
End of Degree Project

Bachelor’s degree in Industrial Technology Engineering

Control simulation of a line tracker vehicle using Gazebo

 Author: Joel Lloses Miró
 Director: Arnau Dòria Cerezo
 Jan Rosell Gratacós
 Call: June 2017

Escola Tècnica Superior
d’Enginyeria Industrial de Barcelona

Control simulation of a line tracker vehicle using Gazebo Pág. 1

Summary

The process of designing the control strategy for mobile robots may turn into a difficult task as

can appear difficult dynamisms on a mechanical an electronic level that are difficult to model

and, besides, its testing can mean a lot of time and high costs. In this project, it is introduced

a simulator environment based on Gazebo to fulfil the need of implementing robot behaviours

and control algorithms in a more efficient and productive way.

Gazebo is one amongst several software platforms for simulation and robot control. It has an

open source program distributed by Apache 2.0 and is being used widely by the robotics

community. It has an easy-going interface, a learn-by-doing program and a growing

community.

Its easy programming interface has been very useful for most of the project development,

which has been focused on the implementation of a line follower robot developed by other

ETSEIB student within their Final Grade Project. The challenge has been to reproduce in a

virtual level the vehicle navigation and performance and the environment conditions. For this

reason, has been required a global vision of the robot’s functionality.

This project is organized with a first part of Gazebo software description, followed by the robot

implementation to the simulator, the control design and architecture, and a final part with the

experimental results of the simulation.

Control simulation of a line tracker vehicle using Gazebo Pág. 2

Index
SUMMARY ___ 1	

INDEX ___ 2	

1.	 PREFACE __ 0	
1.1.	 Project origin .. 0	
1.2.	 Previous requirements .. 0	

2.	 INTRODUCTION ___ 0	
2.1.	 Objectives .. 0	

3.	 GAZEBO SIMULATION ENVIRONMENT _______________________ 1	
3.1.	 What is Gazebo? ... 1	
3.2.	 Robotics simulation ... 2	
3.3.	 Why Gazebo? .. 2	
3.4.	 Get started ... 3	
3.5.	 Gazebo Architecture .. 3	

3.5.1.	 Physics .. 4	
3.5.2.	 Plugins .. 5	
3.5.3.	 Transport ... 5	
3.5.4.	 Sensors ... 5	
3.5.5.	 Rendering .. 6	
3.5.6.	 GUI .. 6	

3.6.	 Robot and environment modelling .. 6	
3.6.1.	 World ... 7	
3.6.2.	 Light ... 7	
3.6.3.	 Models ... 8	
3.6.4.	 Links .. 8	
3.6.5.	 Collision ... 8	
3.6.6.	 Visual ... 8	
3.6.7.	 Inertial .. 8	
3.6.8.	 Sensor ... 9	
3.6.9.	 Joints ... 9	
3.6.10.	 Plugins .. 9	

3.7.	 ROS Integration ... 9	

4.	 THE LINE TRACKER VEHICLE ______________________________ 10	

5.	 BUILDING THE GAZEBO VEHICLE MODEL ___________________ 12	
5.1.	 Assembly of the vehicle ... 12	

5.1.1.	 Collisions ... 12	
5.1.2.	 Visual ... 13	

Control simulation of a line tracker vehicle using Gazebo Pág. 3

5.2.	 Line Sensor .. 14	
5.2.1.	 Ground texture .. 15	
5.2.2.	 Cameras characterisation ... 16	
5.2.3.	 Shadows ... 20	

5.3.	 Ultrasonic sensor ... 22	
5.4.	 Vehicle’s traction ... 24	
5.5.	 Inertia and mass .. 26	
5.6.	 Dynamics ... 27	

6.	 DESIGNING THE VEHICLE’S SIMULATION CONTROL __________ 28	
6.1.	 Control Architecture ... 28	
6.2.	 Tracking Control .. 30	

6.2.1.	 Vehicle’s kinematics .. 30	
6.3.	 Feedback signal .. 33	
6.4.	 Pugins Architecture ... 35	
6.5.	 Control algorithm ... 36	
6.6.	 Step Time .. 37	

7.	 SIMULATION RESULTS ___________________________________ 40	
7.1.	 Straight Line with a P controller ... 40	
7.2.	 Circular circuit with P controller ... 43	
7.3.	 Circular circuit with PI controller .. 45	

CONCLUSIONS __ 47	

ACKNOWLEDGEMENTS _______________________________________ 48	

BIBLIOGRAFY ___ 49	

ANNEX ___ 50	

Control simulation of a line tracker vehicle using Gazebo Pág. 0

1. Preface

This project is born with the will to incorporate a new research branch to the developing of the

communicate vehicle control algorithms carried out in the Institute of Industrial and Control

Engineering in ETSEIB, and it aims to be the first step to an accurate simulation environment

to be used as a tool for control strategies development in realistic scenarios.

1.1. Project origin

The origin of the project comes from the will to study and apply the control techniques to

different scenarios of communicated vehicles such as: platooning, autonomous vehicle,

overtaking manoeuvres, vehicle lane changes or shockwave traffic jam. It is a field of research

to create networks in which vehicles and roadside units act as communicating nodes, providing

each other with information.

1.2. Previous requirements

In this project, it is recommended to get to know the basic of C++ language, and to work with

an object-oriented programming interface which is used to get access to the simulator’s code.

Control simulation of a line tracker vehicle using Gazebo Pág. 0

2. Introduction

2.1. Objectives

The purpose of the Project is to create a realistic simulation environment to develop and test

control algorithms for a path follower robot. The work will be focused on reproducing the

vehicles path tracking performance, therefore the elements that have influence on the robot’s

dynamic behaviour, such as sensor, actuators, amongst others, will be implemented. In the

end of the project development, the simulation and experimental results should agree very well

to prove the usability of the developed environment.

Control simulation of a line tracker vehicle using Gazebo Pág. 1

3. Gazebo Simulation Environment

3.1. What is Gazebo?

Gazebo started in 2002 as an initiative of a professor, Andrew Howard, and his student, Nate

Koenig, within the developing of his PhD. The goal was to fulfil the need of simulating robots

in outdoor environments and under various conditions with a high-fidelity simulator. The project

was required as a complementary simulator to the 2D Stage indoor simulator. The basic

difference between an indoor and outdoor environment is their space boundaries, while the

first one is a closest system, the second is not. Gazebo took part in Player project, as well as

Stage, from 2004 through 2011. In 2009, ROS (Robotics Operating System), which is the one

of the most relevant platforms for robotics software development, was integrated into Gazebo

and became from since one of the primary tool used in the ROS community. In 2011, OSRF

(Open Source Robotics Foundation) provided financial support and Gazebo became and

independent project.

Fig 3.1.1. Gazebo logotype

From its very beginning to nowadays, it has evolved greatly and one of the reasons is its open-

source basis, which means that its source code is available and can be developed in a

collaborative public manner, which is more efficient and economic. Nowadays, Gazebo can be

described as a 3D simulator which is able to rapidly and accurately test algorithms and design

robots using realistic environment (indoor and outdoor).

Control simulation of a line tracker vehicle using Gazebo Pág. 2

3.2. Robotics simulation

Gazebo is far from being the only choice for 3D dynamics simulator. Nowadays, there are a

wide range of simulators for basically two purposes: robotics research or industrial simulation.

Most of them are developed by robotics companies or institutes and offered as a commercial

product, in some cases case they may have a free educational license. Visual Components,

V-REP, RobotStudio, Workspace, Webots are some examples. The use of simulators can

significantly impact on the efficiency of a project, reducing costs involved in robot production,

chance to testing before implementing, demonstrating if a system is viable or not, simulating

various circumstances without involving physical costs. However, all them encounter with its

own limits, in which many scenarios in the real world cannot be simulated.

3.3. Why Gazebo?

Gazebo it may not have so many features as a commercial simulator or a so user-friendly

interface, but it fits with some other requirements that make it a leading robotic simulator.

Gazebo is completely open-source, which means a complete control over the simulator, and

freely available (a major advantage over the other available software). Moreover, it is the

default simulator used in ROS framework, although they are separate objects, there is a

package (gazebo-ros) for integration of both. This allows Gazebo to run large and more

complex systems. ROS communication will be briefly explained in a coming chapter. To

conclude, it is effective and offers rich environment tool and is the widely used on the research

field.

The basic working of the simulator is as follows: to reproduce the dynamics of the robot

Fig. 3.2.1. Webots, V-REP and Visual components graphical interface, respectively

Control simulation of a line tracker vehicle using Gazebo Pág. 3

themselves in a simulation, they are modelled as structures of rigid bodies connected via joints

(articulations). To enable locomotion and interaction with an environment, forces, both angular

and linear are applied to surfaces and joints. The world (the environment) is described by

landscapes, extruded buildings, and other user created objects. Almost every aspect of the

simulation is controllable, from lightning conditions to friction coefficients.

3.4. Get started

Gazebo can be free installed from its website (http://gazebosim.org). To continue the code

development made in this project would be recommended to clone the repository:

https://joelllm@bitbucket.org/joelllm/line-tracker-vehicle.git

Before starting codify, it is important to get to know the simulator and how is structured, which

is explained in the next section.

3.5. Gazebo Architecture

It consists of two executables: gzserver, which is the core of Gazebo and can run

independently from the second one, gzclient, which is the graphical user interface (GUI) where

the simulation is visualized and some controls are provided to actuate over the simulation

properties, and is not independent. Gazebo can be executed with or without graphical interface

(headless) to perform the simulations: Along the project, the headless execution has not been

used. Both executables are connected with inter-process communication.

Control simulation of a line tracker vehicle using Gazebo Pág. 4

Gazebo uses a distributed architecture with separate libraries for physics simulation,

rendering, user interface, communication, and sensor generation.

3.5.1. Physics

The physics library is responsible for making a reliable simulation, the objects of the scene that

we are simulating have to interact coherently with each other following the physics laws.

Gazebo supports multiple physics engines: Open Dynamics Engine (ODE), Bullet, Simbody

and Dynamic Animation and Robotics Toolkit (DART). ODE is the default engine in Gazebo

and the one used in the project. It is based on rigid body dynamics and collision detection; the

bodies can be articulated between them using joints. It uses an absolute coordinates system,

where each body has six degrees of freedom and each joint introduces a dynamic constraint.

Moreover, it offers many further features, some of which have been useful for modelling the

vehicle: Friction and damping coefficients, velocity limit in the joints, rigid body inertias,

amongst others.

