
!

TREBALL FINAL DE GRAU

TÍTOL DEL TFG: Popularity Prediction on Instagram using Machine
Learning

TITULACIÓ: Grau en Enginyeria de Sistemes de Telecomunicació

AUTOR: Eric Massip Cano

DIRECTOR: Kai-Lung Hua

DATA: 21 de juny del 2017

�1

 

�2

Resum

Títol: Popularity Prediction on Instagram using Machine Learning

Autor: Eric Massip Cano

Director: Kai-Lung Hua

Data: 21 de juny del 2017

Durant l’últim any, la recerca sobre noves maneres d’aprofitar Deep Learning pel profit
de l’ésser humà ha crescut exponencialment. Al mateix temps, la nostra societat està
evolucionant en direcció a noves formes de comunicació i interacció social. Instagram
és una de les principals cares en aquest canvi en l’evolució humana.

Els sistemes de predicció i la Intel·ligència Artificial són temes que estan explotant ara
mateix. Hi ha empreses que estan invertint en reptes i experts per predir aquell
producte que l’usuari comprarà, o aquella música que li agradarà, o aquella pel·lícula
que voldrà veure. Hi ha una nova branca per seguir que és Social Media. Predir la
popularitat de les imatges, quina serà la més popular del dia, quin és el millor tall
perquè el teu Selfie sigui més popular...

Aquest projecte tracta de posar aquestes dues realitats juntes. L'objectiu és predir
quants likes rebrà un post abans de ser publicat a Instagram. Això ara només seria
possible gràcies a Machine Learning. Machine Learning és aquest concepte que
podem entrenar ordinadors per identificar patrons i dades, i aleshores utilitzar aquests
patrons per predir noves dades. Nosaltres donarem mostres de posts a la nostra
màquina perquè pugui trobar patrons i estimar i predir un resultat després d'haver
estat donat algun altre input, en base als patrons que la màquina va aprendre.

El sistema constarà de tres seccions:

En primer lloc, la imatge d'entrada es classificarà en una categoria en funció del tema
de la imatge utilitzant un model basat en Deep Learning. En aquest projecte tindrem
en compte sis categories: Animals, Food, Friends, Landscape, Quote and Selfie.

En segon lloc, la imatge d'entrada es compara amb un conjunt de 200 imatges de la
categoria seleccionada que ja tenen una puntuació entre 0 i 1 utilitzant un altre model
de nou basat en Deep Learning. Un algoritme farà la comparació i es traduirà en un
histograma. El punt màxim de l'histograma serà la puntuació computada de la imatge
d'entrada.

En tercer lloc, utilitzarem aquesta puntuació calculada a partir de la segona secció
com una variable en una regressió, per tal d'obtenir la predicció final de likes. Altres
variables es tenen en compte en aquesta regressió també.

Com es pot veure a la descripció del sistema, sense Machine Learning seria
impossible, fins i tot per a un ésser humà, d’identificar tots els patrons necessaris i
predir amb precisió noves dades. Generalment, els humans poden crear un o dos
bons models a la setmana; Machine Learning pot crear milers de models en una
setmana.

�3

Overview

 

Title: Popularity Prediction on Instagram using Machine Learning

Author: Eric Massip Cano

Director: Kai-Lung Hua

Date: June 21st 2017

In the last year, the research about new ways of using Machine Learning for the
human profit has grown exponentially. At the same time, our society is evolving into
new ways of communication and social interaction. Instagram is one of the faces of
this change in the human evolution.

Prediction systems and Artificial Intelligence are topics that are exploding right now.
Companies are investing in challenges and experts to predict that product that a user
will want, or that music that he will like, or that film that he will want to watch. There is a
new challenging branch to be followed and that is Social Media. Predict the popularity
of pictures, which one will be the most popular of the day, which is the best cut for a
selfie to be more popular…

This project tries to put these two realities together. The goal is to predict how many
likes a post is gonna get before being posted on Instagram. This would only be
possible right now thanks to Machine Learning. Machine Learning is this concept that
we can train computers to identify patterns and data, and then use those patterns to
predict off of new data. We will give samples of posts to our machine so it can find
patterns and estimate and predict a result after being given some other input, based on
the patterns that it learned.

The system will consist of three sections:

First, the input picture will be classified into one category depending on the theme of
the picture using a retrained model based on Deep Learning. In this project we are
going to take into account six categories: Animals, Food, Friends, Landscape, Quote
and Selfie.

Second, the input picture will be compared with a set of 200 pictures from the selected
category that already have a score between 0 and 1 using another retrained model
based on Deep Learning. An algorithm will make the comparison and will result in a
histogram. The maximum point of the histogram will be the computed score of the input
picture.

Third, we will use that computed score from the second section as a variable in a
regression, in order to get the final prediction of likes. Other variables are taken into
account in this regression as well.

As you can see in the description of the system, without Machine Learning it would be
impossible, even for a human being, to identify all the necessary patterns and predict
off new data accurately. Humans can typically create one or two good models a week;
machine learning can create thousands of models a week.

