independent simulation runs. In each
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trial, the means and the variances of the �at fading channels were generated randomly as
follows:

�hi; �gi � CN (0; 1) for i = 1; :::; N
�i; �i � 1

2
X 2(2) for i = 1; :::; N

(4.33)

where X 2(2) denotes the chi-square distribution with two degrees of freedom. The para-
meters �hi; �i; �gi and �i denote the mean and the variance of the i-th element of h and g,
respectively, as has been exposed in (4.7). In each trial, the matrices A, B and D have
been generated according to the values of the paramaters presented above. In particular,
the matrix A is generated following the expression (4.7) and B is created according to
(4.10), with Efjgij2g = j�gij2 + �i. Regarding the matrix D, it is formed as in (4.13), with
Efjhij2g =

���hi��2 + �i.

As can be seen from Figure 4.2, the proposed method clearly outperforms the random
selection of the relays and achieves a performance in terms of end-to-end SNR that is very
close to that of the exhaustive search, requiring far less computational complexity. This
fact will be analyzed later.
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Figure 4.2: SNR at the receiver as a function of the number of selected relays K with uniform power
constraints. Pi = 0 dBW, �2d = �

2
r = �3 dBW. Average of the results of 500 independent trials.

To gain further insight into the approximation quality of the solution described in this
chapter, Figure 4.3 plots the averaged and the maximum approximation ratios as a function
of the number of selected relays. The approximation ratio is a common way to measure
the quality of convex approximations in combinatorial problems and is de�ned as the ratio
between the optimal SNR, obtained by computing the exhaustive search, and the SNR
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obtained by the solution of the relaxed problem ~w. Note that the approximation ratio
parameter is always greater than or equal to one and is equal to one if the relaxed problem
attains the same objective value as the optimal-SNR scheme. The proposed method clearly
provides high quality approximate solutions, in terms of both the averaged and the worst
case perfomance, and is close to the optimal for the all the possible cooperative sizes.
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Figure 4.3: Empirical approximation ratio as a function of the number of selected relays.

Regarding the computational complexity, Table 4.1a shows the mean number of semi-
de�nite programming problems required to select the appropriate number of relays during
the binary search procedure. Note that the number of iterations for each K is always less
than the total number of potential relays N . To get further insight about the reduction
of the computational complexity, consider, for instance, the selection of the best subset
of 12 nodes out of a potential set of 20 relays. An exhaustive search in this case requires
solving 125970 SDP. Nonetheless, the proposed technique needs to solve less than 7 SDP
problems in mean (less than 6 for the selection of the subset plus 1 for the computation
of the optimal weights). Furthermore, the worst case required the computation of 15 SDP
problems which is far less than the number of SDP needed by the exhaustive search.

In order to analyze the performance of the method for di¤erent individual power values,
Figure 4.4 plots the achieved SNR versus the individual power constraints for di¤erent
values of K. In this case, the value of the uniform power constraints presented in (4.32) is
varied. Note that the proposed algorithm exhibits a good performance and is close to the
optimal solution for all the possible individual power levels.
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Figure 4.4: SNR measured at the receiver as a function of the individual power constraints for di¤erent
values of K
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Figure 4.5: Approximation ratio as a function of the total number of potential relays. N 2
[14; 21; 28; 35; 42], K = N

7 and P = 10 dBW.
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K
Mean num. it.
Prop. meth.

Num. SDP
Exhaustive

2 6.35 190
3 7.08 1140
4 7.11 4845
5 6.94 15504
6 6.63 38760
7 6.46 77520
8 6.14 125970
9 6.09 167960
10 6.13 184756
11 6.09 167960
12 5.66 125970
13 5.52 77520
14 4.99 38760
15 4.96 15504
16 4.52 4845
17 4.19 1140
18 3.56 190
19 3.56 20

(a) N = 20 potential relays and uniform
power constraints

K
Mean num. it.
prop. meth.

Num. SDP
Exhaustive

2 5.27 45
3 5.40 120
4 5.15 210
5 4.96 252
6 4.65 210
7 4.51 120
8 4.12 45
9 3.67 10

(b) N = 10 potential relays and non-
uniform power constraints

Table 4.1: Mean number of SDP problems which needs to be solved during the binary process as a
function of the number of relays.

Next, we investigate the performance of the algorithm when the number of potential
relay nodes increases. With this aim, we have considered a wireless cooperative network
composed of a source, which transmits with a power Ps = 0 dBW, N potential relays, with
the aforementioned uniform power constraints and P = 10 dBW, and the noise variances
�2d; �

2
r are set to �3 dBW. Figure 4.5 shows the averaged and the maximum approximation

ratio as a function of the total number of potential relaysN when the size of the cooperative
group is �xed toK = N=7. As can be seen from Figure 4.5, the described technique is close
to the optimal solution for all the network sizes and delivers high approximate solutions in
both the averaged and the worst case perfomance.

In order to illustrate the high performance of the algorithm, Figure 4.6 shows the
empirical Cumulative Distribution Function (CDF) of the approximation ratios in the
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previous scenario for the case N = 35 and K = 5. Notice that the proposed algorithm
achieves ratios that are close to the optimal value with a high probability and clearly
outperforms the random selection of the subset of cooperative nodes.
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Figure 4.6: Empirical cumulative distribution function of the approximation ratios. Ps = 0 dBW,
N = 35, K = 5, uniform power constraints with P = 10 dBW and �2d = �

2
r = �3 dBW.

Next, we consider a numerical example with non-uniform power constraints. In this
case the individual constraints are set to

Pi = i
2P

N(N + 1)
(in W) for i = 1; :::; N: (4.34)

Notice that the sum of individual power constraints is equal to P , as in the previous
examples. For the new scenario the number of potential relays is N = 10, the rest of
parameters are set to Ps = 3 dBW, �2d = �2r = 0 dBW and P = 20W: The results
presented below are obtained by averaging the results of 1000 simulation runs and at each
trial the matrices A, B and D have been generated according to the procedure described
above.

Figure 4.7 and Table 4.1b show the achieved SNR and the mean number of SDP prob-
lems which needs to be solved as a function of the number of selected relays, respectively.
As in the uniform-constrained case, the described technique achieves a near-optimal per-
formance with a low computational burden. Regarding the computational complexity, the
worst-case scenario required 14 iterations and was obtained for K = 6:
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Figure 4.7: SNR measured at the receiver as a function of the number of selected relays K. 10 relays
and non-uniform power constraints.

4.5 Conclusions

A new method which deals with the problem of multiple relay selection under per-relay
power constraints was presented in this chapter. In particular, we have addressed the
joint problem of selecting the best subset of cooperative nodes and their corresponding
beamforming weights so that the end-to-end SNR is maximized. The optimal solution
of this problem is computationally demanding and requires an exhaustive combinatorial
search. In order to reduce the computational burden, this chapter has proposed a sub-
optimal method with a near-optimal performance and a feasible computational complexity.
Our approach is based on the knowledge of the second-order statistics of the CSI and the
relays are not limited to cooperate at full power.

4.A Appendix

4.A.1 Proof of Theorem 4.1

Since the maximization problem presented in (4.24) is convex and feasible, the KKT con-

ditions [114] are necessary and su¢ cient conditions for the optimality. Let
�
~Y�; z�

�
be the

solution to (4.24), then the KKT conditions of this problem are
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� ~A+
KX
i=1

�iJi + � ~B�� = 0 (4.35a)

�
KX
i=1

�i~qi + ��2d � � = 0 (4.35b)

TrfJi ~Y�g � z�~qi � 0 8i = 1; :::; K (4.35c)

Trf ~B ~Y�g+ �2dz
� � 1 = 0; ~Y�� 0; z�� 0 (4.35d)

�i � 0 8i; �� 0 (4.35e)

�i

h
TrfJi ~Y�g � z�~qi

i
= 0 8i = 1; :::; K (4.35f)

Trf� ~Y�g = 0 (4.35g)

�z� = 0; (4.35h)

where Ji is a single-entry matrix, with zeros in all the entries except for the (i; i)th ele-
ment which is equal to one. The parameters �i, �, � and � are the Lagrange multipliers
associated with the constraints (4.24b)-(4.24e) respectively.

As it was discussed in the subsection 4.3.1, z� = 0 cannot be a solution of the problem
(4.23), and this imposes � = 0 in the equation (4.35h). Consider that all the relays do not
use their maximum power in the retransmission. Taking into account (4.35f), this implies
�i = 0 8i. Consequently, as � = 0; �i = 0 8i, it is clear from (4.35b) that � = 0. Bearing
in mind these values, equation (4.35a) can be rewritten as � =� ~A which does not make
sense because �� 0 and ~A� 0:

4.A.2 Proof of Theorem 4.2

Recall the KKT conditions presented in Appendix 4.A.1 (4.35a) - (4.35h). Taking into
account (4.35g), as �� 0 and ~Y�� 0, then it is clear that � ~Y�= 0. As the matrices ~Y�

and� are square matrices of sizeK�K, then the Sylvester�s rank inequality holds (Section
10.5.1 of [119])

rank(� ~Y�) � rank(�)+ rank( ~Y�)�K: (4.36)
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As the rank(� ~Y�) = 0, then

rank( ~Y�) � K � rank(�): (4.37)

To determine the rank( ~Y�) we need to compute the rank(�). With this aim let us recall
(4.35a). As the matrix ~A can be expressed in terms of the sum of diagonal matrix plus a
rank-one matrix (4.7) ~A = ~�+ ~v~vH . Then equation in (4.35a) can be rewritten as"

KX
i=1

�iJi � ~�+ � ~B

#
� ~v~vH = �: (4.38)

Note that the matrix
XK

i=1
�iJi � ~� + � ~B is a diagonal matrix. Now let us prove that

the entries of this matrix are all greater than zero. To prove that fact, consider that the

ith element of diagonal of the matrix
XK

i=1
�iJi � ~� + � ~B is less than or equal to zero

and consider a single-entry vector si with all the elements equal to zero except for the ith
element which is equal to one. If all the entries of the vector ~v are di¤erent from zero, then
sHi ~v~v

Hsi > 0 and consequently,

sHi �si = s
H
i

"
KX
i=1

�iJi � ~�+ � ~B

#
si � sHi ~v~vHsi < 0: (4.39)

However, this violates �� 0. Therefore, 	 =
XK

i=1
�iJi � ~� + � ~B � 0 because 	 is a

diagonal matrix with positive entries. Furthermore, it follows from this statement that

rank(	) = K: (4.40)

This result will be important in the computation of rank(�). At this point let us recall
the expression (4.38). Using the following result in matrix theory [119] rank(U+V) �
rank(U)+rank(V), it is straightforward to rewrite rank(�) in terms of the next inequality

rank(�) � rank(	)�rank(~v~vH) = K � 1 (4.41)

Thus, from the expressions (4.37) and (4.41) it follows that

rank( ~Y�) � K � rank(�) � K �K + 1: (4.42)

Therefore, since ~Y�= 0 cannot maximize the objective function (4.24), we can conclude
that rank( ~Y�) = 1.
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4.A.3 Proof of Theorem 4.3

If some of the elements of ~v are zero, the SDP problem in (4.24) can have a solution ( ~Y�;z�)
where the rank of ~Y� is greater than one. Nevertheless, if the solution has a rank greater
than one, the rank-one solution can be recovered as it is proved in this Appendix.

Denote by J the set of inactive components of ~v, i. e., J = fl j ~vl = 0g and let ( ~Y�;z�)
be the solution of (4.24). Consider a matrix C de�ned as

Clk=

�
~Y �
lk if l = k or l; k =2 J
0 otherwise,

(4.43)

where Clk denotes the (l; k)th element of the matrix C. It can be proved that (C;z�) is
also a feasible point of (4.24) that achieves the same objective value as ( ~Y�;z�). To prove
this, �rst of all, let us decompose C as follows:

C = E+ F; (4.44)

where E is a sparse matrix whose active components are the entries of the diagonal corre-
sponding to the elements of the set J

Ell=

�
~Y �
ll if l 2 J
0 otherwise,

(4.45)

and F a matrix whose (l; k)th entry is given by

Flk=

�
~Y �
lk if l =2 J; k =2 J
0 otherwise.

