

Master Thesis

DOUBLE MASTER'S DEGREE IN INDUSTRIAL

ENGINEERING AND MANAGEMENT ENGINEERING

An optimized routing algorithm for data

collection in IoT network

REPORT

 Author: Marta Pàmies Morera

 Director: Prof. Kim Nguyen (ETS, Montréal)

 Summons: June 2017

Escola Tècnica Superior
d’Enginyeria Industrial de Barcelona

and

École de Technologie Supérieure
Montréal, Canada

An optimized routing algorithm for data collection in IoT network Page 1

Abstract

This thesis has as a principal objective the resolution of a problem present in the Internet of

Things (IoT) network. This problem is the routing optimization of the data between the

sensors and the gateway, which is not optimized these days in the current applications of

the IoT. The project is attacked mainly from a theoretical point of view and so several

hypotheses are done to carry it out, but it leads to a generalized solution valid for different

IoT applications.

The network is pictured as a graph in which the sensors and the gateway are the nodes and

the connections between them are the links. More specifically, the thesis uses an algorithm

widely used in the transportation network, the Clarke & Wright’s Savings Algorithm, and

adapts it to the data network. This algorithm is based in the savings of putting two or more

nodes in the same route comparing it to the case where all sensors send directly their data

gathered to the gateway. The algorithm starts with the pair of nodes that imply the highest

saving if both were at the same route, and with their constraints the code determines if this

merge is feasible or not. The same process is done for all the pairs of nodes (picking them

from maximum savings value to the minimum) until all nodes are connected to another one.

The solution of the algorithm is compared with three other solutions: two base lines and the

exact solution extracted from the software CPLEX. The first base line depicts the solution in

which every node sends directly to the gateway (no algorithm applied), and the second base

line is similar to the actual algorithm proposed but with limiting to 2 nodes maximum

connected before reaching the gateway.

After obtaining a total number of 500 solutions (from 2 to 100 nodes), the algorithm was 475

times better than the BL with an average percentage of improvement of 36,54% out of the

475, and 329 times better than the BL2 with the same percentage this time of 0,91% out of

the 329. When comparing the algorithm with the CPLEX solution, a number of 52 cases

were tested and this reduced number is due to its elevated execution time reaching the

100h of resolution for certain cases with less than 30 nodes. Out of these 52, only 13 of

them the CPLEX solution was better than the algorithm and out of the 13 the average

percentage of improvement is of 5,21%.

Page 2 Report

An optimized routing algorithm for data collection in IoT network Page 3

Table of contents

ABSTRACT ___ 1

TABLE OF CONTENTS ___ 3

1. VOCABULARY __ 5

2. INTRODUCTION ___ 7

2.1. Context and motivation .. 7

2.2. Problem statement ... 8

2.3. Research questions ... 10

2.4. Objectives ... 11

2.5. Hypotheses .. 12

2.6. Plan .. 12

3. CHAPTER 1: INTRODUCTION TO THE IOT ____________________ 14

3.1. History .. 14

3.2. The IoT today ... 14

3.2.1. IoT Architecture .. 15

3.2.1.1. Sensor Layer .. 16

3.2.1.2. Gateway Layer ... 17

3.2.1.3. Management Service Layer ... 17

3.2.1.4. Application Layer .. 18

3.3. Future prospects .. 19

4. CHAPTER 2: LITERATURE REVIEW _________________________ 20

4.1. DRINA: A routing approach for In-network aggregation in WSN 20

4.2. Clarke & Wright’s Savings Algorithm ... 21

5. CHAPTER 3: METHODOLOGY ______________________________ 23

5.1. Adaptation of the savings concept ... 23

5.2. The algorithm in Python ... 24

5.2.1. General explanation .. 24

5.2.1.1. Algorithm_new.py ... 25

5.2.1.2. Algorithm_new_2.py ... 28

5.2.1.3. Ejec.py ... 28

Page 4 Report

5.2.2. Block Diagram ...31

5.3. The Linear Programming in CPLEX .. 37

5.4. Comparing the algorithm with the one in literature, the DRINA 37

6. CHAPTER 4: RESULTS AND VALIDATION ____________________ 40

6.1. Comparing the algorithm with the base lines .. 40

6.2. Comparing the algorithm with the CPLEX ... 45

7. ENVIRONMENTAL IMPACT ________________________________ 49

8. PLANNING AND COSTS ___________________________________ 50

CONCLUSIONS __ 51

OF GRATITUDE FOR… __ 54

BIBLIOGRAPHY __ 55

ANNEX 1: PYTHON FILES ______________________________________ 57

ANNEX 2: CPLEX PROGRAM ___________________________________ 72

ANNEX 3: COMPARING RESULTS: ALGORITHM VS CPLEX _________ 73

ANNEX 4: COMPLEXITY ANALYSIS _____________________________ 78

An optimized routing algorithm for data collection in IoT network Page 5

1. Vocabulary

IoT: Internet of Things

Sensor: electronic component which detects events in his environment and sends the

information to other electronics.

Gateway: is the bridge between the sensors and the Cloud, where all data collected is

stored and manipulated

Graph: mathematical structure formed by nodes and links which can represent a wide

range of mathematical problems

BLE: Bluetooth Low Energy

WSN: Wireless Sensor Network

LAN: Local Area Network

WAN: Wide Area Network

PAN: Personal Area Network

DN: Data Network

TN: Transportation Network

VRP: Vehicle Routing Problem

Clarke & Wright’s Savings Algorithm: one of the most known heuristics to solve the VRP

in the transportation network

ICT: Information & Communications Technology

CPLEX: optimization software which solves linear programming problems using the simplex

method

Parents: given a node i, their parents are the nodes who are after i in the chain to reach the

gateway

Sons: given a node i, their sons are the nodes who are before i in the chain to reach the

gateway

An optimized routing algorithm for data collection in IoT network Page 7

2. Introduction

2.1. Context and motivation

The frame of this project is the routing optimization in the data network in the Internet of

Things technology. With no doubt, the optimization of processes and specially the routing

optimization is what has been driving the author’s motivation for the past years. Also, the

future which is oriented in this way proves the importance of the field.

Today, we find ourselves immersed in the technological era which does not stop influencing

in our behavior in all aspects in life. In fact, we keep varying our actions in order to adapt to

the changes coming each day and stay updated. The IoT has definitely arrived to stay and

with it, a huge social change is coming. With the IoT, we will have better information, more

control and insight into the everyday things and easier solutions to everything we need. For

that, an enormous technological transformation is already happening and also some

challenges come together with it.

Several experts have been predicting how may devices will be connected to the Internet the

next years and the truth is that this number is very different one from other. But there is no

doubt that it will be huge, and just to put an example, figures from Ericsson say that there

will be 28 billion devices connected by 2021 (Figure 1). This is directly linked with the levels

of energy consumption and the growing necessity to find ways to reduce them. For that, it is

of great importance to study ways of routing optimization and that is what this thesis tries to

solve.

Figure 1 Connected devices in 2021 according to Ericsson

Source: Ericsson Mobility Report (November 2015)

Page 8 Report

The challenge to carry out this project was enormous for the author, as her experience was

not focused on the telecommunications field. But still, there were some aspects that working

in a high-level stage, could be assimilated and permitted to work similar. The author’s

motivation is based on being able to bring her experience and knowledge of a different field,

but applying it to the data network, also with an elevated gap for improvement.

2.2. Problem statement

The problem this project pretends to solve is how to optimize the path that data follows

between the sensors and the gateway in the Internet of Things (IoT) network. We consider

a network model in which there is a single gateway and a group of sensors that collect the

data and send it to the gateway, as shown in Figure 2. Each sensor has some

characteristics like: the amount of data it gathers, the maximal capacity of data it can gather,

the lifetime of its battery, costs of sending the data, and maximum distance it can be

connected to another node. The principal objective is to determine the total minimum cost

by letting nodes sending their data to other nodes, as long as it is cheaper, instead of

directly going to the gateway (Eq. 1). Such a network can be modelled as a graph in which

the sensors and the gateway are the nodes and the connections between them are the

links.

The mathematical problem statement is the following:

“Given a set of nodes-N (sensors), with certain characteristics-K (ex: data they gather), find

the optimal path between the gateway (Node 0) and the rest of the nodes minimizing the

total cost so that all data arrives to Node 0 regarding the nodes’ constraints, Cik . Distances

between nodes are given, Dij. It is supposed that every sensor sends the same type of data

and this takes 1 unit of time (ex. 1 second) to send it.”

Figure 2 Example scheme of the problem

Source: Own

An optimized routing algorithm for data collection in IoT network Page 9

Data

: Set of nodes

: Number of nodes’ characteristics

: Nodes’ characteristics :

 Data node i gathers (Ex: msg/sec)

 Capacity: data node i could reach to gather (Ex: msg/sec)

 Remaining battery of node i (Ex: 5000 h = 18·106 sec)

 Cost of sending 1 quantity of data for node i (Ex: 0,5·10-8 $/1 msg· 1 m)

 Max. distance node i can be connected to another (Ex: 100 m)

: Distance between nodes [m]

Variables

: Total data that node i will send to node j , (Ex: 1 msg/sec)

: Takes value 1 if node i is sending data to node j

: Takes value 1 if node i is linked to j through any other node. They will be

indirectly linked but j will still carry i’s data

Objective Function

 [Eq. 1]

Constraints

 : Data being sent from node i to node j is either 0 or a positive value. [Eq. 2]

 : A node does not send data to itself. [Eq. 3]

 : Node 0 cannot send data to any other node j. [Eq. 4]

Page 10 Report

 : If node i is sending data to node j, it will be at the most to the

maximum feasible distance. This is not applied when j is node 0. [Eq. 5]

 : All data node j receives from other nodes i must not exceed

the space j has left. [Eq. 6]

 : Every node i send to one other node j, except for node 0. [Eq. 7]

 : If i is sending its data to j, it will be at

least the amount of: the data i has gathered + the data that node i has that is coming from

other nodes l. [Eq. 8]

 : If Yij takes value 1, Zij must be 1 as well. But, if Yij takes value 0, Zij can

still take values 0 or 1. [Eq. 9]

 : If node i is sending its data to node j, j cannot send its data to i, or vice

versa. [Eq. 10]

 : If both Zli and Yij take value 1, Zlj will be 1 as

well. If none of both are 1 or just one takes value 1, Zlj can be either 0 or 1. [Eq. 11]

 : Node i must have as much battery to receive all data coming from

other nodes plus one extra second to send his data. [Eq. 12]

2.3. Research questions

To solve the present problem, some research questions are posed to drive its solution and

understand the functioning of the Internet of things technology. These are:

- Which challenges is the IoT facing today and which ones are coming in a near

future? Can the solution of the problem contribute to mitigate them?