�4

 

�5

ACKNOWLEDGEMENTS

First of all, I would like to thank my professor in NTUST Kai-Lung Hua
for this opportunity and his guidance.
To my flatmates, Ougzhan and Tom,

for helping me understand statistics and probability using R.
To my lab mates, Daniel and Jonathan,

for being always there to discuss approaches or new branches of research.
To Diana,

for being the head of #ReplaceMeIfYouCan.
To Siraj Raval,

for his videos and for being my inspiration along this path.
And, as always, special thanks to my mum.

“Indeed we are the deep web. Two options for you, a red pill and a blue pill. If you take the
red pill, you'll continue writing functional code with a smattering of if-then statements. You'll

painstakingly write rule after rule so your machines can accomplish simple tasks and you
won't hear from us again. But if you take the blue pill, you'll learn the superpower of our
time, how to teach machines to learn for themselves. And we'll show you just how deep

this rabbit hole goes.”, Siraj Raval, 2017 

�6

 

�7

INDEX

INDEX 1...
CHAPTER 1. INTRODUCTION 2..
CHAPTER 2. MACHINE LEARNING 3..

2.1 Deep Learning 3..
2.1.1 Convolutional Neural Networks 4...

2.2 Support Vector Machine 5...
How does it work? 5...

2.2.1 Cross Validation 6..

CHAPTER 3. DEVELOPMENT 7...
3.1 Category Classification 7...

3.1.1 Training Data 7...
Using InstaBro to prepare the dataset 8...

3.1.2 Training the model 9...
3.1.3 Testing the model 10..

3.2 Input Picture Score Computation 12..
3.2.1 Why a normalized score? 12..

Using Maximum and Minimum value 12...
Computing the Normal Distribution 13..

3.2.2 Comparison making pairs with OpenCV 13...
3.3 Score into Likes Transformation 16...

3.3.1 Support Vector Regression 16...
Global User Data Regression 16..
Specific User Data Regression 18..

CHAPTER 4. RESULTS 20..
4.1 Category Classification 20...
4.2 Input Picture Score Computation 21..
4.3 Score into Likes Transformation 22...

Relative Error 29...

CONCLUSIONS 31..
REFERENCES 32..

�1

CHAPTER 1. INTRODUCTION

In the 21st century, social networks have increased in activity and users in our daily life
exponentially. Especially due to the fact that right now, in some places of our planet, it is
easier to have a smartphone than tap water at home.

The effect that these social networks have been able
to make on our society is enormous. Changing not
only lifestyles, but also ways to do business,
marketing, journalism, even politics. One of the most
significant life-changing issues due to the appearance
of these networks is popularity, often hidden in the so-
called word Likes. Instagram is one of the biggest
reasons of this step in our society’s evolution.

The main concern for these networks’ users, apart
from showing their lives to the world, is getting the
biggest amount of likes and followers. There are even
companies and business individuals the profits of
whom depend on the amount of Likes that their posts
and publications get.

Our goal is to be able to predict or estimate the quantity of likes that a picture is going to
get on Instagram before it is actually posted. In order to solve this problem, we are going
to develop a system that will use Machine Learning and Computer Vision to help us
achieve this goal.

This document is structured in three parts. In the first part, we will talk about the theoretical
background needed to understand the following parts, mainly focused on Machine
Learning. The second part will be the development of the system, split into three major
sections. And finally the third part will include the results of the testing of the experiment,
followed by the conclusions.

The system will use the latest software technology to achieve our goal. We will use Python
scripts to write our code. Tensorflow will be the library in charge of training and predicting
using Deep Learning. OpenCV will be the library in charge of the computer vision part of
the system, comparing, resizing images, etc. Bokeh will be the library in charge of plotting
histograms and graphs. And finally Sci-Kit Learn, the library in charge of running the
regressions. 

�2

CHAPTER 2. MACHINE LEARNING

Before talking about Deep Learning, it is important to present first the term Machine
Learning. Machine Learning is a vast field that covers many specialties and is expanding
extremely rapidly.

A good definition for this field was made up by Arthur Samuel way back in 1959: ‘Machine
Learning is the field of study that gives computers the ability to learn without being
explicitly programmed.’ With Machine Learning, we can train a computer so that it can
learn from some data and predict an output from the system after some input is send into
the system, or predict future outputs after analyzing the patterns of the system.

2.1 Deep Learning

Deep Learning is a class of machine learning algorithms that use a cascade of many
layers of nonlinear processing units for feature extraction and transformation. Each
successive layer uses the output from the previous layer as input. The algorithms may be
supervised or unsupervised and applications include pattern analysis (unsupervised) and
classification (supervised).

• Supervised machine learning: The program is “trained” on a pre-defined set of
“training examples”, which then facilitate its ability to reach an accurate conclusion when
given new data . 1

• Unsupervised machine learning: The program is given a bunch of data and must find
patterns and relationships therein" . 1

 Nick McCrea, ’An Introduction to Machine Learning Theory and Its Applications: A Visual Tutorial with 1

Examples’, 2014
�3

Fig. 1, Machine Learning tries to emulate the human
brain with a computer

2.1.1 Convolutional Neural Networks

In machine learning, a Convolutional Neural Network (CNN) is a type of neural network in
which the connectivity pattern between its neurons is inspired by the organization of the
animal visual cortex. Individual cortical neurons respond to stimuli in a restricted region of
space known as the receptive field. The response of an individual neuron to stimuli within
its receptive field can be approximated mathematically by a convolution operation . 2

CNN’s have a wide range of applications, including image and video recognition,
recommender systems and natural language processing. We will use the already trained
Inception v3 network for the first phase of our system as we will see later.

