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Abstract

Ship positioning and maneuvering information is highly relevant to understand
the levels of pollution on coastal cities and sea-life quality, containing latent pat-
terns of vessels behavior, that are of utility on earth sciences and environmental
research.

Using Automatic Identification System (AIS) data enables air quality models
to have finer grain estimations. However, the data as it is, carries uncertainty
and errors. Therefore, there is a need for a methodology to filter and clean it and
to extract patterns. Ship navigation traces can be understood as time series.
Here, we present a methodology for characterizing ships by their navigation
traces, using Conditional Restricted Boltzmann Machines (CRBMs) plus classic
clustering techniques like k-Means.

From the inputs received from ships using the AIS, containing ship positions,
speed, and characteristics, we produce a processed cruising trace that a CRBM
can encode while preserving the time factor and reducing dimensionality of data.
Such codification can be then clustered or pattern-mined, then used not only for
ship classification but also to cross such behavior patterns with environmental
information. In this paper we detail such methodology and validate it using
data from the Spanish Ports Authority records from national and international
fishing vessels and passenger and cargo ships.

Along the pattern mining methodology we propose how to use Apache Spark
for the data cleaning process until it arrives to the Conditional Restricted Boltz-
mann Machine (CRBM). Finally, we develop a visualization tool for data ex-
ploration and pattern evaluation.
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Chapter 1

Introduction

In a recent study by Mueller et al. [1] performed in the city of Barcelona, it
is seen that Air Quality is a cause, amongst other factors, of premature death.
The conclusions of this study have reached the citizenship through several news-
papers, making them more aware of the direct effects of pollution on their life.

Figure 1.1: Pollution cloud over Barcelona. Photography taken by the Fabra
Observatory’s meteorologist, Alfons Puertas.

According to the European Community Shipowners Associations (ECSA)
in 2015, maritime traffic has become a key component for European econ-
omy [2], being sea transportation more fuel-efficient than other modes of trans-
port (e.g. trucks and trains). Also, according to a recent report presented by
the International Maritime Organization (IMO), it is expected that this form
of transport will continue increasing in the future due to globalization and the
increase of global-scale trade [3] but at the same time, it is considered an im-

3



portant contributor to primary atmospheric emissions in coastal areas [4] and
subsequently to European coastal air quality degradation [5], especially in the
North Sea and the Mediterranean basin. Maritime traffic is also responsible for
about 2.5% of global greenhouse gas (GHG) emissions, which are predicted to
increase between 50% and 250% by 2050 [3].

The CALIOPE1 air quality forecasting system is a state-of-the-art model-
ing framework that integrates a meteorological model, an emission model, and
a chemical transport model to simulate air quality concentration with a high
spatial (up to 1km2) and temporal (1 hour) resolution. The air quality results
are continuously evaluated with a near real time system based on measurements
from the Spanish air quality network, and the performance of the system has
been previously tested in different evaluation and air quality management stud-
ies [6]. The HERMES model is the emission core of the CALIOPE system and
has been fully developed by the Earth Science department of the BSC [7]. Due
to the high impact of maritime traffic on ambient pollutant levels at the urban
area of Barcelona [8], one of the current objectives of the group is to improve
the emission estimation of this activity using an AIS-based methodology.

AIS is the Global Positioning System (GPS) based tracking system used
for collision avoidance in maritime transport, as a supplement to marine radars.
AIS provides information such as a unique identification for each ship (Maritime
Mobile Service Identity (MMSI) and IMO number), the position as latitude and
longitude (GPS positioning) and speed (from the on-board gyrocompass). Such
information is used by maritime authorities to track and monitor vessel move-
ments, from AIS base stations located along the coast, and transmitted through
standardized VHF transceivers. According to the IMO’s Convention for Safety
of Life at Sea, AIS equipment is required to be installed in all international voy-
aging ships with gross tonnage greater than 300 tons and all passenger ships [9].

Tracking ships through the AIS provided data not only can improve ship
management and logistics in ports and maritime routes but also help to correlate
ship presence and their operation mode against atmospheric emissions and sea
life quality. However dealing with that data, given the amount of on-route
ships and the high frequency of AIS updates (up to one every six seconds in
most situations), requires employing Big Data techniques, understanding Big
Data as those situations where big volumes of input overwhelm our commonly
used methodologies, making us to change them for techniques designed towards
automation, scalability, or approximation.

The field of Data Mining applies consolidated Machine Learning and sta-
tistical techniques for analyzing such data, extracting relevant values, frequent
and rare patterns, and also model behaviors. Most of those wanted patterns are
not trivial or present themselves at simple sight. They can even be found across
huge amounts of data, unable to be handled exclusively by human experts.
Discovering which patterns ships perform according to their position, speed,
trajectory, and also given their properties, will allow to provide explanation to:
1) air pollutant concentrations in coastal zones and cities, and 2) degradation

1http://www.bsc.es/caliope/es
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of sea life, by detecting unusual or even criminal activities from fishing fleets
working in special sea-life protection zones. All of this knowing that AIS data
is not always accurate as devices providing such information can fail, can be
tampered or attributes that have to be manually inputed are wrong. This work
tries to overcome this problems applying learning techniques over data.

1.1 Motivation

In this work we present a procedure for mining patterns from AIS data, looking
for common behaviors depending on the vessel position, speed and ship prop-
erties, while having into account bathymetry information (sea floor depth) and
coastal infrastructures (ports and docks). The main goal of this study is to
characterize ships and other kind of vessels to detect common behaviors provid-
ing explanation to earth scientists for observed air pollution patterns on coastal
cities and the degradation of the sea floor life due to illegal trawling practices.

Recent studies like Jalkanen et al. [10–12] show that AIS data can be used
for the estimation of high spatial and temporal resolution maritime emissions.
Moreover, AIS-assisted emission estimations can also be effectively used to as-
sist policy design and corrective measures of a specific shipping sector (e.g.
cruises and ferries) [13] and to improve the efficiency of ships [14]. Compared
to traditional emission estimation methodologies, the use of AIS data provides
information of instantaneous speed, position, and navigation status of vessels
and subsequently allows for more accurate estimations of vessels’ activities and
the improved reliability of emissions and fuel consumption estimations [15]. Our
current goal is to identify those common behaviors on ships depending on their
position (docked, maneuvering in port, sailing in coastal regions or in open seas)
and other attributes that allow us to classify their status for next studies on the
contribution of such vessels to urban air pollution.

Further, one of the most sea-life endangering activities in the Spanish coasts
(also in other coasts around the world) is illegal trawling. Trawling fishing ships
drag large, cone-shaped nets through the sea at deep levels in order to catch
fish. Such practice becomes risky in low depth stripes, as such nets may contact
the sea floor also dragging corals and sea vegetation, causing severe damage to
the ecosystem. Another desired goal is to find ways to detect such patterns,
enforcing sea-life protection laws by detecting which fishing fleets are working
with proper practices or bad practices.

The current work shows the proposed methodology applied in different sce-
narios, where for each one, patterns for ship status are identified, like fishing
vessel discrimination, determining and correcting maritime status, and finding
common patterns in specific geographic zones. Seeing the opportunities from
the obtained models and patterns, we expect to improve modeling on pollution
in future studies.

Despite the advantages offered by this approach, there are also some short-
comings associated with the AIS data that have been highlighted in a different
work [16,17], including data gaps, anomalies, and lack, in general, of data qual-
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ity. In certain occasions not all of the data fields are fully or correctly populated
(e.g. navigation status is not reported or it is incorrectly reported, speed cal-
culated from real AIS information reaches unrealistic values). This fact may
affect the suitability of AIS data for estimating air emissions around ports. In
order to correct and refine the AIS information, data analytic tools and machine
learning techniques are presented.

1.2 State of the art

As previously indicated, studies like J.P.Jalkanen et al. [10–12,32] presented the
relation of ship traffic and exhaust emissions in the Baltic Sea, using the AIS
mechanisms, also relating them to ships activity changes.

Pattern mining for GPS traces is a common practice in very different fields,
looking for specific patterns in movement and behavior. Works like W.Qiu
et al. [33] describe a methodology for mining patterns through Hidden Markov
Models, producing semantical information to feed frequent pattern mining meth-
ods. Such work is also based on discovery of frequent episodes in time se-
ries [34], with the goal of discovering patterns series of events. Use cases for
such techniques are social mining and recommendation [35], animal movement
patterns [36], or elder care [37].

