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Abstract 

Subject-specific musculoskeletal models and computational walking models in 

general have come a long way in improving clinical treatment of walking 

disorders. But more accurate predictions of such forces and their locations can 

help in designing knee replacements to recover normal walking.  

This project aims to predict muscle forces for treadmill gait trials when varying 

speeds and analyse the differences in those muscle forces. Three walking trials 

with different speeds were studied in this project. Two approaches were used 

to predict forces. In Approach A, knee contact force information was used as 

input of the algorithm, and in Approach B, these data was used only to validate 

the results. An OpenSim musculoskeletal model of the right leg was used to 

obtain inverse kinematics and inverse dynamics data, and muscle length and 

moment arms. 

The algorithm to estimate muscle forces consisted of a two-level nested 

optimization. The outer level optimizes the time-independent parameters and 

the inner level optimizes the time-dependent parameters. Kinematics and 

ground reaction force data used in this project were obtained from the fourth 

grand challenge competition to predict in vivo knee loads. 

 Muscle force estimation values obtained in Approach B (usual case) were 

significantly different from Approach A (unique case) for most muscles. The 

results from this study reinforce results of previous studies. Medial and lateral 

force distribution was also analysed. The muscles with the maximum and 

minimum differences in mean forces for the three different speeds were 

identified and possible reasons for these differences were discussed. 
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Glossary 
addbrev – adductor brevis 
addlong – adductor longus 
addmagProx – adductor magnus proximal 
addmagMid – adductor magnus middle 
addmagDist – adductor magnus distal 
addmagIsch – adductor magnus ischial 
bflh – biceps femoris long head 
bfsh – biceps femoris short head 
edl – extensor digitorus longus 
ehl – extensor hallucis longus 
fdl – flexor digitorum longus 
fhl – flexor hallucis longus 
gaslat – gastrocnemius lateralis 
gasmed – gastrocnemius medialis 
gem - gemeli 
glmax1 – gluteus maximus superior 
glmax2 – gluteus maximus middle 
glmax3 – gluteus maximus inferior 
glmed1 – gluteus medius anterior 
glmed2 – gluteus medius middle 
glmed3 – gluteus medius posterior 
glmin1 – gluteus minimus anterior 
glmin2 – gluteus minimus middle 
glmin3 – gluteus minimus posterior 
grac - gracilis  
pect - pectineus 
perbrev – peroneus brevis 
perlong – peroneus longus 
pertert – peroneus tertius 
piri – periformis 
quadfem – quadratus femoris 
recfem – rectus femoris 
sart – sartorius 
semimem – semimembranosus 
semiten – semitendinosus 
tfl – tensor fascia latae 
tibant – tibialis anterior 
tibpost – tibialis posterior 
vasint – vastus interior 
vaslat – vastus lateralis 
vasmed – vastus medialis 
J – muscle moment 
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f – muscle force 
𝑙𝑚
0  – optimal muscle fiber length 
𝑙𝑡
𝑠 – slack length of tendon 
𝑙𝑀 – length of muscle 
𝑙𝑇 – length of tendon 
𝑙𝑀𝑇 – length of  muscle-tendon 
α – pennation angle 
a – activation 
ma, r – moment arms 
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1. Preface 

1.1. Origin of the Study 

A study about predicting muscle forces for a subject on different over ground gait trials at self-

selected speeds was previously carried out [1]. This study used inverse dynamics, optimisation 

techniques and EMG data to estimate forces and validated them using experimental data. With 

a method to estimate forces established, I was intrigued by how muscle forces change for 

different speeds. The most basic action apart from walking at a constant speed over the ground 

would be walking at varying speeds. I felt like it would be interesting to see which muscles see a 

hike or dip in magnitude of force when the walking speed changes. 

1.2. Motivation 

Biomechanics is a field that I had never been exposed to as a student in my home university. I 

found it hard to accept that in a world where we are sending reusable rockets into space, we are 

not able to predict the forces that are right inside our own body. There are millions of people 

suffering from arthritis and other knee disorders who would be directly benefitted by improved 

clinical treatment resulting from a more comprehensive knowledge of knee contact forces. I 

consider this project as my contribution to improving a science that has the potential to improve 

millions of lives. 