Model Data Base

Gazebo Client
(gzclient)

Rendering

GUI

Transport

Gazebo Server
(gzserver)

Physics

Plugins

Sensors

Transport

Rendering

Figure 3.5.1. Gazebo architecture diagram

Control simulation of a line tracker vehicle using Gazebo Pág. 5

3.5.2. Plugins

Gazebo plugins provide users direct access to the internal capabilities of Gazebo. This enables

users to write custom code for controlling the behaviour of various components in the

simulation, the computer language used is the C++. Plugins can operate in different levels:

world, system, model, sensor, GUI and visual. For example, a world plugin can spawn objects

on a scene and model plugin can used to the steer a vehicle. In our case, a model plugin has

been used to control the velocity of the the wheels and two sensors plugins to get access to

the two camera sensors. The model plugin retrieves information from the other two thanks to

the transport library explained next.

3.5.3. Transport

The transport system uses a topic-based publisher-subscriber model. For example, in this

project, the left camera sensor publishes the average colour retrieved from its visual field, it

publishes the colour under the topic ColorLeft, then the vehicle plugin subscribe to this topic

and gets the average colour. This can be understood as a net of nodes, which can act either

as publisher or a subscriber, and the connections between them are the topics.

3.5.4. Sensors

There is a wide range of sensors available in Gazebo, which can be divided in two groups

depending on the method of generating data: image-based and physics-based. The image-

based method relies on the Graphic Process Unit (GPU) which they use it to produce image

data of the environment as seen from the sensor’s perspective. For example, the camera used

in the vehicle retrieve an image frame depending on its position and orientation in the scene,

which in our case is in the vehicle and oriented downwards. The image frame gets update

Publisher 1

Publisher 2

Topic 1

Topic 2

Subscriber 1

Subscriber 2

Subscriber 3

Fig. 3.5.3.1. Gazebo transport network

Control simulation of a line tracker vehicle using Gazebo Pág. 6

each time the GPU reprocess the scene (quantified in frames per second). In some cases,

the GPU can act as bottleneck, when the desired update rate of the sensor is higher than the

frame per second rate of the GPU.

The physics-based method makes use of physics data such as forces, torques, velocities and

contacts associated with the entities in the simulation. For example, in this project it is used an

ultrasound sensor which gets the position of the nearest object in his field of effect, the sensor

publishes if the position of some object in the scene is inside his field of effect and how far from

the sensor is.

3.5.5. Rendering

The rendering library provides a 3D scene to both the Gazebo client and the image-based

sensors. The models of the scene are rendered using position and geometry data to build an

object made of vertexes and then a texture is applied on. It uses OGRE, an open-source

graphics engine.

3.5.6. GUI

The GUI library uses Qt to create graphical widgets for users to interact with the simulation.

The user may control the flow of time by pausing or changing time step size via GUI widgets.

Additionally, there are some tools for visualizing and logging simulated sensor data.

3.6. Robot and environment modelling

The simulation environment to be generated needs a world description, which will be populated

with models that can be either stationary or dynamic, from a simple sphere to a complex

humanoid. To represent both, models and world, Simulation Description Format (SDF) files

are used.

SDF is an XML format that describes objects and environments for robot simulators,

visualization and control. Originally developed as a part of Gazebo, over the years it has

become stable, robust and capable of describing all aspects of robots, static and dynamic

objects, lightning, terrain and even physics. Some of this features will be explained briefly.

Control simulation of a line tracker vehicle using Gazebo Pág. 7

As the graphics gives off, SDF uses hierarchical structure which makes very intuitive the code

construction.

3.6.1. World

Gazebo needs a world file to load the simulation. It describes the scene characteristics such

as the wind, the light, the gravity and with which models is populated. In the project, the

features of interest have been the light and the models used, which have been the vehicle and

the ground.

3.6.2. Light

Gazebo supports three types of light: spot, directional and point. The spotlight is a light source

that has a cone of effect, in the directional light or infinite light all the rays are parallel to one

direction and the pointlight is a source that from a single point emanates in all directions.

WORLD

Model 2Model 1

Links

Collision

Visual

Joints

Revolute

Fixed

Prismatic

Universal

Others

Sensors

Camera

Sonar

Ray

Contact

Others

Inertial Plugins

Fig. 3.6.1. Environment hierarchical structure

Control simulation of a line tracker vehicle using Gazebo Pág. 8

3.6.3. Models

A model is any object that maintains a physical representation, whose design depends on the

complexity of the desired model. The components that enable the design of the model are

explained next.

3.6.4. Links

One model may have several links. A link contains the physical properties of the part of models

body which is representing. This can be either a wheel of a vehicle or the head of a humanoid.

Each link has assigned inertial properties, friction and it include many collision and visual

elements. It is highly recommended to reduce the number of links to just the ones which are

necessary in order to improve performance and stability.

3.6.5. Collision

A collision element encapsulates a geometry that is used to collide with the other collisions

(Gazebo checks the surfaces of both collisions shapes if they are intersecting). This can be a

simple shape, which is preferred, or a triangle mesh, which consumes greater resources.

3.6.6. Visual

A visual element is used to visualize parts of a link, and is useful to give realism to the

simulation. More complex shapes can be described on this section. A link may contain zero

visual elements. It contains the rendering properties such as colour, texture, transparency.

3.6.7. Inertial

The inertial element describes the dynamic properties of the link, such as mass and rotational

inertia matrix.

Fig. 3.6.2. Spotlight, directional light and pointlight scenes

Control simulation of a line tracker vehicle using Gazebo Pág. 9

3.6.8. Sensor

A robot can’t perform useful tasks without sensors. It is a devise that lacks of physical

representation, and only retrieve data from the simulation. It gains physical expression when

is added to a model.

3.6.9. Joints

A joint connect two links. A parent and child relationship is established along with other

parameters such as axis of rotation, joint limits and friction. The joints between parent and child

allowed are the revolution on one axis, revolution on two axes, gearbox, screw, ball, universal

and fixed. The child movement is relative to the parents system of coordinates.

3.6.10. Plugins

A plugin is a shared library, which has access to the model properties and allows to control it.

It has similar behaviour to the code compiled to a microcontroller in a robot. Based to the data

that it acquires produces a response signal to command some of the elements of the model.

3.7. ROS Integration

ROS is a collection of libraries, drivers, and tools for effective development and building of

robot systems. In the project, the communicate with ROS was made through the package

gazebo-ros which allows to use some of the ROS functionalities. It contains plugins that can

be attached to the objects in the simulator scene and provide easy communication methods,

such as topic published and subscribed by Gazebo. The initial purpose of the project is to be

developed in stand-alone Gazebo, and in almost along all the work it has been. However, for

some requirements it has been necessary to use some of ROS tools:

• rqt_plot package: a plotting package for visualizing in real time simulation data.

• command function rostopic hz: So as to get to know the update frequencies of the

sensors (cameras and sonar) and the model plugin that performs as the controller of

the vehicle, thus checking steps time of the control system elements.

Control simulation of a line tracker vehicle using Gazebo Pág. 10

4. The line tracker vehicle

The vehicle line-tracker simulated in this project has been developed by undergraduate

students completing their Final Grade Project and is, at the present, being further developed.

To fulfil the purpose of path tracking, the vehicle counts with some necessary elements:

• Line sensor LRE-F22: Based two photodetectors that detect the brightness received

from the floor surface in order to detect the black line that will perform as path to follow.

• Ultrasonic sensor HC-SR04: A range sensor to sense an object on the vehicle path.

• Vehicle’s traction: It is based on two DC Motors that give torque to the two wheels, a

third passive caster, without traction, is implemented to the give the third support to the

chassis. The electric behaviour of the motors provides the wheels with a saturation

angular velocity. Moreover, an encoder is added to sense the the angular speed of

each wheel so as to give feedback to the motor control.

These three elements will be modelled in the simulation, whereas the other electronic
hardware, as drivers or alimentation circuits, are not directly considered in the simulation.
Finally, to successfully drive the vehicle is necessary:

Line Sensor

Ultrasonic sensor
Wheel

Motor DC Encoder

Fig. 4.1. Line follower vehicle developed in the laboratory

Control simulation of a line tracker vehicle using Gazebo Pág. 11

• Control architecture: The control of the vehicle is commanded and executed through

the microcontroller and implemented with electronic hardware.

Fig. 4.2. Line follower vehicel developed in the laboratory

Control simulation of a line tracker vehicle using Gazebo Pág. 12

5. Building the Gazebo vehicle model

5.1. Assembly of the vehicle

The assembly of the vehicle has to be consistent with the SDF model structure, which has

been explained in the 4.6 section.

The vehicle model is formed by one parent link and two child links, which are the chassis and

the two wheels respectively. The wheels are connected with the chassis with two revolute

joints of one degree of freedom.

The design of the collision must be basic and simple in order to have an efficient and rapid

computation behaviour, which will be reflected in a higher simulation time. In the other hand,

the design the mesh for the visual part has been can be more accurate and descriptive. Both

parts have been designed following the real sizes of the robot, measured properly in the

laboratory.

5.1.1. Collisions

The chassis has been created in the collision part as a box with two more necessary shapes

attach to it. The first is a platform located under the box and is used to support the line sensor.

The second is a ball, which represent the free central wheel. As its function is to give to vehicle

the third support to the floor, so it does not fall, and does not add a kinematics constraint to the

Fig. 5.1.1 Vehicles collisions connected through
the joints indicated with vectors

Control simulation of a line tracker vehicle using Gazebo Pág. 13

vehicle (passive caster wheel), its mechanical behaviour has not been implemented as it didn’t

affect the goal of the project to study the control of the vehicle. The wheels have been built in

the collision part as a cylinder.

Fig. 5.1.1.1.1 The three collisions separated

5.1.2. Visual

The design of the mesh has been made with Sketchup 3D editor and its 3D warehouse open

platform to implement some of the vehicle elements, such as the driver, the motor, the wheels

and the Wifi module.

Fig. 5.1.2.1 The final design of the vehicle in the simulation scene

Control simulation of a line tracker vehicle using Gazebo Pág. 14

5.2. Line Sensor

The line sensor in the vehicle is implemented with the LRE-F22 component. It has two infrared

emitters and two infrared receivers (FL1 and FL2 in the image above) that detect how much

of the infrared emission comes back to the sensor. There are then two output signals from this

sensor: V_FL1 and V_FL2, that go from 0[V] to “VCC” [V] depending on how black (or white)

is the surface below the two infrared receivers. Thus, if the sensor FL1 or FL2 receives all the

infrared light back (we are in a reflecting surface, outside of the line) then its pin will be at VCC,

and viceversa.

The infrared sensor performance is physically complex as it depends of the behaviour of the

electromagnetic waves and its interaction with surfaces. This feature is not directly provided

by the physics engine in Gazebo, which its fundamental core is the dynamical interaction

between rigid bodies.