(4.46)

Recall that the aim of this appendix is to prove that even if ~Y� has a rank greater than
one, the rank-one solution can be recovered directly from ~Y� and z� and no randomization
or eigendecomposition is needed. The following lemma is the key point of the proof.

Lemma 4.1 If ( ~Y�;z�) is the solution of the SDP in (4.24), then (C;z�) is a feasible point
which achieves the same objective value as ( ~Y�;z�). Furthermore, C can be decomposed as
C = E+ F, where E and F the matrices exposed above, and F is a rank-one matrix.

Proof: See Appendix 4.A.4.
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The proof of the �rst part of the lemma is based on fact that C di¤ers from ~Y� only at
the entries given by (l; k) with l; k 2 J and l 6= k. Due to this fact, (C;z�) is a feasible point
which attains the same objective function. Furthermore, since F is a rank-one matrix, it
can be decomposed as F = �H .

Consider H , hhH , where h is a vector whose lth entry is given by

hl=

( q
~Y �
ll if l 2 J

fl otherwise,
(4.47)

where fl denotes the lth element of f . Following an analysis similar to the proof of
Lemma4.1 it is straightforward showing that (H;z�) is a feasible point that achieves the
same objective value as ( ~Y�;z�). The key point of this proof is that H di¤ers from ~Y� only
at the entries given by (l; k) with l; k 2 J and l 6= k. Bearing in mind that fact and since
H is rank one, the optimal beamformer can be recovered from the eigendecomposition of
H=z�, i. e., ~w = h=

p
z�. Thus, the optimal weights can be obtained as

~wl=

( q
~Y �ll
z� if l 2 J

flp
z�

otherwise.
(4.48)

Notice that the moduli of the diagonal entries of F (4.46) not belonging to J can be directly

extracted from ~Y�. As a consequence, jflj =
q
~Y �
ll for l =2 J . It only remains to compute

the phases and they can be obtained from the components of ~v. Therefore, the next result
is obtained:

~wl=

8<:
q

~Y �ll
z� if l 2 Jq
~Y �ll
z� e

j\~vl otherwise,
(4.49)

where ~vl denotes the lth element of ~v. This concludes the proof of the theorem.

4.A.4 Proof of Lemma 4.1

To prove the �rst part of the lemma, i.e., to prove that (C;z�) is a feasible point that
achieves the same objective value as ( ~Y�;z�) we need to show that:

1. Trf ~A ~Y�g =Trf ~ACg

2. Cii = ~Y �
ii� z� ~qi 8i = 1; :::; K
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3. Trf ~B ~Y�g+ �2dz
� =Trf ~BCg+ �2dz

� = 1

4. C� 0

Let us analyze it point by point:

1. Trf ~A ~Y�g =Trf ~ACg implies Trf ~A( ~Y��C)g=0: Considering (4.7), this can be rewrit-
ten as follows Trf( ~�+~v~vH)( ~Y��C)g =Trf( ~�( ~Y��C)g + Trf~v~vH( ~Y��C)g =
0. The matrix ~Y��C has all null entries except for the elements (l; k)th and
(k; l)th 8k; l 2 J with k 6= l: And it is straightforward to show that Trf( ~�( ~Y��C)g
=0 and Trf~v~vH( ~Y��C)g =0:

2. The diagonals of the matrices ~Y� and C have the same elements and then Cii = ~Y �
ii ,

then it is straightforward to show the inequality.

3. ~B is diagonal and the diagonals of ~Y� and C have the same elements. Thus,
Trf ~B ~Y�g = Trf ~BCg, and then this point is proved.

4. Recall (4.44), C = E+ F: Since E is a diagonal matrix and the elements of the
diagonal are zero or positive, then E� 0. Furthermore, F is obtained by putting to
zero the rows and the columns of ~Y� which correspond to the inactive components of
~v. Since all the principal minors of the semide�nite matrix ~Y� are also semide�nite.
Then, F� 0 and as the sum of semide�nite matrices is also semide�nite, we obtain
C = E+ F� 0:

Once it has been proved that (C;z�) is feasible solution, we need to prove that F is a
rank-one matrix. With this aim in mind, let us de�ne the following variables:

� �F is the matrix constructed by deleting the lth row and the lth column of F 8l 2 J:

� �� is the diagonal matrix formed by deleting the lth row and the lth column of
~�8l 2 J:

� �B is the diagonal matrix formed by deleting the lth row and the lth column of
~B8l 2 J:

� �v is the vector constructed by deleting lth element of ~v 8l 2 J:
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Notice that �F; �� and �B are square matrices of size K � jJ j and �v is a vector of length
K�jJ j. It can be shown that F is rank one because �F is rank one. With this end in mind,
let us rewrite the objective function presented in (4.24a) in terms of �F and �v. Using the
point 1 exposed above and the equality in (4.44), the objective function can be rewritten
as

Trf ~A ~Y�g = Trf ~ACg = Trf ~A(E+ F)g =Trf ~AEg+Trf ~AFg
=Trf ~AEg+Trf(��+ �v�vH)�Fg: (4.50)

The second line in (4.50) follows from the fact the matrix F has zeros in the rows and
the columns corresponding to the elements of the set J . As a consequence, it is straight-
forward to show that Trf ~AFg = Trf(�� + �v�vH)Fg =Trf(�� + �v�vH)�Fg. In the same way,
the constraint (4.24c) can be rewritten in terms of �F: Consider the point 3 exposed above,
then it is straightforward to show that

Trf ~B ~Y�g+�2dz� = Trf ~BCg+�2dz�

= Trf ~BEg+Trf�B�Fg+ �2dz
�: (4.51)

Thus, the constraint (4.24c) can be expressed as

Trf ~BEg+Trf�B�Fg+ �2dz
� = 1: (4.52)

Based on the analysis above and since (C;z�), with C = E+ F; is a feasible solution of
(4.24), then �F can be obtained as the solution of the next problem

max
�F

Trf ~AEg+Trf(��+ �v�vH)�Fg (4.53a)

s.t. �Fii + E�(i)�(i)� z� ~qi 8i 2 1; :::; K� jJ j (4.53b)

Trf ~BEg+Trf�B�Fg+ �2dz
� = 1 (4.53c)

�F� 0 , (4.53d)

where � denotes the set of active components, i.e., � = fl j ~vl 6= 0g and �(i) the ith
element of the set �: Following an analysis similar to the one exposed in the proof of
Theorem 4.2, we can show that since all the coe¢ cients of �v di¤er from zero, then �F has
rank one. Since F can be directly reconstructed from �F by adding some columns and rows
of zeros and adding zero rows and zero columns does not change the rank of the matrix,
the desired result is obtained.
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Chapter 5

Joint distributed beamforming design
and relay subset selection in
multi-user wireless relay networks: A
novel DC programming approach

This chapter deals with the joint relay subset selection and distributed beamforming op-
timization in multi-user multi-relay networks. In modern wireless cooperative networks
the number of potential relays could be large, e.g. in device-to-device communications.
In these scenarios it is impractical (or even una¤ordable) to activate all the relays due
to the communications and processing overhead required to maintain the synchronization
amongst all the distributed nodes in the wireless network. In this context, the selection
of the most suitable subset of relay nodes for the cooperation is of paramount importance
because it has a great impact on the system performance. Two di¤erent problems are
addressed in this chapter: i) the selection of the minimum number of relays that guar-
antees a prede�ned signal-to-interference-plus-noise-ratio (SINR) at the destination nodes
in a multi-user peer-to-peer wireless cooperative network; and ii) the selection of the best
subset of K nodes that minimizes the total relay transmit power satisfying the quality of
service requirements at the destinations. Both problems are addressed taking into account
individual power constraints at the relays. To solve these problems, several sub-optimal
techniques based on the convex-concave procedure are proposed. Numerical results show
that they achieve a near-optimal performance with a reduced computational complexity.
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5.1 Introduction

Distributed beamforming in multi-user wireless relay networks has attracted a signi�cant
attention due to its ability to improve the service coverage, the spectral e¢ ciency and
the user�s throughput [58, 120]. Within this context, the selection of the proper subset
of spatially distributed relays is a key issue. Specially, for large-scale relay networks. In
many practical situations the number of potential relay nodes could be large [50, 61], i.e.,
in device-to-device communications, and the proper selection of the subset of cooperative
nodes is crucial, since it has dramatic e¤ect in the overall system performance, e.g., in the
network resources, user�s throughput, power e¢ ciency and system complexity.

5.1.1 Related work

The relay selection problem is a problem of combinatorial nature and has been intensively
investigated during the past decade for single-user relay networks, i.e., for ad-hoc wireless
networks with only one source-destination pair (see [50,61] and references therein). How-
ever, the relay assignment problem in multi-user multi-relay networks is more challenging
and all these techniques cannot be directly extended [121, 53]. The main problem is that
the proper design of a relay subset selection method has to take into account the interfer-
ence provoked by the simultaneous transmissions of multiple users and this requires the
development of more sophisticated techniques. Relay selection in multi-user wireless relay
networks has recently deserved a particular attention. The single relay selection problem
has been addressed in [122]. This reference deals with the maximization of the network
sum rate assuming that only one relay can help at most one user in its transmission. This
approach is based on the fact the number of concurrent interfering source-to-destination
communications is reduced and the proposed solution is formulated as a weighted bipar-
tite problem that is solved using the Hungarian algorithm. Unfortunately, in adverse
environments transmitting over a single relay may not be su¢ cient to achieve a desired
performance at the destination nodes [53] and this fact motivates the multi-relay selection
problem in multi-user wireless relay networks. The multiple relay assignment problem has
been recently considered in [53] and [121]. Reference [53] considers the joint optimization
of cooperative beamforming and the multiple relay selection problem that maximizes the
minimum SINR at the destinations in a two-hop multi-user amplify-and-forward wireless
network. Reference [121] addresses the maximization of the minimum user rate in a two-
hop decode-and-forward network. In these works, the cooperation size, i.e., the number
of selected relay nodes, is �xed and both lead to mathematical formulations where it is
always possible to �nd a feasible solution.
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5.1.2 Contributions of the chapter

This chapter considers two di¤erent relay subset selection problems:

1. The joint selection of the minimum number of relay nodes and the computation
of the corresponding distributed beamforming weights that guarantee a prede�ned
SINR at the destination nodes in a multi-user amplify-and-forward wireless relay
network. This problem is addressed considering individual power constraints at the
relays. To the best of authors�knowledge it has never been addressed in the litera-
ture. However, the selection of the minimum number of active links is of practical
interest in wireless networks because it reduces the overall network complexity as
well as the communications and processing overhead. Furthermore, by considering
the selection of relay nodes, the links with the lowest quality are discarded and this
fact increases the robustness against link failures. The mathematical formulation
of the proposed problem involves a non-convex objective function with non-convex
constraints. Herein, this problem is reformulated as a Di¤erence-of-Convex-functions
(DC) programming problem [45] and a low-complexity sub-optimal method, based on
the Convex-Concave Procedure (CCP) [54], is proposed to solve it. The application
of this procedure leads to an iterative reweighted l1-norm [23] over the convexi�ed
set of SINR constraints.