Despite all the benefits IoT is already bringing to the society, there are already

issues that need to be considered in order to reduce their negative impacts on the

environment. Part of this is that every time more and more devices are connected to

the Internet and these carry enormous amounts of data which soon will saturate

data centers and energy consumption will rocket to levels we cannot imagine

nowadays. For that, it is of great importance that some routing optimization in IoT is

made so to mitigate these adverse effects and this is what this thesis will try to

accomplish.

An optimized routing algorithm for data collection in IoT network Page 11

- How was the problem addressed in the prior work? What are their drawbacks?

From the article L.A. Villas et al. (2013) a solution to the problem is proposed

comparing it with two other approaches that try to do the same. The thesis will

analyze the method and compare it with the actual approach to find the pros and

cons of both as well as evaluating if a merged solution of both could be reached.

- Can the savings algorithm used in the transportation network be adapted to build the

solution to the present problem?

The algorithm will try to adapt a concept which is widely used in the transportation

network to optimize its routes and try finding the lowest total possible cost, which is

described in the paper Clarke & Wright’s Savings Algorithm (1964), to solve a similar

problem found in the data network between the sensors and the gateway of the IoT

technology. Some changes in the concept will be made to fit the data network

requirements.

2.4. Objectives

The objectives of this thesis can be summed up to 3 main ones:

- The design of an algorithm to solve the routing optimization problem in the IoT

network between the sensors and the gateway, minimizing the total cost of sending

data. To this end, a literature review will be carried out to understand the problem

and the state-of-the-art solutions. Also, it is required to understand why these

solutions are not ideal and try to create a solution which can be easily deployed to a

wide range of use cases.

- Adopt the Clarke & Wright’s Savings Algorithm, which has widely been used in the

transportation network, to the actual problem in the data network. Some adaptation

should be made to let the problem have sense and be feasible. For that, firstly the

savings algorithm will be exposed and then the modifications will be detailed.

- The third objective of this thesis is the extraction of results and validation of the

model built. For that, the solution of the algorithm will be compared with:

o The exact solution extracted from the linear programming coded with the

program CPLEX.

Page 12 Report

o The base line (BL) solution which is when all nodes send their data directly to

the gateway.

o A second base line (BL2) solution which is similar to the actual algorithm,

however it restricts the solution to not more than two nodes linked before

reaching the gateway.

2.5. Hypotheses

It is worth to mention that the problem is attacked mainly from a theoretical point-of-view,

and the proposed solution will be generalized for different types of IoT applications.

Therefore, in this project many hypothesis and assumptions have been made, as follows:

- In order to simplify the model, the problem is treated in a high-level approach. It

means the network is considered as a graph with nodes (the sensors) and links (the

connections between the sensors) regardless other technical details like interference

and link reliability.

- Similarly, the thesis takes into account only 5 characteristics of sensor nodes: data

they gather, data they could gather in total regarding their capacity, battery they

have left, cost of sending data and maximum distance they can be connected to

other nodes. These metrics can represent sensor node in general. However, more

specific metrics would also be considered in future.

- In this thesis, it is considered that all sensors gather the same type of data. Also, it is

considered that data lasts 1 second to be sent from one node to another.

Other hypotheses have been made in the implementation part and are explained across

Chapter 3.

2.6. Plan

The thesis will follow the next plan divided in five main sections:

- Background and motivation: in this first chapter, the background and experience of

the author is exposed, as well as her motivation to fulfill a project, that a priori, was

not her specialty, but she had the tools to achieve it in the end.

An optimized routing algorithm for data collection in IoT network Page 13

- Introduction to the IoT: a short introduction to the field has been done in order to

understand this not-anymore-new technology together with a bit of its history and

future prospects. Also, its architecture is explained.

- Literature review: after a problem is found, reviewing the existing literature is a

crucial step to understand in which point is the problem, if there is someone that

tried to solve it, if there is new research and discoveries about it. In this thesis, the

author tries to find similar cases being solved and takes aspects of her Bachelor

Thesis to make adaptations to fit the present problem and apply some of the things

to reach the solution.

- Methodology: to achieve the objectives of the thesis, the author has followed a strict

methodology which involves the adaptation of the Clarke & Wright algorithm used in

the transportation network, programming the algorithm in Python and programming

in CPLEX to compare results with the algorithm.

- Results and validation: this chapter will compare all solutions for a given data set. By

all solutions, it means the exact solution found with the CLPEX, the solution of the

two base lines defined (BL and BL2), and the solution given by the algorithm. This

comparison will be made through graphs, tables and comments.

- Conclusions: this will be the final section where general conclusions of the project

will be exposed, together with future steps that should be made to improve the

algorithm with dynamic node composition or various types of data be sending at the

same time through the set of nodes.

Page 14 Report

3. Chapter 1: Introduction to the IoT

3.1. History

The Internet of Things has been around for a while now, but where and when was it born?

Since the early 1800s, machines have been communicating between them and the Internet

has entered almost everyone’s lives year by year. It was not until 1999 that the Internet of

Things was officially named in a presentation of Kevin Ashton, Executive Director of Auto-ID

Labs at MIT, for Procter & Gamble. His speech transmitted the message that people were

not capable of continuing capturing data about things in the real world because of their

limited time, attention and accuracy. Instead, machines could be capable of knowing

everything about things, using data they gathered without the help of humans and then,

humans could track it, analyze it and be a step forward in replacing, repairing or recalling

things.

One of the first real examples of the IoT was a fridge owned by Coca Cola, which was

established at the Carnegie Melon University at the early 1980s. The programmers would

connect to the machine through the Internet and were able to check if there was lack of any

type of beverage.

Since then, the Internet of Things has been evolving into a full system manipulating multiple

technologies ranging from the Internet to wireless communication and from micro-

electromechanical systems (MEMS) to embedded systems. Components as wireless sensor

networks, GPS and control systems all support the IoT.

3.2. The IoT today

New technologies evolve from the day they appear and the IoT is no different. The evolution

of the IoT has been from a concept built around communication protocols and devices to a

multidisciplinary domain in which devices, the Internet and people merge to create a full

system to help business innovation and interoperability. In this way, research and

development are crucial to make the creation of smart environments happen.

IoT enables objects surrounding humans to become active participants, sharing information

and capable of recognizing changes in their surroundings and reacting autonomously to

events. Nowadays, the Internet of Things has reached a level where the physical objects

are integrated into the data network becoming participants in business processes and

decisions. The main concept of the IoT is: Internet-connected devices everywhere in any

An optimized routing algorithm for data collection in IoT network Page 15

time and any place. These devices are able to communicate with humans who monitor and

control them taking into account security and privacy for the actual users.

Although many of the IoT systems and technologies are relatively novel, the current

application areas of the IoT are already very diverse: smart homes, smart cities, industrial

automation, smart mobility, health care, etc. In other words, IoT applications are changing

the way we work and live by saving time and resources and opening new opportunities for

growth, innovation and knowledge. However, there are still many application areas yet

unexplored and a quantity of issues to solve.

The potential benefits of IoT are almost limitless. It allows public and private organizations to

better manage assets, optimize their performance, reduce costs and exploit new business

models. Other benefits are the improvement of perception that users feel in the optimization

of mobility and transport, the increase of independence, getting better healthcare,

enhancing their comfort or saving energy and costs.

The current areas of research are the following:

- Application in IoT: firstly, IoT applications relied on sensor network applications but

new research considers smart monitoring systems with wireless sensors and

actuator networks.

- Cloud services in IoT: the core function to provide valuable services in IoT. Reducing

the amount of data stored at IoT devices is the way to build flexible and stable IoT

systems.

- Protocols: routing protocols have an important role to realize practical wireless

networks

- Security: together with privacy, are two of the main issues of the IoT systems which

keep users being concerned and skeptical about the new technology.

3.2.1. IoT Architecture

To make IoT happen, several components must come together and stay synchronized. A

simplified structure would be as shown in the Figure 3, where the main parts are: sensors,

gateway, network, management services and the applications.

Page 16 Report

Figure 3 IoT Architecture

Source: https://www.coursera.org/learn/iot-augmented-reality-technologies/lecture/8ZlnC/iot-architecture

3.2.1.1. Sensor Layer

The sensor layer is made up of sensors and smart devices which provide real time

information that is collected and processed. Sensors use low power and low data rate

connectivity such as Bluetooth Low Energy (BLE), which does not possess the same level

of universal access to the Internet due to battery constraints and lifetime considerations of

the sensors.

Sensors can be seen in everyday objects from any tactile button to lamps that vary the

intensity of their light according to the light of the room. The truth is that most of them

people are not aware of but they are surrounding our everyday lives.

Every sensor has some components that together with other sensors create the Wireless

Sensor Network (WSN). These components are: a radio transceiver with an internal

antenna or connection to an external antenna, a microcontroller, an electronic circuit and an

energy source which is usually a battery or an embedded form of energy harvesting.

Sensors are grouped according to data types, such as home sensors, surveillance sensors,

environmental sensors, etc.

The main characteristics of the WSN are:

- Power consumption constraints for nodes using batteries or energy harvesting

- Ability to cope with sensor failures (resilience)

- Mobility of sensors

- Heterogeneity of sensors

- Scalability to large scale of deployment

https://en.wikipedia.org/wiki/Energy_harvesting
https://en.wikipedia.org/wiki/Resilience_(network)
https://en.wikipedia.org/wiki/Scalability

An optimized routing algorithm for data collection in IoT network Page 17

- Ability to withstand harsh environmental conditions

- Ease of use

- Cross-layer design

The WSN is connected to the Internet through WAN or LAN networks so that collected data

can be transmitted and analyzed for its use in the applications. However, retrieving data

from each sensor is often challenging due to the sensor power constraints or because of

poor wireless connectivity or expensive data links. One solution that has been extensively

studied is to mesh-network sensors to allow data packets to jump through the network, but

this is often unsatisfactory especially in areas with poor radio frequency signal. Also, the

demands of data forwarding take a substantial quantity of sensor lifetime.