As it is desired to simulate just the functionality of the line sensor and not its physics behaviour,

it has been thought more adequate to simulate the line sensor with two cameras, which are

sensors provided by Gazebo that retrieve data from the rendered scene. The next step would

be carrying out an image processing of both cameras and give and output value which would

represent the outputs V_FL1 and V_FL2 in the real vehicle.

An iteration for all the pixels of the camera image is made. Each pixel has an RGBA format,

the R, G and B stand for the primary colours, red, green and blue, which have a value between

0 and 1. The A stand for alpha and it represents the opacity of the pixel, 0 gives a fully

transparent output and 1 fully opaque.

As the image observed is the ground, which is set by in the building of the world scene, a

Fig. 5.2.1. The image perceived by the two cameras
in the line sensor

Control simulation of a line tracker vehicle using Gazebo Pág. 15

hypothesis of full opaqueness is made and the alpha value is designed always 1. The iteration

subtracts the average R, G and B values of the whole image. Then, the luminosity can be

calculated from a linear equation:

𝑌 = 0.2126𝑅 + 0.7156𝐺 + 0.0722𝐵

The formula reflects the luminosity function: green light contributes the most to the intensity

perceived, and blue light the least.

5.2.1. Ground texture

The image that the camera will retrieve comes from the ground colour characteristics that we

set. This concerns the visual part of the ground model. As the goal project is to simulate line-

following, the texture of the ground will be quite simple. A texture is an image that is applied to

an object. To create this textures has been used the software Inkscape (5). When applying a

texture some parameters have to be set in order to describe its interaction with the light:

o Ambient colour: Revealed when the object is in shadow. This colour is what the object
reflects when illuminated by ambient light rather than direct light.

o Diffuse colour: Most instinctive meaning of the colour of an object. It is that essential

colour that the object reveals under pure white light. It is perceived as the colour of the

object itself rather than a reflection of the light.

o Emissive colour: This is the self-illumination colour of an object.

o Specular colour: Is the colour of the light of a specular reflection (specular reflection

is the type of reflection that is characteristic of light reflected from a shiny surface).

Our parameters of interest are the ambient and diffuse colour, the other two are defined with

with 0 emission and the specular colour has been set at its default value. The floor texture has

a white (1 1 1 1 RGBA) diffuse colour and grey (0.8 0.8 0.8 1RGBA) ambient colour. The line

texture has the same RGB values for both colours (0 0 0 1 RGBA) as the shading on the black

region has no effect, as it can not turn any darker. The alpha value is always 1, as the floor is

considered completely opaque.

(Eqn. 5.1)

Control simulation of a line tracker vehicle using Gazebo Pág. 16

5.2.2. Cameras characterisation

In the laboratory, a characterisation of the line sensor through the line has been made. The

vehicle, which is oriented parallel to the straight black line, is moved perpendicular across the

line above a white surface, beginning on the line’s right side.

This experience has been made perpendicular to the line axis because in the desired

performance of the vehicle following the line to be achieved, the centre of the robot is situated

on the line axis and its longitudinal axis is parallel.

The cameras output, which is the luminosity of its field of view, reaches the maximum 1, when

the region in its field of view is completely white, and decreases when in its field of view starts

appearing part of the black line. The results are shown in the next graphic with the difference

between the left and right cameras output.

Fig. 5.2.2.1 Scheme of the experience developed to characterize the line sensor

Control simulation of a line tracker vehicle using Gazebo Pág. 17

Figure 5.2.2.2. Graphic the cameras output versus the location of the vehicle respect the line
axis

In this example, which is for a 1.2 rad angle of view, the luminosity perceived for the left and

right cameras decreases and increases lineally as expected (the equation 1.1 is lineal, the

values R, G, B decreases and increases lineally as black is [0,0,0] and white is [255,255,255]

and the weight of white and black in the image too). There is a bottom flat part which are the

values when the camera is in the range of [-0.002, 0.002] m positions where the output is the

same as in all of them the whole line and the same weight of white is seen. There is a delay of

0.01 m between the left and the right cameras output, which is the distance between them in

the robot. The difference between both outputs provides a correlation between the vehicles

distance to the line axis and the cameras output.

To decide which angle of view to choose, an experience without shades and iterating for the

different angles has been done. The angle of view describes field of vision of the camera, and

is denoted with radians. An iteration from 0,5 rad to 2 rad with a step of 0, 5 rad has been

carried out. The results are the followings:

Left
Right
Difference

Control simulation of a line tracker vehicle using Gazebo Pág. 18

Fig. 5.2.2.3. Iteration for different angles of view, the cameras output difference versus the
distance to the line axis.

As far as can be observed, the output response has a slope around x values near to 0, which

decreases as the angle of view increases, until it reaches a 0 pending. The angle of view from

which starts the dead zone (0 pending) can be geometrically determined with the camera

position and the line width and corresponds when the angle reaches the opposite line

boundary when the vehicle is centered on the line’s axis.

Control simulation of a line tracker vehicle using Gazebo Pág. 19

𝑎𝑛𝑔𝑙𝑒	𝑜𝑓	𝑣𝑖𝑒𝑤	𝑙𝑖𝑚𝑖𝑡 = 2 ∗ 𝛼 = 2 ∗ tan@A
12
14.5

= 1.38	𝑟𝑎𝑑

From this angle of view on, the cameras image reaches all the line and more. We want to avoid

these regions, as it does no allow correlating the position of the vehicle with the camera output.

As concerns the narrower angles of view, it can be seen a dead zone in the middle, it means

that both angles of view are on the line and both retrieve 0.

In order to choose the angle of view that more similarly reproduce the characterization of the

vehicle line sensor, has been chosen this rang of angle from 0.75 rad to 1.4 rad, because lower

values present abrupt changes on the top and bottom of the graphic response and higher

values present the dead zone region. The possible values are the followings:

α

Line

Right camera Left camera

(Eqn. 5.2.)

Fig. 5.2.2.4. Geometric representation of the cameras angle of view above the line

Control simulation of a line tracker vehicle using Gazebo Pág. 20

Figure 5.2.2.5 Graphic with all the possible angles of view with two auxiliar lines in -0.008m
and 0.008m

It has been chosen 1.2 rad angle of view as it gives us a rang of values from -0.008 to 0.008m

which is the rang used in the line sensor in the real vehicle.

5.2.3. Shadows

Although the shades have been elided in the previous experience, they cannot be neglected

and a study of his affection must be made, the error that introduces to the d obtained. The

same previous experience has been made to quantify the error, using the directional lights and

changing its direction. The light direction is a 3D vector, where the z component has a major

weight in front of x and y components as in scene to study, which is a laboratory room, the light

comes from upwards. To develop the experience, it has only proved for different x and y

components. Moreover, the chassis has been elided as it is transparent.

Control simulation of a line tracker vehicle using Gazebo Pág. 21

This representation tries to make understand the effects of the shadows on the image rendered

by the camera. The objects that cast shadows on the image for a range of different light

directions are the line sensor itself, if the light comes from backwards, and the ultrasound

sensor, if the light comes from frontwards. The four images shown in the figure, are the four

possibilities that the cameras may encounter. Backwards light does not modify its shadows if

its direction oscillates in the z plane and the both cameras retrieve the same an equally

brightness value as the grey weight on the image is the same. However, in the second case

when the light does not come parallel to the vehicle longitudinal axis, the brightness retrieved

is not the same.

Fig. 5.2.3.1 Represetation of the x and y components of the light direction an the casted
shadows on the cameras image

Control simulation of a line tracker vehicle using Gazebo Pág. 22

In the case of the front right light, the output obtained is a bit higher because the right camera

output detects more grey than the left camera and when the difference output is computed (left

camera output – right camera output), the result is higher. Viceversa with the front left light. In

the case of the front center and back center, they have similar behaviour but have lower values

if there was any shadow.

5.3. Ultrasonic sensor

The ultrasound sensor in the vehicle is implemented with the HC-SR04 component. It has one

ultrasound emitter, one ultrasound receiver and a control circuit. Depending on the distance to

the nearest object in the ultrasound field, the sensor will send a proportionally pulse. Applying

the speed of sound, we are able to know the distance to the object.

Figure 5.2.3.2. Results for the cameras output different in the four previous cases and one without
shadows

Control simulation of a line tracker vehicle using Gazebo Pág. 23

No characterization of the element has been done in the laboratory. The final purpose of the

sensor is to detect near-by objects that can potentially collide with vehicle and Gazebo

supports a basic behaviour of the ultrasound sensor and a detailed characteristics table is

already distributed by different electronic stores. The most specific table supplied that we found

is the one from Cytron Technologies (5).

In Gazebo, have been only specified the minimum range, the maximum range of the detectable

object, the resolution and the radius of the cone base in its maximum range. All these features

are displayed in the sensor table:

• Minimum range: 0.02 m

• Maximum range: 4 m

• Cone radius: 1.07m

• Resolution: 0.003 m

Figure 5.3.1. Ultrasonic sensor cone of effect

Control simulation of a line tracker vehicle using Gazebo Pág. 24

5.4. Vehicle’s traction

The motion of the vehicle is a significant part in the modelling of the vehicle behaviour. The

traction engine has been implemented with a Driver and two DC Motors, the driver regulates

the speed of each wheel by sending a control signal to the DC Motors, which give torque to

the wheels. In the transmission chain between the motor and the wheel, exist tangential forces

that actuate against the movement of the wheel. Gazebo provides three force coefficients to

accurate implement the tangential forces. In order to study the effects of these parameters

over the wheel response, a test has been made for a command signal to the joint to rotate in

a target velocity of 3 rad/s.

Fig. 5.4.1 Time response of the wheel in front of different force coefficients

The friction coefficient describes an opposite force to the traction torque applied to the wheels

and is proportional to the normal force in the contact surface. The damping coefficient acts the

same way as the friction coefficient, but it is proportional to the angular velocity instead. As a

result, in both cases the joint is not able to reach the velocity target.

Control simulation of a line tracker vehicle using Gazebo Pág. 25

In the other hand, the stiffness coefficient produces a much different behaviour on the wheel

response. It can be described as the rigidity of the joint and is proportional to the angular

displacement.

Another study point has been the time response of a control signal implementing a PID

controller, whose objective will be to reproduce the time response of the real vehicle. In the

laboratory robot, the wheels have a first order response of 0.1s, which corresponds to Kp of

value 50 n the simulation vehicle.

Finally, an angular velocity limit has been set to joints, which corresponds to the saturation
velocity of the DC motors that has been calculated in the laboratory: 18,46 rad/s.