Every blank circle we see in figure 2 represents one of the neurons we were talking about
earlier. Thanks to these neurons, we have this sequence of layers that conform our neural
network. Each of these layers will receive data from the neurons from their previous layer
and will compute the output of neurons that will be sent to the next layer.

There are three main types of layers to build convolutional networks: Convolutional Layer,
Pooling Layer and Fully-Connected Layer. We will stack these layers to form a full
convolutional network architecture. The position of every layer in the stack, as well as the
quantity of layers of each type, depends on the purpose of the model you want to train.

 "Convolutional Neural Networks (LeNet) – DeepLearning 0.1 documentation". DeepLearning 0.1. LISA Lab. 2

Retrieved 31 August 2013.
�4

Fig. 2, Example of a regular 3-layer neural network.

2.2 Support Vector Machine

“Support Vector Machine” (SVM) is a supervised machine learning algorithm which can be
used for both classification or regression challenges. However, it is mostly
used in classification problems. In this algorithm, we plot each data item as a point in n-
dimensional space (where n is number of features you have) with the value of each feature
being the value of a particular coordinate. Then, we perform classification by finding the
hyper-plane that differentiate the two classes very well, as we can see in Fig. 3. 3

How does it work?

As described before, SVM consists of segregating into classification classes using hyper-
planes. The question is which is the hyper-plane that separates better the classification
classes? Let’s see two examples:

In Fig. 4, we can see two hyper-planes that separate
two classes in two different ways. We could think that
B is better because it has higher margin, but SVM
doesn’t consider the margin, it just considers which
one classifies the classes better, so it would choose A
over B.

In Fig. 5, we see a very difficult problem to solve with a
linear hyper-plane. We would need another type of
kernel to do this. We could use ‘rbf’ this time, as we will
do with the regressions in section 3. 

 Sunil Ray, Understanding Support Vector Machine algorithm from examples, analyticsvidhya.com, 20153

�5

Fig. 3, Example of 2 classes divided
by a hyper-plane

Fig. 4, Example of Linear Regression

Fig. 5, Example of ‘rbf' kernel

http://analyticsvydhia.com

2.2.1 Cross Validation

Cross validation is a model evaluation method that is better than residuals. The problem
with residual evaluations is that they do not give an indication of how well the learner will
do when it is asked to make new predictions for data it has not already seen. One way to
overcome this problem is to not use the entire data set when training a learner. Some of
the data is removed before training begins. Then when training is done, the data that was
removed can be used to test the performance of the learned model on ‘new’ data. This is
the basic idea for a whole class of model evaluation methods called Cross Validation.

K-fold cross validation is one way to improve over the holdout method. The data set is
divided into k subsets, and the holdout method is repeated k times. Each time, one of the k
subsets is used as the test set and the other k-1 subsets are put together to form a training
set. Then the average error across all k trials is computed. The advantage of this method
is that it matters less how the data gets divided. Every data point gets to be in a test set
exactly once, and gets to be in a training set k-1 times. The variance of the resulting
estimate is reduced as k is increased. The disadvantage of this method is that the training
algorithm has to be rerun from scratch k times, which means it takes k times as much
computation to make an evaluation. A variant of this method is to randomly divide the data
into a test and training set k different times. The advantage of doing this is that you can
independently choose how large each test set is and how many trials you average over. 4

Fig. X is an example of a K-fold cross
validation where k = 7. The green boxes
would be the training data for every k. The
grey boxes would be the testing data for
every k. In every split or k, the model is
trained with the ‘new’ training data (the
green boxes) and the new testing data (the
grey box). After that, we compute the
accuracy score of the model and save that
score. As soon as we have the 7 scores, we
sum all of them and divide between 7, that
gives the cross validation accuracy score.

In the third section of our system, we will have to do a regression with not many points of
data. Cross validation helps us know the accuracy of our model much more accurately
than just computing the score. As I said, it is very useful when you do not have many
points of data because you can train your model with all the training data you have, you do
not have to split into training and testing data. 

 Schneider J., “Cross Validation”, 19974

�6

Fig. 6, Example of 7-fold cross validation

CHAPTER 3. DEVELOPMENT

The development of the system to predict the amount of likes that a picture is going to get
before being posted on Instagram will be split in three sections:

1. Category Classification
2. Input Picture Score Computation
3. Score into Likes Transformation

3.1 Category Classification

3.1.1 Training Data

After analyzing the behavior of a great variety of users, I realized that there was a
correlation between the style of every post and the resulted likes that the post would get.
So we decided to classify the pictures into different categories. Furthermore, this would
help us out in the second section (Input Picture Score Computation) as we will be able to
compare pictures of the same category and, as a result same style, to compute a score.