1.3. Previous Requirements 

To carry out this project, knowledge regarding the basics of the human anatomy and 

biomechanics was required. OpenSim, a software platform for modeling humans, animals, 

robots, and simulating their interaction and movement, was used to compute data regarding 

inverse kinematics and inverse dynamics. Then, this data was loaded onto a MATLAB script to 

run an optimization algorithm. A learning period to acquire the knowledge to use these two 

software was also required.  
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2. Introduction 

Millions of people around the world are affected by osteoarthritis and other knee related 

disorders every year. The current clinical treatments in place are largely subjective and this 

causes ambiguity in the treatments prescribed by clinicians. Treatment of knee disorders means 

alleviation of joint pain and in extreme cases, restoration of walking. Medical science is crucial 

for clinical treatment, but engineering has the means to make the process more effective and 

accurate. 

2.1. Scope of the study 

The knowledge of in-vivo muscle and joint force values would help doctors in improving 

rehabilitation treatments, designing knee replacements and other prosthesis, or orthosis for 

people who suffer from walking disabilities. We cannot directly measure in-vivo muscle forces 

as it would be invasive. For this reason, computational methods have to be used to estimate 

these forces. 

 

Subject specific musculoskeletal models play an important role in muscle force prediction. By 

inputting the ground reaction forces and kinematics data from gait trials, we can calculate 

resultant joint loads using inverse dynamics. But, there is indeterminacy when calculating 

muscle forces since the human body has more muscle actuators than degrees of freedom. 

This problem can be overcome by assuming that the body activates its muscles following an 

optimal criterion. Inverse dynamics forces can be loaded onto a static optimization program 

that minimizes the cost function frame by frame to estimate in-vivo muscle forces. 

2.2. Objectives of study 

 

Three heel strike to heel strike gait trials for varying treadmill speeds were identified and 

static optimization were used to estimate forces, moments and actions in the lower limb. The 

original code [1] was also modified to include simultaneous computation of all three gait 

trials. Two methods of study were used to estimate the contact forces. The first method 

makes use of the experimental knee contact forces to calibrate model parameters within the 

outer level (Approach A). The second method does not take into consideration the 

experimental knee contact forces (Approach B). The results of the optimization are expected 

to answer questions regarding the behaviour of muscles when varying walking speeds. The 

goal would be to identify the muscles which are affected more by a change in speed. 

The following aspects of treadmill gait trials are also discussed and analysed: 
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 Solving the muscle force sharing problem in treadmill gait trials when varying speed with 

a two-level optimization 

 Analyze the difference in results when knee contact force information is tracked or not 

at the outer level 

 Analyze if muscle forces are different among different walking speed trials, and which 

muscles have the main differences
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3. Anatomy of the lower limb 

3.1. Introduction 

The lower limb is the most important element in the human body for locomotion. Pelvis, thigh, 

shank and foot along with the muscles that actuate them work together to carry out 

movement. The lower limb comprises a significant portion of body mass. Leg bones are also 

quite strong because these bones need to be able to support the whole body’s weight. The 

lower extremity, containing the ankle, knee, and hip joints, has been of great interest to 

biomechanics researchers. 

3.2. Skeletal structure 

In total, the lower limb contains 62 bones. These include 10 pelvis and leg bones, 14 at the 

ankle and 38 bones in the feet. The longest bone in the body, the femur is located in the leg. 

Some of the largest joints in the body are also located in the lower extremity. The hip joint, 

knee joint and the centre of the ankle joint, all lie in a straight line when the body is upright. 

This represents the mechanical longitudinal axis of the leg, the Mikulicz line. The following 

contains brief descriptions for some of the most important bones in the lower extremity. 



  Memoria 

14   

   

Figure 3.1. A representation of the bones in the lower limb [2] 

 

3.2.1. Femur 

The femur is the main bone of the thigh connecting the hip to the knee. This is the longest and 

strongest bone in the human body. The rounded top end of the femur articulates in the 

acetabulum of the pelvic bone, the lower end articulates with the patella. Since the femur is 

the only bone in the thigh, it serves as an important attachment point for all the muscles that 

exert their forces over the hip and knee joints. 

3.2.2. Tibia 

The tibia, commonly known as the shinbone is one of the two bones connecting the knee to 

the ankle. The tibia is the strongest and largest of the two bones in the lower leg. It is also the 

second longest bone in the human body. The tibia is part of four joints: the knee, ankle, 

superior and inferior tibiofibular joints.  
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3.2.3. Fibula 

The fibula is the smallest bone in the lower leg. In proportion of length to width, the fibula is 

the slenderest of all the longest bones. The fibula supports a very little portion of the body 

weight. Its main purpose is to  provide space for attachment of muscles. It has grooves for 

certain ligaments which gives them leverage. 