3.2.1.2. Gateway Layer

A gateway is a sensor aggregator which gathers all data sensors have collected through

networking connectivity. This can be Local Area Network (LAN), which basically means Wi-

Fi and Ethernet connections, and also it can be through Personal Area Network (PAN)

which includes Bluetooth, ZigBee and 6LowPAN.

The gateway needs to include micro-controllers, a radio communication module, signal

processors and modulators, an access point… to enable technologies or systems with

disparate protocols interact with one another and integrate heterogeneous networks into a

single IoT platform. Gateways must handle enormous amounts of data and that is why they

require a robust and solid performance regarding both public and private networks. Also,

they are low energy consumers like the sensors.

The gateway needs to be scalable to efficiently serve a wide range of services and

applications over large-scale networks. Typically, the gateways speak a proprietary protocol

between the connected devices and then allow connectivity through the gateway using a

standard protocol such as HTTP.

3.2.1.3. Management Service Layer

The management service layer is in charge of the data analytics, security control, process

modeling and device management. It takes charge of part of the data management with

tasks like filtering and control which data is needed in each case. On the other hand, it also

takes care of other operations that require immediate response and delivery, for example,

patient medical emergency sensor data.

The management service layer also extracts data to process, and provides an abstract view

of the overall data for the application layer to show to the user.

https://en.wikipedia.org/w/index.php?title=Cross-layer&action=edit&redlink=1

Page 18 Report

3.2.1.4. Application Layer

As mentioned before, the IoT can be used for service enhancement in a wide range of

areas ranging from environment to healthcare going through energy and transportation.

Applications can be classified according to network availability, coverage, size,

heterogeneity, business model, real-time or not.

Below, in Figure 4 and Figure 5, there is a classification of different IoT areas of service with

their network characteristics and different offered services.

Figure 4 IoT Areas of service and Network characteristics

Source: Source: https://www.coursera.org/learn/iot-augmented-reality-technologies/lecture/8ZlnC/iot-architecture

Figure 5 Different service domains in IoT

Source: https://www.coursera.org/learn/iot-augmented-reality-technologies/lecture/8ZlnC/iot-architecture

An optimized routing algorithm for data collection in IoT network Page 19

3.3. Future prospects

In a short future, the IoT could permeate the whole economy and society if the general

concerns are addressed properly and with warranties and the potential market demand

assimilates with any doubt the new technology as a new player in everyone’s lives.

However, the evolution of the IoT is a constant challenge involving aspects like

communication, data processing and storage, self-adaptation, resilience, cloud computing

and IoT governance. Besides, there are still fields that have not yet been explored that could

participate in improvements or the solving of other issues.

In the future, the number of connected devices will grow exponentially, therefore the inter-

operability between devices will be crucial and so less power and lower cost will be more

and more required as well as an improvement of battery efficiency. The overall challenge is

to expect that networks of devices, sensors and actuators will work in complete synergy and

will be dynamically configured to improve the quality of our lives. Given the giant expected

growth of network usage and the number of user nodes that it will imply, there is the real

need to minimize the resources to implement all network elements and the energy being

used for their daily operation.

Like said before, two of the main concerns of the application of the IoT are security and

privacy. The full potential of the IoT will come with specific strategies that respect the

privacy rights and individual security and addressing these two aspects and ensuring the

intimacy of the customers is a fundamental priority in the development of the IoT. Users will

need to trust in IoT devices as secure services away from vulnerabilities especially because

it is a technology that pretends to be fully integrated in our daily lives.

In this way, the IoT is in process of redefining the principles of these two main concerns as

many of the implementations can dramatically change the way personal data is collected,

analyzed and used.

Page 20 Report

4. Chapter 2: Literature review

4.1. DRINA: A routing approach for In-network aggregation in

WSN

To solve the routing optimization problem in the IoT, some approaches have been carried

out. In particular, the paper of L.A. Villas et al. (2013) presents a new approach to the

problem by offering a brand-new solution. For them, the increase of connected devices will

lead to redundant data captured and sent and so they propose a method in which the

redundant data is aggregated in intermediate nodes reducing the number of exchanged

messages and so the energy consumption as well as extending the network lifetime.

The key features of their method are: reduced number of messages by setting a routing

tree, maximizing the number of overlapping routes, the high aggregation rate and reliable

data aggregation and transmission. The authors compared their solution to two existing

solutions, which are the Shortest Path Tree (SPT) and the Information Fusion-based Role

Assignment (InFRA).

It is believed that in sensors the energy consumption is normally associated with the amount

of gathered data since communication is often the most expensive activity in terms of

energy cost. For that, a possible strategy to routing optimization is to use intermediate

sensors which will aggregate data coming from other nodes (sensors) and will report data

by making local decisions. This strategy is called as data-centric routing or in-network data

aggregation.

The authors of the paper consider different types of nodes, which are the following:

- Collaborator: the one that detects the event and sends the gathered data to a

coordinator node

- Coordinator: it has the function of detecting the events and also of gathering all data

received, aggregating it and sending it to the sink node

- Sink node: node that receives data from coordinators and collaborators

- Relay: node that forwards data to the sink node

And so, the main goal of the algorithm is to build a routing tree with the shortest paths which

connect all nodes to the sink, maximizing data aggregation. This is done in three phases:

An optimized routing algorithm for data collection in IoT network Page 21

- Phase 1: building of the hop tree from the sensors to the sink node. Also, the sink

node starts the building of the hop tree that coordinators will use to send their data.

- Phase 2: formation of the cluster and election of the cluster-head among the nodes

that detected events in the network.

- Phase 3: setting up of a new route for the sending of data and updating the hop tree.

All this corresponds to a cluster-based approach where nodes are divided into clusters and

some nodes (cluster-heads) are elected to aggregate the data coming from others and send

it to the sink node. It is different from the SPT approach where every node that detects an

event on the network sends it directly to the sink node by using the shortest path. Also, the

approach takes into account different types of data collected and a dynamic network in

continuous change by the detection of new events. In this way, nodes route data based on

their content and choose the next hop that maximizes the overlap of routes in order to fulfill

the in-network data aggregation.

The algorithm presented solves the case when for each new event detected, the nodes that

detected the same one are clustered and the cluster-head is elected. Afterwards, routes are

created by calculating the shortest path in each case to the nearest node that is already part

of an existing routing structure where this node will be the aggregation point. The same

algorithm tries to maximize the number of aggregation points.

4.2. Clarke & Wright’s Savings Algorithm

The thesis is based on a concept widely used in the transportation network, and adapts it to

the data network. The concept is referred to as the Vehicle Routing Problem.

Also known as VRP, the Vehicle Routing Problem is a problem present in the field of

logistics and transportation. The problem arises when from a distribution center, a fleet of

vehicles has to deliver products to a list of clients, spread out in a geographical area. The

problem is making the decision of which are going to be the delivery routes, which clients

will be in which routes, in which sequence clients should be visited and how many vehicles

are necessary to deliver everything. All these decisions must be made in order to

accomplish the principal objective of reaching the minimum total cost possible.

The VRP first appeared in a paper by George Dantzig and John Ramser (1959) and since

then, a wide range of varieties have been explored by multiple authors. Widely, the solutions

proposed are heuristics and there is one especially known for its speed in the resolution

process and also for its good results when comparing it with exact solutions. This heuristic is

named Clarke & Wright’s Savings Algorithm (1964) and it is based in the savings concept.

Page 22 Report

The savings algorithm compares an initial situation where two clients are visited in separate

routes and compares its cost with the cost in case the pair of clients were visited in the

same route. In both cases, the vehicle starts from the distribution center and finishes at the

same point. The Figure 6 illustrates this process and the calculus is the following:

- The cost of the two initial routes is: Da = c0i + ci0 + c0j + cj0 [Eq. 13]

- The cost of the single route with both clients: Db = c0i + cij + cj0 [Eq. 14]

If the two options are combined, one obtains the savings that imply the fact of putting both

clients in the same route:

Sij = Da – Db = ci0 + c0j - cij [Eq. 15]

Note that these savings can be both positive or negative, depending on each pair of nodes,

but the ones that one cares are those who are positive and bigger the better, which means

there is an actual saving in merging the two routes and client j will be visited just after client

i. This process is done by all pairs of nodes in a given transportation network and so the

savings turn to be a matrix of savings in which every cell tells the savings in merging two

particular nodes.

Figure 6 Illustrating the Clarke & Wright’s Savings Algorithm

Source: Clarke & Wright’s Savings Algorithm. 1964

To apply this concept to the data network, especially in the Internet of Things, some

modifications should be made, and they will be explained in the next section.

After having the saving’s matrix, one takes the biggest value, that means that if the two

nodes associated were in the same route, the maximum safe will be accomplished. These

two nodes will be in the same route only if the constraints can be fulfilled. If these two nodes

cannot be together because of capacity issues or other constraints, the next big value of the

savings matrix is picked and the algorithm tries to do the same with the new pair of nodes.

This process is repeated until every node is linked to another.

An optimized routing algorithm for data collection in IoT network Page 23

5. Chapter 3: Methodology

5.1. Adaptation of the savings concept

As shown, the problem has been modeled using integer linear programming (ILP), which is

known to be highly complex. Its complexity has been proven NP-hard, and so a solution

cannot be done in real-time. In this thesis, we propose adapting the savings concept in the

transportation network (TN) to the data network (DN) to solve the problem. In this section,

the modifications made are explained:

- The main difference between both networks is that in the TN, if a truck does not

carry any product but it is moving from one client to the distribution center, there are

still associated costs (fuel consumption, CO2 emissions, …). In the DN there is only

cost if some data is sent between a pair of nodes.