There are several studies about analyzing the semantics of GPS traces as
in the work of Parent et al. [24]. In the case of this study, the only points of
interest available at the moment are the 3 ports that are available in our data
and the ships do not tend to go from one to the other. Therefore this approach
was discarded. This approach will be considered for further analysis as we may
want to define points of interest like common fishing spots or areas where the
ship is waiting for a given service, e.g. for a tug to come and guide it to the
allocated area in the port.

Here, we proceeded to find common patterns using CRBMs as a base for
time windows, feeding them from GPS and other input sources, for discovering
discriminating behaviors on a geographical space. The Conditional Restricted
Boltzmann Machines (CRBMs), as probabilistic models derived from Restricted
Boltzmann Machines (RBMs) [38] [39], are used in a wide range of problems like
classification, collaborative filtering or modeling of motion capture, developed
by the team of professor Geoffrey E. Hinton at the University of Toronto [21]
[40] [41] [27]. Such models are usually applied for problems where time becomes
a condition on data, i.e. time series. Other works like X.Li et al. [42] and Lee et
al. [43] use the models for multi-label learning and classification. Based on their
experiences and techniques, we are taking advantage on CRBMs, considering
RBMs conditioned to the memory of our input data, this is, applying to our
time-series a limited time-window.
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1.3 Contribution

Summarizing the current contribution, here, we provide a methodology for ap-
plying CRBMs to encode series derived from AIS traces having into account
time and position, to train clustering models for behavior discovery and classifi-
cation. We show how such behavior classification can be used for ship profiling
and characterization and how different use cases can benefit from this method-
ology by discovering useful patterns. Moreover, we propose a methodology for
doing this kind of process using a Big Data architecture and also how to validate
the found patterns using a visualization tool.

This work is structured as follows: Section 2 gives the background of the
problem and proposed solutions for each part as well as AIS mechanisms and
usages. Section 3 introduces the fundamentals of CRBMs and K-Means, along
with a brief introduction to Apache Spark. Section 4 describes further details on
each part of the problem and gives details on the implementation done including
details on parallelism. Section 5 details the experimentation and validation of
our methodology and use case scenarios. Finally, Section 6 summarizes this
work, presenting the conclusions and future lines of work.

7



Chapter 2

Problem statement and
proposed approaches

2.1 Background of the problem

Our aim is to leverage environmental modeling using an architecture that can
handle AIS data, machine learning and statistical algorithms in order to obtain
useful patterns that can be applied to improve the models and be used for other
related use cases. As this problem is data-centric, the first step is to define the
dataset.

2.1.1 Dataset definition

The currently used dataset has been provided by the Spanish Ports Authority
(Puertos del Estado), from their vessel monitoring database collecting the AIS
signals from all registered ships navigating national waters. Such database col-
lects the information periodically sent from all registered vessels, and can be
used by local port authorities in a network of AIS data-sharing. The dataset
used for current experiments is a slice of data concerning the coastal area of
Barcelona, including a week of maritime traffic. It is composed by more than
1.5 million entries and indicating 19 features, including the vessel identifica-
tion, the position in longitude and latitude degrees, speed over ground, facing
position, and other vessel properties like vessel category.

In Spain, Puertos del Estado has deployed a network of AIS base stations
through the whole Spanish coast [18], with the dual objective of obtaining mar-
itime traffic information (especially at the port area) and applying the AIS
capabilities to navigation aid1. Each AIS base station is responsible for receiv-
ing the AIS messages from Very High Frequency (VHF) radio signals within
its coverage area and sending it to the central hub for processing, storage and
subsequent distribution to other AIS networks or interested users.

1http://redais2.puertos.es
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The dataset provides three different ID variables to identify each vessel:

1. Name of the ship as given by the owners.

2. IMO number, unique ID provided and regulated by the IMO.

3. MMSI, unique ID provided and regulated by local agencies, e.g. BoatUS
(Boat Owners Association of the United States).

There are two AIS device classes (A and B) differing in transmission power
and capabilities, being Class B smaller and more short ranged than Class A.
Ships transmitting with a Class B device are not required to have an IMO
number, thus having Not Available values (NAs) in our data, we should focus on
using the MMSI as candidate key identifier. However IMO number is available
in some ships which do not have MMSI. Hence we need a mix of the two
attributes to identify all the ships.

Figure 2.1: Example of AIS data visualization with on-board DCU used for
collision avoidance. Photography taken by Clipper, extracted from Wikipedia’s
AIS page.

Moreover, AIS devices are always transmitting their properties like size in
six different variables (length, beam, draught...) periodically so authorities and
other ships know the vessel properties at each time. This data is considered as
static and it is not of interest for the current work but may be considered in
future works.

The dynamic status information provided by the AIS transmission has the
following attributes:

1. Time-stamp: Time in which each sample of data was transmitted.

2. GPS Coordinates (latitude, longitude): The pair of coordinates in Lati-
tude - Longitude degrees.
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3. Speed Over Ground (SOG): Speed of the boat, measured as effective over
ground, by having into account the tidal drifting or speeding up/down the
ship, measured in knots with a resolution of 1/10 knots and a range from
0 up to 102 knots.

4. Course Over Ground (COG): Number of degrees rotated, measured as
effective over ground having into account the tidal drifting, relative to the
true north with a resolution of 1/10 degrees.

5. Rotation speed (Rot): Number of degrees rotated per minute.

6. Heading: The direction and sense traced by the ship respect to the gyro-
compass, always pointing north.

7. Navigation Status (Navstatus) : A standardized identification of the cur-
rent status of the ship. This feature is manually set by the crew. This
denotes the susceptibility of such feature to errors and missing values.

8. Type of ship and cargo (Type): A combination of two integer values,
encoding the type of ship and materials that it is currently transporting.

9. Draught: maximum number of meters of the actual draught in 1/100
meter scale.

Having time-stamps available, we can consider the ordered collection of
transmissions from a single vessel as a time-series, and studying its evolution
along time. Table 2.1 shows some sample data included in our dataset.

2.2 Challenges and proposed approaches

The requirements that this work tries to fulfill can be summarized as the fol-
lowing objectives:

• Apply a methodology for finding useful patterns for improving the quality
of emission models and for improving our knowledge on other use cases,
e.g. illegal trawling.

• Create a cleansing pipeline in order to provide the best possible data for
the previous task.

• Create a visualization tool that enables to better know the data and ana-
lyze the patterns found.

• Build an architecture that can handle large amounts of data and complex
processing.

In the following subsections, these tasks are analyzed and a solution is pro-
posed for each one.
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ID size a size b size c size d length beam
1 62 126 13 15 188 28
2 17 19 7 1 36 8
3 4 16 4 2 20 6
4 5 16 2 4 21 6
5 62 126 13 15 188 28
6 10 15 5 2 25 7

ID draught sog cog rot heading navstatus
1 7 5.50 317.00 127 326 0
2 3 0.00 170.00 0 47 8
3 4 10.00 220.00 -128 511 7
4 0 9.40 136.00 0 135 7
5 7 5.50 317.00 127 326 0
6 0 10.90 134.00 0 133 15

ID type latitude longitude time-stamp
1 70 40.91 2.47 2014-04-13 23:59:32
2 37 41.53 2.44 2014-04-13 23:59:31
3 30 41.30 2.19 2014-04-13 23:59:33
4 30 41.05 1.26 2014-04-13 23:59:33
5 70 40.91 2.47 2014-04-13 23:59:35
6 30 41.03 1.27 2014-04-13 23:59:35

Table 2.1: Sampled data from the dataset. Identifiers are surrogates from the
real MMSIs. The rest of IDs are removed to maintain privacy.

2.2.1 Challenge 1: Enhancing data with patterns

Positioning and maneuvering of ships of any size and characteristics can be un-
derstood as time-series, displaying patterns and characteristic that could provide
further knowledge, e.g. common distinct patterns for each specific category of
ship (i.e. liquid and dry bulk carriers, containers, general and RoRo cargos,
cruise ships, ferries, fishing vessels, tugs). Finding frequent patterns in such
behavior from positioning and maneuvering can result in not only classification
of ships, an information usually available, but information to be correlated with
environmental variables like air pollution, quality of sea-life, or even used for
docks management.