3.2.4. Patella 

The patella, commonly known as the knee cap is a thick circular-triangular bone that 

articulates in the femur and covers and protects the anterior surface of the knee joint. It is the 

largest bone in the body that is covered completely by muscle or ligament. The patella 

increases the leverage that the tendon can exert on the femur by increasing the angle at which 

it acts. 

   

Figure 3.2. Representation of the patella and other components of the knee joint [3] 

3.3. Muscles 

Most of the muscles in the leg span long distances. The muscles contract and relax to exert 

force on the bones and create movement. However, there are smaller muscles whose roles 

are helping larger muscles, stabilize joints, help rotate joints and facilitate other fine-tuned 

motion. There are several groups of muscles working at the pelvis, thigh, calf and foot.. 
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3.4. Anatomical Terms of Motion 

Anatomical terms of motion are describing motion of organs, joints, limbs and other sections 

of the body using specific anatomical terms. Anatomical motion can also be classified based 

on the type of movement 

 Rectilinear motion 

 Rotational motion 

Many general movements also have an opposite movement, also known as an antagonistic 

movement. The term antagonistic is also used in this study to describe muscles that perform 

antagonistic movements. All these motions are defined in anatomical planes they occur in.  

 Sagittal plane is the one that divides the body from left to right (medial and lateral) (in 

red) 

 Parasagittal planes are those that are in parallel to the sagittal plane (in yellow) 

 Coronal plane is the one that divides the body into the front and the back (anterior 

and posterior) (in blue) 

 Transverse plane is the one that divides the body into the top and bottom (superior 

and inferior) (in green) 

Figure 3.3. Planes on the basis of anatomy [10] 
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Some of these anatomical terms of motion (degrees of freedom of the joints) that are used in 

this study are described briefly in the coming sections. 

3.4.1. Flexion and Extension 

Flexion and extension refers to increasing and decreasing the angle between two body parts: 

Flexion decreases the angle between two body parts. For example, when the knee flexes, the 

lower leg goes backward towards the thigh. 

Extension increases the angle between two body parts. E.g., when the knee extends, the leg 

straightens out. 

3.4.2. Abduction and Adduction 

These terms are used to describe movements towards or away from the midline of the body. 

Abduction is moving a body part away from the midline of the body. E.g., abduction of the hip 

would be moving the legs away from the body like when doing a split. 

Adduction is moving a body part towards the midline of the body. E.g., adduction of the hip 

would bring the legs closer to each other. 

3.4.3. Rotation 

Rotation may be internal or external, internal being rotation towards the body’s midline and 

external being rotation away from the body’s axis. 

3.4.4. Medial-Lateral Translation 

Medial is used to refer to structures closer to the center (closer to the sagittal plane). Lateral 

is used to refer to structures away from the center. Medial-lateral translation happens 

perpendicular to the sagittal plane. 

3.4.5. Superior-Inferior Translation 

This is in reference to the vertical axis of the body. Superior is used to refer to something 

relatively higher and inferior is used to refer to something relatively lower. Superior-inferior 

translation happens perpendicular to the transverse plane. 
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3.4.6. Anterior-Posterior Translation 

Anterior refers to anything that is directed towards or situated at the front and posterior is 

used to refer anything that is directed towards or situated at the back. Anterior-posterior 

translation occurs perpendicular to the coronal plane. Medial-lateral, superior-inferior and 

anterior-posterior translations occur in many joints but they can approximated to zero 

because they are in the order of a few millimetres and are hence negligible. This is also true 

for some joints with internal rotations. 

3.5.  Osteoarthritis and the necessity for clinical treatment 

Arthritis is a general term that is used to call the inflammation of joints. Osteoarthritis is one 

of the most common degenerative joint disease. It is associated with a breakdown of cartilage 

in joints and can occur in any joint in the body. It occurs in important joints such as the knees, 

hips and spine because these joints support most of the body weight and transmit high forces. 

It could also affect other smaller joints such as fingers, neck and toes. 