2. The second problem considered in this chapter is the joint design of the distributed
beamforming and the selection of the best subset of K cooperative nodes that mini-
mize the total relay transmit power. This problem is addressed taking into account
the SINR requirements at the destination nodes and individual power constraints
at the relays. It involves non-convex constraints due to the SINR requirements and
binary constraints and constitutes a very challenging non-convex mixed-integer non-
linear program (MINLP) [55]. It should be remarked that leaving aside the subset se-
lection issue, �nding the optimal beamforming weights that minimizes the total relay
transmit power with SINR requirements and per-relay power constraints is an already
hard non-convex Quadratically Constrained Quadratic Problem (QCQP) [56,57] that
has been analyzed in [58]. As shown therein, the traditional Semide�nite Relaxation
(SDR) [44] followed by a randomization often fails at providing a feasible solution.
Here, the joint subset selection and distributed beamforming computation is rewrit-
ten as a DC program and solved with a new iterative algorithm based on the penalty
convex-concave procedure which has been recently presented in references [59,60].

Contrary to other approaches in the literature of subset selection problems in multi-
user wireless relay networks, such as for instance [53] and [121], which are based on perfect
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channel state information (CSI), the proposed techniques can be applied in scenarios with
imperfect CSI as well.

5.1.3 Organization of the chapter

The chapter is structured as follows. Section 5.2 provides a fundamental background on DC
programs and the penalty convex-concave procedure, the mathematical tool considered for
the derivation of the techniques proposed in this chapter. Section 5.3 presents the system
model. Section 5.4 deals with the minimum cardinality problem. The joint subset selection
and beamforming computation that minimizes the total relay transmit power is addressed
in Section 5.5. The performance of the proposed techniques is analyzed in Section 5.6.
Finally, some concluding remarks are provided in Section 5.7.

5.2 Mathematical preliminaries: penalty convex-concave
procedure

The aim of this section is to brie�y summarize the penalty convex-concave procedure [59].
As it will be shown in the next sections, the subset selection problems addressed in this
chapter can be recast as Di¤erence of Convex (DC) programs [45]. Within this context,
the convex-concave procedure (CCP) [54,123,59], a.k.a. Successive Convex Approximation
(SCA), is a powerful method that has been found very e¤ective for dealing with this kind
of problems. The convex-concave procedure is a majorization-minorization algorithm [124]
that solves DC programs as a sequence of convex problems. The general formulation of a
DC program is given by

min
x

�0(x)��0(x) (5.1a)

s.t. �i(x)��i(x) � 0; i = 1; :::;m (5.1b)

where x can be a real- or a complex-valued vector (x 2 Rn � 1 or Cn � 1) and the functions
f�i(x)gi=mi=0 and f�i(x)g

i=m
i=0 are all real-valued convex functions. DC programs are not

convex, unless the functions f�i(x)g
i=m
i=0 are all a¢ ne and, hence, are hard to solve in

general. Finding the global optimum of problems of the type (5.1) is computationally

74



expensive (or even intractable). The mathematical formulation in expression (5.1) models
many non-convex problems in engineering [45]. For the sake of simplicity, it will be assumed
that the functions f�i(x)g

i=m
i=0 are di¤erentiable. The extension to non-smooth functions is

straightforward, but is out the scope of this chapter (interested readers are referred to [59]).
CCP is an iterative procedure with low-complexity which has been proved to converge to
KKT point of the problem (5.1). Starting from a initial feasible point x(0), at each iteration,
the CCP algorithm �rst linearizes the non-convex part of  i(x) =�i(x)��i(x) by replacing
�i(x) by its a¢ ne approximation, for i = 0; :::;m, and then, solves the corresponding
convexi�ed problem. At the lth iteration, the algorithm approximates �i(x) by its �rst-
order Taylor expansion �̂i(x;x

(l)) around the current point x(l). For real-valued functions
of complex variables, the �rst-order approximation �̂i(x;x

(l)) is given by

�̂i(x;x
(l)) = �i(x

(l))+2<
�
r�i(x

(l))H(x� x(l))
	
; (5.2)

where <f�g denotes the real part of its argument andr�i (x) =
@�i(x)
@xH

denotes the conjugate
derivative of the function �i(x) with respect to the complex-valued column-vector x [125].
For real vectors (x 2 Rn x 1), the �rst-order Taylor expansion of �i(x) is computed as follows

�̂i(x;x
(l)) = �i(x

(l))+r�i
�
x(l)
�T
(x� x(l)); (5.3)

where r�i (x) =
@�i(x)
@xT

denotes the gradient. The method is summarized in Algorithm 3.
Let us remark that since the function �i(x) is convex in x, it is minorized by its �rst-order
Taylor approximation �̂i(x;x

(l)) [114], i.e, �i(x) � �̂i(x;x
(l)) 8i, and consequently

�i(x)��i(x) � �i(x)� �̂i(x;x(l)): (5.4)

From this inequality, it is straightforward to see that by considering �i(x) � �̂i(x;x(l)) � 0
for i = 1; :::;m; in Algorithm 3, we are strengthening the original non-convex constraints in
(5.1b). Since the new constraints are more conservative than the original ones, the feasible
set of the convexi�ed problem in Algorithm 3 is a subset of the original feasible set de�ned
by the constraints in (5.1b).

As it has been introduced above, the CCP technique is a descendent algorithm that
converges to a KKT point of the original problem in (5.1). The �nal solution depends on
the selection of the initial feasible point. One option is to choose di¤erent starting (feasible)
points and take the best solution. Unfortunately, in many practical problems, �nding and
initial feasible point for the CCP could be a di¢ cult task. In order to overcome this
drawback T. Lipp and S. Boyd have recently proposed in [59] an extension of the convex-
concave procedure that removes the need for an starting point in the feasible region of the
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original problem. This method, which is called penalty CCP, is based on the addition of
some non-negative slack variables si to the constraints and the penalization of the sum of
the constraint violations. A similar idea has been proposed by Mehanna et al. in [56] for
solving non-convex Quadratically Constrained Quadratic Problems (QCQP). The penalty
CCP is summarized in Algorithm 4.

Algorithm 3 Traditional CCP
Initialization: Start with a feasible point x(0) and set l = 0
while convergence is not achieved do
1) Convexi�cation of the objective function and the non-convex constraints by replacing
�i(x) by its a¢ ne approximation �̂i(x;x

(l)) for i = 0; :::;m.

if x 2 Cn x 1 compute �̂i(x;x(l)) as in (5.2)
if x 2 Rn x 1 compute �̂i(x;x(l)) as in (5.3)

2) Solve the convexi�ed problem : Set the value of x(l+1) to the solution of the following
convex problem

min
x

�0(x)� �̂0(x;x(l))

subject to �i(x)� �̂i(x;x(l)) � 0; i = 1; : : : ;m:

3) Update the iteration number: l l + 1
end while

It is worth noting that under the non-negative constraint on the vector of slack variables,
the right-hand penalization of the sum of constraint violations in the objective of Algorithm
4 (step 2) is equivalent to penalizing the objective function with the l1-norm of the vector
of slack variables, de�ned as ksk1 =

Pi=m
i=1 jsij, which have a well-known sparsity-inducing

e¤ect [23, 26]. If the slack variables in the �nal solutions are all zeros, i.e.,
Pi=m

i=1 si ' 0,
then the algorithm has converged to a feasible solution.

Next, we expose some important remarks about the penalty CCP technique:

1. The algorithm always converges, although the convergence can be to an unfeasible
point of the original problem (5.1) [59]. Since the algorithm is based on a local
�rst-order approximation of the non-convex functions of the DC problem, the �nal
solution depends on the starting point.

2. Depending on the problem under consideration, there are many possible variations
in the way the constraints are handled in the method. In Algorithm 4, an initially
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Algorithm 4 Penalty CCP
Initialization: Set l = 0. De�ne � (0) > 0, �max, � > 0 and generate a random initial point
x(0)

while convergence is not achieved do
1) Convexi�cation of the non-convex functions by replacing �i(x) by its a¢ ne approxi-
mation �̂i(x;x

(l)) for i = 0; :::;m.

if x 2 Cn x 1 compute �̂i(x;x(l)) as in (5.2)
if x 2 Rn x 1 compute �̂i(x;x(l)) as in (5.3)

2) Solve the convexi�ed problem : Set the value of x(l+1) to the solution of the following
convex problem

min
x;s

�0(x)� �̂0(x;x(l)) + � (l)
mX
i=1

si

subject to �i(x)� �̂i(x;x(l)) � si; i = 1; : : : ;m:
si � 0; i = 1; : : : ;m:

3) Update the penalty factor: � (l+1)  min(�� (l); �max)
4) Update the iteration number: l l + 1

end while

low penalty � (0) is imposed, allowing the violation of the constraints during the �rst
iterations of the procedure with the aim of �nding a more favorable region with a lower
objective value. Note that the penalty on the violation of the constraints is increased
at each iteration of Algorithm 4 by a factor �, encouraging the ful�llment of the
constraints in the subsequent steps of the procedure. Another possible modi�cation
of the method is to consider a large �xed value of � in order to push the slack
variables toward zero (

Pi=m
i=1 si = 0). This approach has been considered in [56].

Finally, yet another interesting variation is to choose di¤erent values of the penalty
factor � for each constraint, prioritizing the satisfaction of some constraints over the
others. Interested readers are referred to Section 3 of [59] for a thorough discussion
on the possible criteria for handling the constraints.

3. One possible variation of the method is to remove the slack variables for the con-
straints that are purely convex (�i(x) =0). In this case, if a feasible point of the
problem exists, it must satisfy all the convex constraints at each iteration. This
approach, which has been considered in reference [56], reduces the total number of
variables, reduces the search area for the solution and may lead to a faster conver-
gence. However, the consideration of slack variables in the convex constraints may be
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of interest. By considering this approach, the space of feasible solutions is enlarged
and a temporal violation of the convex constraints is allowed with the aim of reach-
ing in the following iterations a more favorable region of non-convex constraints. See
Section 3.2 of [59] for a detailed discussion on this approach.

4. A reasonable stopping condition for the penalty convex-concave procedure is to halt
the method when the improvement in the objective is small.

5.3 System model

Consider the ad-hoc wireless relay network presented in Fig. 5.1, composed of M source-
destination pairs (denoted by Si�Di; i = 1; :::;M), communicating in a pairwise manner,
with the help of N potential relays. All the nodes in this scheme are equipped with a
single antenna and operate in the same frequency band in a half-duplex mode, i.e., they
cannot receive and transmit at the same time. It is assumed that due to the severe path
loss there is no direct link between any source and destination. Hence, in order to carry
out its communication, each source-destination pair needs to be assisted by the set of N
potential relays. The communication process takes place in two steps, during the �rst time
slot the sources broadcast their signals simultaneously to the relays, which receive a noisy
faded mixture of the signals of all the sources. In the second step, each relay multiplies its
received signal by a complex coe¢ cient (the beamforming weight) and forwards it to the
destination nodes.

S1

SM DM

D1

Relay 1

Relay 2

Relay N

f1

fM

g1

gM

Figure 5.1: Amplify-and-forward multi-user multi-relay network
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Let a=[a1; :::; aM ]T be the vector of information symbols transmitted by the M source
nodes, which is assumed to be zero-mean and component-wise independent with variance
Efjaij2g=PSi, and let fk=[fk1; :::; fkN ]T denote the vector of complex channel coe¢ cients
between the kth source and the relays. The vector of received signals at the relays is given
by

y =

MX
i=1

fiai + �; (5.5)

where � 2 CN is the vector of Additive White Gaussian Noise (AWGN) components at
the relay nodes, i.e., the ith entry denotes the noise component at the ith relay. The
components of this vector are assumed to be zero-mean i.i.d. variables with variance �2r.
During the second phase of the transmission process each relay multiply its received signal
by the corresponding complex weight wi, with i = 1; :::; N . Thus, the vector of signals
transmitted by all the relays can be expressed as z = Wy, where W =diag(w1; :::; wN).
The signal received at the kth destination node is given by

rk = g
T
kWfkak +

MX
i6=k

gTkWf iai + g
T
kW� + nk; (5.6)

where nk denotes the AWGN at the destination node k, which has a known variance �2d
and gk = [gk1; :::; gkN ]T denotes the vector of channel coe¢ cients between the relays and
the kth destination. Note that only the �rst term of rk is of interest for the kth destination.
Let hk = fk � gk, where the operator � denotes the Schur-Hadamard product, the SINR
at the kth destination is given by

SINRk(w) =
wHAkw

wH(Bk +Ck)w+�2d
; (5.7)

where w = [w1; :::; wN ]T denotes the beamforming vector and the matrices Ak,Bk and Ck
are de�ned as follows:

Ak = PSkEfhkhHk g; Bk =
MX
i6=k

PSiEf(fi � gk)(fi � gk)Hg;

Ck = �2r diag(Efjgk1j2g; :::; EfjgkN j2g):

The transmit power of the ith relay and the total power transmitted by all the relays,
which are denoted by pi and PT , respectively, can be expressed as

pi = Dii jwij2 (5.8a)

PT = w
HDw; (5.8b)
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where Dii =
Pj=M

j=1 PSjEf jfjij
2g+ �2r denotes the ith entry of the diagonal matrix D.