Our decision was to split into 6 categories:

• Animals
• Food
• Friends
• Landscape
• Quote
• Selfie

Obviously, this was our choice but we could include more and more categories in order to
increase the accuracy of the system, being careful not to overfit it.

This is the first step to develop the system and, as we are dealing with Big Data Science,
we need to have a dataset to train our model. Apart from the image file, more data about
the post will be needed, amount of Likes, Posts, Followers and Following, of the owner of
the picture. 

�7

Using InstaBro to prepare the dataset

We agreed to have at least 1.000 pictures of each category, that would give us a 6.000
photos dataset. I used a tool called InstaBro to complete this task. 5

With this tool, I was able to filter posts using a hashtag, for example, I would ask InstaBro
to show me the latest 10.000 posts with the #animals. After that, I would choose the ones
that I want and, with the most important feature of this tool, I can export to a CSV file all
the data of every post as well as download all the selected posts into the desired folder.

 InstaBro, all rights reserved to Boris Karulin5

�8

Food602

Friend498Animals28

Landscape979

Quote295 Selfie402

3.1.2 Training the model

At this point, we have our dataset with 6.000 photos ready. It is time to train the model, but
training a model from scratch would mean using a lot of computing effort, optimizing hyper
parameters, etc. Instead, we are going to do transfer learning here. Transfer Learning
means we are starting with a model that has already been trained on another problem and
then, we will be retraining it on our problem.

We are going to use the Inception v3 network. Inception v3 is trained for the ImageNet
Large Visual Recognition Challenge using the data from 2012, and it can differentiate
images between 1.000 different classes, like basketball, dog or car. We will use this same
network, but retrain it to tell apart our six categories.

As we can see in Fig. 7, the architecture of the network is very complex, therefore, these
layers are not only pre-trained, but also very valuable at finding and summarizing
information that will help classify most images.

We will use TensorFlow to retrain the Inception v3 network and classify pictures depending
on our six categories. What we are really doing is retraining only the last layer of the stack,
called ‘fully-connected layer’ or ‘Bottleneck’. While the retraining script is running, a series
of step outputs appear:

• Training accuracy shows the percentage of the images used in the current training
batch that were labeled with the correct class.

• Validation accuracy is the precision (percentage of correctly-labelled images) on a
randomly-selected group of images from a different set.

• Cross entropy is a loss function that gives a glimpse into how well the learning process
is progressing (lower numbers are better here).

As you might be wondering, we have not separated our dataset into training data and
testing data. That is because, when retraining, TensorFlow gathers some random data
from our dataset and trains the model over that, getting a training accuracy result. Then, it
tests the model on the rest of the data it did not gather for the training, getting a validation
accuracy result. This is done for every step so it is a trustful accuracy result.

If the train accuracy is high but the validation accuracy remains low, that means the
network is overfitting and memorizing particular features in the training images that aren't
helpful more generally. 

�9

Fig. 7, Simplified picture of the layers’ stack of the inception network

As we can see at the bottom of Fig. 8 and zoomed in in Fig. 9, the final test accuracy
combining the 4000 steps is 94.3%, which is a very good result.

3.1.3 Testing the model

Now that our model is ready, let’s test it with some random data from the web. None of the
pictures in the next table are from the training data and they were selected randomly.

�10

Fig. 8, step 3960 to 3999 retraining the Inception v3 network
for our category classification

Fig. 9, Final test accuracy of our retrained model

URL Picture Result

https://cdn.playbuzz.com/
cdn/
3231fb60-6394-4b01-999b-1
eca59833ce5/043f003e-
f31a-4e55-9637-942e61fc6b
7e.jpg

https://bocao.com.do/
uploads/
img21-03-2015-1931595193
.jpg

�

�

https://cdn.playbuzz.com/cdn/3231fb60-6394-4b01-999b-1eca59833ce5/043f003e-f31a-4e55-9637-942e61fc6b7e.jpg
https://bocao.com.do/uploads/img21-03-2015-1931595193.jpg

As we can see in the third column of Fig. 10, the friends category and the selfie category
sometimes have some difficulties because they are similar, but almost all the time the
model gets it right. Something similar happens when we are dealing with a picture of a
person and an animal, it is difficult or not so clear even for us humans to classify those
kind of pictures.  

�11

URL Picture Result

http://cdn.playbuzz.com/cdn/
f5d11eff-
a65e-43c2-92f6-70f6277bc7
53/78ee1799-5bac-45fc-8ba
0-8c14a74c08d9.jpg

https://
lh3.googleusercontent.com/
oPgTLhxBCyxNuaeLi7evXS
Aeh-
_X46oerOoFBSC4Gs1qI-
NDiwAcR1HDcdN-1WGm
kIrf_ShR_AVnqZuHbHUrY=s
1024

https://s-media-cache-
ak0.pinimg.com/736x/89/
f4/5b/
89f45bb8db60d9727f915fcb
6bb70658.jpg

https://s-media-cache-
ak0.pinimg.com/736x/6e/
c9/48/6ec9488ecd46d37fda
7a7e898b7f6393.jpg