As said before, AIS data can be considered a time-series, as each input
updates the vessel status in time. There are several approaches for mining pat-
terns for time series, from stream mining methods for learning on time-changing
data [19], to series-aware neural network methods like Recurrent Neural Net-
works and Hidden Markov Models [20]. Here, we are focusing on a simplistic
pipeline consisting in CRBMs to deal with time dimensions [21] and a classi-
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cal clustering method like k-Means [22]. The reasons for choosing CRBMs is
because our analytics goal passes to determine patterns through dimensional-
ity reduction attempting to simplify clustering and pattern mining processes.
CRBMs have the ability to encode multidimensional input data and its history
into a dimension and time-aware k-length code, easier for feeding standard and
consolidated clustering techniques.

We have also considered other two conceptual alternatives. The first one
is based on a common approach to genetic sequence analysis and other related
fields pattern matching. To apply this idea, we need to transform the traces into
sequences of movements and to do so we create a grid with the map so all the
traces of the ship can be defined as movements on that grid like in a chess board
and define the movements using the cardinal points. With this procedure, what
we would obtain would be a sequence of movements defined by the cardinal
points, e.g. ESSSW, means that the ship moved 1 to the east, 3 to the south
and then 1 to the west. After this, applying the PrefixSpan algorithm [23], we
would obtain the most common patterns. This idea was dropped as it was not
flexible enough for this task as, for example, there was no way to introduce
auxiliary variables that provide more information.

On the other hand, there are several studies about analyzing the semantics
of GPS traces, as in the work of Parent et al. [24], in which the main idea is to
define points of interest to analyze how the elements that generate the traces,
i.e. cars, ships, persons, go from one point to the other. In the case of this
study, the only points of interest available at the moment are the 3 ports that
are available in our data and the ships do not tend to go from one to the other.
Therefore this approach was discarded. This approach will be considered for
further analysis as we may want to define points of interest like common fishing
spots or areas where the ship is waiting for a given service, e.g. for a tug to
come and guide it to the allocated area in the port.

2.2.2 Challenge 2: Cleaning and normalizing Data

With respect to the quality of the data it, is known that it contains errors.
There are two kinds of errors: device or machine errors and human errors. The
former are caused by failures on the instrumentation available on-board, e.g. a
failure of the gyroscope, and can be present in several attributes like in rotation
or speed over ground as they are automatically provided to the system without
human validation. On the other hand, there are attributes that are manually
set by the crew like navigation status so these attributes are prone to error if
there is no strong protocol set at the ship.

In Figure 2.2, there are two examples of the same variable failing: on the
left, it can be observed that the rotation value is wrongly set, maybe due to
calibration error, and on the right, we have an always constant value which
is not possible as the ship rotates. In Figure 2.3, it can be observed at the
left picture that sometimes values may contain outliers because of a punctual
failure. Finally, in Figure 2.3, the picture at the right presents a wrongly set
navigational status variable can be observed. In this case, the variable is set in
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advance, as it can be seen that the ship is moored and anchored while moving
which, by definition of those statuses, is impossible.

Figure 2.2: On the left: Rotation variable with value -128 in most of the cases.
On the right: Rotation is always constant.

Figure 2.3: On the left: Outliers on Speed Over Ground variable. In this case,
the usual measure cruising is around 20 knots, but punctually, it grows to 100,
which is incorrect. On the right: Wrongly inputed navigation status. The ship
is moving while moored and at anchor, which is impossible. Notice that it could
be moved by the water currents when anchored but it would define an elliptical
shape.

As some attributes are very hard to be fixed, we propose to extract some
of these hard to fix features directly from the GPS traces, as we will see later
in this section. The data cleaning procedure includes processes that can be
executed per data entry and processes that require to have the whole time
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series. After preprocessing, we have a time-series for each ship, with regularized
times between observation and expanded features like relative positions and
movement, allowing us to compare ships for their positioning and maneuvering,
independent of the origin port or coastal point, even from length of some pattern
repetitions. Also, absolute features are always available in case they are needed.

Sample level preprocess

The following preprocess steps are from the first kind:

• Date filtering and reformat

• ID generation

• Transforming navigational status into a readable string.

Dates may come in different formats, therefore we need to standardize them.
When a sample arrives, if it is not properly timestamped and cannot be recon-
structed, it is discarded because time is the most important feature when dealing
with time-series as it provides the order of the events.

In most of the cases MMSI is present on the samples, however there are ships
that do not provide this attribute. In this work we propose to use as identifier
a new generated value that contains the MMSI whenever is available. If not it
will contain the IMO number. If neither are available, an NA value will be set,
so that the sample is not used as we can not properly identify its origin.

In order to provide a more readable output in the interface, the navigational
status variable is transformed in its string representation, e.g. 0 is Under way
using engine. Mind that this conversion is only for analysis of the results while
building the application, as keeping the integer representation and transforming
it in the visualization application is more efficient in the sense of storage.

Series level preprocess

On the other hand, the preprocess steps that require the whole series are the
following:

• Split the series in sessions

• Resample time-series for time regularity

• Generate new features

In this data, it could be possible that a ship disappears for more than a given
amount of time and then come back, e.g. ships going from Barcelona to Mallorca
and then coming back. In this case, a problem arises when interpolating: if the
ship is away for a long period of time, a line between the exit point and the new
entering point will appear as if the ship would have been there. However this is
false. In the work of Jalkanen et al. [10], a threshold is established: if the gap
between samples is greater than 72 hours, the trace can be split in two in order
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to prevent a huge amount of interpolated non-realistic data. In this work, this
gap threshold is adopted by creating a new attribute called session. If the gap
is greater than the threshold, the session ID from that point until the next gap
will be the previous plus one. This way, we can split the trace and interpolate
the data in a safer and more realistic way.

As seen before, there is a need to resample the time series as the methods
we are going to apply requiere time regularity. In further sections we define how
the process is done.

Next, in order to avoid bias or over-fitting on locality when searching for
patterns, as it is shown in Section 5, a new feature is added indicating the rel-
ative movement, by obtaining the difference in Latitude - Longitude between
each consecutive points. This way we register movements between registered
observations instead of absolute values, having a movement feature free of ge-
ographical information. Also, the same procedure can be performed over the
rotation feature, having as result relative rotation movements. However, rota-
tion attribute from AIS is not always available or correctly inputed as shown in
Figure 2.2, hence in this study we have created a rotation variable calculated
from the GPS traces as they are more reliable.

Trawling is allow in depths between 50 and 1000 meters, as above 50 meters
sea-life require special protection, and below 1000 meters it is unpractical [25].
Therefore, for this study an aggregated feature identifying the trawling zone has
been added to the dataset and is used for the illegal trawling use case.

2.2.3 Challenge 3: Processing infrastructure

As this work is data-driven, one of the key parts of it is to define an infrastructure
that processes data as fast as possible and that can handle large batches. The R
language is a tool that is gaining momentum as Data Science gets more popular
as it is quite powerful and easy to use once you learn how. However, vanilla R
has a couple of flaws: all the process that is done only uses one thread of the
CPU and is memory hungry. There are packages that solve the mono-thread
issue, e.g. parallel or snow (both available in R CRAN repository), enabling R
to execute tasks in several CPUs or even in different machines. This execution
in several machines helps us dealing with the flaws commented before. However
it is a very specific solution in which is hard to manage which resources is the
application is able to use.

A framework that covers the functionalities required is Apache Spark as
it provides a flexible parallel computation environment through easy to use
Application Programming Interfaces (APIs), including an API for R since ver-
sion 2.0 called SparkR. In Section 3.3 more information about this framework
can be found.

2.2.4 Challenge 4: Visualization

Another requirement born from the need of better understanding the data is
the visualization tool. GPS data is hardly understood from direct exploration
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tools, e.g. R plots like histograms or box plots, that is why there are several
tools that allow to plot GPS data over maps, as the region in which the point
falls is of interest for the analysis.

There is a myriads of tools available to analyze GPS data, most under the
name of Geographical Information System (GIS). However, we have not found a
tool that is flexible enough that offers web exploration. This is the main reason
to select R Shiny2. Shiny provides to R users an easy way to create web pages
for interactive data analysis without knowing how to code web pages nor have
deep knowledge of web elements. For map plotting, we have selected the Leaflet
R package as it provides interactive maps on which the data can be plotted.

With this two packages, along with other packages for some functionalities,
e.g. Raster package for creating rasters (grid images from data), we have de-
veloped a flexible tool that allows us to understand the data and validate the
found patterns and that will allow the members of Earth Science department
to easily navigate the data.