Regarding the Channel State Information (CSI), two di¤erent approaches have been
considered in the multi-user peer-to-peer literature: i) the channel coe¢ cients are perfectly
known; ii) knowledge of the second-order statistics of the channel coe¢ cients. Both cases
are discussed below.

5.3.1 Perfect CSI available

In this case the channel coe¢ cients are exactly known at the processing center where the
beamforming weights are computed. This is the approach considered in the majority of
previous works on distributed beamforming (see [58, 120, 53, 121] and references therein).
In case of a perfect knowledge of the instantaneous CSI, the aforementioned matrices Ak,
Bk, Ck and D are given by

Ak=PSkhkh
H
k , Bk =

MX
i6=k

PSi(fi � gk)(fi � gk)H

Ck = �2r diag(jgk1j2,...,jgkN j2)

D = diag(D11,...,DNN) with Dii=
NP
j=1

PSj jfjij
2+�2r (5.9)

5.3.2 Knowledge of the second-order statistics of the channel
coe¢ cients

In wireless relay networks, acquiring instantaneous CSI may be a di¢ cult task. Specially,
in fast fading scenarios where the real-time estimation and transmission of the channel
coe¢ cients to a central processing node may require a prohibitive signalling overhead.
Nevertheless, the second-order statistics of the channels normally evolve at a signi�cantly
lower rate.

This approach has been originally proposed in [120] and allows the consideration of
some uncertainty in the channel models through introducing the covariance matrices of
the channel gains. In practice, only the knowledge of the means and the variances of
the channels is required [120, 61]. Let �fij and �gij denote the means of the backward
channels (source-to-relays) and forward channels (relays-to-destinations), respectively, i.
e., �fij = Effijg and �gij = Efgijg, 8i 2 L , f1; :::;Mg and 8j 2 F , f1; :::; Ng. In
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the same way, let us denote the variances of the forward and the backward channels as
�ij = Ef

��fij � �fij
��2g and 'ij = Efjgij � �gijj2g 8i 2 L and 8j 2 F . Assuming that

source-to-relays channels and the channels from the relays to the destinations are jointly
independent, the (i; j)th entry of the aforementioned matrices Ak, Bk can be expressed as

[Ak]ij=PSk( �fki �f
�
kj+�ki�(i-j))�(�gki�g

�
kj+'ki�(i-j))

[Bk]ij=
MP
l 6=k

PSl(
�fli �f

�
lj+�li�(i-j))�(�gki�g

�
kj+'ki�(i-j)); (5.10)

where �(�) denotes the delta function. The (i; i)th entry of the diagonal matrices Ck and
D is given by

[Ck]ii = �2r(j�gkij
2 + 'ki) (5.11)

Dii =
MP
j=1

PSj(
�� �fji��2 + �ji) + �2r; (5.12)

5.4 Selection of the minimum number of relay nodes

5.4.1 Problem formulation

In order to reduce the hardware costs as well as the processing and the communications
overhead in the multi-user wireless network presented in Fig. 5.1, the number of selected
relays will be minimized. In particular, this section deals with the selection of the smallest
subset of relays, under per-relay power constraints, which guarantees that the Quality of
Service (QoS) at destination nodes is above a certain prede�ned threshold. Throughout
this chapter, the SINR will be used as a measure of the QoS. Formally, the minimum
cardinality problem is given by the following optimization problem

min
w

kwk0 (5.13a)

s.t. SINRk � 
k 8k = 1; :::;M (5.13b)

pi� Pmaxi 8i = 1; :::; N; (5.13c)

where kwk0 denotes the l0-norm of the beamforming vector w, i.e., the number of its non-
zero entries, 
k is the target SINR at the kth destination and P

max
i denotes the maximum

allowable transmit power at the relay i. Taking into account the expressions in (5.8a) and
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(5.7), the aforementioned problem can be mathematically expressed as

min
w

kwk0 (5.14a)

s.t.
wHAkw

wH(Bk+Ck)w + �2d
� 
k 8k = 1; :::;M (5.14b)

Dii jwij2� Pmaxi 8i = 1; :::; N: (5.14c)

Since wH(Bk+Ck)w + �2d � 0, the problem in (5.14) can be rewritten as follows

min
w

kwk0 (5.15a)

s.t. wHTkw � 
k�
2
d 8k = 1; :::;M (5.15b)

Dii jwij2� Pmaxi 8i = 1; :::; N: (5.15c)

where Tk = Ak � 
k(Bk+Ck). The di¢ culty of the problem presented in (5.15) lies on
its non-convex and discontinuous objective function and on the constraint set de�ned by
(5.15b), which is non-convex in general [120]. Actually, the set of constraints de�ned by
(5.15b) will be convex if and only if the quadratic functions wHTkw are concave for all
k. In other words, negative semide�niteness of the matrices Tk, 8k = 1; :::;M , is required
for the constraints in (5.15b) in order to de�ne a convex set. Nonetheless, in this case,
the resulting feasible set will be empty because this fact implies that wHTkw� 0 for all k
and the minimum SINR at the kth destination has to be strictly larger than zero (
k > 0)
for all k. Otherwise, when 
k = 0, the kth source-destination will not be scheduled to be
served. As a result, we can conclude that all the matrices fTkgMk=1 have to be inde�nite
matrices (with positive and negative eigenvalues).

5.4.2 DC program reformulation

Since the problem in (5.15) is non-convex, �nding a global optimum is computationally
expensive (or even intractable). In the following, the minimum cardinality problem ex-
posed in (5.15) will be transformed into a more tractable DC program. The aim of this
reformulation is to develop a low-complexity algorithm to �nd a high quality sub-optimal
solution of this problem.

As it has been introduced above, the intractability of the problem presented in (5.14) is
not only due to the non-convexity, but also due to the discontinuity of the l0-norm in the
objective function. The natural approach to deal with this discontinuity is to approximate
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the l0-norm by a continuous surrogate. In particular, the log-sum surrogate [23, 11] is
considered here. It is de�ned as h(w) =

Pi=N
i=1 log(jwij+ ") with " > 0 (where " is a small

constant that prevents the cost function from tending to �1). By replacing the l0-norm by
the log-sum surrogate in the minimum cardinality problem presented in (5.15), we arrive
to the following optimization problem

min
w

i=NP
i=1

log(jwij+ ") s.t. (5:15b), (5:15c); (5.16)

which is equivalent to

min
w;v

NX
i=1

log(vi+") s.t. jwij � vi; (5:15b), (5:15c); (5.17)

where v=[v1; :::; vN ]T 2 RN . Both problems are equivalent in the sense that if w� is the
solution to (5.16), then (w�,jw�j) is the solution to the problem in (5.17). The function in
the objective of (5.17) is concave and di¤erentiable. Thus, in order to rewrite the problem
exposed in (5.17) as a DC program of type (5.1), we need to rewrite the SINR constraints
in (5:15b) as the di¤erence of two convex functions. With this aim in mind, let us de�ne
~Tk=�Tk=
k(Bk + Ck) � Ak, 8k = 1; :::;M . The SINR constraints in (5.15b) can be
expressed in terms of ~Tk as follows

wH ~Tkw + 
k�
2
d � 0 8k = 1; :::;M: (5.18)

By considering the following decomposition ~Tk=~T
(+)
k �~T

(-)
k , with ~T

(+)
k = 
k(Bk +Ck) and

~T
(-)
k =Ak, the set of inequalities in (5.18) can be rewritten as

wH ~T
(+)
k w + 
k�

2
d �wH ~T

(-)
k w � 0 8k = 1; :::;M: (5.19)

Note that the matrices ~T(+)k and ~T(-)k are positive semide�nite. By replacing in the prob-
lem (5.17) the constraints in (5:15b) by (5:19), the problem presented in (5.17) can be
reformulated as

min
w;v

MX
i=1

log(vi+") (5.20a)

s.t. wH ~T
(+)
k w + 
k�

2
d �wH ~T

(-)
k w�0 8k=1,...,M (5.20b)

Dii jwij2� Pmaxi 8i=1,...,N (5.20c)

jwij � vi 8i=1,...,N; (5.20d)

which is a DC program of the type (5.1).
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5.4.3 Fitting the minimum cardinality problem into the CCP
framework

The cost function in (5.20a) is concave and the constraints de�ned by (5.20b) are inequality
constraints of DC type. Therefore, the convex-concave procedure can be applied to solve
this problem. As it has been introduced in Section 5.2, the CCP is an iterative method
that iteratively approximates DC programs by linearizing the non-convex parts of the cost
function and the constraints around the solution obtained at each iteration of the method.
With this aim in mind, let us denote the log-sum function in (5.20a) by q0(v). The �rst-
order Taylor approximation q̂0(v;v(l)) around the solution of the convex-concave procedure
at the lth iteration (w(l);v(l)) is given by

q̂0(v;v
(l))=

NX
i=1

log(v
(l)
i +") +

NX
i=1

vi � v(l)i
v
(l)
i +"

; (5.21)

where v(l)i denotes the ith entry of the vector v(l).

The non-convexity of the set of constraints de�ned by (5.20b) stems from the fact that
the function qk(w) = w

H ~T
(-)
k w is convex but not concave. The �rst-order Taylor expansion

q̂k(w;w
(l)) around the solution of the CCP at the lth iteration (w(l);v(l)) is results in

q̂k(w;w
(l))=2<f(w(l))H ~T

(-)
k wg�(w(l))H ~T

(-)
k w

(l) 8k. (5.22)

By considering q̂k(w;w(l)), the constraints in (5.20b) can be convexi�ed as

wH ~T
(+)
k w+
k�

2
d � q̂k(w;w(l)) � 0 8k=1,...,M , (5.23)

which is equivalent to

wH ~T
(+)
k w�2<f(w(l))H ~T

(-)
k wg+
k�2d+(w(l))H ~T

(-)
k w

(l)�0: (5.24)

Once the cost function and the SINR constraints have been convexi�ed, we can apply the
convex-concave procedure by considering (5.21) and (5.24). Starting with an initial feasible
point (w(0);v(0)), the optimization problem presented in (5.20) can be iteratively driven
to a KKT point using the concave-convex procedure. The (l+1)th iteration of the CCP
method is given by

(w(l+1);v(l+1)) = arg min
w2CN ;v2RN

NX
i=1

vi

v
(l)
i +"

s.t. (5:24), (5:20c), jwij � vi 8i=1,...,N , (5.25)
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which is equivalent to

w(l+1) = argmin
w

NX
i=1

jwij���w(l)i ���+" (5.26a)

s.t. (5:24),(5:20c): (5.26b)

Note that each iteration in (5.26) solves a weighted l1-norm minimization problem. The
weighting updates encourage the small entries ofw to tend to zero and avoid the inadequate
suppression of large entries of the beamformer w. The aim of the parameter " is twofold.
First, it provides stability. Second, it allows that a zero entry of w(l) could become a non-
zero estimate at the next iteration. This problem can be easily reformulated as a second
order cone programming (SOCP) [114, 126] and usually takes few iterations to converge.
The iterative method presented in (5.26) should be stopped once convergence is achieved
or the maximum number of iterations Nmax

it is reached.