Figure 5.4.2. Time response of the wheel in front of different Kp

Control simulation of a line tracker vehicle using Gazebo Pág. 26

5.5. Inertia and mass

The inertia has an important role in the rotation movements, as it represents the mass

distribution respect reference axes. Depending on the inertia respect the rotary axis, the

resistance to the angular acceleration is high or low. The vehicle kinematics is not greatly

affected by the inertia, because the angular accelerations of the vehicle are not very high, the

maximum working lineal speed (v1) is around 0.6 m/s. The effect of inertia in the rotation of the

wheels is more significant and the working of the motors are affected. Nonetheless, the inertia

of the wheels is not very high (the order of 10-4) and is not supported by Gazebo as it sees

them as a 0 and produces a computing error.

In case it is able to perform to higher working speeds or the robot encounters other scenarios

where inertia has an effect on the vehicle response, it has been thought useful to compute the

inertia. The tool used to compute the inertia matrix of the vehicle has been Meshlab, a free

software mesh processor. It has been considered homogeneous density, which does not

ideally reflects the mass distribution of the vehicle, but is useful as an approximation.

Fig. 5.5.1 Meshlab interface with the chassis mesh

The resultant inertia tensor is:

0.001806 −0.02510 0.06223
0.06452 0.07551 0.02314
−0.00787 0.00594 0.02500

𝑘𝑔/𝑚K

It has been calculated only the chassis inertia, as can be observed in the figure 5.5.1. The

Control simulation of a line tracker vehicle using Gazebo Pág. 27

inertia is computed in the description the link chassis in the model file.

The mass may have an influence in big accelerated movements, in case of the starting to

move the vehicle or when it brakes. As it has been told before, because of the low performing

speeds, the mass may not have a big influence. Nonetheless, the vehicles mass has been

weighed in the laboratory, resulting a mass of 0.65 kg and has been described on the model.

5.6. Dynamics

The study of the dynamics is not the purpose of this project as in the control design it has been

taken account only the kinematics variables of the vehicle, however they can not be neglected.

To model the performance of the vehicle, the study is focused basically in the tangential forces,

which, in other words define the contact interaction. The physics engine supports a wide

collection of dynamic coefficients to define this behaviour.

To carry out the simulation test, it has been assumed and ideal performance of the joints with

no frictions, stiffness nor damping. Nonetheless, in the real vehicle friction in the transmission

chain has been detected. As it is observed in the previous chapter, this performance should

be modelled with the explained parameters.

In the other hand, friction coefficient on the floor has been declared to enable the correct motion

of the the two wheels and the caster wheel, so the vehicle does not slip. As has been told in

the 5.1. chapter, the caster wheel does not affect in the vehicles kinematics and just give the

third support to the chassis.

Control simulation of a line tracker vehicle using Gazebo Pág. 28

6. Designing the vehicle’s simulation control

6.1. Control Architecture

The purpose of the control is the vehicle to trace a path which, in our case, is provided by a

black line in a white surface. A sensing part is required so to supply the control algorithm with

an estimate data of the position and orientation of the robot respect the line to be tracked, in

our case, the distance of the optical sensor to the line axis. The optical sensor in the real

vehicle consist of two photodetectors and, in the simulation, of two cameras. Moreover, internal

sensors as the encoders of the vehicle to perceive the angular velocities of the wheels may

contribute to design an internal speed control over the wheels. In our simulation environment,

encoders are not needed as the velocity of the wheel can be retrieved from the program

internal code.

Path tracking is directly related to the motion and steering of the vehicle, which involves speed

control over the angular velocities of the wheels. In our case, the control algorithm works with

constant linear velocity. The steering strategy (or the control law) will use the error between

the current estimated vehicle position and the path to follow. Therefore, the inputs will be

variables defining the location of the vehicle respect to the line and the outputs will be the

steering commands. The control signals will be the working linear velocity (v1) and the

kinematic constraint so the vehicle follows the line, which is the desired distance of the optical

sensor to the line axis (d*) of 0 mm. The vehicle uses a feedback linearized control.

d V1

Control simulation of a line tracker vehicle using Gazebo Pág. 29

The control system can be divided in two subsystems: an internal one (joint control) that

controls the joints rotation speed and an external one (trajectory control) that controls the entire

vehicle and send the control signal to the joint control. Both present a control loop that provides

feedback data. The internal one is a simple PID-based velocity control by actuating on the

wheel’s joints and is supplied by Gazebo. In the other hand, the external control is responsible

for setting the wheels speed target with the aim of the vehicle following the path. Its feedback

signal values describe the position of the vehicle respect the line axis, and is provided by the

two camera sensors.

The v2 is the control signal that corrects the vehicle’s trajectory. The wL and wR are the left

and right wheel speeds and d is the distance to the line axis. In the joint control the output data

Wr and wL is computed with v2 and v1 using the vehicle kinematic relation.

Traking Control
Joint Control Vehicle

Kinematics
d

V1

V2

wL

wR d*

Fig. 6.1. Variables of the control algorithm

LINE-
TRACKER

V1
d

d* error

Fig. 6.2. Scheme of the general control

Fig. 6.3. The control scheme with the two subsystems

Control simulation of a line tracker vehicle using Gazebo Pág. 30

The d is the parameter to compute the signal error in the control loop and has a significant

effect on the tracking performance as may arise instability or oscillations related coming from

navigation conditions as working speed, path to follow or turbulence on the ocular sensor.

6.2. Tracking Control

6.2.1. Vehicle’s kinematics

To study the vehicle motion, it has been considerate only the kinematics of the vehicle, which
can be assumed as a 2D model as the vehicle moves on a plane.

Fig. 6.2.1.1 Variables needed to describe the vehicle kinematics

The position and configuration of the unicycle-type mobile robot in world coordinates kinematic

can studied with the point Pm, where the middle of the wheel axis is, and is given by the

equations:

𝑥̇ = 𝑐𝑜𝑠(𝜃)𝑢A	 	

𝑦̇ = 𝑠𝑖𝑛(𝜃)𝑢A		 	

𝜃̇ = 𝑢K			 	

With:

(Eqn. 6.1)

Control simulation of a line tracker vehicle using Gazebo Pág. 31

𝑢A =
U
K
𝑤U + 𝑤V ; 	𝑢A =

U
KX
(𝑤U + 𝑤V)

Where r is each wheel’s radius, R is the distance between the two wheels, and ωr and wl are

the angular velocity of the right and left wheels respectively.

The problem translates in a point, Ps (where the optical sensor is placed), that tracks the path,

ρ(q), with a certain speed, q = v. In other words, the tracking problem can be written in terms

of the distance between points Ps and Pq defined by d = 𝑃Z𝑃𝑞.

The coordinates of the point 𝑃𝑆 can be given by two equations:

𝑃Z = 𝑃𝑚 + 𝑅(𝜃) 𝑙
𝑑 =

𝜎^ 𝑠
𝜎_(𝑠)

Where 𝑅(𝜃) is the 2D coordinate rotation matrix:

𝑅 𝜃 =
cos	(𝜃) −sin	(𝜃)
sin	(𝜃) cos	(𝜃)

Parameterising 𝜎(q) with respect to q, differentiating Eqn. 7.1 and using Eqn. 7.3, is possible

to determine the motion equations in terms of d, q and 𝜃

𝑑 	= 	𝑙𝑢K 	− 	𝑡𝑎𝑛	(𝜃	 − 	𝜃𝑞)(𝑢A 	+ 	𝑑𝑢K)	

𝑞̇	 =
(𝑢A + 𝑑𝑢K)
𝑐𝑜𝑠	(𝜃 − 𝜃𝑞)

	

𝜃̇ 	 = 	−𝑢2	

where de^
df

= 	𝑐𝑜𝑠	(𝜃f)	and de_
df

= 	𝑠𝑖𝑛(𝜃f).

Finally, defining a deviation angle 𝜃g (𝜃g = θ − 𝜃f), the dynamics simplifies to :

𝑑̇ = 𝑙𝑢K − 𝑡𝑎𝑛	(𝜃g)(𝑢A + 𝑑𝑢K)

𝑞̇ = (hijkhl)
mnf	(op)

𝜃g = −𝑢K −
𝑐 𝑞

cos 𝜃g
(𝑢A + 𝑑𝑢K)

(Eqn. 6.5)

(Eqn. 6.4)

(Eqn. 6.3)

(Eqn. 6.2)

(Eqn. 6.6)

Control simulation of a line tracker vehicle using Gazebo Pág. 32

where 𝑐(𝑞) = dof
df

 is the curvature of 𝜎 𝑠 .

Desired working trajectory

The conditions in order that the vehicle follows the trajectory are:

𝑑∗=0; θ𝑒∗ ~ 0;

Also it is required that the vehicle goes at a constant linear velocity

𝑞∗=𝑣;

Applying these conditions to the expression to Eqn. 7.1, the required control values u1 and u2,

and the corresponding deviation angle are

𝑢A∗ = 𝑣 1 − 𝑙K𝑐(𝑠)K

𝑢K∗ = −𝑐 𝑠 ∗ 𝑣	

𝜃g∗ 	= 𝑎𝑟𝑐𝑠𝑖𝑛(−𝑐(𝑠) · 𝑙)

Considering u1 in Eqn. 7.9, the maximum curvature constraint is:

𝑐 < 𝑐st^ =
1
𝑙

Finally, let us assume that control u1 ensures that q* = v. Then, the remaining dynamics from

Eq. 7.6 yields:

𝑑 = 	𝑙𝑢2 − 𝑣𝑠𝑖𝑛(𝜃𝑒)		

𝜃𝑒 	= 	−𝑢2 − 𝑐(𝑡)𝑣.	

(Eqn. 6.7)

(Eqn. 6.8)

(Eqn. 6.9)

(Eqn. 6.10)

(Eqn. 6.11)

Control simulation of a line tracker vehicle using Gazebo Pág. 33

6.3. Feedback signal
The optical sensor’s goal is to give to the algorithm control and estimation of vehicles position.

For this reason, a correlation between the distance to the line axis and the cameras output has

been made. The purpose of using two cameras and neither one nor three is because it is

desired to model the performance of the line sensor of the real vehicle, which has two

photodetectors. Nonetheless, the study with the implementation with a different number of

cameras may be of interest.