The cartilage is a tough, elastic, fibrous tissue that covers the end of normal bones. Cartilage 

acts as a solid lubricant and a shock absorber. These qualities come from the rubbery nature 

of cartilage. Osteoarthritis causes the cartilage to lose its elastic nature, thus also making it 

more susceptible to damage. With application of high stresses in the affected joint, the 

condition of the cartilage worsens. After a period of time, the cartilage may completely wear 

away, reducing the joint’s ability to absorb shocks and move smoothly. When this condition 

deteriorates further, the cartilage might completely wear away and bones may rub. The pain 

in the joint also worsens as the condition of the cartilage deteriorates. 

Osteoarthritis can be treated by exercise and weight loss and if needed, medications and 

physical therapy. As the disease deteriorates, the pain worsens and surgery might end up as 

the final unavoidable option. There are several types of surgery that can treat osteoarthritis, 

two of them are: 

 Joint replacement surgery, also known as arthroplasty replaces a damaged joint with 

an artificial one that has been created for the patient. This surgery is considered when 

a person’s quality of life is significantly affected by the disease.  

 Joint fusion is taken up when joint replacement is not applicable. The bones making 

up a joint are fused or welded together which could relieve pain. This type of surgery 

is applicable only to a few joints. 
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4. State of the Art 

Osteoarthritis affects 9.8% of males and 18% of females over 60 years of age [4]. The knee is 

one of the joints most affected by the degenerative disease. The maximum forces that are 

transmitted through the knee are around 1-3 times the body weight in cases of normal 

walking [5]. Due to this fact, even small malalignments between the femur and tibia could 

cause major changes in the forces transmitted through the knee. These small malalignments 

tend to further progress the disease. 

As the disease progresses, arthroplasty becomes the most effective way to treat it. 

Arthroplasty is the surgical procedure through which the surface of a musculoskeletal joint is 

replaced, remodelled or realigned. This procedure does not come without its own 

inconveniences. The material that is used to replace bone does not regenerate itself like 

biological tissue does. Hence, the knowledge of knee contact force values would be a benefit 

to monitor a certain rehabilitation treatment. 

4.1. Measurement of forces 

4.1.1. Experimental Measurement 

In-vivo joint forces can be measured directly only through specially designed prosthesis. 

Prosthesis can be designed to have an array of force sensors than can provide data about joint 

forces. 

 
Figure 4.1. A force measuring prosthesis [6] 

The disadvantage to this is the fact that the prosthesis needs to be surgically implanted. Since 

not everyone can be implanted with an instrumented prosthesis, direct measurement of knee 

contact forces is not always feasible. This necessitates the computation of knee contact forces. 
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4.1.2. Computer Based Prediction of Knee Contact Forces 

Clinical treatment of knee disorders has been subjective in nature for a long time. This means 

that several treatments can be prescribed to treat one problem. Using objective subject-

specific models is a way to address this problem. This allows several iterations to be tested 

and the optimal design to be identified. Applying the same approach on treating orthopaedic 

patients is much more complicated because the model has to be unique to every single patient 

[7]. Muscle anatomy vary from patient to patient. 

Subject-specific models have been used while attempting to predict in vivo forces. Inverse and 

forward dynamics are two approaches to estimate forces involved in a certain movement. On 

the one hand, inverse dynamics uses experimental motion analysis (kinematics) and external 

forces from trials to obtain the forces at the human joints. Forward dynamics on the other 

hand uses muscle activations and forces to predict the kinematics integrating the equations 

of motion. 

 

One issue faced by computer model based prediction of muscle forces is the indeterminacy. 

The human body has more muscle actuators than degrees of freedom. In essence, this means 

that there are an infinite number of combinations of muscle activations that would result in 

the same resultant joint loads, there is indeterminacy in muscle force calculation.. This 

problem can be tackled by assuming that the brain activates muscles following an optimal 

criterion. The problem of indeterminacy can also be overcome by using experimental 

electromyography data that would show the muscle excitations coming from the central 

nervous system. This is a top down approach to obtaining the joint forces. 

 

Current computational models are unable to predict knee contact forces with a high accuracy. 

Hence, experimental data is required to validate the predictions of a computer model. 