- In the present case, data is only one-way, from the sensors to the gateway. In the

TN, the trucks go from the distribution center to the clients and vice versa.

- In the TN the capacity relies on the types of vehicles, capable of carrying a certain

amount of product. In the DN, the capacity relies on each node, and this can be

different every time.

- If in the TN clients have some constraints like time-windows when they can be

served, the constraints in the DN nodes are: the space left they have to receive

more data from other nodes, the battery left they have, the cost that implies for each

one of them the shipment of data and the maximum distance they can be connected

to other nodes.

With these considerations set out, the savings equation changes and is the following:

Sij = Ci3*Di0*Ci0 – (Ci3*Dij*Ci0 + Cj3*Dj0*Ci0) [Eq. 16]

Note that node 0 is the gateway. The explanation of the savings matrix is the following:

- The first term is the cost it will imply if data from node i is sent directly to node 0:

[cost of sending for node i * distance from i to 0 * quantity of data node i has]

Page 24 Report

- The second term is the cost it will imply if data from node i is sent to node 0 through

node j:

[cost of sending for node i * distance from i to j * quantity of data node i has]

+

[cost of sending for node j * distance from j to 0 * quantity of data node i has]

- If the subtraction is positive, it means that sending the data from i to 0 directly is

more expensive than send it through j, so there is saving in sending it through j.

Finally, the link between i and j will be feasible only if all constraints are

accomplished.

In the Figure 7 the theory explained is shown graphically so to understand it better. The first

term is represented by the light-colored line and the second term by the dark one:

Figure 7 Illustrating the savings concept in the present algorithm

Source: Own

If what has been explained above is for one pair of nodes, the same calculus is made for

every pair of nodes the data set has in each case. When the savings are calculated for

every pair of nodes, the savings turn into a matrix that is then sorted from the maximum

value to the minimum. When this is done, the algorithm starts picking the pair of nodes that

imply the maximum savings value and looks if the first node can actually send its data to the

second one, regarding the constraints of each node. If the answer is positive, a link has just

been set and all the variables need to be recalculated. That means, the characteristics of

these two nodes have changed, and also a recalculation of the savings implying these two

nodes will need to be recalculated. The functioning of the algorithm will be widely explained

in the following section.

5.2. The algorithm in Python

5.2.1. General explanation

The implementation of the proposed algorithm is composed of 3 Python files:

algorithm_new.py, algorithm_new_2.py and ejec.py.

An optimized routing algorithm for data collection in IoT network Page 25

The solution of the algorithm is compared with two base lines: BL and BL2. The first one is

the solution where all nodes are sending directly to the gateway. The second one, which

corresponds to the file algorithm_new_2.py, is the solution where at most there are two

steps before reaching the gateway: a node is sending to another, and this second is

sending to the gateway. No path having more than two steps is considered. In the Annex 1,

all the code is attached.

5.2.1.1. Algorithm_new.py

It is the file where the entire algorithm is coded and it is composed by 5 functions (note that

N is the total number of nodes, including the gateway):

- max_savings(SS,N): given SS as the savings matrix (calculated in the ejec.py file),

the max_savings function sorts from the maximum value to the minimum, saving

also both nodes involved in each value. For example: Sm = max_savings(SS,N) =

[[1*,2*,10],[2,3,6],[3,2,5],[1,3,4],[3,1,3],[2,1,2],[1,0,0],[2,0,0],[3,0,0]]

Where each sub-list is composed by: source node, end node, saving value.

- depth(N): it creates a list of length N with all zeros. In the algor function, zeros will

increase when a node starts having sons.

- parents_sons(N): it creates an empty list of length N. The list will be used for filling

both parents and sons independently for each node in the algor function.

- XY(N): it creates a matrix NxN with all zeros. They will become ones in the algor

function when a pair of nodes is connected through a link.

- algor(D,C,N,S,Info_left,Cost_i): this is the main function where the whole algorithm is

coded. Parameters of the function are:

 D: distance matrix (calculated in the ejec.py file)

 C: characteristics matrix (calculated in the ejec.py file)

 N: total number of nodes (calculated in the ejec.py file)

 S: savings matrix (calculated in the ejec.py file)

 Info_left: list of length equal to the number of nodes that initially is the

characteristic Ci0, and is updated to 0 through the algorithm when the node in

question is sending its data to another.

Page 26 Report

 Cost_i: list of length equal to the number of nodes that represents the cost

for a node to send its data, initially to the gateway (calculated in the ejec.py

file). It will be updated through the algorithm if the node is sending its data to

another. This cost is calculated as: Cost_i = Ci0 * Ci3 * Di0 [Eq. 17]

A detailed picture of what it does is explained through a Block Diagram in next

section (5.1.2.2). However, in general terms what it does is from the matrix resultant

from the max_savings function, it tries to send the info of the first node* to the

second* regarding their constraints. If the merge is possible, the savings affected

are re-calculated and the max_savings is called another time. If it is not possible, the

algorithm tries the same with the next element* of the initial matrix of max_savings.

And it does the same until all nodes are sending to another one. More detailed

would be:

 The function calls the other functions of the code and initialize some other

variables, which are the following:

o Links[]: list that will include all links of the solution. Each element of

the list will be composed of: [node origin, end node, quantity of data

carried]

o Space[]: list of length equal to the number of nodes and it reflects the

space each node has originally calculated as total capacity – data

gathered (Ci1-Ci0). It is updated every time a link is set, reducing the

space the node has with the info added that it is carrying.

o bat[]: list of length equal to the number of nodes and it reflects the

remaining battery each node has. Originally is the characteristic Ci2

but it is updated every time a link is set, subtracting the depth of the

node sending + 1 second it needs to actually send the data.

o IC[]: list of length equal to the number of nodes and it reflects the

data one node is carrying. Originally is the characteristic Ci0 but it is

updated every time a link is set, accumulating the info added that it is

carrying.

 A loop starts and does not end until all links are set. Inside the loop, several

things are done for each iteration. An iteration responds to a pair of nodes.

Like said before, it starts with the first element of max_savings and tries to

send the data of the first node* to the second*. The main things done for

each iteration are:

An optimized routing algorithm for data collection in IoT network Page 27

Figure 8 Illustrating the loop in the algor function

Source: Own

 After the loop, first what is done is that all nodes who do not have Parents

means that they are sending all their data to the gateway directly. And so, these

links are added to the Links matrix.

 Finally, what is done is the calculation of the total cost with all links set. It is

calculated like the sum of the following equation (Eq. 18) for every element in the

Links matrix (always i as origin node and j as end node):

Ci3 * Dij * Info carried from i to j [Eq. 18]

Page 28 Report

5.2.1.2. Algorithm_new_2.py

In this file, the base line 2 is coded. The program is very similar to algorithm_new.py but it

has two new conditions inside the main loop which are:

[length of j’s parents less than 1 and length of i’s sons less than 1]

Because in a general case, trying to send info from i to j: if node i has already a son, then i

must go directly to the gateway. Or, if j has a parent, j cannot have sons because the chain

would be longer than two steps before reaching the gateway. In both cases, the algorithm

assures that a chain of nodes has at maximum two steps.

5.2.1.3. Ejec.py

In this one, both prior files are imported in order to display the different solutions. In ejec.py,

two things are asked at the beginning: the user has to type how many times he wishes the

algorithm will run and for which N’s (the user types a number and the algorithm runs for

random N’s between the number the user has typed and the same number – 10 units). For

example, if the user has typed N=50 and 50 times, the algorithm will run for 50 times for N’s

between 40 and 50 randomly picked.

Once the range of N is known, a characteristic of this file is that, the whole data set is

generated randomly. That means: the exact N in each case, each one of the characteristics

of each node and the distance matrix. After the distance matrix is set, the savings matrix is

calculated in the same file.

The characteristics of each node are calculated with certain limited ranges. These are the

following:

- Data a node gathers, Ci0: Random (1,100) [data/sec]

- Capacity of the node, Ci1: Ci0 + Random (1,100) [data/sec]

- Remaining battery, Ci2: Random (1,10000) [sec]

- Cost of sending data, Ci3: Random (0,1) * 0,00001 [$/1data*1m]

- Max. distance, Ci4: Random (1,500) [m]

It is considered that node 0 (gateway): it gathers 0 data itself, it has infinite capacity,

infinite battery, 0 cost of sending data and infinite maximum distance to be connected

to other nodes.

An optimized routing algorithm for data collection in IoT network Page 29

The characteristic Ci4 is applied only when considering the link from a node with another

one which is not the gateway. When it comes to link whichever node to the gateway,

this maximum distance is not considered as it is thought that the gateway can reach

every node in the network.

Afterwards, both algorithm_new.py and algorithm_new_2.py are called and their solutions

are written in a file like this (for example: Solution25.txt):

Data set: 25

Execution time: 0.126000165939 seconds

Cost BL: 1.31548952971 $

Cost BL2: 0.699080983883 $

Cost Algorithm: 0.697014240175 $

Links: [[11, 8, 86], [10, 1, 43], [3, 4, 54], [12, 7, 28], [5, 7, 49], [15, 9,

55], [2, 13, 28], [16, 10, 1], [1, 0, 91], [4, 0, 100], [6, 0, 44], [7, 0,

127], [8, 0, 183], [9, 0, 79], [13, 0, 101], [14, 0, 9]]

Links_2: [[11, 8, 86], [10, 1, 42], [3, 4, 54], [12, 7, 28], [5, 7, 49], [15,

9, 55], [2, 13, 28], [1, 0, 90], [4, 0, 100], [6, 0, 44], [7, 0, 127], [8, 0,

183], [9, 0, 79], [13, 0, 101], [14, 0, 9], [16, 0, 1]]

- Data set: number of the current data set (out of the total number of data sets that

the user has decided to run).

- Execution time: time in seconds that the computer needed to run all the program.

- Cost BL: cost of the base line, initial case where all nodes send directly to the

gateway.

- Cost BL2: cost of the base line 2, where there are at the most two stages before

reaching the gateway.

- Cost Algorithm: cost of the real algorithm where chains of more than 2 nodes can be

unified.

- Links: actual links of the algorithm’s solution which involve origin node, end node,

quantity of data carried.