Figure 6.3.1. The almost lineal behaviour of response for x values from -0.008 m to 0.008

As it shown in chapter 5.2., the cameras output difference has a quasi lineal behaviour in the

centre positions of the line [-0.008, 0.008] m, which has been modelled with a regression

line:

𝑦 = 39.4022𝑑 + 0.0036

As the desired value is d and y is the input value:

𝑑 = 0.0254𝑦 − 0.000091365

(Eqn. 6.12)

(Eqn. 6.13)

Control simulation of a line tracker vehicle using Gazebo Pág. 34

In order to enlarge the x rang of values, Albert Costa in a previous Final Grade Project

implemented the following logic:

𝑖𝑓	 𝑜𝑢𝑝𝑢𝑡1 > 𝑜𝑢𝑡𝑝𝑢𝑡2	&		𝑜𝑢𝑡𝑝𝑢𝑡1 > 𝑜𝑢𝑡𝑝𝑢𝑡1st^kxyy 		

	{𝑦	 = 𝑜𝑢𝑡𝑝𝑢𝑡1 + 𝑜𝑢𝑡𝑝𝑢𝑡2 + 2 ∗ 𝑚𝑎𝑥𝑑𝑖𝑓𝑓}

𝑒𝑙𝑠𝑒	𝑖𝑓	 𝑜𝑢𝑝𝑢𝑡2 > 𝑜𝑢𝑡𝑝𝑢𝑡1	&	𝑜𝑢𝑡𝑝𝑢𝑡2 > 𝑜𝑢𝑡𝑝𝑢𝑡2sx|kxyy 		

		{𝑦	 = −(𝑜𝑢𝑡𝑝𝑢𝑡1 + 𝑜𝑢𝑡𝑝𝑢𝑡2) − 2 ∗ 𝑚𝑖𝑛𝑑𝑖𝑓𝑓}

𝑒𝑙𝑠𝑒

{𝑦 = 𝑜𝑢𝑡𝑝𝑢𝑡1 − 𝑜𝑢𝑡𝑝𝑢𝑡2}

Where ouput1 = left camera output, output 2=right camera output, mindiff and maxdiff are the

values at -0.008m and 0.008m.

Applying the conditions that characterize the regions of x values lower than -0.008m and higher

than 0.008m, it is possible lo modify the y value.

Control simulation of a line tracker vehicle using Gazebo Pág. 35

The range of values is enlarged to [-0.021, 0.021] m. The regression is calculated again:

𝑦 = 26.5472𝑥 + 0.0134

6.4. Pugins Architecture

A plugin is a chunk of code that is compiled as a shared library and inserted into the simulation.

The plugin has direct access to all the functionality of Gazebo through the standard C++

classes. It let control almost any aspect of Gazebo. They have been used to implemented the

control algorithm applied in the real vehicle. For this reason, have been necessary two sensor

plugin to carry out the image processing and a model plugin to control the steering of the

vehicle. The sensor plugins have two publisher nodes, which publish the average colour of the

image frame in RGBA format under two topic called Color_left and Color_right. Plus, the sonar

sensor has a default publisher node which publish the distance of the nearest object in its field

of effect under the topic SonarStamped. The model’s plugin receives the three topics through

three subscriber nodes, which provide the input data to develop the vehicles control algorythm.

(Eqn. 6.15)

Default
publisher

Left Camera
Plugin

Right Camera
Plugin

MODEL PLUGIN

Color_left Color_right

SonarStamped

Fig 6.4. Diagram of plugins structure

Control simulation of a line tracker vehicle using Gazebo Pág. 36

6.5. Control algorithm

In the model plugin is where the tracking control is made. The control is based on a simple PID

(Proportional Integral Derivative) controller, its main task is to reduce the error, in our case the

distance to the line axis. The PID controller applies three basic mathematical functions as it

names suggests to minimize the error. The distance is calculated applying the linearized

equation to the difference of the two cameras outputs. The cameras outputs are received from

the cameras plugins using the Gazebo communication explained in the previous chapter.

Fig. 6.5.1. Diagram of how the control algorythm is executed

distance

error=d*-distance

Proportional	
value=Kp*error

Control	signal=	
Proportional+
Integrator

𝑊𝐿𝑒𝑓𝑡 = 	
−𝑢K ∗

𝑅
2 + 𝑢A
𝑟
2

𝑊𝑟𝑖𝑔ℎ𝑡 =
𝑢A + 𝑢K ∗

𝑅
2

𝑟
2

Integrator	value=	
Integrator	previous	
value+Ts*Ki*error

Control simulation of a line tracker vehicle using Gazebo Pág. 37

The Wleft and the Wright are the command send to the joint control. In the experiencies made

in the simulation it has been tested an ideal behaviour of the wheels with no delays. However,

the delay can be set using a PID controller explained in chapter 5.4.

6.6. Step Time

In order to set the step time of the control system, two parameters are employed: the real time

factor and the update rate of the cameras and the ultrasonic sensor. The real time factor of the

simulator can be described as:

𝑅𝑒𝑎𝑙	𝑡𝑖𝑚𝑒	𝑓𝑎𝑐𝑡𝑜𝑟 =
𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛	𝑡𝑖𝑚𝑒[𝑠]

𝑅𝑒𝑎𝑙	𝑡𝑖𝑚𝑒	[𝑠]

That is to say, if the the real time factor is smaller than 1, the simulation will perform slower

respect to the real time and if its bigger, it will perform faster.

To update rate of the cameras is the times per second that the cameras retrieve an image from

the ground, which is able to do every time the scene is rendered (frames per second). In other

words, the frames per second of the simulation graphical interface is the bottleneck of the

camera’s frequency. It has been tried to accelerate at the maximum the frames update of the

simulator, which could not be explicitly as Gazebo does not offers this functionality, but it has

been noticed that if the resolution of the camera was reduced (lower number of bits), the cost-

time to render the scene decreases, increasing the frames per second. The point is decreasing

the image quality without losing the cameras functionality. To study the optimal image solution,

the experience of the moving the vehicle through a straight black line has been made:

(Eqn. 6.16)

Control simulation of a line tracker vehicle using Gazebo Pág. 38

In the figure, has just been denoted only the left camera’s output as both cameras behaviour

is the same. It has been observed that for image resolutions lower than 100x100 pixels, the

image obtained is blurred and the value of brightness obtained is not the desired. In this order

of 100x100 pixels resolution, the sensor was able to perform at 300Hz more or less (the scene

was rendered 300 times per second).

Once the real time factor and the update rate are described, playing with its values it is possible

to have the cameras working in the desired step time. For example, if the camera frequency

has to be 600, the simulation may be done at 100x100 pixel resolution and 0.5 real time factor.

600	𝐻𝑧 = 300	𝑓𝑟𝑎𝑚𝑒𝑠	𝑝𝑒𝑟	𝑟𝑒𝑎𝑙	𝑠𝑒𝑐𝑜𝑛𝑑 ∗
1	𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛	𝑠𝑒𝑐𝑜𝑛𝑑
0.5	𝑟𝑒𝑎𝑙	𝑠𝑒𝑐𝑜𝑛𝑑

= 600	𝑓𝑟𝑎𝑚𝑒𝑠	𝑝𝑒𝑟	𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛	𝑠𝑒𝑐𝑜𝑛𝑑

Concerning the sonar sensor update rate and the controller update rate, its bottleneck is higher

and is defined in the own characteristics of the physics engine, which can be explicitly set in

Figure 6.6.1 Brightness detection in function of the image quality

(Eqn. 6.17)

Control simulation of a line tracker vehicle using Gazebo Pág. 39

the internal code of Gazebo. The default update rate is of 1000Hz and if it is increased, it has

to be considered not to damage the correct working of the simulator. However, in both cases

to have them working in the desired frequency without modifying the physics engine update

rate. The first one can be set in SDF file description and the second one in the inner code of

the model plugin.

In any case, to correctly reproduce the timing in the vehicle; the controller, the sonar sensor

and the camera sensors have to work at the same frequency.

Control simulation of a line tracker vehicle using Gazebo Pág. 40

7. Simulation results

To prove the usability of the model and the simulation environment, some experiences have

been made. The parameters with which the control study has been carried out are the

followings: step time, Kp, Ki and lineal velocity. For instance, the range of the camera chosen

has been [-0.008, 0.008] m and a resolution of 100x100 pixels. Has been studied two types

of circuits.

7.1. Straight Line with a P controller
The initial conditions of the vehicle have been: static and positioned parallel to the line axis

and in the middle of it. It has been tested for 0.04, 0.06, 0.08, 0.1s step time and for velocities

of 0.01m/s, 0,1 m/s and 0,5 m/s. The Kps used have been 5, 50,100 ,150. The variables

observed have been the estimated distance perceived by the line sensor, the x and y

coordinates of the line sensor and angular velocity of the wheels. In all the cases, the response

of the distance and the angular velocity observed has been of second order. This makes

sense as the vehicle angular velocity is proportional to the estimated distance. The following

is an example for ts=0.06, Kp=100 and v1=0.1m/s:

Fig. 7.1.1 Simulation test for Kp 100, ts 0.06 s and v1 0.1 m/s

Control simulation of a line tracker vehicle using Gazebo Pág. 41

The following figures show the simulation results keeping constant one of the three

parameters and modifying the others.

Fig. 7.1.2. Kp is 100 and v1 is 0,1 m/s, different step times

Fig. 7.1.3. Kp is 100 and ts is 0,06s, different v1.

Control simulation of a line tracker vehicle using Gazebo Pág. 42

Figure 7.1.4. ts is 0,06s and v1 is 0,1 m/s, different Kp

Control simulation of a line tracker vehicle using Gazebo Pág. 43

7.2. Circular circuit with P controller

The initial conditions of the vehicle have been: static and positioned tangent to the line axis

with the line sensor in the middle of the line. Working at the previous steps time in all the cases,

the system became unstable at the speed of 0.1 m/s. So the step time was decreased. It has

been tested for values of 0.01s and 0.002 s, which in the second case, made the simulation

ran slowly as it was necessary 500Hz and the camera runs at 300Hz. The results are the

followings for a Kp=50.

Fig. 7.2.1 Positions of the line sensor and the path to follow

Figure 7.2.2. The vehicle and the wheels response

Control simulation of a line tracker vehicle using Gazebo Pág. 44

As it can be observed, the system is asymptotically stable till it reaches 200 grades of

circumference, where some turbulence appears. In this case the turbulence gets near to the

0.008m distance from the line axis, which is the limit of the rang of values where the line sensor

gives a correct feedback of the position of the vehicle. For higher steps times, the system

became unstable in this region. It is a second order response.

Fig. 7.2.3 Positions of the line sensor and the path to follow

Fig. 7.2.4. The vehicle and the wheels response

Control simulation of a line tracker vehicle using Gazebo Pág. 45

As it can be observed, for a lower step time the vehicle seems to be stable. In the same region,

which corresponds to the moment the vehicle transition from following the circle in the exterior

side to the interior side, appears turbulence. However, the vehicle turns to stable after a while.

The response is too of second order.

7.3. Circular circuit with PI controller

The previous experience reflect that an Integrator is not necessary. However, it has been of
interest see if its implementation affects on the previous results. It has been studied for a
Kp=50, Ki=0.001, ts=0.01s and v1=0.1m/s.

Fig. 3.1.Positions of the line sensor and the path to follow

Control simulation of a line tracker vehicle using Gazebo Pág. 46

Figure 3.2 The vehicle and the wheels response

As far as can be observed, it has the same oscillations as the proportional controller but the

amplitude is lower.