Knowledge of knee contact forces can further predict outcomes like stress, wear, damage and 

others which cannot be measured in-vivo. Overall, improvements in measurement or 

computation of knee forces would significantly improve clinical treatment.  
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5. Methodology 

5.1. Experimental Data 

All experimental data used in this study has been obtained from the “Grand Challenge 

Competition to Predict In-Vivo Knee Loads” [7]. The unique purpose of this competition was 

to provide researchers with a comprehensive data set that allows them to validate their 

prediction of knee contact forces. The data released included motion capture, ground reaction 

forces, femur-tibia contact forces from a subject implanted with an instrumented knee 

prosthesis. These data allows researchers to estimate and validate knee contact forces varying 

degrees of accuracy. 

The subject of the fourth grand challenge competition was an 88 years old male (height: 

166 cm, weight: 66.7 kg) with a knee instrumented prosthesis (femoral tray and femoral 

component). This study involves the estimation of forces for a varying speed treadmill gait 

trial. In this treadmill trial, in which the subject walked normally, the treadmill accelerated and 

then decelerated, between 0.8 m/s and 1.4 m/s at 1.0 m/s2. 

Trajectories of 53 surface markers, ground reaction forces from three force plates, knee 

contact force from the instrumented knee prosthesis and fluoroscopy data of the knee are the 

data available with this grand challenge competition used in this study. 

5.2. Musculoskeletal Model 

Inverse dynamics analysis in OpenSim was carried out to obtain resultant forces from input 

data (kinematics and ground reaction forces). OpenSim is a freely available, open-source 

software that allows users developing models of musculoskeletal systems and create dynamic 

simulations of a wide variety of movements. It is one of the main applications from Simbios, a 

NIH Center for Biomedical Computation at Stanford University. Some of the most important 

features available with OpenSim are: 

 Scaling of musculoskeletal models 

 Inverse Kinematics 

 Inverse Dynamics 

 Forward Dynamics 

 Other analyses and simulations 
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In this study, a musculoskeletal model of the lower limbs was used. Such a model was 

constructed in OpenSim using parameters measured from the subject’s anatomy [7]. This 

model has 23 degrees of freedom and 44 muscle actuators. 

The 23 degrees of freedom include: 3 rotations (adduction, flexion and rotation) and 3 

translations at the pelvis, 3 rotations (adduction, flexion and rotation) at the hip, 3 rotations 

(adduction, flexion and rotation) and 3 translations (superior-inferior, anterior-posterior, 

medial-lateral) at the knee, 3 rotations (adduction, flexion and rotation) and 3 translations 

(superior-inferior, anterior-posterior, medial-lateral) for the patella with respect to the femur 

and 2 rotations (flexion, eversion) at the ankle. 

Figure 5.1. Adduction, Flexion and Rotation of the hip and knee [2] 

Even though the musculoskeletal model has 23 degrees of freedom, the number of degrees 

of freedom was reduced for simplicity. The patellar flexion was coupled to the knee flexion so 

that they act as if they were welded. All other patellar degrees of freedom were locked at a 

constant value of 0. Knee flexion was obtained from the inverse kinematics analysis and all 

other degrees of freedom at the knee were fixed to a certain position/orientation as these 

relative translations and rotations can be neglected. 

A rigid tendon muscle model was used for each muscle-tendon unit. This model contains the 

tendon and the muscle fibers (Figure 5.2.). In this case the length of the tendon (lT) was 

considered to be constant, and the length of the muscle-tendon unit was obtain from 

OpenSim. Angle α is the orientation between the tendon and muscle fibers (pennation angle). 

Muscle fibers has a length (lM) and it contains two parts in parallel: a contractile element (CE), 

representing the active part of the muscle, and the passive element (PE), representing the 
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passive elements of the parallel structures of the muscles. From this muscle-tendon model, 

the muscle force become a function of the muscle activation, normalized length of the muscle 

and normalized velocity of the muscle: 

     0

M M M M M

act v passF F af l f v f l  
    Eq.5.1. 

 

Figure 5.2. Hill’s muscle tendon model 

 

For this project, the muscles in the leg were classified into the medial, lateral and central 

muscles as shown in the figure below. 
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Table 5.1. Muscles classified based on their anatomical location [1] 

In OpenSim, inverse kinematics analysis is a tool that steps through each time frame of 

experimental data and positions the model in a pose that best matches experimental marker 

data and coordinate data for that time frame. The sum of weighted squared errors of markers 

is minimized in order to find the best match for each time frame. A subject-specific Opensim 

model, experimental marker trajectories for the trial and a settings file containing the 

information for the IK tool, including the marker weights are the basic inputs required to run 

an Inverse Kinematics tool in OpenSim.. Once Inverse Kinematics tool has finished, a file 

containing generalized coordinate trajectories is obtained as output. 