�

�

�

�

Fig. 10, Table testing the results for each category with the retrained model

http://cdn.playbuzz.com/cdn/f5d11eff-a65e-43c2-92f6-70f6277bc753/78ee1799-5bac-45fc-8ba0-8c14a74c08d9.jpg
https://lh3.googleusercontent.com/oPgTLhxBCyxNuaeLi7evXSAeh-_X46oerOoFBSC4Gs1qI-_NDiwAcR1HDcdN-1WGm_kIrf_ShR_AVnqZuHbHUrY=s1024
https://s-media-cache-ak0.pinimg.com/736x/89/f4/5b/89f45bb8db60d9727f915fcb6bb70658.jpg
https://s-media-cache-ak0.pinimg.com/736x/6e/c9/48/6ec9488ecd46d37fda7a7e898b7f6393.jpg

3.2 Input Picture Score Computation

The idea of this second part of the system is, after we have classified the input picture into
one of our categories, we are going to compute a normalized score between 0 and 1 for
this picture.

3.2.1 Why a normalized score?

Well, one of the biggest problems that we had to face is that the amount of Likes that a
picture will get is extremely affected by the user variables factor, such as Posts, Following
and especially Followers. This means that we had to think of a way to extract that
popularity factor out of the picture, so we had to get a normalized score totally non-
dependent on the user variables. For example:

We have a user A with 100 followers who posts a picture which gets 10 likes.

Another user B with 100.000 followers posts a picture which gets 10.000 likes.

Clearly, the user variables factor is affecting the resulted likes that both these users get. It
does not mean that the post of user B is much better than the one of user A. In fact, the
estimated score for both pictures should be the same, as we can see if we divide the
resulted likes between their followers:

 User A " User B "

The relation is the same, although we cannot use this formula for all of our pictures
because every comparison of users have different magnitudes. So we had to think about
other ways to normalize the scores of each picture of our training data.

Using Maximum and Minimum value

The first way I used was getting the info of the most recent 50 photos posted by that user,
exporting the CSV file from InstaBro. Following, I computed the Minimum and Maximum
value of likes inside this 50 photo sack and using the next formula to determine the
normalized score between 0 to 1 for the selected picture:

"

10
100

= 0,1
10000
100000

= 0,1

Score =
Likes − Minimum

Ma ximum − Minimum

�12

Computing the Normal Distribution

The second way I used was also getting the info of the most recent 50 photos posted by
that user, exporting the CSV file from InstaBro. After that, I calculated the Average and
Standard Deviation values for this 50 photo sack. Finally, I computed the Normal
Distribution using the accumulated distribution form to get a normalized score between 0
to 1 for the selected picture.

3.2.2 Comparison making pairs with OpenCV

Now that we had two ways of normalizing these scores, I used both of them on
approximately 200 pictures from each of our categories as training data. So afterwards, we
will be able to test two different approaches to see which one works better.

Once the input picture is classified into one category in the first section of the system, the
input picture is going to be compared with each and every photo that we gathered from
that category and computed a normalized score.

In order to this, we paired the 200 pictures of each category between every one of them. If
the score of the left picture was higher than the right picture, we would classify it in the
class 1 folder; if the score of the left picture was lower than the left picture, we would
classify it in the class 0 folder.

After that, we had two folders for every category, one for the MaxMin values and another
one for the NormDist values. Inside each one of those, there were two more folders which
would be the classes, 1 and 0. Both folders contained the total quantity of pairs that would
sum up to 200 photos x 199 photos = 39600 pairs (199 pictures to compare because
obviously, we don’t compare a picture with itself). We used the same technique as we did
in the first section, we retrained the last layer of the Inception v3 network with this training
data. We finally had 12 models, 2 per category.

Animals Food Friends Landscape Quote Selfie

MaxMin
Accuracy

76,3 % 75,7 % 75,8 % 73,1 % 68 % 74,2 %

NormDist
Accuracy

76,6 % 77,4 % 75,8 % 72,3 % 67,6 % 75,9 %

�13

Fig. 11, Accuracy test results after retraining the 12 models, two per
category, one for MaxMin score values and one for NormDist values

Now considering that we have an input picture to predict, the idea consists of making pairs
with every picture from the comparison set of the category. For every pair, our already
retrained model will classify it into class 1 or class 0. Class 1 means input picture is better,
class 0 means compared picture is better. So if we get class 1, we will add one point to
every 2-decimal value over the score of the compared picture. If it classifies class 0, we
will add one point to every 2-decimal value below the score of the compared picture.

After making pairs and classifying the input picture with the 200 pictures of the comparison
set of the category, this will build a histogram and the maximum point of that histogram will
be considered the score for the input picture.

Let’s see this with an example:

�14

Input picture Food1
Score = 0,5

Food2
Score = 0,75

 1
Class 1, the score of Food1 is 0,5 so we
will add one point to every 2-decimal
value, meaning adding one point to 0,5
over 0,5, 0,51, 0,52, 0,53, etc.

 0
Class 0, the score of Food2 is 0,75 so
we will add one point to every 2-decimal
value below 0,75, meaning adding one
point to 0,74, 0,73, 0,72, 0,71, etc.