2.3 Summary

We have defined how the AIS data is and the requirements of the project. We
have seen that there is a need of a data cleaning pipeline and learning techniques
in order to achieve a good data quality for the modeling and we have proposed
to use a cleaning pipeline of specific functions and the combination of CRBMs
and k-Means for pattern mining and presented other alternatives. We have
also seen that a Big Data architecture and a visualization tool are required and
useful for performing the task.

In the next chapter, the required algorithmic and technical background is
provided.

2https://shiny.rstudio.com/
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Chapter 3

Technical background

3.1 Conditional Restricted Boltzmann Machines

Restricted Boltzmann Machines A RBM, in our case more concretely
Gaussian Bernoulli RBM (GB-RBM), is the key building block of the CRBM.
A GB-RBM is an undirected graphical model, as can be seen in Figure 3.1, with
binary hidden units and visible Gaussian units, i.e. units that accept real values
that may contain Gaussian noise as input, that models the joint log probability
of a pair of visible and hidden nodes (v,h) as

logP (v,h) =

nv∑
i=1

(vi − ci)2

2σ2
i

−
nh∑
j=1

bjhj −
nv∑
i=1

nh∑
j=1

vi
σi
hjwij + C (3.1)

where σi is the standard deviation of the Gaussian for visible unit i, c is the
bias of the visible units , b is the bias of the hidden units, wij is the weight
connecting visible unit i to hidden unit j and C is a constant. Notice that nv
and nh refer to the dimension of v and h respectively. In practice we normalize
the data to have zero mean and unit variance, we also fix σi to 1 as shown by
Graham et al. [27] empirically when the data is normalized.

Conditional Restricted Boltzmann Machines The CRBM is a GB-RBM
that models static frames of the time series modified with some extra connections
used to model temporal dependencies. The CRBM keeps track of the previous
n visible vectors in a n × nv matrix which we call the history of the CRBM.
The learned parameters of the CRBM are three matrices W,A,D, as well as a
two vectors of biases c and b for the visible and hidden units units respectively.
W ∈ Rnv×nh models the connections between visible and hidden units. A ∈
R(nv·n)×nv is the mapping from the history to the visible units. D ∈ R(nv·n)×nh

is the mapping from the history to the hidden units. Figure 3.2 shows a graphical
representation of a CRBM.

Inference in the CRBM is performed using the contrastive divergence method.
Further information can be found in G.Taylor’s work [27].
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Figure 3.1: Diagram of a RBM. White nodes compose what is called the visible
layer, which is the observed data. Grey nodes compose the hidden layer, which
is the actual output.

Figure 3.2: Diagram of a CRBM with history length of size n. Notice that
in this case the white circles are not nodes but sets of nodes representing the
visible layers.

3.2 k-Means

For the clustering process we have selected k-Means algorithm as is known
to be fast and will provide the functionality we require. This algorithm is
a prototype-based partitional algorithm which searches for k partitions that
minimize the sum of distances between the elements and their assigned centroids.
This algorithm is used to do clustering in n-dimensional space with continuous
attributes as it is in this case. Notice that we are using euclidean distance in
this case as first default approach.

The basic k-Means algorithm, also refereed to as Lloyd’s algorithm, is as
follows:
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Algorithm 1 k-Means (Lloyd’s algorithm)

1: Initialize k centroids given the criteria by the selected initialization function.
2: while Centroids change do
3: Assign the closest centroid for each point p of users
4: For each cluster recompute it’s centroid
5: end while

Initialization function. As seen in Algorithm 1, an important step of K-
Means is initialization. It is a heuristic algorithm so the quality of the partitions
and the convergence speed depend on the initial solution given. However, as
it is hard to define what a good starting solution is in general, amongst all
the available methods there are two that are most commonly used: Forgy’s
function [28] and k-Means++ [29]. As Forgy’s function is less restrictive and
more widely used, this approach will be followed in the work.

Forgy intialization. This function, introduced by Charles Forgy [28], is
a way to initializate by setting k random points of the dataset as centroids. It
is defined as follows:

Algorithm 2 Forgy initialization function

1: Set every point from data into possible centroid list
2: for i = 1 → k do
3: Set a random point from possible centroid list as centroid i
4: Remove selected point from possible centroid list
5: end for
6: return K centroids

3.3 Apache Spark

With the growth of Big Data popularity, lambda architectures have grown in
importance. This kind of architecture is built to balance latency, throughput
and fault tolerance. It is generally applied when we have a cluster of machines,
so processing can take place in parallel. This kind of architecture has three
different layers:

• Batch layer: This layer gets the data batches and distributes them (if
not already distributed) to get the processing done in parallel amongst
the several worker nodes available. The result of the processing is stored
wherever needed for further usage of the data. We use this layer when we
have big amounts of data.

• Stream layer: This layer is similar to batch layer, however instead of
dealing with big amounts of data, this layer deals with the data on the fly
as it comes. The result can also be saved in a storage for further usage.
We use this layer when we have data that comes from one or multiple
sources in a streaming fashion.
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• Serving layer: This layer is the one that the client applications will query
in the end to get the data we have processed from both batch and stream
layers.

Figure 3.3: Lambda architecture diagram.

In our case we propose to use Apache Spark [26] as it is a framework that
provides both batch and stream layers (even though the streaming layer is not
pure streaming, it is in fact micro-batching, i.e. processing very small sets of
data as they come, but not individual samples). Apache Spark provides APIs,
for Java, Python, Scala and, since version 2.0, R, that enables the programmers
to create Big Data enabled applications in a simple way without dealing directly
with parallelism, i.e. programming with implicit parallelism.

As mentioned, Spark provides since version 2.0 the SparkR package, which
allows us to use the framework using R language. This package adds a new
variable type SparkDataFrame which represents a Spark DataFrame class, i.e.
a distributed data matrix with named columns. With this type we can do several
basic operations as if we were using vanilla R, but having the data distributed
and processed in many nodes transparently. Moreover, it can work with User
Defined Functions (UDFs) in two ways which work in the same sense as R apply
function family.

By using this framework we an easy to use distributed computing and storage
(using Hadoop Distributed File System (HDFS) in this case), which will be
useful when we process future bigger datasets and it will be ready for having
streaming data flows if the project jumps to Internet of Things (IoT) world.

3.4 Summary

In this sections we have seen how CRBM and k-Means works and a brief on the
internals of Apache Spark.

In the next section we specify how is everything implemented.
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Chapter 4

Implementation

In this chapter we define how the proposed solution is implemented. In this
document we will only present the concept behind all the implementation, as
the actual implementation can be found at the project’s website1 in a tab in
the visualization tool. The main technologies applied in this part are the R
language and its libraries and Apache Spark. All the implementation was done
using Jupyter Notebooks2 for better understanding and reproducibility of the
whole process.

4.1 Data preprocess

Figure 4.1: Diagram of the whole preprocess.

As mentioned before in Section 2, the preprocessing is divided in two blocks
as shown in Figure 4.1. This conceptual division between processes that can
be done for each sample and processes that require the whole ordered series for
each ship makes us exploit parallelism as for the first one evenly distributed

1http://patrons.bsc.es:8080
2http://jupyter.org/
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partitions can be used, boosting the process. Experiments on partitioning can
be seen in Section 5.3.

4.1.1 Row processing

In this subsection we define the operations that are applied to the data for each
sample without the concept of series.

Date filtering and reformat In this dataset there is no warranty to have
correct timestamps as they are emitted from the AIS device but there is no check
at reception. Initially, timestamps should come in YYYY-MM-DD HH:MM:SS
format, e.g. 2016-01-01 00:00:02, but in some cases this time-stamp is wrong,
e.g. instead of having a date, we have a floating point number which is not
UNIX Epoch time-stamp nor the previously mentioned time-stamp.

The decision taken in this step is that when an anomalous time-stamp arrives
we try to recover it using POSIXct R type conversion, which is one of the
possible types for representing timestamps inside R. If the procedure fails, it
means that the time-stamp is not recognized, hence this sample is dropped as
samples without proper time-stamp are not usable in the context of time-series.

ID generation and Name fixing In order to identify the ships we need to
have a unique ID for each one. MMSI is present in almost every ship, however
there are some ships that has this attribute missing, in which we set IMO number
as when MMSI is missing, this ID is available in this dataset.