- Links_2: actual links of the BL2 solution.

This output file is created for every data set. Besides, a global output file is also created with

the same information showed but with all files together in one (for example: AllSolutions N

10_20.txt).

Also, the data of each data set is also recorded in separate files (for example:

DataSet25.txt) and in one single file (for example: AllData N10_20.txt). The first one looks

like this:

Page 30 Report

Data set: 25

17

5

{'C':[[48, 97, 6103, 7.419036162921356e-07, 321], [28, 60, 4904,

6.363697232753913e-06, 104], [54, 142, 215, 5.27460602666664e-06, 175], [46,

140, 3104, 2.2448207250324204e-06, 275], [49, 124, 3633, 7.0913624004409336e-

06, 483], [44, 90, 5101, 6.2735591090989455e-06, 220], [50, 143, 3478,

9.22962330191946e-06, 189], [97, 196, 5903, 2.4080985353418783e-06, 251], [24,

108, 728, 3.7204135682750507e-06, 247], [42, 111, 9195, 9.508927587725927e-06,

379], [86, 116, 4569, 7.975083324209085e-06, 278], [28, 125, 916,

7.498307280893712e-06, 274], [73, 160, 3607, 3.964219808011128e-06, 461], [9,

35, 9659, 3.3154040432458636e-06, 98], [55, 89, 3110, 4.8307231427667635e-06,

331], [1, 57, 788, 5.687843562179042e-06, 73]]}

{'D':[[0.0, 247.0, 363.0, 385.0, 211.0, 332.0, 234.0, 117.0, 182.0, 241.0,

404.0, 483.0, 400.0, 401.0, 240.0, 414.0, 490.0], [247.0, 0.0, 80.0, 481.0,

356.0, 243.0, 239.0, 73.0, 248.0, 206.0, 17.0, 75.0, 127.0, 157.0, 460.0, 19.0,

250.0], [363.0, 80.0, 0.0, 435.0, 364.0, 315.0, 466.0, 368.0, 328.0, 303.0,

468.0, 319.0, 172.0, 98.0, 458.0, 446.0, 271.0], [385.0, 481.0, 435.0, 0.0,

58.0, 171.0, 39.0, 364.0, 23.0, 99.0, 314.0, 128.0, 328.0, 226.0, 228.0, 162.0,

190.0], [211.0, 356.0, 364.0, 58.0, 0.0, 116.0, 438.0, 100.0, 144.0, 363.0,

159.0, 273.0, 258.0, 454.0, 394.0, 253.0, 251.0], [332.0, 243.0, 315.0, 171.0,

116.0, 0.0, 304.0, 61.0, 192.0, 128.0, 35.0, 133.0, 78.0, 126.0, 89.0, 336.0,

87.0], [234.0, 239.0, 466.0, 39.0, 438.0, 304.0, 0.0, 272.0, 365.0, 275.0,

237.0, 73.0, 449.0, 102.0, 11.0, 65.0, 264.0], [117.0, 73.0, 368.0, 364.0,

100.0, 61.0, 272.0, 0.0, 150.0, 426.0, 147.0, 311.0, 10.0, 346.0, 438.0, 209.0,

448.0], [182.0, 248.0, 328.0, 23.0, 144.0, 192.0, 365.0, 150.0, 0.0, 70.0,

164.0, 21.0, 181.0, 50.0, 349.0, 289.0, 235.0], [241.0, 206.0, 303.0, 99.0,

363.0, 128.0, 275.0, 426.0, 70.0, 0.0, 191.0, 150.0, 61.0, 382.0, 246.0, 126.0,

296.0], [404.0, 17.0, 468.0, 314.0, 159.0, 35.0, 237.0, 147.0, 164.0, 191.0,

0.0, 39.0, 414.0, 166.0, 292.0, 48.0, 66.0], [483.0, 75.0, 319.0, 128.0, 273.0,

133.0, 73.0, 311.0, 21.0, 150.0, 39.0, 0.0, 349.0, 402.0, 73.0, 3.0, 416.0],

[400.0, 127.0, 172.0, 328.0, 258.0, 78.0, 449.0, 10.0, 181.0, 61.0, 414.0,

349.0, 0.0, 423.0, 198.0, 115.0, 170.0], [401.0, 157.0, 98.0, 226.0, 454.0,

126.0, 102.0, 346.0, 50.0, 382.0, 166.0, 402.0, 423.0, 0.0, 151.0, 410.0,

105.0], [240.0, 460.0, 458.0, 228.0, 394.0, 89.0, 11.0, 438.0, 349.0, 246.0,

292.0, 73.0, 198.0, 151.0, 0.0, 32.0, 398.0], [414.0, 19.0, 446.0, 162.0,

253.0, 336.0, 65.0, 209.0, 289.0, 126.0, 48.0, 3.0, 115.0, 410.0, 32.0, 0.0,

135.0], [490.0, 250.0, 271.0, 190.0, 251.0, 87.0, 264.0, 448.0, 235.0, 296.0,

66.0, 416.0, 170.0, 105.0, 398.0, 135.0, 0.0]]}

- Data set: number of the current data set (out of the total number of data sets that

the user has decided to run).

- 17: number of nodes for this data set including the gateway.

- 5: number of characteristics nodes have (fixed number for each data set).

- “C”: dictionary of all nodes with their characteristics (gateway characteristics are not

shown). Each node is represented by a list like this: [48, 97, 6103,

7.419036162921356e-07, 321]. The node’s characteristics are defined in the same

way as described in the Problem Statement section (2.2).

An optimized routing algorithm for data collection in IoT network Page 31

- “D”: dictionary of all distances between nodes, including distances to the gateway.

The distances of each node are represented by a list like this: [0.0, 247.0, 363.0,

385.0, 211.0, 332.0, 234.0, 117.0, 182.0, 241.0, 404.0, 483.0, 400.0, 401.0,

240.0, 414.0, 490.0]

It is worth to mention that the file ejec.py was used to create an .exe file so that the program

could be run in any operating system.

5.2.2. Block Diagram

In this section, a block diagram of the algor function of the file algorithm_new.py is

presented (Figure 9) in order to understand the flow that the algorithm.

Page 32 Report

An optimized routing algorithm for data collection in IoT network Page 33

Page 34 Report

An optimized routing algorithm for data collection in IoT network Page 35

(*)

(*)

Page 36 Report

Figure 9 Block Diagram of the function algor from the algorithm_new.py file

Source: Own

An optimized routing algorithm for data collection in IoT network Page 37

5.3. The Linear Programming in CPLEX

In order to analyze the accuracy of the algorithm, a linear programming model has been

built. The model has been solved using CPLEX [18].

Basically, what the program in CPLEX is, is typing the linear programming explained in the

section 2.2 in the CPLEX language (the CPLEX program is attached in Annex 2). The

advantage of it is that the program gives the exact solution for a given data set. However,

an Excel file with all data (N, node’s characteristics and distances matrix) is needed for

every data set, and also the solution is written in the Excel file, which in the end it requires

more time. But, what is more important is that the execution time is a lot higher than the

solutions given by a programmed algorithm. That is why algorithms are widely used in many

fields, in spite of their non-exact solutions. But the ones who are reliable are those who give

solutions which are not far from the exact ones. To understand the huge difference in

execution times, for a specific data set (Data set number 10 with 25 nodes):

- Execution time with the algorithm: 2,97 seconds

- Execution time with the CPLEX: 98h with still a GAP of 10% (the execution was

stopped at this time)

Regarding the execution time CPLEX takes to give its solutions, a restricted amount of data

sets has been done. In particular, only those with N (number of nodes) inferior to 30. In

Chapter 4, the results of the comparison between the algorithm and the CPLEX are shown

and a deep analysis of them is made.

5.4. Comparing the algorithm with the one in literature, the

DRINA

In the next table (Figure 10), a general picture of the differences between the algorithm

proposed in this thesis and the DRINA extracted from the literature are exposed:

DRINA
Algorithm based on the

savings concept

Different types of data One type of data

Dynamic network Static network

Different categories of nodes All nodes are same category

Figure 10 Principal differences between DRINA and the algorithm

Source: Own

Page 38 Report

Although both approaches try to solve the same situation, they have big differences which

are worth to mention:

- In reality data gathered by different nodes can be very different one from each other,

like DRINA considers. However, in the algorithm presented in this thesis only one

standard type of data is considered, and it would be part of the future steps to

include different types of data. That would mean that data from one node could only

be considered to be sent to other nodes which gather the same data or simpler one,

but never more complex data. In practical terms, would mean to add some

constraints in the algorithm.

- A significant difference is the fact that the algorithm considers a static network while

in reality data network is dynamic and at one fixed second there could be a number

of sensors sending data different from the number that will be in the next second,

like DRINA does. This would be also part of the future steps where a simulation of

different types of events should be made, and decide for a single second, which is

the optimal route that present sensor’s data should follow. This does not change the

fact of applying the savings concept that could be applied either way.

- Regarding sensor coverage, which is limited, sometimes more than one sensor

captures the same data and so there are data redundancies. The DRINA algorithm

considers this fact and creates a category of node which will gather this data and

aggregate it to just forward the necessary one. The algorithm proposed in this thesis

does not consider this fact as one of the premise was to work in a high-level

approach and the sensor coverage limit was out of the scope. However, it also could

be added together with the other considerations to a next version of the algorithm.

Despite these characteristics in which the DRINA algorithm analyzes further details that the

algorithm presented in this thesis does not contemplate, there is an aspect worth

considering and this is the complexity analysis. In the next table (Figure 11) the best and

worst cases for both algorithms are shown:

 Best case Worst case

Thesis Algorithm n-1 n3

DRINA 2n + m

Figure 11 Best and worst cases for the algorithm and DRINA in terms of complexity

Source: Own & [9]

An optimized routing algorithm for data collection in IoT network Page 39

Where all parameters mean:

- n: number of nodes (for both algorithms)

- m: number of transmissions to create the cluster

- k: number of events

- |Ui|: the cardinality of the set of nodes outside the scope-limited flooding for the

event i

In the case of the DRINA algorithm, it can be said that complexity can increase with the

number of events (k ≥ n), and so it can reach complexity n2. In the case of our algorithm,

complexity is fixed to n3 disregarding the number of events (illustrated in Annex 4). Clearly,

DRINA keeps being better in that sense too. However, as a further step of our algorithm, a

deep analysis should be done in order to try to reduce the algorithm’s complexity and reach

complexity n2.