After going over the 200 comparison set pictures of the selected category, we will have a
histogram with a maximum point that we will use as the computed score for the input
picture.

�15

0

2,5

5

7,5

10

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Computed Score

Fig. 12, Histogram after getting the computed score

Score

Points

3.3 Score into Likes Transformation

This is the last section of our system, we have a normalized score for the input picture and
we just have to convert it into an amount of Likes, depending on the variables of the user
who is trying to post this picture.

3.3.1 Support Vector Regression

We are going to do a regression using the SVR function in the Scikit-Learn library for
Python. This way we can give some data to the model and it will predict a resulted quantity
of Likes.

Again, we have two approaches for doing so, we will go over both of them.

Global User Data Regression

If we add all the pictures’ data that have a normalized score from every category into a
CSV file, we will end up having more than 1.200 rows with the name of the picture,
quantity of Likes, Posts, Followers and Following.

We can use all that data to train a model using the SVR function. If the model is accurate,
it will be able to predict the amount of Likes just introducing the normalized score of the
input picture that we got from the previous section, the quantity of Posts, Followers and
Following. I rounded the Likes column so that for 33 Likes, it would say 30; and for 158, it
would say 160. That way it would be easier for the model to give good results because
there would be less labels. 

�16

Fig. 13, Schema about our support vector machine

I tried a few kernels for training the model,
but clearly the best one was ‘rbf’. I
optimized the model playing with the hyper
parameters but the results were not very
good. The best results I got were using the
parameter C = 8.000 and gamma = " .

As we can see in Fig. 14, the results are
not good, 0.38 of " is very low. We can
keep this model and test it as well but it is
really likely not going to get good results.

I realized though that the biggest amount
of pictures of the 1.200 in the CSV file had
less than 260 Likes. Consequently, I
wanted to try to train the model removing
those high values of Likes to see if that
improved the accuracy of the model, even
though we were taking some of the training
data out. 

1−8

R2

�17

Fig. 14, Cross Validation Score for our model running
with 5 splits

0

250

500

750

1000

Food75 Food193 Selfie166 Quote63 Friend80 Friend68 Quote92 Friend23 Food85 Animals119

Range Of Likes

Fig. 15, Graph showing all the pictures of the training data and their correspondent range of likes

The results using less data were still not acceptable, they barely improve 1 and 2 points ,
respectively. The positive feedback is that it improved a little bit, so we were right when we
said that those high points were disturbing our regression.

These bad results are clearly due to the fact that we have 4 independent variables and 1
fixed variable, and the linearity between those 4 variables and the fixed variable is not
random, but close. That means that a post can have 50 likes with its user 100 posts, 100
followers and 100 following; and another post can have 50 likes with its user 5.000 posts,
5.000 followers and 5.000 following. These examples happen and that is the reason why
our accuracy results are so bad. But anyways, we must look for another solution to
guarantee the success of the system.

Specific User Data Regression

The idea of this second path is basically treating the data the same way as with the Global
Data Regression, but instead of using random data from many different users, using the
data from the specific user that wants to post the input picture that we received. For
experiments, I used InstaBro again, which has a good filter for username as well and we
can export it into a CSV file.

Having the data from every post of that specific user in a CSV file lets us use the same
approach as we did in the second section. We have to get a normalized score for every
post that we want to use in order to train the model. As we already know, we have two
ways of doing that, using the Maximum and Minimum value or the Normal Distribution. We
did both because that way we can test both of them and see which one is better.

One of the important issues to take care of using Specific User Data Regression though, is
the quantity of posts that are going to be used for the regression. Some users have less
than 50 posts, others have 1.000. At least we know for a fact that 50 posts is enough to do
an accurate regression, so that would be the minimum limit to compute a Specific User
Data regression. 

�18

These results are much more optimistic. As I said before, a minimum amount of 50 posts
would be necessary to achieve accurate results. Also, with this table we can say that more
posts means better results too.

Specific User Data Regression looks more accurate than Global Data Regression, but it
would be more difficult to implement because with the global regression we just have to
train our model with our training data and we can use it as many times as we want. On the
other hand, with the specific user regression we have to get the data from every post of
that user in real time first, and also compute the Minimum and Maximum values and/or the
Normal Distribution.

The easier way to implement that approach would be using the Instagram API User
Endpoints via HTTP GET calls. In the same Python script we will use to do the 6

regression, we could ask for the information of a user to the Instagram API. The Instagram
API would give us all the data we need about the posts of that user. After that, depending
on the quantity of posts that user has, we could train our model with more or less points
but remember, never less than 50.

Posts Followers Following
Quantity of posts

used in the
regression

538 779 688 151 0,982

299 159 151 101 0,865

189 217 554 76 0,85

54 274 146 51 0,828

�R2

 https://www.instagram.com/developer/endpoints/users/6

�19

Fig. 16, Table showing the test results for some users using Specific User Data Regression

https://www.instagram.com/developer/endpoints/users/

CHAPTER 4. RESULTS

With the objective of testing the accuracy of the system with different users and posts, I
used Instabro once again to gather 100 random posts of every category. I collected the
photos as well as the information of the posts and the users. In total, I had 600 pictures as
testing data, 100 per category.