When name is missing, we set the generated ID in order to identify the
ship in the visual tool. We tried another approach, which was to obtain the
actual names from a website, VesselFinder3 searching by the available ID and
transforming the data into a dataset using web scrapping. This approach proved
to be useful, however it is not practical for a real world deployment as we are
relying in a website that can deny us service as this way of working is not how
it is intended to be.

Integer represented strings: Navigational status As Navigation Status
is in numerical form, but being actually a code, it is turned into a classification
label, each one with its corresponding meaning (e.g. Under way using engine for
code 0) for the sake of human readability while developing. As we said before,
this is not the optimal approach storage-wise as strings require more bytes than
a single integer, however as we were developing this project there was a need of
knowing at each stage the status of the ships. In the future works, this kind of
attributes should be stored as integer and translated in the visual layer.

This kind of process in general is easy to do in R. What we did is to transform
the numeric attribute into an R factor and then change the factor levels by
using level(variable), which returns the levels of the variable and can be used
to overwrite the tags. After changing the levels of the factor, it is possible to

3https://www.vesselfinder.com
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transform the variable directly to character, which provides us with the final
result.

It is important to notice that in SparkR the serialization of factors is not
possible, which is a common pitfall. Therefore we always have to send the data
as character or numeric for this cases.

4.1.2 Ship processing

In this subsection we define the operations that are applied to the data dividing
it into series.

Sessioning Linear interpolation for missing data points is also performed in
the study made by Jalkanen et al. [10], obtaining a finer grain position for ship
traces. They considered that gaps greater than 72 hours not to be interpolated.
In their case they filled the gaps using estimations from engine average details.

In this case, before interpolating, we create a new variable session that
represents when a given threshold of gap length is exceeded, as explained in the
previous chapter.

In R we can implement this using zoo package rollapply using a window of
two elements for finding where the threshold is exceeded and then creating the
new variable from the breaks found. For example, if we have threshold violations
between elements 2 and 3 and 5 and 6 in a time-serie of 7 elements, we would
obtain a vector of IDs as the following: 1,1,2,2,2,3,3.

Linear and copy interpolation Working with time-series usually implies
having data regularized in time, as many techniques interpret samples as steady
and regular, more than sparse, occasional or even redundant. When using
CRBMs with time as conditioner, each position in the delay (the window of
data history) is supposed to be given a set of weights towards the hidden layer,
then data values slide through the window facing new weights based uniquely
on their position in history. This way, each position in the history window
discretizes time in equal segments, so sparse data needs to be densified, and
missing data must be interpolated or predicted.

In order to work with CRBMs we need to regularize the collected AIS data,
providing the same time lapse between observations. As observations are in the
degree of seconds to minutes (rarely hours), time series are linearly interpolated
and completed when needed to a granularity of seconds. Then, the resulting
series can be sampled or aggregated to the desired granularity. For this study we
chose to produce one sample per minute, after examining information provided
in the collected dataset.

Next step is to retrieve each time series per ship, then processed for time
regularization and interpolation when required. Data goes through a three step
procedure:

• Expand phase: The series are completed by creating samples in the highest
time granularity available (in this case, seconds) among the actual sam-
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ples. E.g., two consecutive entries with six seconds of difference between
timestamps will have five empty entries between them.

• Filling phase: The new entries values are populated through linear inter-
polation of the closest values from each side. E.g., in the previous case if
the first actual value is 1 and the second is 7, the five empty values would
be interpolated as 2,3,4,5 and 6 respectively.

• Reducing phase: Now the data is upscaled to reduce the size of the time
series into a more handleable data, by sampling the series into periodical
higher time ranges (e.g. minutes). In this current case of study a sample
per minute is obtained by getting the first value per real minute, this is
second 00.

For the linear interpolation we have relied in the zoo [31] package as it
provides several functionalities for merging time-series and doing the linear in-
terpolation.

As zoo interpolation does not take into account categorical variables, we
need to create another process that samples the series in the same way but for
this kind of variable. We implemented what we call copy interpolation, which is
as simple as doing the same process but instead of doing the linear interpolation
in the filling phase, we copy the last value available for each entry.

Feature generation In this work we are in need of some extra features gen-
erated from the original set. In the following list all the used variables and the
process to create them are described:

• Relative Latitude-Longitude: This variable is extracted doing a subtrac-
tion of the latitude and longitude of a given sample by the same variables
of the previous sample. The first value for relative latitude and longitude
are set to 0.

• Rotation angle GPS: The angle of rotation is calculated as the angle (α)
of two vectors, v and w, which are calculated as follows:

v = samplei − samplei−1

w = samplei−1 − samplei−2

cosα =
v · w
|v| · |w|

α = acos(
v · w
|v| · |w|

)

• Accumulated rotation: We also tried to calculate the accumulated rotation
using the previously calculated GPS rotation. This variable is calculated
using a windows of N elements. For each sample, the accumulated value
is the mean of the values of the current sample and the N − 1 previous

24



Figure 4.2: Example of coastal regions according to depth in the Catalan coast.
The three regions separate coast from 50 meters, 50 to 1000 meters, and deep
sea > 1000m.

elements. This was calculated in order to check if the algorithm was
resistant to punctual peaks, like is in the case of the rotation variable.
However, in the end it was not needed as the algorithm performed correctly
with the other variable.

• Bathymetry: This variable represents how deep is the water level in a
given point. From a bathymetry raster map, i.e. a grid map with values
on each cell, we have extracted the depth of the water for each point. In
this case we discretized the depth of the sea according to the trawling
fishing regulations [25]. In Figure 4.2 we can observe a raster which is the
result of this discretization. There are three different regions, being the
one in light green the one were is legal to do this kind of fishing. From
this raster we extract the depth for each ship sample.

4.2 Pattern discovery methodology

The methodology here presented implements a data pipeline consisting in the
preparation of data from Section 4.1, then passing the data through a CRBM
for data encoding and reduction of dimensions, then clustering / classifying it
through a classical method like k-Means. Following subsections explains each
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Figure 4.3: Schema of the data pipeline, given a sequence at a particular time t
(and its n predecesor values) the hidden activations of the CRBM are computed.
Then the hidden activations are fed to a k-Means in order to cluster the sequence
at time t.

step of the chain, also depicted on Figure 4.3. The used CRBMs implementation
can be found in Josep Llúıs Berral’s GitHub page4.

4.2.1 CRBM Data Input

We understand the data from each ship as a time-series indicating, at each time
period, the nv attributes explaining the ship status. Let’s consider a limited time
window of size w, representing our memory or history of the CRBM. Timeseries
in the data are not assumed to have the same length but the history length n
must be less or equal to the length of the shortest time-series in the data. Given a
multidimensional timeseries input = (input1, input2, . . . ), at time t we will have
observation vector inputt and historyt will be (inputt−w, . . . , inputt−1). At time
t + 1, observation inputt is pushed into history while observation inputt−n is
popped out, therefore historyt+1 is (inputt−w+1, . . . , inputt).

Notice that such mechanism implies “burning” the first n observations of
each time series to have enough data for properly filling the history structure.
We do not model the first n time steps of any time-series in the data.

4https://github.com/josepllberral/machine-learning-tools
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Figure 4.4: Schema of data sliding through the history.

4.2.2 Training the CRBM

The CRBM is trained with sample series of data, structured as explained in
previous subsection. The CRBM is not aware of time by itself, but is our
history input data what provides such notion. This allows training it through
data batches and without forcing data order, once the notion of order is already
present on each new instance. Best practices in modeling and prediction require
to split training data with validation and testing data, to prevent the auto-
verification of the model, so for this reason we performed this training process
with a subset of the available time-series, to be shown in the experiments in
next Section 5.

We will refer to the activations of the hidden layer for a given input as the
output of the CRBM. Each instance passing through the CRBM is encoded
into an activation vector of size nh, being nh the number of neurons in the
hidden layer. This way, the ship tracking information and history are codified
by a nh-length vector, knowing that as far as a CRBM reconstruction misses the
original data by little, such vector contains a compressed version of the current
and historical status of such ship.
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4.2.3 Training the clustering

Next step consists in finding common status vectors from different ships with
similar behaviors. The principal hypothesis is that those ships performing sim-
ilar patterns of position and maneuvering will produce similar codes. In other
words, ships with similar behaviors in a given time window will be close in this
nh-space, and ships with very different behaviors will be far ones from others.