Page 40 Report

6. Chapter 4: Results and validation

In this chapter, the results of the algorithm created will be presented together with their

comparison between the base lines and the CPLEX program.

6.1. Comparing the algorithm with the base lines

The purpose of the thesis is to build the algorithm so to minimize the total sending cost of a

given data network formed by a group of sensors and a gateway. For this, is not only

important to build the algorithm but also to compare its results with some baselines to prove

its feasibility and reliability.

In this thesis, there are two baselines already mentioned:

- Base line 1: reflects the initial case where all nodes send directly its data to the

gateway, this means no optimization has been applied.

- Base line 2: this one works similar to the algorithm but with the constraint that at the

most there are two nodes linked before reaching the gateway.

In this section, the thesis explains and compares the three solutions for the same given data

set. The following graphics (Figures 12-21) show the differences in cost separated in groups

of N’s (from N=2 to N=100) and 50 data sets tested in each group.

Figure 12 BL-BL2-Algorithm comparison for N [2-10]

Source: Own

An optimized routing algorithm for data collection in IoT network Page 41

Figure 13 BL-BL2-Algorithm comparison for N [10-20]

Source: Own

Figure 14 BL-BL2-Algorithm comparison for N [20-30]

Source: Own

Figure 15 BL-BL2-Algorithm comparison for N [30-40]

Source: Own

Page 42 Report

Figure 16 BL-BL2-Algorithm comparison for N [40-50]

Source: Own

Figure 17 BL-BL2-Algorithm comparison for N [50-60]

Source: Own

Figure 18 BL-BL2-Algorithm comparison for N [60-70]

Source: Own

An optimized routing algorithm for data collection in IoT network Page 43

Figure 19 BL-BL2-Algorithm comparison for N [70-80]

Source: Own

Figure 20 BL-BL2-Algorithm comparison for N [80-90]

Source: Own

Figure 21 BL-BL2-Algorithm comparison for N [90-100]

Source: Own

Page 44 Report

From this total of 500 cases solved in the three ways, tt can be seen that as N grows in size,

the differences between the solution of the base line (BL) and the algorithm are more

plausible. Out of the 500, 475 times the algorithm was found to be better than the BL and

the average percentages of improvement for each range of N are (Figure 22):

N Algorithm vs BL

2-10 7,18%

10-20 26,15%

20-30 30,22%

30-40 34,05%

40-50 37,48%

50-60 39,00%

60-70 41,34%

70-80 43,59%

80-90 43,26%

90-100 44,90%

Figure 22 Average percentages of improvement Algo vs BL for different N

Source: Own

This difference is way far from the difference one can found between the second base line

(BL2) and the algorithm that also does not have the same behavior as before. In this case

(Figure 23), average percentages are low and don’t grow as N grows like before. It is true

that building long chains of nodes may not be cheap and sometimes the cheapest is not

more than two nodes (like BL2). This time, the algorithm was better in 329 times.

N Algorithm vs BL2

2-10 0,665%

10-20 1,093%

20-30 0,365%

30-40 0,45%

40-50 0,661%

50-60 0,439%

60-70 0,635%

70-80 0,506%

80-90 0,614%

90-100 0,585%

Figure 23 Average percentages of improvement Algo vs BL2 for different N

Source: Own

An optimized routing algorithm for data collection in IoT network Page 45

6.2. Comparing the algorithm with the CPLEX

Regarding the elevated amount of time the CPLEX program requires to solve data sets,

data sets of more than 30 nodes were not capable of being solved with the CPLEX, as

some of the ones of +20 nodes were solved days after. However, still some analyses can be

made and they are explained in this section.

A number of 52 data sets were solved with CPLEX. From this total, 18 are between 2 and

10 nodes, 20 between 10 and 20 nodes and 14 between 20 and 30 nodes. From the 52

data sets, only in 13 of them the CPLEX solution was better than the solution of the

algorithm. All these 13 cases are pictured in Annex 3.

In the next graphics, Figure 24 shows in percentage the improvements the algorithm has

made versus both base lines and also the improvements the CPLEX has made versus the

algorithm, for the 52 data sets. And Figure 26 shows the difference in cost for the 4

solutions. Also, the next table (Figure 25) show the average numbers in percentage, in this

case just counting the cases when the first method is better than the second being

compared.

Figure 24 Percentages of improvement between different solutions

Source: Own

Page 46 Report

Methods
Avg. % of

improvement

A vs BL 24,37

A vs BL2 4,79

CPLEX vs A 5,21

Figure 25 Average percentage of improvement for the cases the algorithm was better than BL and BL2

and the CPLEX better than the algorithm

Source: Own

Figure 26 Differences in total cost between solutions

Source: Own

It can be supposed that with bigger number of nodes (bigger N’s), the margins of

improvement will increase, as the options of sending to other nodes also increase. It would

be interesting to see if with bigger N’s the average percentage of improvement CPLEX vs

Algorithm would continue being higher than the one Algorithm vs BL2, or if both would

increase at the same proportion.

Another thing to take into account, is the difference presented in topology solutions of the

Algorithm and the CPLEX. The 13 cases in which CPLEX was found better than the

Algorithm, do not present significant differences in topology. In the next figures (Figure 27)

two clear examples are shown:

An optimized routing algorithm for data collection in IoT network Page 47

ALGORITHM CPLEX

Figure 27 Two examples of the differences in topology between the CPLEX solution and the algorithm

Source: Own

The main differences found between both solutions, CPLEX vs Algorithm, are detailed just

below. All cases mentioned can be found pictured in Annex 3.

- Same number of chains of 2 nodes, but a slight change between nodes (Cases:

20_30 8, 20_30 35)

- Reducing the number of chains of 2 nodes but creating one of 3 (Cases: 10_20 13,

10_20 18, 20_30 4, 20_30 17)

- Going from all chains of 2 nodes and one chain of 3 in Algorithm, to all chains of 2

nodes in CPLEX (Cases: 20_30 2, 20_30 3)

- Adding a new chain of 2 (Cases: 2_10 23, 10_20 4, 10_20 6, 10_20 8, 10_20 31)

Page 48 Report

In this sense, it cannot be assured that with bigger N’s topologies of the Algorithm and the

CPLEX will be more plausible.

An optimized routing algorithm for data collection in IoT network Page 49

7. Environmental impact

It is known that sensors can do the job that humans cannot. With sensors, we can reach

inaccessible, polluted or inhabitable spaces without putting in risk people’s lives.

Programming sensors to optimize rubbish collection, reduce CO2 emissions, control

pollution, oil recycling, measure air and water quality, and other innumerous activities can

help contribute the evolution of the environment.

There are plenty of use cases where the use of the IoT technology has helped improve

human’s environmental footprint. One example is the reduction of 70% of water

consumption in blueberry farms through an IoT based approach that a university in Chile put

in practice. Another example is when the Boston Consulting Group announced that ICT-

enables climate mitigation strategies could reduce global climate change a 16,5% by 2020

compared to today’s current efforts to fight against the climate change.

On the other hand, IoT also brings huge challenges for the environment, mainly referred to

the e-waste, which is the waste of electrical and electronic equipment. As years goes by,

more and more devices are manufactured and connected to the Internet, but, the hardware

upgrades are also very frequently and so the number of e-waste is considerably important.

In 2013, an amount of 53 million metric tons of e-waste were disposed worldwide and this

number will do nothing but increase in the next years.

Since discarded electronic components out of IoT objects are the main source of e-waste

these days, manufacturers of IoT equipment must consider the arising dangers that they

cause after their useful life and start including smart manufacturing components, so to

reduce their dangerous impact for the environment.

Another challenge IoT is facing is energy consumption as IoT networks require enormous

data centers to store big amounts of data. Therefore, the energy consumption is massive

and the resources needed to produce this amount of energy are a huge load for the

environment and is affecting the whole energy sector. Furthermore, the resources and

energy to manufacture all these new devices the industry of IoT will require is another

source of energy consumption that is already having an important impact.

Last but not least, there is no doubt that the routing optimization of the data network in the

IoT technology will contribute the industry to diminish its energy consumption.

Page 50 Report

8. Planning and costs

Next, there is a table (Figure 28) which explains the different costs related to the realization

of the thesis:

Tasks Hours

Literature review 50

Algorithm in Python 475

Programming 450

Getting results 25

CPLEX 85

Programming 45

Getting results 40

Analyses 70

Writing the thesis 250

Total 930

Figure 28 Tasks and hours per task

Source: Own

According to the average rate for a junior programmer, a cost of 30 $/h is stablished, and

the next table (Figure 29) shows the total cost.

Tasks Amount

Programmer hours (930 h * 30 $/h) $27.900

Equipment $1.000

Total $28.900

TAX (20%) $5.780

Total + TAX $34.680

Figure 29 Total cost of the project

Source: Own

An optimized routing algorithm for data collection in IoT network Page 51

Conclusions

This Master Thesis was realized in École de Technologie Supérieure (ETS, Montréal) with

the supervision of Professor Kim Nguyen, and reflects the last work of the Double Master’s

Degree in Industrial Engineering and Management Engineering at the Universitat

Politècnica de Catalunya (UPC, Barelona). The thesis studies the routing optimization in the

Internet of Things (IoT) network between the sensors and the gateway, which is not

optimized in today’s applications but will need to be in a near future due to the enormous

amount of devices that will be connected to the Internet and the huge amount of energy

consumption that fact will be carrying.

Firstly, the thesis introduces the problematic with the problem statement together with the

objectives, research questions and hypotheses considered. Also, an introduction to the

Internet of Things is done englobing its first days, today’s presence in everyone’s lives and

the future prospects and challenges it will bring.