4.1 Category Classification

The accuracy of the first section of the system was nearly excellent so, as you might think,
we got quite good results. They are described better in the confusion matrix of Fig. 17.

The lowest accuracy resulted from the 6 categories was 85 %, from the Friends category
followed by 90 % from the Selfie category, which is still a very good result. Animals, Food,
Friends and Quote are over 98 %, even difficult to improve.

After all, the first section of the system behaves properly so we can move forward to the
second section. 

Animals Food Friends Landscape Quote Selfie

Animals 100 0 0 0 0 0

Food 0 99 0 0 0 1

Friends 2 0 85 0 0 13

Landscape 1 0 0 99 0 0

Quote 0 0 0 0 98 2

Selfie 0 0 7 2 1 90

�20

Fig. 17, Confusion matrix resulted after the classification of 600 pictures, 100 per category

4.2 Input Picture Score Computation

In the following table we are going to see the histograms of three testing pictures from the
Selfie category after going through the second section of the system, running with the
NormDist score values. Remember that the column Computed Score represents the
maximum point of the histogram.

The X-axis goes from 0 to 1 in steps of 2-decimal frames, 0, 0,01, 0,02, 0,03, etc.
The Y-axis represents a normalized value from the points that every frame of the X-axis
got.

Testing picture Computed Score Histogram

SelfieTest7 0

SelfieTest27 1

SelfieTest12 0,63

�21

Fig. 18, Table showing three examples of histograms and computed scores from the Selfie category

4.3 Score into Likes Transformation

At this point of the experiment, we have each one of the 600 pictures with a computed
score from 0 to 1. Now it is time to undo that conversion between score and likes using the
regression. As you already know, we have two types of regressions, two types of
computing scores and 6 categories, that means we will have to analyze 24 different graph
results.

Before discussing the resulted graphs, it is important to say that, in order to run this
experiment, we used a computer with an NVIDIA GTX1080Ti GPU. It would take
approximately 3 minutes to run every picture of the testing data.

The graphs are formed by 8 bars. The X-axis represents the range in which the predicted
value of likes fits in comparison to the original value. The Y-axis represents the sum of
predictions fitted in every range. The possible ranges are:

• 10 Range: between -5 and 5. Ex.: original value = 100, predicted value = 105 or 95.
• 20 Range: between -10 and +10. Ex.: original value = 100, predicted value = 110 or 90.
• 40 Range: between -20 and +20. Ex.: original value = 100, predicted value = 120 or 80.
• 60 Range: between -30 and +30. Ex.: original value = 100, predicted value = 130 or 70.
• 80 Range: between -40 and +40. Ex.: original value = 100, predicted value = 140 or 60.
• 100 Range: between -50 and +50. Ex.: original value = 100, predicted value = 150 or

50.
• 1000 Range: between -500 and +500. Ex.: original value = 1000, predicted value = 500

or 1500.
• Over 1000 Range: below -500 or higher than +500. Ex.: original value = 1000, predicted

value = 499 or 1501.

On one hand, the best graphs will be the ones with higher bars in the lowest ranges, so
higher bars on the left side is better. Because the lowest ranges represent more accuracy
when predicting, the predicted value is closer to the original value. On the other hand, the
worse ones will be the ones with higher bars in the highest ranges, so higher bars on the
right side is worse.

In the following pages we will be able to see the graphs for every method out of the 24
tested in the experiment. 

�22

Category Method Graph

Animals

MaxMin Global Regression

Norm Dist Global Regression

MaxMin Specific User Regression

NormDist Specific User Regression

Category

�

�

�

�23

Food

MaxMin Global Regression

Norm Dist Global Regression

MaxMin Specific User Regression

NormDist Specific User Regression

Method GraphCategory

�

�

�

�24

Friends

MaxMin Global Regression

Norm Dist Global Regression

MaxMin Specific User Regression

NormDist Specific User Regression

Method GraphCategory

�

�

�

�25

Landscape

MaxMin Global Regression

Norm Dist Global Regression

MaxMin Specific User Regression

NormDist Specific User Regression

Method GraphCategory

�

�

�

�26

Quote

MaxMin Global Regression

Norm Dist Global Regression

MaxMin Specific User Regression

NormDist Specific User Regression

Method GraphCategory

�

�

�

�27

Selfie

MaxMin Global Regression

Norm Dist Global Regression

MaxMin Specific User Regression

NormDist Specific User Regression

Method GraphCategory

�

�

�

�28

Relative Error

We would like to have a better approach at saying the accuracy of the system so we
thought about computing the relative error for every tested post. Some posts had an
original value of 10 likes while the system predicted 50; others had 1000 and the system
predicted 1050. Those examples have the same absolute error (50) but the first one has a
relative error prediction of 400 %, whereas the second one has a relative error of just 5 %.