As a first approach, we decided to use a k-Means clustering technique, good
enough for our purposes of finding clusters of data in nh-dimensional spaces. The
purpose of the clustering step is to categorize the status of each vessel at each
time given their current status, having into account their recent status history,
so for each input time-series we obtain an output time-series of status categories.
Such time series characterize each ship, or parts of a ship’s navigation. This
let us to look for patterns in: 1) ships cruise and maneuvering, by looking for
ships with similar sub-series; 2) geographical regions driving ships to behave
in specific ways, e.g., ports where ships must behave in certain ways or fishing
zones where ships slow down for trawling; 3) combinations of both, by detecting
different maneuvers on specific fishing or protected zones.

In order to proceed according the good practices in modeling and prediction,
training the k-Means has been done by separating training from validation and
test data. In next Section 5 we will indicate the hyper-parameters for the applied
clustering techniques given each use case.

4.3 Visualization of results

Once CRBM and k-Means models are trained, new data can be fed to the pipe-
line, encoding and classifying each input into a status. At this time, similitude
between patterns are done visually using a tool for ship trace visualization,
created on behalf this and future analyses in our center. Such tool, available
to the general public through a web service in the project’s website 5, shows
the geographical placement of each ship time-series along relevant variables like
speed or orientation, also our output values like cluster classification. The vi-
sualization tool also provides the AIS traces used in the following experiments,
courtesy of the Spanish ports Authority. Figure 4.5 shows an example of a
time-series for a sampled vessel.

The visualization tool also allows the superposition of traces for different
ships, allowing us to detect geographical regions where clustering labels cluster,
indicating where behaviors are caused by geographical causes.

All the interface is implemented using R Shiny package. Shiny works as a
reactive programming framework. Each visual element acts as an input or as an
output. Input elements are what makes the interface interactive and gives the
user a way to communicate values. On the other hand, output elements react
to changes in input elements, re-executing the function assigned to it.

5http://patrons.bsc.es:8080/
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Figure 4.5: Example of the visualizing tool for traces and categorization.

The map is done combining Shiny with leaflet package, which provides a
map on which elements can be plot. Variables are plot as rasterized images as
plotting points directly with leaflet is not efficient.

As data input this visualization tool supports both SparkR (to read HDFS)
and files from file system and it can handle more than one dataset for display.

4.4 Process parallelization

Parallelization in this kind of problems is crucial as large amounts of data take
time to process. In this work we focus on the parallelization of the preprocess
as it is a task that can be performed effectively using this approach.

As the functions are concentrated in two bigger functions, i.e. row prepro-
cess and ship preprocess, we can use the apply family of functions over them.
This kind of functions could be seen semantically as “apply this function over
this set of data”. If we manage to build our code using this concept, paralleliza-
tion of the functions comes for free. The package parallel enables us to create
abstract computation clusters which could be made of different threads in the
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same machine or in other machines using an Message Passing Interface (MPI)
interface.

After we construct the cluster object, the rest of work is to execute the
previously mentioned apply but with some slight changes as shown here:

1 l i b r a r y ( p a r a l l e l )
2

3 nThreads <− 4
4

5 c l <− makeCluster ( nThreads , type=”FORK” )
6 r e s u l t <− parLapply ( c l , data , funtionToBeApplied )
7

8 s topClus t e r ( c l ) #Free the r e s o u r c e s

In our case whenever parallel is used we use cluster type FORK as it shares
memory among processes, minimizing copies of data, however this type of cluster
only is available when using a single machine, for several machines, as mentioned
before, MPI cluster is required.

On the other hand, if we use this kind of approach in bigger clusters it gets
hard to manage, therefore we have also implemented parallelization through
Apache Spark using SparkR package.

1 l i b r a r y ( SparkR )
2

3 ## Open a s e s s i o n in SparkR 2 .0
4 sparkR . s e s s i o n ( spark . master = ”yarn−c l i e n t ” ,
5 sparkPackages = ”com . databr i ck s : spark−avro 2 . 1 1 : 3 . 0 . 0 ”
6 ) ;
7

8 data <− read . df ( path , parameters . . . ) ;
9 schema <− def init ionOfTheSchema ;

10

11 d i s t r i b u t e d R e s u l t <− dapply ( data , functionToApply , schema )
12 r e s u l t <− dapp lyCo l l e c t ( data , functionToApply )
13

14 d i s t r i b u t e d R e s u l t <− gapply ( data , colsToPart , functionToApply ,
schema )

15 r e s u l t <− gapp lyCo l l e c t ( data , colsToPart , functionToApply )

Parallelizing in SparkR works in the same way as in parallel, however there
are three differences: Data is now distributed in our cluster (read.df reads a
SparkDataFrame from, for example, HDFS), the result may or may not be
distributed and the available apply functions are different.

The difference between dapply and gapply is that in the first the function
will be applied for the whole partition that arrives to the node and, in the other,
it is redistributed using the specified columns in colsToPart for the partitioning.

When using this kind of approach is important to take into account how
the data is distributed amongst machines, as a bad partitioning of data can
affect the performance, as can be seen in Section 5.3. SparkR offers a function,
repartition, to recreate the partitions of data with a given criteria (number of
partitions, partitions by id...).

Both apply functions benefit from this approach if the partitioning is done
taking into account how both functions work and which is the process to be
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done inside. In fact, if the partitioning is done by id, dapply works in the same
way as gapply, however there is one difference: while dapply UDFs must only
have one parameter, gapply functions have two parameters: key (value of the
ID for that partition) and the data.

On the other hand, there is a difference between normal apply functions
and collect apply functions. While dapply/gapply produce a SparkDataFrame,
hence a distributed dataframe, dapplyCollect/gapplyCollect produce an actual
R dataframe. This last kind of functions do the processing in parallel but in the
last stage all the results are collected into the machine we are using to execute
the code. In these functions the schema of the data is not requiered as R will
interpret the results and Spark does not need to know about it as it will be
treated as a serialized black box object.

In our case we use dapply/gapply as we want the result to be distributed. For
example, if there is a need to get a single Comma Separated Values (CSV) we
can always use the method collect in order to retrieve an R dataframe. Note that
apply-collect functions can be very useful for debugging as there are functions
in R that when applying them demote the type of the variables, i.e. transform
complex types in basic types as could be when processing a POSIXct type which
could be transformed into numeric.

We do not parallelize the training of the CRBMs as it can not be done using
this approach, it should be done using Graphics Processor Unit (GPU) matrix
multiplication optimizations, which is out of the scope of this project at the
moment. However, the simulation of the CRBMs after training for obtaining
the data that will go through k-Means is parallelized in a single machine using
parallel.

4.5 Summary

In this section we have seen how the actual implementation of the clean pipeline
is, including the division in row processing and ship processing, how is the
combination of k-Means and CRBMs done and, finally, we have seen how is
the preprocess implemented in Apache Spark and how we implemented the
visualization tool.

In the next sections we present the experiments done for validating the
project.
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Chapter 5

Experiments

In this section the results of the project are validated. In Section 5.1 an explo-
ration of the data is done for selecting which is the set of variables that is most
appropriate for the task. In Section 5.2 the actual use cases are presented along
the results obtained. Finally, in Section 5.3 performance of different computing
approaches is evaluated.

In all the cases the experiments are performed using machines with two Intel
Xeon CPU E5-2630 v4 @ 2.20GHz (20 real cores with 2 threads each) and 128
GB of RAM. Initial load of data is done from a Network File System (NFS)
drive. This fact does not affect to the times shown in Section 5.3 as load time
is not included in the metrics.

5.1 Feature evaluation and selection

The initial idea was to use plain latitude and longitude, as it carries implicitly
speed because our time series are regularly sampled to the granularity of 1
minute, however this idea was discarded as this approach tended to produce
more local patterns than general patterns.

In order to avoid locality we used the relative latitude and longitude vari-
ables, i.e. the movement vector produced since previous sample. In Figure 5.1
it can be seen that this variable loses the information about locality, however it
still has the sense of direction.

This sense of direction produces an adverse effect as two equal behaviors are
recognized as different as it can be seen in Figure 5.2. As the goal is to recognize
patterns independently of the direction, another approach is needed.

We explored using heading and rotation for the model, but this two variables
are very noisy and provide erroneous results as explained in Section 2.2.2.