After the generalized coordinate trajectories are obtained, the inverse dynamics tool can be 

run to calculate the inverse dynamics loads of the model for that movement. It determines 

generalized forces at each joint responsible for its moment. The inverse dynamics tool solves 

the classical force equations, Newton’s second law (F=ma) in an inverse dynamics sense to 

obtain the forces and torques that are responsible for body movement. The generalized 

coordinate trajectories, the OpenSim model and the external load data are provided as inputs 

to the inverse dynamics tool, and a file containing the time histories of the net joint torques 

and forces is obtained. Further, an analysis tool is used to obtain the data regarding muscle-

tendon lengths and velocities, and moment arms for the different muscles in the lower leg.  
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5.3. Optimization Algorithm 

In this study, a two level optimization algorithm in MATLAB was used to calibrate 

neuromusculoskeletal model parameter values to data from the three selected gait trials. The 

nested optimization has two levels (outer and inner levels).  

5.3.1. Outer Level Optimization 

The outer level optimization uses a nonlinear least squares algorithm to correct the time-

independent model parameter values such as optimal muscle fiber length scale factors and 

tendon slack length scale factors.  The outer level function minimizes a weighted sum of 

squares of terms including three terms:  

 Minimize undesirable quantities (reserve activations) 

 Track quantities (contact forces) 

 Constrain penalty terms (to constrain the normalized length of the muscles into a 

physiological operating muscle range) 

The following graph represents the normalized length versus muscle force. 

 

Figure 5.3. Muscle length versus muscle force[8] 

From this graph, we can see that as the muscle  length increases beyond a certain point, the 

passive force is higher than the active force. The maximum active force is obtained when the 
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length of the muscle reaches its optimal value ( 0

Ml  ). The natural range of muscle operation is 

around the optimal length of the muscle, according to previous studies [9].The passive muscle 

forces are minimized in this study in an effort to keep the active muscle forces  maximum. A 

penalty term in the cost function will be introduced to keep normalized length of the muscle 

(length of the muscle divided by optimal length of the muscle) close to one. 

The optimization is mainly used to solve the muscle force sharing problem, since the human 

has more muscles than degrees of freedom. Six resultant inverse dynamics loads are balanced 

with the moments exerted by the muscles. Furthermore, residual moments (one for each 

joint) are introduced to help the optimization to balance the loads.. Residual moments are 

used only for correction and they have no physical meaning. However, these residual 

moments are minimized in the inner-level cost function. 

𝑀𝑗𝑘 = ∑ 𝑓𝑖
44
𝑖 𝑟𝑖𝑗𝑘 + ∑ 𝑎𝑟𝑒𝑠𝑗𝑘𝑇𝑜

6
𝑘  Eq.5.2. 

The  aresjk term in this equation is the reserve activation (one for each joint load), which when 

multiplied by a constant moment T0, becomes the value of a residual actuator.  

As mentioned earlier, two approaches were used. In Approach A, experimental knee contact 

forces were tracked by the optimization in the outer level and in Approach B, experimental 

knee contact forces were not tracked. Both approaches used the same inner-level  

optimization. In the approach where the knee contact forces were tracked, model and 

experimental knee medial and lateral contact forces were tracked by the outer-level 

optimization. 

This code also uses penalty terms to keep certain parameters in check.  

5.3.2. Inner Level Optimization 

The inner level of optimization used a fast quadratic programming algorithm to  optimize  the 

design variables for the time dependent muscle activations using the current guess (of the 

outer-level optimization) for model parameter values. It minimizes the sum of squares  of 

muscle and reserve activations. The inner level cost function is common to both the 

approaches used in this study. The inner level optimization tracks only 6 inverse dynamics 

loads because these six loads are not affected by the knee contact forces. 

𝐽 = ∑ 𝑎𝑖
244

𝑖 + ∑ 𝑎𝑟𝑒𝑠,𝑘
26

𝑘  Eq.5.3. 
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6. Results 

6.1. Inverse Dynamics 

Inverse dynamics loads obtained from OpenSim were used as one of the inputs in the 

optimization code. Hip flexion, adduction and rotation, knee flexion, ankle and subtalar 

moments were the six degrees of freedom tracked in Approach B. 