5.4.4 Initialization of the reweighted algorithm

The aim of this section is to describe several strategies for initializing the reweighted
algorithm presented in (5.26). The performance of these initializations will be analyzed
later on, in Section 5.6.

Perfect channel state information

When perfect CSI is available, the matrix Ak is given by Ak=PSk(fk � gk)(fk � gk)H .
This rank-one property can be exploited to approximate the QoS constraints in (5.14b) by
Second Order Cone (SOC) constraints. Inequalities in (5.14b) can be rewritten as

PSkw
H(fk � gk)(fk � gk)Hw
wH(Bk+Ck)w + �2d

� 
k 8k = 1,...,M; (5.27)

which are equivalent to��wHhk
�� �r 
k

PSk



� (Bk +Ck)
1=2w

�d

�


2

8k = 1,...,M; (5.28)

where k�k2 denotes the Euclidean norm. Recall that hk = fk � gk. Since
��wHhk

�� �
<
�
wHhk

	
, where <f�g denotes the real part operator, the non-convex constraints in
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(5.28) can be strengthened using the following (convex) second-order cone constraints

<
�
wHhk

	
�
r


k
PSk



� (Bk +Ck)
1=2w

�d

�


2

8k=1,...,M: (5.29)

This conservative approximation of the QoS constraints has been considered in references
[127] and [128]. Note that the inequality

��wHhk
�� � <�wHhk

	
is ful�lled with equality if

and only if wHhk is real and positive. The approximation is optimal only for the single
source-destination case (M = 1). In the multi-user scenario, its performance depends
on how the set of non-convex QoS constraints is approximated by (5.29) and may be
rather poor when the number of source-destination pairs increases [128]. This issue will be
analyzed in detail later in Section 5.6 by means of numerical simulations.

Next, let us focus on the relaxation of the non-convex objective function (5.14a). The
most common way to circumvent the computational bottleneck of combinatorial optimiza-
tion problems is to replace the l0-norm by its best convex surrogate, the l1-norm [26], which
is de�ned as kwk1 =

Pi=N
i=1 jwij. By considering the kwk1 and the approximation of the

SINR constraints exposed in (5.29), the cardinality minimization problem in (5.14) can be
relaxed as

min
w

kwk1 s.t. (5:20c), (5:29): (5.30)

It is worth noting that the strengthening of the SINR constraints presented in (5:29)
leads to a restricted convex feasible set that is a subset of the original feasible set of the
minimum cardinality problem (5.15). Hence, if the solution of (5.30) exists, it is feasible
for the original problem presented in (5.15). As will be shown below in Section 5.6, this
relaxation exhibits a poor performance. Nevertheless, whenever this problem is feasible, it
can provide a starting point for the reweighted algorithm presented in (5.26).

Non-perfect channel CSI

In the situations where no perfect CSI is available, Ak is no longer a rank-one matrix and,
therefore, the relaxation of the SINR requirements exposed in the previous section cannot
be directly applied. Nevertheless, we can approximate the matrix Ak by its principal
component to make the aforementioned initialization applicable to the higher rank case.
The SINR requirements in (5.14b) can be expressed asp

wHAkw �
q

k (w

H(Bk+Ck)w + �2d ) 8k = 1; :::;M: (5.31)
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To obtain a second-order cone approximation, the left-hand side of the inequality needs
to be linearized. With this aim in mind, let us consider the eigendecomposition of the ma-
trixAk:Ak =

Pi=N
i=1 �k;i#k;i#

H
k;i. The left-hand side of inequality (5.31) can be strenghtened

as p
wHAkw =

s
i=NP
i=1

�k;i jwH#k;ij2 �
p
�maxk

��wHk #maxk

�� 8k = 1; :::;M; (5.32)

where �maxk and #maxk denote the maximum eigenvalue and eigenvector of the matrix Ak,
respectively. Since

��wH#maxk

�� � <�wH#maxk

	
, then

p
wHAkw �

p
�maxk <

�
wH#maxk

	
. Us-

ing this last inequality, the SINR requirements in (5.31) can be strengthened with the
following conservative approximationp

�maxk <
�
wH#maxk

	
�
q

k (w

H(Bk+Ck)w + �2d ) 8k = 1; :::;M; (5.33)

which can be easily rewritten as a second-order cone:

<
�
wH#maxk

	
�
r


k
�maxk



� (Bk +Ck)
1=2w

�d

�


2
8k=1,...,M: (5.34)

This approximation of the QoS requirements was used in [129] to initialize the iterative
method proposed therein for the computation of the transmit beamforming in a multi-
group multicasting scenario based on the knowledge of the second-order channel state
information of the wireless relay network.

The reweighted procedure in (5.26) can be initialized in a way similar to (5.30), using
this approximation of the SINR requirements, i.e., replacing (5:29) by (5:34). Hence, in a
scenario with statistical CSI, the iterative algorithm in (5.26) can be initialized with the
solution of the next problem:

min
w

kwk1 s.t. (5:20c), (5:34): (5.35)

The convex-concave procedure applied to the minimum cardinality problem presented
in (5.15) is summarized in Algorithm 5.

Random initial point

The aforementioned initialization procedures rely on the assumption that problems (5.30)
and (5.35) are feasible. However, this assumption may not hold true. One of the main
drawbacks of strenghtening the QoS constraints with (5.29) and (5.34) for the perfect CSI
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Algorithm 5 Reweighted procedure initialized with QoS relaxation + l1-norm
Initialize the algorithm to a feasible initial point w(0) obtained with (5.30) in case of perfect
CSI or (5.35) for the statistical CSI case and set l = 0.
while convergence is not achieved or the maximum number of iterations is not reached (l �
Nmax
it ) do
1) Set the value of w(l+1) to the solution of (5.26).
2) Update iteration: l l + 1

end while

and non-perfect CSI scenario, respectively, is that these approximations are very conserva-
tive [128]. Even if the original problem (5.15) is feasible, whenever the feasible set described
by the restricted constraints shrinks to an empty set, the aforementioned approximations
of the SINR requirements can turn an original feasible problem into an infeasible one.

When the initialization problems presented in (5.30) and (5.35) are infeasible, the most
straightforward strategy for solving (5.26) is to apply the penalty convex-concave proce-
dure described in Section 5.2, initialized with a random point. With this aim in mind,
Algorithm 6 is proposed. We have considered slack variables only in the non-convex SINR
constraints. Furthermore, the value of the parameter � , which balances the tradeo¤ be-
tween the objective function and the penalty on the constraint violations, is kept �xed over
the iterations. A large value of � (i.e., � � 1) must be considered in order push the vector
of slack variables s towards zero or, i.e., to push the iterates towards the feasible region
of the problem (5.14). High values of � ensure that when a feasible point is found, the
subsequent iterates will remain in the feasible region of (5.14). Once the feasibility slacks
become zero, the constraints are satis�ed and, consequently, slacks can be removed from
algorithm 6. In other words, once a feasible point is found, we can remove the slack vari-
ables and switch to the traditional CCP, guaranteeing that the constraints will be satis�ed
in the future iterates.

It should be remarked that if no feasible point is found with Algorithm 6, some admis-
sion control procedures should be considered to reduce the number of source-destination
pairs. Nevertheless, this approach is out of the scope of this work.

88



Algorithm 6 Reweighted procedure initialized with a random point
Initialization: Set l = 0 and generate a random initial point w(0)

while convergence is not achieved or the maximum number of iterations is not reached (l �
Nmax
it ) do
1) Compute the diagonal weighting matrix 
(l)



(l)
ii =

1���w(l)i ���+"
2) Solve the convexi�ed problem with the slack variables: Set the value of w(l+1) to
the solution of

min
w;s





(l)w



1
+ �

MX
i=1

si

s.t. wH ~T
(+)
k w�2<f(w(l))H ~T(-)k wg � sk�
k�

2
d�(w(l))H ~T

(-)
k w

(l) 8k=1,...,M
Dii jwij2� Pmaxi 8i=1,...,N
sk � 0 8k=1,...,M

3) Update the iteration number: l l + 1
end while
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5.5 Selection of the subset of relays that minimizes
the total relay transmit power

In Section 5.4, we have addressed the problem of selecting the minimum number of relays
that guarantees a given performance at the destination nodes in a multiuser peer-to-peer
wireless relay network. However, if a higher complexity is allowed in the network, the
selection of a higher number of cooperative nodes could be of interest in order to reduce
the total power consumption of the wireless relay network.

This section deals with the selection of the subset ofK cooperative nodes that minimizes
the total relay transmit power. This problem is addressed considering per-relay power
constraints and guaranteeing that the QoS requirements at the destinations are above a
certain prede�ned threshold. In particular, we aim to solve the following optimization
problem:

min
w

PT (5.36a)

s.t. SINRk � 
k 8k 2L (5.36b)

pi� Pmaxi 8i 2 F (5.36c)

card(w) = K: (5.36d)

where L , f1; :::;Mg and F , f1; :::; Ng. Throughout this section, we assume that the
desired cardinality, which is denoted by K, is larger than the minimum cardinality that
guarantees the ful�llment of the constraints. In other words, it is assumed that problem
(5.36) is feasible. Formally, the aforementioned cardinality-constrained problem can be
formulated as

min
w

wDw (5.37a)

s.t. wHTkw � 
k�
2
d 8k 2L (5.37b)

Dii jwij2� Pmaxi 8i 2 F (5.37c)

card(w) = K: (5.37d)

Let us introduce a set of binary variables bi 2 f0; 1g for i = 1; :::; N to indicate the
cooperation group membership. If bi = 1; the ith relay is assigned to the set of cooperative
relays and, otherwise, when bi = 0, the relay is not selected for the cooperation. Problem
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(5.37) can be rewritten as

min
w;b

wHDw (5.38a)

s.t. wHTkw � 
k�
2
d 8k 2L (5.38b)

Dii jwij2� biP
max
i 8i 2 F (5.38c)

1TNb = K (5.38d)

bi2f0; 1g 8i 2 F ; (5.38e)

where b = [b1; :::; bN ] is a vector of binary variables, i.e., b 2f0; 1gN , and 1N denotes an
all-ones column-vector of length N . Note that bi is a binary indicator variable that controls
the continuous variable w, i.e., bi = 0 implies that jwij2 = 0 and therefore, when bi = 0 the
ith relay does not transmit.

This problem combines a complex-valued unknown vector w with a vector of binary
variables b and falls within the class of {0,1}-non-convex mixed integer nonlinear programs
[55] due to the non-convex SINR constraints in (5.38b). This kind of problems are well-
known to be NP-hard [55] and even the task of �nding a sub-optimal solution to this type
of problems is challenging. The main reason is that the continuous relaxation of the binary
constraints does not lead to a tractable formulation due to non-convexity of the constraints.
In the case under analysis, due to the SINR requirements. A detailed description of non-
convex mixed integer nonlinear programs is out of the scope of this chapter and we refer
interested readers to reference [55], which constitutes a comprehensive survey about this
topic.

5.5.1 Perspective reformulation

In Mixed Integer Nonlinear Programs (MINLP), having a tight formulation of the problem
is of paramount importance to obtain a tight continuous relaxation [130]. The main prob-
lem of the formulation presented in (5.38) is that the upper bounds on the relay transmit
powers de�ned by (5.38c) are loose and this results in weak continuous relaxations. Thus,
the formulation presented in (5.38) needs to be strengthened.