In Figure 5.3 it can be seen that the linear interpolation approach is not valid
for all attributes. In this case, as a big part of the series is lost, the rotation
attribute is interpolated as if the ship would be rotating for a long period of
time, however this is not the truth and it is far from it as it is impossible for
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Figure 5.1: Relative latitude and longitude of a given ship.

Figure 5.2: Patterns found using relative latitude and longitude. Direction is
an important factor in this model.

Figure 5.3: Original rotation variable versus imputed rotation variable

this kind of ship, i.e. a container ship, to do this kind of rotation. The ship
photograph is present in Figure 5.4.

Moreover, in this case rotation attribute is also wrong as rotation is always
0, 127 or -127. If rotation is wanted in the model, we need to use the generated
variable.

On the other hand, for Speed Over Ground attribute the interpolation works
as the speed is almost constant during the trip as can be seen in left hand side
of Figure 5.5. As we are studying big ships mostly, there are no fast changes of
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Figure 5.4: Photo of Anna G. ship. Extracted from Marine Traffic website.

Figure 5.5: On the left: Ship’s Speed Over Ground variable. Interpolation
works. On the right hand side: Rotation variable for the same ship extracted
from the GPS trace.

speed except when maneuvering, but rotation changes can be more spontaneous.
If the speed of the ship decreases while it is not sending signal, e.g. because
AIS system failed, this interpolation would not work either. As in this dataset
we have not observed any pattern like this, as most of the interesting ships for
the use case, i.e. cruises and fishers, do not fall in this category we will keep on
using the linear interpolation, however in next steps of the project this part of
the application needs to be improved.

Furthermore, we test the rotation attribute extracted from GPS traces. In
the right hand side of Figure 5.5 we can observe that the rotation issues that had
rotation variable are fixed in the new variable extracted from the GPS trace.

In order to add the concept of speed to the model, we propose to also use
Speed Over Ground along with GPS rotation variable. Also, for the use case of
trawling we will use the bathymetry variable.
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5.2 Use cases

To illustrate the usefulness of the applied method and the current study, we
focus now on experimenting with real use cases from the department of Earth
Sciences at BSC, concerning some of the current problems found by the Spanish
Ports Authority. Also targeting future studies about the impact of maritime
emissions on air quality in the city of Barcelona, applicable to other coastal
cities.

The experiments here show depict the following scenarios:

1. Fishing Discrimination: focusing in patterns for trawling ships and non-
trawling fishing ships, also depending on the geographical localization.

2. Valid Vessel Status: determining the status of vessel directly from reliable
GPS coordinates, to correct badly input NavStatus values.

3. Common Geographic Patterns: detecting characteristic patterns for spe-
cific geographical regions, for future air quality studies.

For such purposes, after several experiments with feature selection and re-
finement of aggregated features, we selected as input features the bathymetry,
the sog (speed), and the GPS-rotation (the rotation calculated from the GPS
positioning, as the feature rot is frequently missing or with incorrect values).
Bathymetry is indicative of the geographical zone where vessels are navigating,
if coastal zones, fishing zones, and open sea. Speed and rotation provide the
movement vector of the vessel movements.

The CRBMs have been training by sampling a 0.66% of the ship series,
and tested using the remaining 0.34%. To measure the CRBM errors (the
capacity of encoding inputs with minimal error at data reconstruction), we use
the testing series and perform a simulation, this is passing the series through
the input + history sliding window, then through the CRBM for activation and
reconstruction, and finally comparing the reconstruction with its input, using
the Mean Squared Error (MSE).

During the experiments we attempted different CRBM hyper-parameters,
with a wide range of hidden units in the hidden layer, and different delay or
history window length. Using 10 hidden units in the CRBM, with delay around
20 observations (here minutes), provided us the best reconstruction results and
differentiating clusters. CRBMs with higher hidden units provided low improve-
ment or too much overfitting, and higher delay measures did not help clustering
to identify fishing phases. The best configurations for CRBMs provided us an
individual MSE for each dimension of Errsog = 0.0679, ErrrotationGPS = 1.4226
and Errbathymetry = 0.7672, being the best errors found among different tuning.

5.2.1 Use case 1: Fishing discrimination

This use case focuses on discriminating those fishing vessels performing trawling
from those using other techniques. The goal is to automatically determine which
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Figure 5.6: Example of status classification by clustering, on a trawling ship.

vessels are dedicated to each technique, and discriminate phases of sailing from
phases of fishing. Superposing the bathymetry information (specifically the
trawling zone) can result useful to discriminate such phases.

From the outputs of the CRBM, we can feed the clustering algorithm (here
the k-Means). As hyper-parameter we selected a k = 4, as lower k provided dif-
ferentiation between movement and resting, and higher k produced very similar
clusters.

By applying the classification method over the testing ship-set, we can iden-
tify patterns for ships performing trawling not present in other fishing ships,
cargos and passenger boats. A first cluster identified the docking and maneu-
vering movements, in port or turning around in high sea. A second cluster
identified the cruising operations, moving at high speed in straight trajectories,
and a third and fourth clusters identified slow movement with variations on
rotation and trajectory.

Figure 5.6 shows and example of one of the trawling ships, where we can
identify the previously mentioned clusters. Noting that Cluster 1 is an extra
cluster for visualization, indicating the traces used for the CRBM history or
delay, we observe the pattern of the 4 clusters inferred. Cluster 2 indicates the
maneuvering in port and when shifting trajectories before and after trawling.
Cluster 3 and 4 identify the movements during trawling, slower that regular
sailing. Finally Cluster 5 is seen when speeding towards or from the fishing
regions and the port

Such validation has been done by expert visual recognition of ship movement
traces, and by identifying the vessels registry indicating whether they possessed
trawling equipment on board. Now, using this labeling of ship status, we are able
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to detect if a ship is performing trawling and at which moment. Other fishing
vessels (seiners) show maneuvering phases on port and at sea when stopping for
fishing (Cluster 2), also patterns of slow movement (Cluster 3) with consistent
streaks, not like trawlers that tend to shift between clusters 4 and 3 when
observing traces closely.

5.2.2 Use case 2: Determining a valid navigational status

The NavStatus feature, indicating the navigation status, is a value introduced
by hand by the vessel crew. In regular cruisers or passenger boats, it is expected
to be updates such NavStatus in a regular procedure, while fishing ships tend to
be less accurate when registering such status. This use case proposes to focus
on using the cluster labels as a parallel NavStatus indicator, to be compared to
the real one and correct it when considered more reliable or when unavailable.

Table 5.1 shows the crossing of reported NavStatus, indicating those stopped
due to anchoring and mooring, those stopped due to fishing, and those in move-
ment. Such results allow us to validate the cluster labels: Cluster 1, as men-
tioned before, is the status for the data used as initial history, not classified;
Cluster 2 refers principally to vessels mooring and in minor measure moving
with their engines started, considering this maneuvering; Cluster 3 indicates
those that are moving or fishing, and we visually detected that it is assigned to
those moving towards fishing positions, or it is mixed with cluster 4 in trawlers;
Cluster 4 refers to those moored or fishing, and we visually detected that such
status is given to those trawling, moving much slower compared to other speeds
(1/4 to 1/10 of regular moving speed); Cluster 5 is split between moving, fishing
or moored, but by visualization we observed that those labeled as 5 are actually
sailing towards fishing positions or returning to port.

At anchor Engaged in fishing Moored Not under command
1 0.03 0.18 0.09 0.00
2 0.07 0.17 0.50 0.00
3 0.02 0.26 0.11 0.00
4 0.11 0.22 0.47 0.01
5 0.06 0.24 0.32 0.00

Restricted maneuv. Undefined Under way using engine
1 0.00 0.03 0.67
2 0.00 0.04 0.22
3 0.00 0.06 0.55
4 0.00 0.05 0.14
5 0.00 0.04 0.34

Table 5.1: Clusters vs. NavStatus labels. Values are normalized per row. Notice
that Cluster 1 refers to the delay data not classified

We know that the NavStatus attribute is set by hand, making it susceptible
of containing errors. Actually, fishing vessels usually set their NavStatus to
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”engaged in fishing” at any time, even when sailing and mooring. Through this
relations we can determine not only which clusters represent each real status,
but we also can help to correct the real status of such ships. Also, for those
without status (”undefined”), we can use the assigned cluster label as expected
status, and applying approximate NavStatus labels by using the majority label
for each cluster: indicating as “moored” if Cluster classifies it as 2, “under way
using engine” if Cluster is 3 or 5, “moored OR slow fishing” if cluster is 4.