Figure 6.1. Inverse Dynamics data of the 6 tracked loads for Approach B: Hip Flexion (Positive: 

Flexion, Negative: Extension ), Hip Adduction (Positive: Adduction, Negative: Abduction ), Hip 

Rotation (Positive: Internal, Negative: ), Knee Flexion Moment (Positive: Extension, Negative: Flexion), 

Ankle Flexion (Positive: Dorsiflexion, Negative: Plantarflexion), Subtalar Moment (Positive: Internal 

Rotation, Negative: External Rotation) 
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6.2. Differences in Approaches A and B 

6.2.1. Medial-Lateral Forces 

The medial-lateral knee contact forces for the trial at normal speeds are shown in Figure 6.2. 

This figure shows medial-lateral experimental knee contact forces and those obtained from 

the optimization with approach A and approach B. We can observe that medial forces 

contribute to most of the total forces. We can also notice that predicted forces in Approach A 

are closer to the experimental values than in Approach B. It can be seen that the lateral knee 

contact forces are tracked much better by Approach A than by Approach B. 

Figure 6.2. Difference in medial lateral forces between different approaches 
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6.2.2. Optimal Muscle Fiber Lengths 

The optimal muscle fibre lengths were plotted for all the 44 muscles in the leg. We can see 

that the values are quite low for almost all of the muscles with just the sartorius having an 

optimal muscle fiber length of 1. 

Figure 6.3. Optimal muscle fiber lengths for all muscles (see appendix for index of muscle) 
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6.2.3. Slack Length of Tendons 

The muscles were also considered to be tendons here as the model used in this study does 

not have any tendons. The slack length for all 44 muscles were plotted and the results are 

presented below. 

Figure 6.4. Slack length of all muscles (see appendix for index of muscle) 
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6.3. Statistical Analysis 

A Student’s t-test is used to determine whether two sets of data are significantly different 

from each other. Here, the muscle forces for all 44 muscles for two approaches for all three 

trials were processed to obtain the muscle force differences approaches B and A.  The mean 

force along the trial was calculated for each muscle, trial and approach. Then differences 

between both approaches were calculated for each muscle and trial. With these values a 

Student’s t-test was carried out for each muscle and it was found that the results for 36 of the 

44 muscles were significantly different. This comes to show that there was a significant 

difference in estimation depending on whether experimental knee contact forces were 

tracked or not. The muscle forces have been plotted for eight muscles with the lowest p 

values. 

 

Figure 6.4. Muscle forces for both approaches for the 8 muscles with lowest p-values 
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6.4. Muscle Behaviour during variation in speed 

The mean difference in muscle forces between the slow and fast trials were calculated and 

the plots for the muscles with the maximum  difference in force were plotted. 

Figure 6.5.   Differences in the muscle forces for variation in the walking speed
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7. Environmental impact and Economic Analysis 

7.1. Environmental Impact 

The objective of this study is to contribute technology that improves clinical treatment of 

people with osteoarthritis or other knee disorders. The environmental impacts of this study 

and the technology is very little to none. The only way in which this technology could be 

impacting the environment would be by making the treatment process more efficient and  

avoiding spending resources unnecessarily on such treatment. 

7.2. Economic Analysis 

The economic cost of this project is represented by 

 The depreciation of  the instrumentation used during the project 

 The cost of time of all the people working on it 

The number of hours a student has worked on this project is around 600 hours. It can be 

assumed that the 600 hours were spent on the laptop because the study is computer based. 

Assuming cost of depreciation to be 0.08 €, 

 Total cost of depreciation = 0.08 € * 600 = 48 € 

Assuming the salary for an engineering student to be 8 €/ hour, 

 Total cost of work for the night = 8 € * 600 = 4800 € 

Total cost of project = 4848 € 

7.3. Social Impact 

All over the world, there are millions of people who live with knee disorders due to ineffective 

clinical treatments. As this technology improves, the better treatment that comes along is 

going to contribute to a collective improvement in the  quality of life of these patients. These 

improvements could also improve the cost of such treatment and make it accessible to the 

poorer section of society.
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Conclusions 

This study aimed to understand how different muscles behaved for different speeds of 

walking. It used two approaches: one tracking experimental knee contact forces and one that 

did not track these forces. These two approaches were expected to give results of varying 

accuracies. Approach A should give more accurate predictions. Then, the muscles which had 

largest variations were identified. 