In order to develop a tight continuous relaxation of the cardinality-constrained opti-
mization problem in the next sections, here we adopt the so-called perspective reformulation
approach, which has been recently proposed in [131, 36, 130]. This technique consists in
tightening the constraints involving binary indicator variables. Having this goal in mind,
let us introduce a set of auxiliary optimization variables fti � 0;8i 2 Fg to model the
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power needed by each relay in the cooperation process and use ti to replace the loose
upper bound Pmaxi in (5.38c). Then, the on-o¤ constraint in (5.38c) can be expressed as

Dii jwij2� biti 8i 2 F , (5.39)

which can be easily transformed into a second-order cone constraint [126]

� 2pDiiwi; bi�ti
�


2
� bi+ti 8i 2 F . (5.40)

Using this new on-o¤constraint and the auxiliary variables ti the problem exposed in (5.38)
can reformulated as

min
w2CN ;b;t2RN

NP
i=1

ti (5.41a)

s.t. wHTkw � 
k�
2
d 8k 2L (5.41b)


[2pDiiwi; bi�ti]




2
� bi+ti 8i 2 F (5.41c)

ti � biP
max
i 8i 2 F (5.41d)

1TNb = K (5.41e)

bi2f0; 1g 8i 2 F ; (5.41f)

where t = [t1; : : : ; tN ]T . The constraints in (5.41d) are problem-speci�c cuts added to
obtain tighter continuous relaxations. Cuts are convex constraints, normally linear, added
to a MINLP to reduce the size of the feasible set associated to the continuous relaxation of
the problem [132], as illustrated in Fig. 5.2. This type of constraints are redundant in the
sense that they do no a¤ect the feasible set of the original cardinality-constrained problem,
but they reduce the size of the feasible set associated to the continuous relaxation. Both
formulations, (5.41) and (5.38), are equivalent, nonetheless, (5.41) is preferred because it
leads to a tighter relaxation.

5.5.2 DC program reformulation

The di¢ culty of the optimization problem exposed in (5.41) lies on the set of non-convex
SINR constraints and on the binary variables. In this section, the problem will be trans-
formed into a more tractable DC program. The aim of this reformulation is to develop a
sub-optimal method based on the penalty convex-concave procedure.
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Figure 5.2: (a) Original (disconnected) feasible set of the non-convex MINLP problem. (b) Feasible set
associated to the continuous relaxation of the MINLP. (c) Feasible set of the continuous relaxation with
the cuts.

The �rst step in this process is to formulate (5.41) as a continuous quadratic problem.
With this objective in mind, let us consider the next concave function [53,133,45]

�q(b) =
i=NP
i=1

bi(1� bi) = 1TNb� bTb. (5.42)

Note that b 2f0; 1gN () �q(b) = 0. Since �q is a �nite nonnegative concave function
in b 2 [0; 1]N , the binary constraints exposed in (5.41f) can be straightforwardly rewritten
as �q(b) � 0 with b 2 [0; 1]N . Taking into account this equivalence, problem (5.41) can be
expressed as the following continuous formulation:

min
w;b;t

NP
i=1

ti (5.43a)

s.t. wHTkw � 
k�
2
d 8k 2L (5.43b)


[2pDiiwi; bi�ti]




2
� bi+ti 8i 2 F (5.43c)

ti � biP
max
i 8i 2 F (5.43d)

1TNb = K (5.43e)

1TNb� bTb � 0 (5.43f)

bi � 1 8i 2 F : (5.43g)

Note that the inequalities bi � 0, 8i 2 F , which correspond to the lower bound of the
closed interval [0; 1]N , are implicit in the per-relay power constraints (5:43c) and therefore
can be omitted.

As already exposed above, the SINR constraints can be rewritten as the set DC con-
straints presented in (5:19). By replacing (5:43b) by (5:19), the optimization problem (5:43)
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yields the next continuous DC program

min
w;b;t

NP
i=1

ti (5.44a)

s.t. (5:19); (5:43c)� (5:43g): (5.44b)

5.5.3 Fitting the DC reformulation into the penalty CCP frame-
work

In order to apply the convex-concave procedure, we need to linearize the concave constraint
in (5.43f). The �rst-order Taylor approximation of this constraint around the solution of
the convex-concave solution in the lth iteration (w(l);b(l)) is given by

(1TN � 2(b
(l))T )b+ (b(l))Tb(l) � 0: (5.45)

Using this linearization and considering the convexi�cation of the QoS constraints ex-
posed in (5:24), we can apply the penalty CCP heuristic to the DC problem (5:44). Starting
from a random initial point (w(0);b(0)), the (l + 1 )th iteration of the penalty CCP method
applied to (5:44) is given by

(w(l+1);b(l+1)) = arg min
w;b;t;sbin ;fssinrk gMk=1

NP
i=1

ti + � sinr
MP
k=1

ssinrk + �
(l)
binsbin (5.46a)

s.t.

(1TN � 2(b
(l))T )b+ (b(l))Tb(l) � sbin (5.46b)

wH ~T
(+)
k w�2<f(w(l))H ~T

(-)
k wg+
k�2d+(w(l))H ~T

(-)
k w

(l)
� ssinrk 8k 2L

(5.46c)
sbin � 0; ssinrk � 0 8k 2L; (5.46d)

(5:43c)� (5:43e); (5:43g); (5.46e)

where sbin and fssinrk gMk=1 are slack variables that measure the violation of the binary con-
straint in (5.46b) and the SINR requirements (5.46c), respectively. Note that di¤erent
penalty values are considered for the violation of the QoS requirements and the binary
constraints, i.e., � sinr 6= �

(l)
bin. Moreover, �

(l)
bin depends on the iteration number l. The way

the slack variables are handled is exposed in the next section. This problem is convex
and can be easily rewritten as a SOCP [114, 126]. The whole method is summarized in
Algorithm 7.
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Algorithm 7 Penalty CCP for the cardinality-constrained problem with random point
initializ.
Initialization: Set l = 0 and de�ne � (0)bin > 0,� sinr > 0, � > 1 and �

max
bin and generate a random initial

point (w(0);b(0)), with 0 � b(0)i � 1.
repeat
1) Set the value of (w(l+1);b(l+1)) to the solution of

min
w;b;t;sb in ;fss in rk gMk=1

NP
i=1

ti + � sinr
MP
k=1

ss in rk + �
(l)
binsbin

s.t. (5:46b)� (5:46e)

2) Update the penalty factor � bin and the iteration number: �
(l+1)
bin  min(�� (l)bin ; �

max
bin ), l l + 1.

until convergence or the maximum number of iterations is reached (l � Nmax
it )

5.5.4 Enforcing the constraints

In contrast to the approach presented in Section 5.4 for the minimum cardinality problem,
Algorithm 7 considers di¤erent penalties on the violation of the SINR requirements in
(5.46c) and the binary-promoting constraint in (5.46b). The values of the penalty factors,
which are denoted by � sinr and � bin, are chosen per constraint basis, prioritizing the sat-
isfaction of certain constraints over the others. In particular, in Algorithm 7, we propose
to use a large and �xed value of � sinr, i.e., � sinr � 1; to push the iterates towards the ful-
�llment of the QoS requirements. On the contrary, for the binary constraint, rather than
considering a �xed � bin, the value of this parameter is modi�ed in the algorithm. Initially,
a low penalty on the violation of the binary constraint is considered and then it is increased
at each iteration of the method, using the following updating rule: � (l+1)bin  ��

(l)
bin with

� > 1.

The rationale behind this approach is that the feasible sets for the cardinality-constrained
problem presented in (5.37) are disconnected, as illustrated in Fig. 5.2 (a). Putting a large
penalty factor � bin on the violation of the binary constraint, in this case, would promote
the selection of a subset of cooperative nodes during the �rst iterates of the penalty CCP,
penalizing the change of subset in the subsequent iterations. In order to let the algorithm
change the selected cooperative nodes along the iterations, rather than considering a �xed
value for � bin, a temporal violation of the binary constraint is allowed during the �rst it-
erations of the method. Inspired by the procedure presented in [59], the value of � bin is
initialized to a low value and it is increased at each iteration of the algorithm. By consid-
ering this approach, we allow the procedure to �nd a more favorable subset of cooperative

95



relays along the iterations, instead of constraining the algorithm to a certain subset of
nodes during the �rst steps. Numerical simulations in Section 5.6 show that the proposed
procedure clearly outperforms the ��xed penalty�approach.

5.5.5 The two-step procedure

A variation of Algorithm 7 consists in decoupling the convexi�cation of the QoS require-
ments and the ful�llment of the binary constraint. The method presented in Algorithm 8
considers two separated phases: i) an initial step to reach a more favorable region of SINR
constraints, and ii) a second step to promote a binary feasible solution initialized with the
solution obtained in the �rst phase. Note that during the �rst phase the violation of the
binary constraint is allowed. As shown below, this approach outperforms Algorithm 7.

5.5.6 Algorithm variations: initialization of Algorithms 7 and 8

Algorithms 7 and 8 are based on the penalty convex-concave procedure and have been
initialized to a random point. However, similar to the minimum cardinality problem,
alternative initializations can be envisaged depending on the available channel state in-
formation. The performance of each of these initializations will be evaluated in the next
section by means of numerical simulations.

Recall the non-convex MINLP in (5.41). As already explained for the minimum cardi-
nality problem, the QoS constraints in (5:41b) can be relaxed using (5:29) in the perfect
CSI case and (5:34) in the statistical CSI scenario

QoS relaxation
�
(5:29) if perfect CSI
(5:34) if statistical CSI.

(5.47)

Furthermore, the binary constraints in (5.41f) can be relaxed with the so-called continuous
relaxation of the variables (a.k.a. box contraints) 0 � bi � 1; 8i 2 F [43]. Using (5.47)
and the box contraints, Algorithms 7 and 8 can be initialized with the solution of the next
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Algorithm 8 Two-step method for the cardinality-constrained problem with random ini-
tialization
Initialize: Set l = 0, de�ne � (0)bin > 0,� sinr > 0, � > 1 and �maxbin and generate a random initial point

(w(0);b(0)), with 0 � b(0)i � 1.
PHASE 1: Find a better region of convexi�ed SINR constraints
repeat
1) Set the value of (w(l+1);b(l+1)) to the solution of

min
w;b;t;fss in rk gMk=1

NP
i=1

ti + � sinr
MP
k=1

ss in rk

s.t. (5:46c); (5:46e); ss in rk � 0 8k 2L

2) Update iteration number: l l + 1.
until convergence to a feasible solution (

PM
k=1s

s in r
k � 0 ) or the maximum number of iterations is reached

(l � Nmax
1 )

PHASE 2: Find feasible solution that ful�lls the binary-promoting constraint, i.e., with only K active
entries in w
if b(l) is not binary then
Initialize b(0) with the result of phase 1 (i.e., b(0) = b(l)). Set l = 0, de�ne � (0)bin > 0, � > 1 and �

max
bin

repeat
Set the value of (w(l+1);b(l+1)) to the solution of

min
w;b;t;sb in

NP
i=1

ti + �
(l)
binsbin

s.t. wH ~T
(+)
k w�2<f(w(l))H ~T

(-)
k wg+
k�

2
d+(w

(l))H ~T
(-)
k w

(l)
� 0 8k 2L

(5:46b); (5:46e); sbin � 0

Update the penalty factor and the iteration number: � (l+1)bin  min(�� (l)bin ; �
max
bin ), l l + 1.

until convergence to a feasible point (sbin � 0) or the maximum number of iterations is reached
(l � Nmax

2 )
end if
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convex optimization problem:

min
w2CN ;b;t2RN

NP
i=1

ti (5.48a)

s.t.