5.2.3 Use case 3: Common patterns by geographic zone

Finally, the last use case focuses on detecting geographical regions where a de-
termined predicted status (cluster label) is predominant. Dividing the maritime
space in quadrants (customizable in the visualization tool), we assign to each
one the most present label. This way while some greater regions display mixed
labels, others display uniformity of labels, identifying that label as characteristic
for that region. Such characterized regions will become relevant in next studies
for relating maritime traffic behavior with air quality models, as such observed
pollution levels, modeled emission sources (e.g. industry, road transport) and
meteorological parameters (e.g. wind speed and wind direction, temperature).

As we can observe in Figure 5.7, showing the collected traces of all ships
labeled by our clustering, most of the traces concentrate around the 5 ports
in range. Traces of Cluster 4 are totally visible in zones where trawling is
permitted, displaying those ships fishing using that technique. Such ships tend
to repeat their working pattern by departing from port, fishing, then returning
to port, marked by the traces labeled by Cluster 3, concentrated around the
port showing high traffic departing or arriving to port with low speed, with
NavStatus “under way using engine”. Cluster 5 indicates maritime paths for
ships speeding to reach the fishing zones or directly returning to port. Finally,
in the port areas inside the breakwater, Cluster 2 is predominant as expected,
indicating ship maneuvering.

Is for the activity concentrated around ports (most of the points around refer
to Cluster 3, also moving with engines on) that such region classification has
great interest when modeling air quality.

5.3 Performance evaluation

5.3.1 SparkR and data distribution

Having SparkR does not provide directly high performance computing. Data
locality is one of the factors that determine how fast our computation is going
to be done. As there is few information about how data partitioning affects
SparkR performance, we provide a small section of how partitioning affects the
performance of the preprocess. We test three different cases: Preprocess without
repartition, with evenly distributed partitions , i.e. with the same number of
samples, and with the data distributed using the ship ID. SparkR executions are
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Figure 5.7: Map created with all the ships using the cluster variable. Cells with
less than 10 samples are omitted for clarity.

done using 20 threads from 2 different machines in order to exploit the cluster
component of Spark.

By loading directly the CSV directly without repartition we obtain a data
frame with 30 partitions. For the evenly partitioned data frame we force the
process to obtain 80 different partitions (number of threads times 2). In the
case of the distribution by ship ID we obtain 413 partitions by using MMSI
attribute as the generated ID is not available at that point.

In Figure 5.8 we can observe the distribution of samples amongst the par-
titions for each case. Except for the partition done by ID, the other are well
equilibrated. By ID partition presents one partition with more than 120000
elements, this is because there is a set of ships that do not have MMSI and have
only IMO number. This will affect performance as that batch will be processed
by only one thread.

In Table 5.2 we can observe that using directly SparkR without considering
the initial partitions is an error as the process is the slowest of the three in
both cases. This is probably due to the fact that 30 partitions are produced
and we have 40 threads in total, so 10 threads are actually not working. Even
distribution seems the most reasonable partitioning by default in our case as
it gives good results in both processes, however partition by ship is slower in
the first part because of the partition with more than 120000 elements. In the
case of the second part, partition by ship wins as it seems to reduce the data
shuffling between nodes.
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Figure 5.8: Distribution of the samples amongst the partitions using different
partition criterions.

No repartition Even repartition Repartition by ship
Row Preprocess 38.91 (0.34) 8.46 (0.20) 28.90 (0.29)
Ship Preprocess 131.61 (1.90) 116.54 (0.57) 110.28 (0.35)

Table 5.2: Time average and standard deviation (in parenthesis) for each part
of the preprocess from 10 executions each.

5.3.2 Parallelization

Now we compare the performance of multithread approach with parallel package
and SparkR. We also compare the results with the single-thread version as
baseline.

As can be seen in Table 5.3, multi-thread and SparkR versions are about
12-17 times faster than single thread. Using 40 threads, a speedup between
30-40 times would be expected, however we have to take into account that the
distribution of the data has to be done between processes and also that part
of the data path (in the sense of the physical path in the machine’s board) is
shared amongst threads.

Between multi-thread and SparkR versions, in the row preprocess SparkR
obtains the best result. This could be so as data is already distributed between
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nodes. In the case of ship preprocess, multi-thread is faster. This could also be
due to data distribution and overheads on communication of data and results.

Single-thread Multi-thread SparkR (best time)
Row Preprocess 160.24 (4.67) 9.69 (0.50) 8.46 (0.20)
Ship Preprocess 1245.81 (17.63) 102.54 (3.68) 110.28 (0.35)

Table 5.3: Time average and standard deviation (in parenthesis) for each part
of the preprocess from 10 executions each.

5.4 Summary

In this section we have presented an analysis on the variables and how they
affect the pattern mining procedure. We have also applied the procedure to
cover 3 different use cases and validated that it works. Finally we presented
the evaluation of the performance of the different approaches, in which we can
observe that SparkR is a good choice.

In the next section we present the overall conclusions.
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Chapter 6

Conclusion and future work

6.1 Conclusions

Detecting and discovering patterns in maritime traffic is an important topic for
modeling air quality in coastal urban zones and sea-life. Maritime emissions,
combined with urban emissions (industry and road traffic), are responsible of
pollution in such areas.

In this work we presented a methodology for characterizing maritime traffic,
understanding it as time series, and using an ensemble of CRBMs and cluster-
ing techniques like k-Means to reduce dimensionality of data while considering
time, then clustering it into common patterns of traffic. Such methodology im-
plies pre-processing data, knowing that AIS provides error-prone data. Such
datasets can be cleaned using standard techniques, also aggregated features can
be derived from the most reliable ones, i.e. GPS traces.

CRBMs have proven to be useful for reducing such dimensionality, as most
time series contained more than 3000 observations, even after pre-processing
and reducing the time scale from seconds to minutes. When tuning the CRBM
hyper-parameters, we observed that it is not required to introduce a large history
window (< 20 minutes) or a high number of hidden units (∼ 20) to achieve good
results. Also k-Means appeared as a simple but effective approach to clusterize
the reduced outputs of CRBMs, comparable to real ship statuses.

By using the presented methodology, we observed identifiable patterns for
real use cases, like vessel discrimination and operation modes. Such patterns
can be used to complement or correct missing or erroneous data from AIS, trace
ship behaviors and recognize their activity, and define geographical regions with
common operation modes and behaviors. We also provided a tool for data and
patterns visualization, available to the general public.

Finally, a first step into a Big Data architecture is defined, testing it against
another parallelism approach. We have seen that this kind of architecture works
and if we want an scalable way of processing this type of data, this approach is
useful.

42



This work has been submitted to the ACM SIGKDD International Con-
ference (Knowledge Discovery and Data Mining), to the Applied Data Science
track 1. Also, an extended version is being prepared for a journal publication.

6.2 Future work

This approach has proven to be useful, however the data used in the experiments
is only one week of data. In later stages of the project we will be able to get
one year of data in order to validate the methodology and to extract actionable
knowledge for the earth scientists. After finding patterns and validating the
used methodology it would be a good idea to try to extract a grammar of the
movement of the ships, taking the patterns as symbols and their succession as
relationships between them, in order to extract further knowledge from the data
in a simpler representation.

In the field of feature extraction and cleaning there is still more work to do.
In next steps we will study and apply smoothing techniques like Kalman Filters
in order to remove punctual failures, i.e. anomalous peaks on the data, thus
improving the performance. There is also a need on improving interpolation
in attributes like Speed Over Ground, in which we could use the Haversine
distance and then calculate the speed for the missing gap. Also, we would
like to go further from linear interpolation and test other methods like Akima
interpolation, based on splines, in order to obtain smoother interpolations.

On the side of architecture there is still work to do. About storage, we
need to study the available databases that can work with Spark and design the
schemas and interaction with the code in order to obtain better performance
by having control on where is the data stored and a standard gateway to access
the data from the visual application in real time.

Next steps will focus on the relation of maritime emissions, environmental
patterns like weather patterns (e.g. wind direction, atmospheric pressure, ...),
and air quality on cities, in order to learn which circumstances lead to low
quality air scenarios, and how to manage them from a logistic and legal points
of view. Further, this technique can also be applied to other scenarios far from
maritime modeling, like device networks (known as the Internet of Things) and
user modeling for service-providing systems.

1http://www.kdd.org/kdd2017
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