After the introduction, the literature review was needed in order to understand in which point

is the problem and if there is new research and discoveries to solve it. In particular, a solid

solution has been found and this is the DRINA [9] which is based on a cluster approach

where nodes are divided into clusters and some nodes (cluster-heads) are elected to

aggregate the data coming from others and send it to the sink node. In other words, there

are different categories of nodes, also different types of data and the it considers a dynamic

network. Three things that our algorithm did not take into account.

It is important to say that the problem is tackled in a high-level way, in which the network is

considered to be a graph where the sensors are the nodes and their connections the links.

Also, one of the basis of the project, is the use of the main idea of the Clarke & Wright’s

Savings Algorithm [8] which is used in the transportation and logistics field and the thesis

takes its principal equation (the savings concept) and adapts it to the present case and so

the equation is slightly different and so are the conditions to set the links between nodes

(because the constraints to accomplish are different). The main constraints are related to

the nodes’ characteristics which include: data they gather, the total capacity of data they can

gather, the lifetime of its battery, the costs of sending the data and the maximum distance it

can be connected to other nodes.

The coding of the algorithm has been done with the Python language and a Linux system,

and to test its feasibility, a comparison with three other methods has been made. These

three are: a base line which reflects the absence of application of an algorithm (each node

sending data directly to the gateway), a second base line which is similar to the actual

Page 52 Report

algorithm but limits to a maximum of 2 nodes connected before reaching the gateway, and

also the exact solution with the CPLEX program [18].

These comparisons were carried out in 500 data sets established randomly (of N’s that went

from 2 to 100 nodes). The user only had to decide an N (total number of nodes), this would

then be set randomly between the number the user typed and 10 units less. Also, the user

needed to decide how many times he wanted the algorithm to run for that group of N’s.

These questions were asked to the user through an exe file which contained the algorithm,

but could be run in any operative system. Note that at worst the algorithm’s solution was like

the BL or the BL2 in each case. At the end, out of the 500 data sets, the algorithm was 475

times better than the BL with an average percentage of improvement of 36,54% out of the

475, and 329 times better than the BL2 with the same percentage this time of 0,91% out of

the 391.

Another approach was made to compare the algorithm with the CPLEX solution, due to its

large execution time for a given data set. The CPLEX program solves problems of linear

programming (LP) and our problem was integer linear programming (ILP), so it could be

programmed with the CPLEX software. However, the CPLEX returns the exact solution and

that means that it needs to calculate the solution in all the iterations and then choose the

one with the minimum cost in our case. For that, only those data sets with less than 30

nodes were capable of being solved. A total of 52 cases were solved and from these, just

13 of them the CPLEX solution was better than the algorithm with an average percentage of

improvement of 5,21% out of the 13. It is worth to mention that differences in topology

where not very vast when comparing both solutions, and only little changes were

perceptible. This could change with larger N’s, which would be feasible if execution time in

CPLEX was lower.

For the approach being done, the algorithm is proved to be reliable enough and would be

applicable to an infinite different IoT applications, which was the objective at the beginning.

However, the author is conscious that this thesis has a lot of further steps, like integrating

different types of data or different types of sensors like the algorithm DRINA does. This

would make the project even more reliable as it would be nearer of what it can be found in

the real world. Another thing to take into account is the algorithm’s complexity which is

susceptible of being reduced by improving the algorithm and putting it at the level of DRINA.

The personal conclusions the author extracts go from the realization of a project of these

characteristics to the overcoming of all the difficulties presented during the way which made

her fight for reaching the final objective and end being proud of all the work made. All the

concepts learned through the realization of the thesis have been vital to understand the

context and be able to design an algorithm of these characteristics, even if it is done in a

high-level approach, but still applicable to a wide range of fields as mentioned.

An optimized routing algorithm for data collection in IoT network Page 53

To finish, the opportunity that has been given to the author to write a paper about the

algorithm designed will be a remarkable experience that will determine for sure her

professional career.

“I am already eager to see where the IoT industry will finally lead us”.

Page 54 Report

Of gratitude for…

I would like to give special thanks to my tutor Mr. Kim NGUYEN, professor in Electrical

Engineering Department (GE) at ETS, for his full predisposition in helping the author

overcome all difficulties, for his guidance in every step of the way and his availability every

time needed. Thank you Kim.

Also, I would like to thank professor Mr. Mohammed CHERIET, director of Synchromedia

Laboratory and professor in Automated Production Engineering Department (GPA) at ETS,

for his wise words in every conversation he and the author exchanged and his

predisposition in helping her.

I would like to thank student Tuan Duong NGUYEN for his enthusiasm in helping the author

solve the problems found during the realization of the thesis and his positive state of mind.

Last but not least, a big thank you to my whole family and Bernat Serra Deola for all the

support given during the way.

Thank you all.

An optimized routing algorithm for data collection in IoT network Page 55

Bibliography

[1] Jesús CARRETERO, J. Daniel GARCÍA. The internet of Things: connecting the world.

2014

[2] IERC, Internet of Things European Research Cluster. The Internet of Things, New

Horizons. 2012

[3] Journal of Network and Computer Applications. Internet of Things: Smart things network

and communication. 2014

[4] Gilles PRIVAT. Extending the Internet of Things. 2012

[5] Katsuhiro NAITO. A survey on the Internet of Things: Standards, Challenges and Future

Prospects. 2016

[6] Ovidiu VERMESAN, Peter FRIESS. Digitising the industry. Internet of Things:

Connecting the Physical, Digital and Virtual Worlds. 2016

[7] Thomas ZACHARIAH et al. The Internet of Things Has a Gateway Problem. 2015

[8] Clarke & Wright. Clarke & Wright’s Savings Algorithm. 1964

[9] Leandro APARECIDO VILLAS et al. DRINA: A Lightweight and Reliable Routing

Approach for In-Network Aggregation in Wireless Sensor Networks. 2013

[10] Alain LOUCHEZ, Valerie THOMAS. E-waste and the Internet of Things. 2015

<https://itunews.itu.int/En/4850-E-waste-and-the-Internet-of-Things.note.aspx>

[11] Environmental Impact of IoT. <http://www.advancedmp.com/environmental-impact-of-

iot/>

[12] 5 ways the IoT is helping the Environment. 2016 https://iot.telefonica.com/blog/5-ways-

the-iot-is-helping-the-environment

Page 56 Report

[13] Jong-Moon CHUNG. Yonsei University. IoT Architecture. 2017

<https://www.coursera.org/learn/iot-augmented-reality-technologies/lecture/8ZlnC/iot-

architecture>

[14] Internet of Things History. <https://www.postscapes.com/internet-of-things-history/>

[15] Keith D. FOOTE. A brief History of the Internet of Things. 2016.

<http://www.dataversity.net/brief-history-internet-things/>

[16] IoT: Where does the data go? https://www.wired.com/insights/2015/03/internet-things-

data-go/

[17] Peter JONSSON et al. Ericsson Mobility Report. 2015

[18] IBM Corporation. IBM ILOG CPLEX Optimization Studio Getting Started with CPLEX

.

http://www.dataversity.net/author/keith-foote/

An optimized routing algorithm for data collection in IoT network Page 57

Annex 1: Python files

 Ejec.py

-*- coding: utf-8 -*-

import networkx as nx

import matplotlib.pyplot as plt

#plt.use('Agg')

import json

import numpy as np

import os

import sys

import time

import random

import commands

import algorithm_new

import algorithm_new_2

print "We are running the algorithm X times: "

X=raw_input('')

print "We are running the algorithm for N: "

size=raw_input('')

fdata=open("AllData N " + str(max(2,int(size)-10)) + "_" + str(int(size)) +

".txt",'w')

fsol=open("AllSolutions N " + str(max(2,int(size)-10)) + "_" + str(int(size)) +

".txt",'w')

y=0

while y<int(X): #Everytime the loop is executed, I would like all random variables

to update

 initialtime=time.time()

 print "Archive " + str(y+1) + " \n"

 N=np.random.randint(max(2,int(size)-10),int(size))

 N2=N

 C=[[0,1000000000,1000000000,0,1000000000]]

 jj=1

 while jj<N:

 C0=np.random.randint(1,100)

 C1=C0+np.random.randint(1,100)

 C2=np.random.randint(1,10000)

 C3=np.random.random()*0.00001

 C4=np.random.randint(1,500)

 C+=[[C0,C1,C2,C3,C4]]

 jj+=1

 CC=C

 Info_left=[]

 for elemx in range(N):

 Info_left+=[C[elemx][0]]

Page 58 Report

 D=np.zeros((N,N))

 ii=0

 while ii<N:

 js=ii+1

 while js<N and js>ii:

 D[ii][js]=np.random.randint(1,500)

 D[js][ii]=D[ii][js]

 js+=1

 ii+=1

 D=D.tolist()

 DD=D

 Cost_i=[]

 i=0

 while i<N:

 Cost_i+=[C[i][3]*D[i][0]*C[i][0]]

 i+=1

 S=[]

 i=0

 while i<N:

 j=0

 SS=[]

 while j<N:

 sav=round(Cost_i[i]-

(C[i][3]*D[i][j]*C[i][0]+C[j][3]*D[j][0]*C[i][0]),4)

 SS.append(sav)

 c=i

 p=j

 j+=1

 S+=[SS]

 i+=1

 ix=0

 jt=0

 while ix<N and jt<N:

 S[ix][jt]=0

 ix+=1

 jt+=1

 iu=0

 ju=0

 while ju<N:

 S[iu][ju]=0

 ju+=1

 #With the variables defined, I run the algorithm

 #Sm=algorithm_new.max_savings(S,N)

 Cost,Links=algorithm_new.algor(D,C,N,S,Info_left,Cost_i)

 Info_left2=[]

 for elemx in range(N2):

 Info_left2+=[CC[elemx][0]]

An optimized routing algorithm for data collection in IoT network Page 59

 Cost_i2=[]

 i=0

 while i<N2:

 Cost_i2+=[CC[i][3]*DD[i][0]*CC[i][0]]

 i+=1

 S2=[]

 i=0

 while i<N2:

 j=0

 SS2=[]

 while j<N2:

 sav=round(Cost_i2[i]-

(CC[i][3]*DD[i][j]*CC[i][0]+CC[j][3]*DD[j][0]*CC[i][0]),4)