[2pDiiwi; bi�ti]





2
� bi+ti 8i 2 F (5.48b)

ti � biP
max
i 8i 2 F (5.48c)

1TNb = K (5.48d)

bi � 1 8i 2 F ; (5.47): (5.48e)

Note that 0 � bi 8i 2 F is implicit in the set of on-o¤ constraints in (5.48b) and there-
fore can be omitted. This relaxed relay selection problem is not equivalent to the original
MINLP in (5.41). In particular, the entries of b are not binary in general, they are
fractional, and there are not theoretical guarantees that choosing the indices of w corre-
sponding to the K largest entries of b lead to a feasible solution of the original subset
selection problem in (5.37). Nevertheless, when the aforementioned problem is feasible, it
can provide a proper initialization for Algorithms 7 and 8. As already explained for the
minimum cardinality problem, the relaxation of the QoS constraints in (5.47) is an inner
convex approximation of the original feasible set of SINR constraints in (5:41b). Hence, if
the aforementioned problem is feasible, the slack variables that measure the feasibility of
the QoS constraints ssinrk are not needed in Algorithms 7 and 8. In the simulations below,
this initialization will be referred as perspective initialization.

5.6 Numerical results

The aim of this section is to evaluate the performance of the proposed algorithms. Through-
out the simulations the same transmit power P is considered for all the sources. In the
same way, per-relay power constraints are set to P . In particular, we assume PSk = Pmaxi =
P = 27 dBm 8k 2 L;8i 2 F and we require all the destinations to be above the same SINR
threshold, i.e., 
k = 
; for k = 1; :::;M . Furthermore, without loss of generality, the noise
powers at the relays and at the destinations are assumed equal to �2, i.e., �2r = �2d = �2.
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5.6.1 Minimum cardinality problem

In the �rst scenario under analysis channel coe¢ cients are exactly known at the processing
center where the beamforming weights are computed. In particular, these channel coef-
�cients are considered �at and are generated in each simulation run as i.i.d. complex
Gaussian random variables with zero mean and unit variance.

Figures 5.3 and 5.4 plot the mean number of selected nodes in a dense wireless coopera-
tive network composed of N = 40 potential relays as a function of SINR requirement 
, for
M = 5 andM = 3 source-destination pairs, respectively. In this case, the noise power is set
4 dB below the source powers, i.e., �2 = 23 dBm. The curves were obtained by averaging
the results of 500 independent Montecarlo runs. These �gures compare the performance in
terms of mean number of selected nodes of the reweighted procedure initialized with the
l1-norm plus the QoS relaxation exposed in Algorithm 5 and with the random initialization
described in Algorithm 6. For the latter, the considered penalty factor is � = 103. The
value of the parameter " in the reweighted method is set 10�5 and the maximum number
of iterations is chosen as: Nmax

it = 15. The performance of both initializations is compared
against the solution of (5.30), which is denoted as l1-norm + QoS relax., and the CCP
applied to the problem

min
w

kwk1
s.t. wHTkw � 
k�

2
d 8k 2L

Dii jwij2� Pmaxi 8i 2 F ; (5.49)

initialized with (5.30). Note that we have just replaced the l0-norm in the objective of
problem (5.15) by the l1-norm. Following an analysis similar to the one carried out in
Section 5.4, it is straightforward to prove that the lth iteration of the convex-concave
procedure applied to this problem is given by:

w(l+1) = argmin
w
kwk1 s.t. (5:24),(5:20c): (5.50)

As can be seen from Figures 5.3 and 5.4, the initializations of the reweighted algo-
rithm exhibit a similar performance. Furthermore, both clearly outperform the solution
of the initialization problem in (5.30) and the aforementioned CCP applied to (5.49). In-
terestingly enough, the reweighted method is able to deliver high-quality solutions with a
reduced number of cooperative nodes and, moreover, the mean number of selected relays
is not sensitive to the initial point.
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Figure 5.3: Mean number of selected relays as a function of the SINR threshold 
. Perfect CSI, N = 40
relays, M = 5 source-destination pairs, P = 27 dBm, �2 = 23 dBm, � = 10�5, � = 103. Results are
averaged over 500 simulation runs. The upper red curve denotes the solution of (5.30), which is the point
used to initialize Algorithm 5.
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Figure 5.4: Mean number of selected relays as a function of the SINR threshold 
. Perfect CSI, N = 40,
M = 3, P = 27 dBm, �2 = 23 dBm . The upper curve denotes the solution of (5.30).
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In Figure 5.5 we present the mean number of iterations required by the reweighted
algorithm as a function of SINR requirement for M = 2 and 5 source-destination pairs.
Convergence is declared if




(l)w(l)



1
�



(l)w(l�1)




1
� 10�2, where 
(l) denotes the diag-

onal weighting matrix at iteration l. The ith entry of the diagonal of this matrix is given by


(l)
ii = 1=(jw

(l)
i j+ "). As in our previous simulations, the initialization strategies presented

in Section 5.4 are analyzed. Note that the reweighted technique initialized with (5.30)
exhibits a good performance in terms of the average number of iterations for low values
of the SINR threshold when the number of source-destination pairs is small. However,
the performance of this initialization gets worse when the SINR requirement and/or the
number of pairs increases. As already introduced in Section 5.4, the QoS approximation
in (5.30) is only optimal for the single source-destination scenario (M=1) and the quality
of the relaxation is degraded when the parameter M is incremented.
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Figure 5.5: Average number of iterations as a function of the SINR threshold for M = 2 and M = 5
source-destinations pairs. Perfect CSI, N = 40 relays, � = 10�5.

In order to evaluate the performance of the algorithm when the ratio P=�2 is modi�ed,
in Figure 5.6, we show the average number of selected relays as a function of the ratio P=�2

for the reweighted method with a random initialization. In particular, P was set to 27 dBm
and the value of �2 is varied accordingly. Note that the mean number of selected nodes
decreases when the ratio increases. Furthermore, it should be also noticed that for a given
ratio, the number of cooperative nodes increases when the number of source-destination
pairs grows or the SINR requirement is increased.
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Figure 5.6: Average number of selected cooperative nodes as a function of the ratio P=�2 for M = 4
and M = 5. Perfect CSI, N = 40 relays, " = 10�5, � = 103.

Figure 5.7 shows the percentage of feasible simulation runs of the reweighted method
as a function of the SINR requirement 
 for M=4 and 5. As in the previous �gures, the
random initialization (Algorithm 6) and the initialization with the l1-norm plus the QoS
relaxation (Algorithm 5) are compared. In this case, the total number of relays has been set
to N=20 and the values of P and �2 are set to 27 dBm and 19 dBm, respectively, i.e., the
noise powers are set 8 dB below the source powers. The curves are the result of the average
of 400 Montecarlo runs. Note that the random initialization clearly outperforms Algorithm
5. The rationale behind this behavior is that when the initialization problem (5.30) is not
feasible, Algorithm 5 cannot be initialized. As introduced above, the approximation of the
SINR constraints in (5.29) is only optimal for the single source-destination pair and may
be rather poor when M is increased [128].

To gain further insights into the problem of infeasibility, Figure 5.8 plots the percentage
of feasible simulation runs as a function M for 
 = 0 dB and 
 = 6 dB. As in the previous
�gure, the percentage of successful cases obtained with the random initialization is much
higher than with the Algorithm 5 (l1-norm + QoS relaxation) due to the poor behavior
of the SINR approximation in (5.29) that provokes the infeasibility of the initialization
problem (5.30) and, consequently, the poor performance of Algorithm 5.
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Next, we evaluate the performance of the proposed method in a non-perfect CSI sce-
nario. In this case, it is assumed that the second-order statistics of the channel coe¢ cients
is known at the central processing node. In particular, for the simulations presented below,
we have considered channel model presented in [120].

Assume that the source-to-relays and the relays-to-destination channels, which are de-
noted by fij and gmk, respectively, can be modeled as

fij = �fij + ~fij 8i 2L;8j 2 F
gmk = �gmk + ~gmk 8m 2 F ;8k 2 L;

where �fij and �gmk are known channel means and ~fij and ~gij are zero-mean random variables.
We assume that the channel coe¢ cients are mutually independent. According to [120], the
channel means �fij and �gmk are generated as

�fij = ej�ij=
p
1 + �f 8i 2L;8j 2F

�gmk = ej�mk=
p
1 + �g 8m 2F ;8k 2L;

where �ij and �mk are random variables uniformly distributed on the interval [0; 2�]. The
parameters �f and �g are positive constants that determine the uncertainty of the channel
coe¢ cients. The variances of the random variables ~fij and ~gmk are given by

varf ~fijg = �f=(1 + �f ) 8i 2L;8j 2F
var f~gmkg = �g=(1 + �g) 8m 2F ;8k 2L:

The justi�cation for this channel model is explained in reference [120]. It should be noticed
that Efjfijj2g = 1. Therefore, when the parameter �f is increased, the mean value of the
channel fij is decreased accordingly. The same concept applies to the parameter �g that
controls the uncertainty of the channels between the relays and the destinations. Based on
the channel model described above, in each trial of the Montecarlo simulation, the matrices
Ak, Bk, Ck and D are generated according to these values.

Figure 5.9 shows the mean number of selected relays as a function of the SINR threshold
in a dense network of N=40 potential relays when second-order CSI is considered. The
source transmit powers and the per-relay constraints are set to 27 dBm. In this scenario,
the considered noise power is 10 dB below the source transmit power (�2=17 dBm). For
this simulation, and similar to [120], the considered values for �f and �g are �f=�g=�10
dB. As in the perfect channel state information case, the performance of the reweighted
algorithm initialized with an arbitrary random point (Algorithm 6) and with the QoS
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relaxation (Algorithm 5) is compared against the solution of problem (5.35), which is
denoted as l1-norm + QoS relaxation, and the convex-concave procedure applied to the
problem (5.49). Similar to the perfect CSI scenario, from Figure 5.9 we can conclude that
the reweighted technique clearly outperforms the rest of methods and is quite insensitive to
the initialization point, because Algorithm 5 and Algorithm 6 have a similar performance
in terms of the average number of selected nodes.
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Figure 5.9: Mean number of selected relays as a function of the SINR. N = 40 relays, PSk = 27 dBm,
�2 = 17 dBm and statistical CSI with �f = �g = �10 dB

In order to assess the performance of the reweighted method as a function of the level
of uncertainty of the channels, Figure 5.10 plots the mean number of selected nodes as a
function of the uncertainty level for the reweighted algorithm with a random initialization.
The same value � is used for the uncertainty parameter of the source-to-relays channels
and the relays-to-destinations channels, i.e., �f = �g = �. The considered setup consists
in N = 40 relays and the values of the parameters P and sigma are set to P = 27 dBm and
�2 = 21 dBm, respectively. Thus, in this case, the ratio P=�2 is equal to 6 dB. Note that
when the value of � increases, the quality of all the channels is degraded in the same way.
The average number of selected relays in Figure 5.10 grows when the value of the parameter
� is increased. The rationale behind this behavior is that if � increases, the variance of
the channels is increased as a consequence. Hence, a higher number of cooperative nodes
is needed to satisfy the SINR thresholds at the destinations.

In Figures 5.9 and 5.10 , we have considered the same uncertainty level � for all the relay
links. Nevertheless, in real scenarios, some channels are better than others. Therefore, in
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order to emulate a scenario with heterogeneous relay links, we have considered an ad-hoc
wireless relay network composed of N= 40 potential relays with P = 27 dBm and �2 =
21 dBm. Note that the noise powers are set 6 dB below the source transmit powers. In
this case, values of the uncertainty levels of each of the links of the wireless network are
generated randomly from -16 dB to -5 dB using a uniform distribution. Figure 5.11 shows
the mean number of selected nodes with the reweighted procedure initialized to a random
point for M = 3 and 4 source-destination pairs.
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5.6.2 Minimum transmit power with cardinality constraints

First, we analyze the performance in a scenario with perfect CSI. We have considered
a multi-user cooperative network composed of N = 19 potential relays, M = 3 source-
destination pairs. As in the simulations of the minimum cardinality problem with perfect
CSI, in each simulation run, the channel coe¢ cients have been generated as i.i.d. complex
Gaussian random variables with zero mean and unit variance. The source powers and the
maximum allowable power per relay are set to 27 dBm and the considered noise power is
set 10 dB below the source transmit power, i.e., �2=17 dBm.