The soleus, tibialis anterior,  vastus medialis, iliacus, peroneus longus, gluteus maximus 

middle, gluteus medialis posterior and tibialis posterior are the eight muscles with maximum 

differences in mean forces of the fast and slow trials. These differences can be explained by 

the differences in the muscle action and the difference in their contribution to the movement 

among speeds. 

First of all, soleus is the muscle responsible for plantarflexion. Plantarflexion happens faster 

when the gait speed is faster. This direct correlation means that as the gait speed increases, 

we can see an increase in the soleus force. The tibialis anterior and its antagonist peroneus 

longus are seen in this list of muscles with highest differences among speeds. Tibialis anterior 

is responsible of dorsiflexion, as opposed to plantarflexion. It is also important for stabilizing 

the ankle as the heel contacts the ground. We can see that the forces for these  muscles are 

directly related to the speed: muscle forces increase with an increase in speed.   

Vastus medialis is also interesting to analyze. The knee flexion moment (Figure 6.1.) increases 

with an increase of the speed. Vastus medialis is involved in the knee extension. Accordingly,  

we can see that the force of this muscle increases as the speed of walking increases.  

On the other hand, there are several muscles including the gracilis, sartorius, gluteus minimus 

anterior and semitendinosus whose forces had no differences based on the speed of walking.  

The sartorius is responsible for flexion, abduction and lateral rotation of the hip. However, 

since this is a weak muscle, neither does the muscle affect the speed nor does the speed affect 

the muscle.  The gluteus minimus, which is responsible for hip abduction, does not have a high 

variation, since hip abduction does not play an important role in walking on a treadmill, which 

is mainly contained at the sagittal plane. None of the three bundles of gluteus minimus 

showed any considerable differences in forces for  different  speeds.  

A previous study [1]  showed that the biceps femoris long head, biceps femoris short head, 

gastrocnemius lateralis, gluteus maximus superior, gluteus medius anterior, gluteus medius 

middle, gluteus medius posterior, psoas, rectus femoris, semimembranosus, soleus, tensor 

facia latae and vastus lateralis had the maximum differences in forces between approaches A 
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and B. But that study was carried out for six overground gait trials of the same speed (self-

selected speed). However, only one of those muscles, semimembranosus, had large 

differences in predicted forces in this study. This can be indicative of the fact that accuracy of 

the two different approaches might change with respect to the speed of trial. It can also be 

noted that 36 of the 44 muscles turned out to be statistically significantly different according 

to a Student’s t-test. This shows that there is a large difference in forces predicted by these 

two approaches. 

This code gives us accurate answers when we track the experimental knee contact forces. But 

we would not be able to accurately predict knee contact forces in all humans since just a few 

people in the world have instrumental prosthesis implanted.  However, even while tracking 

the knee contact forces, there is room for improvement. More research is needed to design a 

better, more accurate outer level optimization.  The results can be calibrated better by making 

use of the EMG data available. 

In conclusion, this study found the muscles which were most affected by a change in the speed 

of walking. It was also demonstrated that the predictions are closer to the experimental values 

when knee contact forces are tracked. These results can be improved by using the 

electromyography data to follow the forward dynamics approach to reach the muscle forces. 

Muscle forces for other activities could also be studied to design better cost functions that 

predict contact forces better.
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Appendix A 

Index of Muscles 

1. addbrev 2. addlong 3. addmagProx 4. addmagMid 5. addmagDist 6. addmaglsch 7. bflh 

8. bfsh 9. edl 10. ehl 11. fdl 12. fhl 13. gaslat 14. gasmed 

15. gem 16. glmax1 17. glmax2 18. glmax3 19. glmed1 20. glmed2 21. glmed3 

22. glmin1 23. glmin2 24. glmin3 25. grac 26. iliacus 27. pect 28. perbrev 

29. perlong 30. pertert 31. piri 32. psoas 33. quadfem 34. recfem 35. sart 

36. 

semimem 

37. semiten 38. soleus 39. tfl 40. tibant 41. tibpost 42. vasint 

43. vaslat 44. vasmed      
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Differences in forces based on speed for all muscles 

The differences in muscles forces for the three different speeds were plotted in the results 

section for 8 muscles with the highest mean differences. Here, you can see the differences in 

muscle forces of all 44 muscles for different speeds in the order of highest to lowest mean 

difference between the fast and slow trials. 

 

Figure A.1. 
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Figure A.2. 

 

Figure A.3. 
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