Control simulation of a line tracker vehicle using Gazebo Pág. 47

Conclusions

The purpose of this study was to develop a reliable environment for simulation and control of

mobile robots using Gazebo software. The simulation results prove the usability of the model

and the environment to reproduce the performance of a line tracker vehicle.

The core of the work has been the design of the control code using two camera sensor plugin

and a model plugin where the control strategy is applied. It has been very useful the wide range

of features supplied by Gazebo to try to simulate as more accurate as possible the line tracker

robot.

The principal handicap has been Gazebo does not have a user-friendly interface to model your

robots and is basically all programmed in its core code, which means that the user has to get

used to the the programming structure, which is based on an object-oriented application.

Besides, the image processing bottleneck has been denoted as an important problem to carry

out real-time simulation, as the cameras are not able to operate in high frequencies.

To conclude, in further developments would be recommended to implement more realistic

vehicle traction with delays and friction in the transmission chain and to create more user-

friendly interface so as to ease the simulation preparation and setting, as well as, an executable

to plot the desired variable of the scene with more rapidness.

Control simulation of a line tracker vehicle using Gazebo Pág. 48

Acknowledgements

I would like to express my gratitude to my tutors Arnau Dòria and Jan Rosell for their help

along the project and to give me the opportunity to work in institute of Management and Control

in the Robotics Laboratory, and also to Nestor García to give me a hand in any kind of doubt

that came across the development of the project.

Control simulation of a line tracker vehicle using Gazebo Pág. 49

Bibliografy

Referències bibliogràfiques

[1] Prats Matinho, Ivan. Control design and implementation for a line tracker vehicle. End of

Degree Project of Physics Engineering(2016)

[2] Riera Seguí, Antoni. Disseny I implementació d’un system de comunicacions WiFi per

una xarax de vehicle autònoms. End of Degree Project UPC(2016)

[3] Yulin Zhang, Daehie Hong, Jae H. Chung, and Steven A. Velinsky, Dynamic Model

Based Robust Tracking Control of a Differentially Steered Wheeled Mobile Robot. Proc

of the American Control Conference (1998).

[4] Kenta Takaya, Toshinori Asai, Valeri Kroumov, Florentin Smarandache, Simulation

environment for mobile robots testing using ROS and GAZEBO. 20th International

Conference on System Theory, Control and Computing. (2016)

[5] Thomio Watanabe, Gustavo Nenes, Tiago Trocoli, Marcos Reis, Jan Albiez *. The rock-

Gazebo integration and Real-Time AUV Simulation. Latin American Robots Symposium

(2015).

[6] Costa Ruiz, Albert. Design of controllers and its implementation fro a line tracker vehicle. .

End of Degree Project UPC(2017).

Control simulation of a line tracker vehicle using Gazebo Pág. 50

Annex

I. Mesh Design

Fig. I.1 Front perspective view

Fig. I.2. Back perspective view

Control simulation of a line tracker vehicle using Gazebo Pág. 51

Fig. I.5. Chassis

Fig. I.4. Traction wheel Fig. I.3. Passive caster wheel

Control simulation of a line tracker vehicle using Gazebo Pág. 52

Fig. I.6. Base support for the microcontroller protoboard, the battery holder and the Wifi
module

Fig. I.7. Battery holder Fig. I.8. Microcontroller protoboard

Control simulation of a line tracker vehicle using Gazebo Pág. 53

Fig. I.10. Microcontroller ATMEGA328 Fig. I.9. Wifi module

Fig. I.11. Ultrasonic sensor HC-SR04 Fig. I.12. Driver L298N

Control simulation of a line tracker vehicle using Gazebo Pág. 54

Fig. I.13. Motor DC Fig. I.14. Line sensor LRE-F22

Control simulation of a line tracker vehicle using Gazebo Pág. 55

II.Code

TestSensor.hh 1

#ifndef	_TESTSENSOR_HH_
#define	_TESTSENSOR_HH_

#include	<iostream>
#include	<gazebo/gazebo.hh>
#include	<gazebo/physics/physics.hh>
#include	<gazebo/math/gzmath.hh>
#include	<thread>
#include	<ros/ros.h>
#include	<ros/callback_queue.h>
#include	<ros/subscribe_options.h>
#include	<std_msgs/Float32.h>
#include	<gazebo/msgs/msgs.hh>
#include	<fstream>
#include	<string>
#include	<functional>
#include	<mutex>
#include	<gazebo/physics/physics.hh>
#include	<gazebo/physics/World.hh>
#include	"gazebo/physics/PhysicsTypes.hh"

namespace	gazebo
{

		struct	TestPrivate;
		class	TestSensor:	public	ModelPlugin
		{
				public:	TestSensor();

				///	\brief	Destructor

				public:	virtual	void	Load(physics::ModelPtr	_model,	sdf::ElementPtr	_sdf);

public:	virtual	void	cb1(ConstColorPtr	&_msg1);
public:	virtual	void	cb2(ConstColorPtr	&_msg2);
public:	virtual	void	cb4(ConstSonarStampedPtr	&_msg4);

				public:	virtual	void	OnUpdate();

private:	void	OnMsg(ConstVector3dPtr	&_msg);

public:	void	OnRosMsg(const	std_msgs::Float32ConstPtr	&_msg);

private:	void	QueueThread();

private:	math::Pose	pose;
private:	double	idx;
private:	physics::ModelPtr	model;
//private:	event::ConnectionPtr	updateConnection;
private:	transport::NodePtr	node1;
private:	transport::NodePtr	node2;
private:	transport::NodePtr	node3;
private:	transport::NodePtr	node4;
private:	transport::SubscriberPtr	sub1;
private:	transport::SubscriberPtr	sub2;
private:	transport::SubscriberPtr	sub3;
private:	transport::SubscriberPtr	sub4;
private:	float	brightness1;
private:	float	brightness2;
private:	long	saveCount;
private:	bool	condition1;
private:	bool	condition2;
private:	float	array1[40]={};
private:	float	array2	[40]={};
private:	float	u1;
private:	float	Kp;
private:	float	Ki;
private:	float	distance;

TestSensor.hh 2

private:	physics::JointPtr	joint1;
private:	physics::JointPtr	joint2;
private:	common::PID	pid;
private:	transport::NodePtr	node;
private:	float	Kielement;
private:	int	a;

		 private:	std::ofstream	file1;
		 private:	std::ofstream	file2;
		 private:	std::ofstream	file3;
		 private:	std::ofstream	file4;
		 private:	std::ofstream	file5;
				protected:	gazebo::physics::WorldPtr	world;
				protected:	common::Time	lastUpdateTime;

///	\brief	A	ROS	subscriber
				private:	ros::Publisher	rosPub;

///	\brief	A	node	use	for	ROS	transport
private:	std::unique_ptr<ros::NodeHandle>	rosNode;

private:		std_msgs::Float32	msg;
				private:	std::unique_ptr<TestPrivate>	dataPtr;

///	\brief	A	ROS	callbackqueue	that	helps	process	messages
/*private:	ros::CallbackQueue	rosQueue;

///	\brief	A	thread	the	keeps	running	the	rosQueue
private:	std::thread	rosQueueThread;*/

		};
}
#endif

TestSensor.cc 1

#include	"TestSensor.hh"

using	namespace	gazebo;

//	Tell	Gazebo	about	this	plugin,	so	that	Gazebo	can	call	Load	on	this	plugin.

GZ_REGISTER_MODEL_PLUGIN(TestSensor)

namespace	gazebo
{

		struct	TestPrivate
		{

				public:	event::ConnectionPtr	updateConnection;

				///	\brief	Pointer	to	the	model.
				public:	float	brightness2;
				public:	float	brightness1;

				///	\brief	Update	mutex.
				public:	std::mutex	mutex;

};
}

TestSensor::TestSensor()	:	pose(0.0,-0.0,0.0,0.0,0.0,0.0),	idx(-0.025),	node1	(new
transport::Node()),	node2	(new	transport::Node()),	node3	(new	transport::Node()),	node4
(new	transport::Node()),	saveCount(0),	u1(0.05),	Kp	(50),	Ki(0.00),	a(1),
Kielement(0),distance(0),dataPtr(new	TestPrivate)
{

this->node1->Init();
this->node2->Init();
this->node3->Init();
this->node4->Init();
this->file1.open	("save1.txt");
this->file2.open	("save2.txt");
this->file3.open	("save3.txt");
this->file4.open	("save4.txt");
this->file5.open	("save5.txt");

}

void	TestSensor::cb1(ConstColorPtr	&_msg1)
{

this->dataPtr->brightness1=(0.2126*(_msg1->r())	+	0.7152*(_msg1->g())	+
0.0722*(_msg1->b()));

//gzmsg	<<	this->brightness1;

//std::cout	<<	std::endl;

}

void	TestSensor::cb2(ConstColorPtr	&_msg2)
{

this->dataPtr->brightness2=(0.2126*(_msg2->r())	+	0.7152*(_msg2->g())	+
0.0722*(_msg2->b()));

//gzmsg	<<	this->brightness2;

//std::cout	<<	std::endl;

/*if(this->idx	<=	0.020)
{

//this->array1[this->saveCount]=this->brightness1;

//this->array2[this->saveCount]=this->brightness2;

TestSensor.cc 2

//gzmsg	<<	this->array1[this->saveCount];

//gzmsg	<<	this->saveCount;

this->model->SetWorldPose(pose,true,true);

++(this->saveCount);

this->idx=(this->idx)+0.001;

this->pose.Set(0.0,double(idx),0.0,0.0,0.0,0.0);
}

//else

{
std::cout	<<	'[';
for(int	i=0	;	i<	45	;	i=i+1)	
{

std::cout	<<	this->array1[i]	<<	",";
}
std::cout	<<	']'<<	';'	<<	std::endl;
std::cout	<<	'[';
for(int	y=0	;	y<	45	;	y=y+1)	
{

std::cout	<<	this->array2[y]	<<	',';
}
std::cout	<<	']'<<	';'<<	std::endl;

//this->sub1->Unsubscribe();
//this->sub2->Unsubscribe();

}*/

}

void	TestSensor::cb4(ConstSonarStampedPtr	&_msg4)
{

double	range=_msg4->sonar().range();
if(range<0.1)

{
this->a=0;

}
else

{
this->a=1;
}

}

void	TestSensor::OnMsg(ConstVector3dPtr	&_msg)
{

this->u1=_msg->x();

if	(_msg->y()!=0.0)
{

this->Kp=_msg->y();
}
if	(_msg->z()!=0.0)
{

this->Ki=_msg->z();
}

}

void	TestSensor::Load(physics::ModelPtr	_model,	sdf::ElementPtr	_sdf)