Hereinafter, the following methods are compared:

� The penalty CCP initialized to a random point (Algorithm 7) and with the per-
spective problem presented in (5.48). In both cases, we have considered � sinr=1000,
�
(0)
bin=2

�10, Nmax
it =18, �=2:1.

� The penalty CCP in Algorithm 7 with a �xed penalty factor. Namely, the next values
are considered: � sinr=� bin=1000. Note that in this case the penalty factors are �xed
and equal.

� The two-step procedure described in Algorithm 8 initialized with a random point
and with the perspective problem (5.48). The parameters used in both cases are
� sinr=1000, �

(0)
bin=2

�5; Nmax
1 =8; Nmax

2 =10; �=2:1:

For the aforementioned methods, the convergence of the algorithms is declared if the
improvement in the objective of the convexi�ed problem is less than 10�4.

In order to analyze the quality of the techniques proposed for the selection of the
subset of cooperative nodes that minimizes the total relay transmit power, Figure 5.12
plots the averaged approximation ratio of the algorithms as a function of the number of
selected relays K for 
=4:7 dB. The curves are averaged over 200 Montecarlo runs. Here,
the approximation ratio is de�ned as the quotient between the total relay transmit power
obtained with the subset of relays selected by the proposed methods and the minimum
power. The latter has been obtained by computing by brute force for all the possible
subsets ofK cooperative nodes, the semide�nite relaxation of the minimum transmit power
problem under per-relay power constraints and QoS requirements (i.e., problem (13) in
reference [58]). It is worth noting that the approximation ratio is always greater or equal
to one.
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max
i = 27 dBm, 
 = 4:7 dB.

As can be seen from Figure 5.12, the penalty CCP with a �xed factor � bin provides
very poor results. The rationale behind this behavior is that a high penalty factor � bin
encourages the selection of the subset of relays during �rst iterations of Algorithm 7 and
penalizes the change of subset in the subsequent iterations. On the contrary, the penalty
CCP and the two-step procedure with a variable � bin are able to provide high-quality solu-
tions with an approximation ratio close to one. It should be noticed that the performance
of both methods is quite insensitive to the initial point. It should be remarked as well that
the two-step procedure exhibits a better performance than the penalty CCP presented in
Algorithm 7. The improvement is around the 10% for all the possible cooperative sizes K.
The mean number of iterations required by the two-step procedure and the penalty CCP is
presented in Figure 5.13. Note that the initialization of these iterative algorithms with the
perspective initialization reduces the total number of iterations. The proposed techniques
are able to provide high-quality solutions with a reduced number of iterations. Specially,
the two-step procedure initialized with the perspective problem exposed in (5.48).

Next, we evaluate the performance of the aforementioned algorithms in an scenario with
second-order CSI. The channel coe¢ cients for the non-perfect CSI scenario are generated
as in the previous section and the values of �f and �g are set to �f=�g=�10 dB. We have
considered the aforementioned setup with the exception of the value of SINR requirement.
For this case, we have chosen 
 = 4 dB.
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Figure 5.14 presents the approximation ratio versus cooperative size K in the non-
perfect CSI scenario. From this �gure we can conclude that the penalty CCP method
with variable penalty factor clearly outperforms the ��xed penalty�approach that presents
a poor performance. It can be also seen that the two-step procedure and the penalty
CCP with a variable factor are able to deliver high-quality sub-optimal solutions. As in
the perfect CSI scenario, the two-step procedure outperforms the penalty CCP approach
described in Algorithm 7.

In order to illustrate the high performance of the proposed methods, Figure 5.15 shows
the empirical Cumulative Distribution Function (CDF) as a function of the approximation
ratio in the aforementioned second-order CSI environment for a cooperative size K=11.
Note that the two-step procedure is able to obtain the optimal subset with a very high
probability (more than the 50%). Furthermore, percentile 90th of the approximation ra-
tio is below 1.2. It should be noticed as well that the two-step method delivers a high
quality approximate solution, in terms of averaged approximation ratio and worst-case
performance.
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5.7 Conclusions

In this chapter, the relay subset selection problem in multi-user wireless relay networks has
been addressed. In particular, two di¤erent problems have been considered: i) the selection
of the minimum number of cooperative nodes that guarantees a given performance at the
destination terminals, and ii) the selection of the subset of K relays that minimizes the
total transmit power and guarantees the QoS requirements at the destinations. Both prob-
lems have been addressed taking into account individual power constraints at the relays.
The combinatorial nature of these problems make them computationally demanding. With
the aim of reducing the computational cost, di¤erent sub-optimal algorithms based on the
convex-concave procedure have been presented. Our numerical results show that the pro-
posed techniques are able to achieve a high performance with an a¤ordable computational
complexity.
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Chapter 6

Conclusions and future research lines

This dissertation has dealt with subset selection problems in wireless communications. The
goal of this �nal chapter is to summarize the main contributions of the thesis and to point
out some possible directions for future research.

6.1 Thesis conclusions

In chapter 3, a simple, fast and accurate algorithm was proposed for �nding the angles
of arrival of multiple sources that impinge on an array of antennas. In contrast to other
methods in the literature, the considered technique is not based on ad-hoc regularization
parameters and does not require the previous knowledge of the number of incoming sources
or a previous initialization. It considers a structured covariance matrix model based on
over-complete basis representation and tries to �t the unknown signal powers to the sam-
ple covariance. Sparsity was promoted by means of an l1-norm penalty imposed on the
powers. The �nal problem was transformed into a positive LASSO and solved using the
LARS/homotopy algorithm. The proposed method consists in an iterative procedure that
solves a reduced-size system of equations at each iteration until a stopping condition is
ful�lled. This stopping condition is based on the residual spectrum arising in a natural
manner when the LARS/homotopy algorithm is applied to the objective function consid-
ered in the problem.

In chapters 4 and 5, the subset selection problem in dense relay-assisted wireless net-
works has been addressed. In this kind of scenarios, the activation of all the relay links is
impractical due to the communications and processing overhead required to maintain the
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synchronization amongst all the distributed nodes in the wireless network, which makes
the overall network complexity una¤ordable. In this context, the selection of the most
suitable subset of spatially distributed relays is a key issue, since it has a dramatic e¤ect
in the overall system performance.

The multiple relay selection in an ad-hoc wireless network with one source-destination
pair was considered in Chapter 4. In particular, we have dealt with the problem of �nding
the best subset of cooperative nodes, and their beamforming weights, so that the SNR is
maximized at destination terminal. This problem was addressed considering the second-
order channel state information of the relay channels and individual power constraints
at the cooperative nodes. A sub-optimal method with a near-optimal performance was
proposed to solve this problem. It is based on the use of the l1-norm squared and the
Charnes-Cooper transformation and naturally leads to a semide�nite programming relax-
ation with an a¤ordable computational cost.

Chapter 5 has dealt with the joint relay assignment and beamforming optimization in
multi-user wireless relay networks. Two di¤erent problems have been addressed in this
chapter:

1. The selection of the minimum number of relay nodes that guarantees some prede�ned
SINR requirements at the destination nodes in a multi-user peer-to-peer network.
This problem has been addressed taking into account per-relay power constraints.
The mathematical formulation of the aforementioned problem involves a non-convex
objective with non-convex constraints and it has been reformulated as a DC pro-
gram. To solve it an iterative method, based on the convex-concave procedure, was
proposed.

2. The joint design of the distributed beamforming and the selection of the best subset
of K nodes that minimizes the total relay transmit power. This problem was ad-
dressed considering QoS requirements at the destinations and per-relay power con-
straints. Its mathematical formulation involves non-convex constraints due to the
QoS requirements and binary constraints and constitutes a challenging non-convex
mixed-integer nonlinear program (MINLP). It was solved using several variations
of the penalty convex-concave procedure. The proposed sub-optimal techniques are
able to achieve a high performance with a feasible computational complexity.
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6.2 Future work

6.2.1 Distributed algorithm computation using alternating di-
rection method of multipliers

For the relay assignment problems addressed in chapter 5 we have considered the traditional
centralized approach. This strategy has been widely used in the literature of wireless relay
networks, e.g. [121,53,58,120]. It relies on the existence of a central controller that collects
information from all the users and relays, compute the optimal weights of the beamformer
and then sends the results back to the cooperative nodes. Nonetheless, in ultra-dense
networks [31] a distributed algorithm can be more attractive. In such a case, the joint
relay assignment and beamforming optimization can be distributed between the di¤erent
relays and completed independently. In this context, the Alternating Direction Method of
Multipliers (ADMM) [134] is a powerful mathematical tool. The subset selection problems
exposed in chapter 5 can be easily put within this framework.

Following an approach similar to the recent results on the ADMM for non-convex
quadratically constrained quadratic programs [135], the optimization problems presented
in chapter 5 can be implemented in a distributed fashion with a small communication
overhead. With the adoption of this strategy and after some necessary exchange of data
between the terminals, based on its local channel and the interference information, each
cooperative node can take the decision on whether to join the cooperative group of relays
and can compute its corresponding weight. As a �nal remark, let us to point out that
the ADMM framework has been already considered by the author in reference [136] in the
context of multibeam satellite precoding.

6.2.2 User clustering in non-orthogonal multiple access systems

Non-Orthogonal Multiple Access (NOMA) [137,138,139,140,141] is a very promising tech-
nology that has recently been proposed as a key enabler for 5G and beyond 5G cellular
networks. By exploiting the channel gain di¤erences, multiple users are multiplexed into
the "transmission power domain" and then are non-orthogonally scheduled for transmis-
sion on the same frequency band. NOMA provides spectrum e¢ ciency and improves the
throughput of cell-edge users with a low transmit latency.

In NOMA systems, multiple users share the same frequency band at the same time by
adjusting their transmitted power. At the receiver side, the terminals apply a Successive
Interference Cancelation (SIC) process to decode the transmitted messages. To obtain
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the desired signal, each receiver �rst decodes the dominant interference signals and then
subtract them from the superposed signal. Since each user equipment receives all the signals
multiplexed over the same frequency band, including the desired one and the interference
transmissions, it is important to have di¤erent power levels of the superimposed incoming
signals in order to carry out the SIC process at the receiver.

In the framework of NOMA networks, user clustering has recently deserved a great
interest from the wireless research community (see [137, 142, 143] and references therein).
In particular, reference [137] addresses the dynamic user clustering and power allocation
problem in NOMA systems. This problem is optimized under SIC constraints and con-
sidering minimum rate requirements for the user equipments. It yields a mathematical
formulation with a combinatorial nature that can be expressed as a MINLP. In this con-
text, techniques based on the penalty convex-concave procedure, similar to the algorithms
presented in chapter 5, can be considered to solve the user clustering problem in NOMA
systems.

6.2.3 5G and ultra-dense networks

Subset selection problems appear across many of the enabling technologies that are nowa-
days under consideration for the next generation of cellular networks. In order to cope with
the immense amounts of tra¢ c in 5G and beyond 5G cellular systems, ultra-dense networks
have been proposed [31]. In future wireless networks, the number of access nodes and/or
the number of communication links per unit area will be densi�ed. Consequently, subset
selection problems arise naturally to reduce the network complexity in many of the key
technology enablers that are under consideration for the next generation of wireless net-
works, such as for instance: in Cloud-RAN [144,145], device-to-device communications [37],
coordinated multipoint (CoMP) [146] and in the aforementioned NOMA systems. In this
context, techniques based on the mathematical tools proposed throughout the dissertation
can be considered for solving the combinatorial optimization problems that appear in the
mentioned technologies.

Amongst the many possible combinatorial problems that can be considered in the 5G
framework, let us highlight, for instance, the joint Remote Radio Head (RRH) selection
and beamforming computation in Cloud-RAN network architectures, addressed in [144],
or the clustering problem for device-to-device assisted Virtual MIMO (VMIMO) systems
with limited feedback that has been presented in [37].
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