The following table show the relative error of every category, hence the accuracy of every
category, excluding the posts with a relative error higher than 100%. The bar charts show
the quantity of posts in every range between 0 and 100% of relative error in 10% frames.
Exactly as before, the higher bars on the left side of the graph, the less relative error so
the highest accuracy we will have.

Category

Predictions
with relative
error over

100%

Relative
Error Accuracy Graph

Animals 11 38,52 % 61,48 %

Food 6 38,92 % 61,08 %

Category

�29

Friends 16 38,1 % 61,9 %

Landscape 3 38,86 % 61,14 %

Quote 13 43,19 % 56,81 %

Selfie 8 37,89 % 62,11 %

Predictions
with relative
error over

100%

Relative
Error Accuracy GraphCategory

�30

Fig. 19, Relative error results of every category described in percentage and graphs

CONCLUSIONS

• The small uncertainty between Friends and Selfie category. Summing up the
misclassifications from both classes give us 20 misclassifications out of 200. It’s a 90 %
accuracy so, even though we know that there is some uncertainty, it is not a big step to
overcome.

• As you might have noticed, MaxMin Global Regression and NormDist Global
Regression are sharing the same graph. In the global regressions, there are four
independent variables (score, posts, followers, following) and one fixed variable (likes).
If we have a look at the independent variables magnitudes, we can see that score will
always be between 0 and 1; posts can go from 50 to 4000 or 5000; followers can be any
result; and following, same as followers. The score variable is so small compared to the
other three variables that it doesn’t really affect to the predicted value, maybe just one or
two decimals, so the histogram will always be the same. One way to fix this would be
normalizing the values of posts, followers and following, so they have the same
importance as the rest of variables.

• Second thing we can point out is that the specific user regressions give better results in
all the categories. As we had in mind before testing, the accuracy of the specific user
regression is higher than the one of the global regression.

• Comparing the MaxMin value graphs and the NormDist score value graphs in every
graph, we can affirm that NormDist score values give better results than MaxMin values.

• The Quote category is the one with the worst accuracy and that makes sense, because
the photos classified as quotes are very similar to each other hence difficult to predict
accurately.

• After analyzing these results, we can clearly say that the accuracy of our system is
approximately 61 %.

61 % is an even better result than expected because, as soon as the project started, we
knew that there was another variable that was not in the data. People are different and
they behave differently on Instagram, but moreover, their followers behave totally different
too. So it is still a big challenge to try to predict that behavior apart from all the other
variables that are taken into account. 

�31

REFERENCES

1. "Convolutional Neural Networks (LeNet) – DeepLearning 0.1 documentation".
DeepLearning 0.1. LISA Lab. Retrieved 31 August 2013.

2. C.-W. Hsu, C.-C. Chang, C.-J. Lin. LIBSVM: a library for support vector machines, “A
Practical Guide to Support Vector Classification”, Department of Computer Science
National Taiwan University, last updated May 19, 2016

3. McCrea N., “An Introduction to Machine Learning Theory and Its Applications: A Visual
Tutorial with Examples”, TOPTAL, 2014. Retrieved from https://www.toptal.com/
machine-learning/machine-learning-theory-an-introductory-primer

4. Ray S., “Understanding Support Vector Machine algorithm from examples”, Analytics
Vidhya, 2015. Retrieved from https://www.analyticsvidhya.com/blog/2015/10/
understaing-support-vector-machine-example-code/

5. Schneider J., “Cross Validation”, 1997. Retrieved from https://www.cs.cmu.edu/
~schneide/tut5/node42.html

6. Szegedy C., Liu W., Jia Y., Sermanet P., Reed S., Anguelov D., Erhan D., Vanhoucke
V., Rabinovich A., “Going Deeper with Convolutions”, IEEE Explore, 2015

7. Tensorflow Documentation, https://www.tensorflow.org/api_docs/python/tf/

8. Tensorflow for Poets,
h t tps : / / code labs .deve lopers .goog le .com/code labs / tensor f low- fo r -poets /?
utm_campaign=chrome_series_machinelearning_063016&utm_source=gdev&utm_mediu
m=yt-desc#0

�32

https://www.toptal.com/machine-learning/machine-learning-theory-an-introductory-primer
https://www.toptal.com/machine-learning/machine-learning-theory-an-introductory-primer
https://www.toptal.com/machine-learning/machine-learning-theory-an-introductory-primer
https://www.analyticsvidhya.com/blog/2015/10/understaing-support-vector-machine-example-code/
https://www.analyticsvidhya.com/blog/2015/10/understaing-support-vector-machine-example-code/
https://www.analyticsvidhya.com/blog/2015/10/understaing-support-vector-machine-example-code/
https://www.cs.cmu.edu/~schneide/tut5/node42.html
https://www.cs.cmu.edu/~schneide/tut5/node42.html
https://www.tensorflow.org/api_docs/python/tf/
https://codelabs.developers.google.com/codelabs/tensorflow-for-poets/?utm_campaign=chrome_series_machinelearning_063016&utm_source=gdev&utm_medium=yt-desc#0
https://codelabs.developers.google.com/codelabs/tensorflow-for-poets/?utm_campaign=chrome_series_machinelearning_063016&utm_source=gdev&utm_medium=yt-desc#0