TestSensor.cc 3

{

//Initialize	ros,	if	it	has	not	already	bee	initialized.
if	(!ros::isInitialized())
{

int	argc	=	0;
char	**argv	=	NULL;
ros::init(argc,	argv,	"gazebo_client",

		ros::init_options::NoSigintHandler);
}

this->rosNode.reset(new	ros::NodeHandle("gazebo_client"));

/*//	Create	our	ROS	node.	This	acts	in	a	similar	manner	to
//	the	Gazebo	node
this->rosNode.reset(new	ros::NodeHandle("gazebo_client"));

//	Create	a	named	topic,	and	subscribe	to	it

ros::SubscribeOptions	so	=
ros::SubscribeOptions::create<std_msgs::Float32>(

		"/"	+	this->model->GetName()	+	"/vel_cmd",
		1,
		boost::bind(&TestSensor::OnRosMsg,	this,	_1),
		ros::VoidPtr(),	&this->rosQueue);

this->rosSub	=	this->rosNode->subscribe(so);
//	Spin	up	the	queue	helper	thread.
this->rosQueueThread	=

std::thread(std::bind(&TestSensor::QueueThread,	this));*/

rosPub	=	rosNode->advertise<std_msgs::Float32>("distance",	1000);
		this->lastUpdateTime	=	common::Time(0.0);

this->model=_model;

this->joint1	=	this->model->GetJoints()[0];
		this->joint2	=	this->model->GetJoints()[1];

//this->pose.Set(-0.04616,-0.08303,0.0,0.0,0.0,1.06);
this->pose.Set(-0.095,0,0.0,0.0,0.0,0);
this->model->SetWorldPose(pose,true,true);

		this->world	=	physics::get_world("default");
this->file1	<<0;
this->file1	<<	',';
this->file2	<<0;
this->file2	<<	',';
this->file3	<<0;
this->file3	<<	',';
this->file4	<<0;
this->file4	<<	',';
this->file5	<<0;
this->file5	<<	',';

common::Time::MSleep(10000);

//this->pose.Set(0.0,double(idx),0.0,0.0,0.0,0.0);

this->sub1	=	this->node1->Subscribe("~/Color_left",	&TestSensor::cb1,	this);

this->sub2	=	this->node2->Subscribe("~/Color_right",	&TestSensor::cb2,	this);

this->sub3	=	this->node3->Subscribe("~/Message",	&TestSensor::OnMsg,	this);

this->sub4	=	this->node4->Subscribe("~/LineTracker/line_tracker/chassis/ultrasound/
sonar",	&TestSensor::cb4,	this);

TestSensor.cc 4

		this->pid	=	common::PID(this->Kp,	this->Ki,	0);

this->model->GetJointController()->SetVelocityPID(
					this->joint1->GetScopedName(),	this->pid);

this->model->GetJointController()->SetVelocityPID(
					this->joint2->GetScopedName(),	this->pid);

this->joint1->SetVelocityLimit(0,18.46);
this->joint2->SetVelocityLimit(0,18.46);

this->dataPtr->updateConnection	=	event::Events::ConnectWorldUpdateBegin(
		 	std::bind(&TestSensor::OnUpdate,	this));

}

///	\brief	Handle	an	incoming	message	from	ROS
///	\param[in]	_msg	A	float	value	that	is	used	to	set	the	velocity
///	of	the	Velodyne.
/*void	TestSensor::OnRosMsg(const	std_msgs::Float32ConstPtr	&_msg)
{

this->model->GetJointController()->SetVelocityTarget(
	this->joint1->GetScopedName(),	_msg->data);

this->model->GetJointController()->SetVelocityTarget(
	this->joint2->GetScopedName(),	_msg->data);untitled.

}

///	\brief	ROS	helper	function	that	processes	messages
void	TestSensor::QueueThread()
{

static	const	double	timeout	=	0.01;
while	(this->rosNode->ok())
{
		this->rosQueue.callAvailable(ros::WallDuration(timeout));
}

}*/

void	TestSensor::OnUpdate()
{
		//	Move	the	model.
		std::lock_guard<std::mutex>	lock(this->dataPtr->mutex);

		if	(this->world->GetSimTime()	-	this->lastUpdateTime	>=	0.06)
{

float	y=(this->dataPtr->brightness1)-(this->dataPtr->brightness2);
this->distance= -0.000091365+0.0254*y;
float	error	=-1*this->distance;
float	Kpelement=(this->Kp)*error;
this->Kielement=this->Kielement+0.01*this->Ki*error;
float	u2=	Kpelement+this->Kielement;
float	wLref=(u2*0.06*-1.0+(this->u1))*(this->a)/float(0.035);
float	wRref=((this->u1)+u2*0.06)*(this->a)/float(0.035);

this->joint1->SetVelocity(0,	wLref);

	 this->joint2->SetVelocity(0,	wRref);

this->lastUpdateTime	=	this->world->GetSimTime();

this->msg.data	=	distance;
		this->rosPub.publish(this->msg);

if(this->world->GetSimTime()<240)
{

		 this->file1	<<	(this->model->GetWorldPose().pos.x)+cos(this->model-

TestSensor.cc 5

		 this->file1	<<	(this->model->GetWorldPose().pos.x)+cos(this->model-

>GetWorldPose().rot.z)*(0.045);
this->file1	<<',';

		 this->file2	<<	(this->model->GetWorldPose().pos.y)+sin(this->model-
>GetWorldPose().rot.z)*(0.045);

this->file2	<<',';

		this->file3	<<	this->distance;
this->file3	<<',';

		this->file4	<<	this->joint1->GetVelocity(0);
this->file4	<<',';

		this->file5	<<	this->joint2->GetVelocity(0);
this->file5	<<',';

}

else
{

		 this->file1	<<	(this->model->GetWorldPose().pos.x)+cos(this->model-
>GetWorldPose().rot.z)*(0.045);
		 this->file2	<<	(this->model->GetWorldPose().pos.y)+sin(this->model-
>GetWorldPose().rot.z)*(0.045);

		this->file3	<<	this->distance;
		this->file4	<<	this->joint1->GetVelocity(0);
		this->file5	<<	this->joint2->GetVelocity(0);

this->file1.close();
this->file2.close();
this->file3.close();
this->file4.close();
this->file5.close();

}
this->saveCount=this->saveCount+1;
}

}

camera_dump_1.cc 1

/*
	*	Copyright	(C)	2012	Open	Source	Robotics	Foundation
	*
	*	Licensed	under	the	Apache	License,	Version	2.0	(the	"License");
	*	you	may	not	use	this	file	except	in	compliance	with	the	License.
	*	You	may	obtain	a	copy	of	the	License	at
	*
	*					http://www.apache.org/licenses/LICENSE-2.0
	*
	*	Unless	required	by	applicable	law	or	agreed	to	in	writing,	software
	*	distributed	under	the	License	is	distributed	on	an	"AS	IS"	BASIS,
	*	WITHOUT	WARRANTIES	OR	CONDITIONS	OF	ANY	KIND,	either	express	or	implied.
	*	See	the	License	for	the	specific	language	governing	permissions	and
	*	limitations	under	the	License.
	*
*/
#include	<gazebo/gazebo.hh>
#include	<gazebo/plugins/CameraPlugin.hh>
#include	<gazebo/common/Image.hh>
#include	<ros/ros.h>
#include	<ros/callback_queue.h>
#include	<ros/subscribe_options.h>
#include	<std_msgs/Float32.h>
#include	<string>

namespace	gazebo
{
		class	CameraDump1	:	public	CameraPlugin
		{
				public:	CameraDump1()	:	CameraPlugin(),	saveCount(0),	node	(new	transport::Node())	

{
this->node->Init();
this->pub=	node->Advertise<msgs::Color>("~/Color_left");

}
				public:	void	Load(sensors::SensorPtr	_parent,	sdf::ElementPtr	_sdf)
				{
						//	Don't	forget	to	load	the	camera	plugin
						CameraPlugin::Load(_parent,	_sdf);

this->rosNode3.reset(new	ros::NodeHandle("gazebo_client"));
this->rosPub3	=	rosNode3->advertise<std_msgs::Float32>("color1",	1000);

				}

				//	Update	the	controller
				public:	void	OnNewFrame(const	unsigned	char	*_image,
								unsigned	int	_width,	unsigned	int	_height,	unsigned	int	_depth,
								const	std::string	&_format)
				{

this->render.SetFromData(_image,	_width,	_height,	this-
>render.ConvertPixelFormat(_format));

//this->brightness=(0.2126*(this->render.GetAvgColor().r)	+	0.7152*(this-
>render.GetAvgColor().g)	+	0.0722*(this->render.GetAvgColor().b));

msgs::Set(&output,this->render.GetAvgColor());
//std::cout	<<	"Waiting	for	connection1	"	<<	std::endl;
this->pub->WaitForConnection();
this->pub->Publish(output);
this->msg3.data	=	213.1;

		 this->rosPub3.publish(this->msg3);

		/*if	(this->saveCount	<	10)
						{

gzmsg<<	this->brightness;
								this->parentSensor->Camera()->SaveFrame(
												_image,	_width,	_height,	_depth,	_format,	tmp);
								gzmsg	<<	"Saving	frame	["	<<	this->saveCount

camera_dump_1.cc 2

														<<	"]	as	["	<<	tmp	<<	"]\n";
								this->saveCount++;
						}*/
				}

				private:	int	saveCount;
private:	common::Image	render;
private:	float	brightness;
private:	transport::NodePtr	node;
private:	transport::PublisherPtr	pub;
private:	msgs::Color	output;
private:	std::unique_ptr<ros::NodeHandle>	rosNode3;

				private:	ros::Publisher	rosPub3;
private:	std_msgs::Float32	msg3;

		};

		//	Register	this	plugin	with	the	simulator
		GZ_REGISTER_SENSOR_PLUGIN(CameraDump1)
}

camera_dump_2.cc 1

/*
	*	Copyright	(C)	2012	Open	Source	Robotics	Foundation
	*
	*	Licensed	under	the	Apache	License,	Version	2.0	(the	"License");
	*	you	may	not	use	this	file	except	in	compliance	with	the	License.
	*	You	may	obtain	a	copy	of	the	License	at
	*
	*					http://www.apache.org/licenses/LICENSE-2.0
	*
	*	Unless	required	by	applicable	law	or	agreed	to	in	writing,	software
	*	distributed	under	the	License	is	distributed	on	an	"AS	IS"	BASIS,
	*	WITHOUT	WARRANTIES	OR	CONDITIONS	OF	ANY	KIND,	either	express	or	implied.
	*	See	the	License	for	the	specific	language	governing	permissions	and
	*	limitations	under	the	License.
	*
*/
#include	<gazebo/gazebo.hh>
#include	<gazebo/plugins/CameraPlugin.hh>
#include	<gazebo/common/Image.hh>

namespace	gazebo
{
		class	CameraDump2	:	public	CameraPlugin
		{
				public:	CameraDump2()	:	CameraPlugin(),	saveCount(0),	node	(new	transport::Node())	

{
this->node->Init();
this->pub=	node->Advertise<msgs::Color>("~/Color_right");

}
				public:	void	Load(sensors::SensorPtr	_parent,	sdf::ElementPtr	_sdf)
				{
						//	Don't	forget	to	load	the	camera	plugin
						CameraPlugin::Load(_parent,	_sdf);

				}

				//	Update	the	controller
				public:	void	OnNewFrame(const	unsigned	char	*_image,
								unsigned	int	_width,	unsigned	int	_height,	unsigned	int	_depth,
								const	std::string	&_format)
				{
						char	tmp[1024];
						snprintf(tmp,	sizeof(tmp),	"/tmp/%s-%04d.jpg",
										this->parentSensor->Camera()->Name().c_str(),	this->saveCount);

this->render.SetFromData(_image,	_width,	_height,	this-
>render.ConvertPixelFormat(_format));

//this->brightness=(0.2126*(this->render.GetAvgColor().r)	+	0.7152*(this-
>render.GetAvgColor().g)	+	0.0722*(this->render.GetAvgColor().b));

msgs::Set(&output,this->render.GetAvgColor());
//std::cout	<<	"Waiting	for	connection2	"	<<	std::endl;
this->pub->WaitForConnection();
this->pub->Publish(output);

		/*if	(this->saveCount	<	10)
						{

gzmsg<<	this->brightness;
								this->parentSensor->Camera()->SaveFrame(
												_image,	_width,	_height,	_depth,	_format,	tmp);
								gzmsg	<<	"Saving	frame	["	<<	this->saveCount
														<<	"]	as	["	<<	tmp	<<	"]\n";
								this->saveCount++;
						}*/
				}

				private:	int	saveCount;

camera_dump_2.cc 2

private:	common::Image	render;
private:	float	brightness;
private:	transport::NodePtr	node;
private:	transport::PublisherPtr	pub;
private:	msgs::Color	output;

		};

		//	Register	this	plugin	with	the	simulator
		GZ_REGISTER_SENSOR_PLUGIN(CameraDump2)
}

model.sdf 1

<?xml	version='1.0'?>
<sdf	version='1.4'>
		<model	name="line_tracker">
		 <static>false</static>//The	vehicle	is	dynamic

<link	name='chassis'>
		<inertia>
				<mass>0.65</mass><!--inertia-->
				<inertial>
						<ixx>0.001806</ixx>
						<iyy>0.07551</iyy>
						<izz>0.02500</izz>
						<ixz>0.06233</ixz>
						<ixy>0.6452</ixy>
						<iyz>0.00594</iyz>

<pose>0	0	0.0485	0	0	0</pose>>><!--origin	of	the	chassis,
situated	in	the	middle-->

<collision	name="chassis_collision">
<pose>0	0	0.0165	0	0	0</pose>
<geometry>

<box>
<size>0.16	0.12	0.036</size><!--geometry

used	by	the	physiscs	engine-->
</box>

</geometry>
</collision>
<visual	name='chassis_visual'>

<cast_shadows>false</cast_shadows>
<pose>0	0	-0.0485	0	0	0</pose>
<geometry>

<mesh><uri>model://line_tracker/meshes/
gazebo5.dae</uri></mesh><!--mesh	in	the	visual	part-->

</geometry>
</visual>

		<collision	name='caster_collision'>
				<pose>-0.0775	0	-0.025	0	0	0</pose>
				<geometry>

<sphere>
<radius>.0235</radius><!--caster	wheel-->

						</sphere>
				</geometry>
		</collision>
		<visual	name='caster_visual'>
				<pose>-0.0775	0	-0.025	0	0	0</pose>
				<geometry>
						<sphere>

<radius>.0235</radius><!--caster	wheel	visual-->
						</sphere>
				</geometry>
		</visual>

<collision	name='motor_left'>
<pose>0.0225	.05	-.0125	0	0	0</pose>

<geometry>
<box>
<size>0.065	0.02	0.022</size>

</box>
</geometry>

</collision>
<collision	name='motor_right'>
<pose>0.0225	-.05	-.0125	0	0	0</pose>

<geometry>
<box>
<size>0.065	0.02	0.022</size>

</box>
</geometry>

</collision>
<sensor	type='camera'	name='left_camera'>

<pose>	0.095	0.005	-0.034	0	1.5707	0</pose>
<visualize>true</visualize>
<topic>left_camera</topic>

model.sdf 2

<always_on>1</always_on>
<update_rate>17</update_rate>
<camera>

<horizontal_fov>1.2</horizontal_fov>

<clip>

<near>0.001</near>
<far>0.03</far>
<!--Hypotesis	there	is	no	object	between

the	camera	an	the	line	-->
</clip>

</camera>
<plugin	name='camera_dump_1'

filename='libcamera_dump_1.so'/><!--sensor	plugin-->
</sensor>
<sensor	type='camera'	name='right_camera'>

<pose>	0.095	-0.005	-0.034	0	1.5707	0</pose>
<visualize>true</visualize>
<topic>right_camera</topic>
<always_on>1</always_on>
<update_rate>17</update_rate>
<camera>

<horizontal_fov>1.2</horizontal_fov>

<clip>

<near>0.001</near>
<far>0.03</far>
<!--Hypotesis	there	is	no	object	between

the	camera	an	the	line	-->
</clip>

</camera>
<plugin	name='camera_dump_2'

filename='libcamera_dump_2.so'/><!--sensor	plugin-->
</sensor>
<sensor	type='sonar'	name='ultrasound'>

<pose>	0.116	0.00	0.0115	0	-1.5707	0</pose>
						<always_on>1</always_on>
						<update_rate>1000</update_rate>
						<visualize>false</visualize>

				<sonar>
<min>0.02</min><!--ultrasound	characteristics	of

the	supplier	table-->
<max>4</max>
<radius>1.07</radius>

				</sonar>
						</sensor>

</link>
<link	name='right_wheel'><!--link	for	the	right	wheel-->

<pose>.045	-.075	.035	0	1.5707	1.5707</pose>
<collision	name='collision'>

<geometry>
<cylinder>

<radius>.035</radius>
<length>.025</length>

</cylinder>
</geometry>

</collision>
<visual	name='visual'>

<geometry>
<cylinder>

model.sdf 3

<radius>.035</radius>
<length>.025</length>

</cylinder>
</geometry>

</visual>
</link>
<link	name='left_wheel'><!--link	for	a	left	wheel-->

<pose>.045	.075	.035	0	1.5707	1.5707</pose>
<collision	name='collision'>

<geometry>
<cylinder>

<radius>.035</radius>
<length>.025</length>

</cylinder>
</geometry>

</collision>
<visual	name='visual'>

<geometry>
<cylinder>

<radius>.035</radius>
<length>.025</length>

</cylinder>
</geometry>

</visual>
</link>
<joint	type='revolute'	name='left_wheel_hinge'><!--joints	to	articulate

the	chassis	and	the	wheels-->
<pose>0	0	-.0125	0	0	0</pose>
<child>left_wheel</child>
<parent>chassis</parent>
<axis>

<xyz>0	1	0</xyz>
</axis>

</joint>
<joint	type='revolute'	name='right_wheel_hinge'>

<pose>0	0	.0125	0	0	0</pose>
<child>right_wheel</child>
<parent>chassis</parent>
<axis>

<xyz>0	1	0</xyz>
</axis>

</joint>
		</model>
</sdf>

model_world.sdf 1

<?xml	version="1.0"?>
<sdf	version="1.4">
		<model	name="ground3">
				<static>true</static>
				<link	name="link">
						<collision	name="collision">
								<geometry>
										<plane>
												<normal>0	0	1</normal>
												<size>100	100</size>
										</plane>
								</geometry>
								<surface>
										<friction>
												<ode>
														<mu>100</mu>
														<mu2>50</mu2>
												</ode>
										</friction>
								</surface>
						</collision>
						<visual	name="visual">

<pose>1.74365	-0.005	0	0	0	0</pose>
								<cast_shadows>false</cast_shadows>
								<geometry>
										<plane>
												<normal>0	0	1</normal>
												<size>3.500	0.500</size>
										</plane>
								</geometry>

						<material>
								<script>
										<uri>model://ground3/materials/scripts</uri>
										<uri>model://ground3/materials/textures</uri>
										<name>ground3/Image1</name>
								</script>
						</material>

						</visual>
<visual	name='visual1'>

<pose>3.996825	4.1225	0	0	0	0</pose>
								<cast_shadows>false</cast_shadows>
								<geometry>
										<plane>
												<normal>0	0	1</normal>
												<size>8.00635	7.755</size>
										</plane>
								</geometry>

						<material>
								<script>
										<uri>model://ground3/materials/scripts</uri>
										<uri>model://ground3/materials/textures</uri>
										<name>ground3/Image2</name>
								</script>
						</material>

</visual>
<visual	name='visual2'>

<pose>3.996825	-4.1275	0	0	0	0</pose>
								<cast_shadows>false</cast_shadows>
								<geometry>
										<plane>
												<normal>0	0	1</normal>
												<size>8.00635	7.745</size>
										</plane>
								</geometry>

						<material>
								<script>
										<uri>model://ground3/materials/scripts</uri>
										<uri>model://ground3/materials/textures</uri>
										<name>ground3/Image2</name>

model_world.sdf 2

								</script>
						</material>

</visual>
<visual	name='visual3'>

<pose>-4.003175	0	0	0	0	0</pose>
								<cast_shadows>false</cast_shadows>
								<geometry>
										<plane>
												<normal>0	0	1</normal>
												<size>7.99365	16</size>
										</plane>
								</geometry>

						<material>
								<script>
										<uri>model://ground3/materials/scripts</uri>
										<uri>model://ground3/materials/textures</uri>
										<name>ground3/Image2</name>
								</script>
						</material>

</visual>
<visual	name='visual4'>

<pose>5.740475	-0.005	0	0	0	0</pose>
								<cast_shadows>false</cast_shadows>
								<geometry>
										<plane>
												<normal>0	0	1</normal>
												<size>4.49365	0.5</size>
										</plane>
								</geometry>

						<material>
								<script>
										<uri>model://ground3/materials/scripts</uri>
										<uri>model://ground3/materials/textures</uri>
										<name>ground3/Image2</name>
								</script>
						</material>

</visual>
				</link>
		</model>
</sdf>