 SS2.append(sav)

 c=i

 p=j

 j+=1

 S2+=[SS2]

 i+=1

 ix=0

 jt=0

 while ix<N2 and jt<N2:

 S2[ix][jt]=0

 ix+=1

 jt+=1

 iu=0

 ju=0

 while ju<N2:

 S2[iu][ju]=0

 ju+=1

 #Sm2=algorithm_new_2.max_savings2(S2,N2)

 Cost_2,Links_2=algorithm_new_2.algor_2(DD,CC,N2,S2,Info_left2,Cost_i2)

 if Cost_2<Cost:

 Cost=Cost_2

 Links=Links_2

 #I write in a file how the dataset looks like

 fo=open("DataSet" + str(y+1) + ".txt",'w')

 line="Data set: " + str(y+1) + "\n" + str(N) + "\n" + str(5) + "\n" +

"{'C':" + str(C[1:]) + "}\n" + "{'D':" + str(D) + "}\n"

 fo.writelines(line)

 fo.close()

 finaltime=time.time()

 fdata.write(line)

 print "Execution time: " + str(finaltime-initialtime) + " seconds" + "\n"

 #Cost base line

 CostBL=0

Page 60 Report

 i=0

 while i<N:

 CostBL+=C[i][3]*D[i][0]*C[i][0]

 i+=1

 print "Cost BL: " + str(CostBL) + " $" + "\n"

 #Cost base line_2

 print "Cost BL2: " + str(Cost_2) + " $" + "\n"

 print "Cost Algorithm: " + str(Cost) + " $" + "\n"

 print "Improv BL2 vs Alg: " + str(((Cost-Cost_2)/Cost_2)*100) + " %" + "\n"

 #I write in a file the solution

 outfile=open("Solution" + str(y+1) + ".txt",'w')

 outline="Data set: " + str(y+1) + "\n" + "Execution time: " + str(finaltime-

initialtime) + " seconds" + "\n" + "Cost BL: " + str(CostBL) + " $" + "\n" + "Cost

BL2: " + str(Cost_2) + " $" + "\n" + "Cost Algorithm: " + str(Cost) + " $" + "\n" +

"Links: " + str(Links) + "\n" + "Links_2: " + str(Links_2) + "\n"

 outfile.writelines(outline)

 outfile.close()

 fsol.write(outline)

G=nx.DiGraph()

i=0

while i<N:

G.add_node(i)

i+=1

t=0

while t<len(Links):

G.add_edge(Links[t][0],Links[t][1])

t+=1

nx.draw_circular(G, node_color='green', node_size=800, alpha=0.65,

with_labels=True)

plt.show()

 N=0

 C0=0

 C1=0

 C2=0

 C3=0

 C4=0

 Cost=0

 Cost_2=0

 Links=[]

 Links_2=[]

 y+=1

fdata.close()

fsol.close()

print "Execution finished"

An optimized routing algorithm for data collection in IoT network Page 61

 Algorithm_new.py

-*- coding: utf-8 -*-

import networkx as nx

import matplotlib.pyplot as plt

import json

import numpy as np

import os

import sys

import time

import copy

def algor(D,C,N,S,Info_left,Cost_i):

 Space=[]

 bat=[]

 IC=[]

 i=0

 while i<N:

 Space+=[C[i][1]-C[i][0]]

 bat+=[C[i][2]]

 IC+=[C[i][0]]

 i+=1

 YY=XY(N)

 Links=[]

 lenLinks=0

 lenLinksAnt=0

 Depth=depth(N)

 Sons=parents_sons(N)

 Parents=parents_sons(N)

 Sod=S #Em servira per anar canviar la matriu destalvis (sense ordenar)

 #print S

 Sm=max_savings(S,N)

 #print Sm

 Smod=Sm #Copio la matriu destalvis ordenada perque es la que anire

modificant

 Smant=Sm #Em servira per saber quina era lanterior. En un inici poso que es

igual que Sm

 #print Smant

 z=0

 finish=False

 while not finish and lenLinks<N and z<len(Smant):

 i=Smant[z][0]

 j=Smant[z][1]

 if D[i][j]<=C[i][4] and YY[i][j]==0 and Info_left[i]>0 and

Space[j]>0:

 if bat[j]>Depth[i]+1 or C[j][2]>Depth[i]+1:

 #if

Cost_i[i]>=Cost_i[j]+(D[i][j]*C[i][3]*Info_left[i]): #preguntarme si val la pena

en termes de cost, ajuntar

Page 62 Report

 #if

Cost_i[i]>=(C[j][3]*D[j][0]*(Info_left[i]+Info_left[j]))+(D[i][j]*C[i][3]*Info_left

[i]):

 if Info_left[i]<=Space[j] and len(Parents[i])<1:

 feas=0

 for elem in Parents[j]:

 if Space[elem]>=Info_left[i] and

bat[elem]>Depth[i]+1:

 feas+=1

 if feas==len(Parents[j]):

 #NOU

 cu=0

 low_cost=1000000

 ex_i=[]

 Found=False

 for elem in Parents[j]:

 if Space[elem]>=Info_left[i]:

 ex_i+=[elem]

 for elem3 in ex_i:

 if C[elem3][3]<low_cost:

 low_cost=C[elem3][3]

 k=elem3

 Found=True

 if Found==True:

 e=0

 while e<len(Links):

 if Links[e][0]==k:#**

 Links[e][2]+=Info_left[i] #**

 if Links[e][0]==j and

Links[e][1]==k:

 Links[e][2]+=Info_left[i]

 e+=1

 Links+=[[i,j,Info_left[i]]]

 lenLinks+=1

 YY[i][j]=1

 YY[j][i]=1

 if i not in Sons[j]:

 Sons[j]+=[i] #Afegeixo I com a fill

de J

 if j not in Parents[i]:

 Parents[i]+=[j]

 for elem in Sons[i]: #Els fills de I tambe

son els fills de J

An optimized routing algorithm for data collection in IoT network Page 63

 if elem not in Sons[j]:

 Sons[j]+=[elem]

 if j not in Parents[elem]:

 Parents[elem]+=[j]

 for elem in Parents[j]:

 if i not in Sons[elem]:

 Sons[elem]+=[i]

 if elem not in Parents[i]:

 Parents[i]+=[elem] #Els

pares de J tambe son els pares de I

 for elem in Sons[i]:

 for elem2 in Parents[j]:

 if elem2 not in

Parents[elem]:

 Parents[elem]+=[elem2]

 if elem not in Sons[elem2]:

 Sons[elem2]+=[elem]

 for elem in Parents[i]:

 for elem2 in Sons[j]:

 YY[elem][elem2]=1

 for elem in Parents[j]:

 Info_left[elem]+=Info_left[i]

 Space[elem]=Space[elem]-

Info_left[i] #Actualitzo el espai de tots els pares

 IC[elem]=max(IC[elem],Info_left[elem]) #***

 #if len(Parents[j])==0: #Si ja te

pares, ja esta afegida la info left al link amb els pares

 if Found==False:

 Info_left[j]+=Info_left[i]

 Space[j]=Space[j]-Info_left[i]

 IC[j]=max(IC[j],Info_left[j])

 #***

 Info_left[i]=0

 bat[i]=C[i][2]-(Depth[i]+1) #Actualitzo

bateria

 if Depth[j]<Depth[i]+1: #En cas que amb la

unio de I, augmenti la prof de J, actualitzo la prof

 Depth[j]=Depth[i]+1

 bat[j]-=Depth[i]+1

 for elem in Parents[j]:

 Depth[elem]=Depth[i]+1

 bat[elem]-=Depth[i]+1

#Actualitzo bateria Parents[i]

Page 64 Report

 #Actualitzo cost de i per arribar al gw

 Cost_i[i]=(C[j][3]*D[j][0]*IC[i])+(D[i][j]*C[i][3]*IC[i]) #***

 #Si val la pena per i tambe ho valdra pels

seus fills

 for elem in Sons[i]:

 Cost_i[elem]=Cost_i[i]+(C[elem][3]*D[elem][i]*IC[elem]) #***

 #Recalculo savings del node i amb tota la

resta menys j i 0

 for elem2 in range(N):

 Sod[i][elem2]=-1

 if elem2!=0 and elem2!=j and

elem2!=i and Sod[elem2][i]!=-1: #***

 if len(Parents[i])==1:

 Sod[elem2][i]=round(Cost_i[elem2]-

((C[i][3]*D[i][j]*IC[elem2])+(C[j][3]*D[j][0]*IC[elem2])+(C[elem2][3]*D[elem2][i]*I

C[elem2])),4)

 else:

 ll=[]

 for elex in

Parents[i]:

 if

len(Parents[elex])>0:

 ll+=[[elex,len(Parents[elex])]]

 #print ll

 order=[]

 mini=10000000000

 acabat=False

 ind=-1

 eles=0

 while not acabat and

eles<len(ll):

 if

ll[eles][1]<mini:

 mini=ll[eles][1]

 ind=ll[eles][0]

 pp=eles

 eles+=1

 if ind!=-1:

 order+=[ind]

 ll[pp]=10000000000

 if len(ll)==0:

 acabat=True

An optimized routing algorithm for data collection in IoT network Page 65

 #print order

 io=1

 SA=C[order[0]][3]*D[order[0]][0]*IC[elem2]

 while

io<(len(order)):

 SA+=C[order[io]][3]*D[order[io]][order[io-1]]*IC[elem2]

 io+=1

 Sod[elem2][i]=round(Cost_i[elem2]-

((C[i][3]*D[i][j]*IC[elem2])+(SA)+(C[elem2][3]*D[elem2][i]*IC[elem2])),4)

 for elem3 in range(N):

 if Sod[elem3][i]==0:

 Sod[elem3][i]=-1

 if elem3!=0 and elem3!=i and

elem3!=j and Sod[j][elem3]!=0 and Sod[j][elem3]!=-1:

 Sod[j][elem3]=round((C[j][3]*D[j][0]*IC[j])-

((C[elem3][3]*D[elem3][0]*IC[j])+(C[j][3]*D[j][elem3]*IC[j])),4)

 Smod=max_savings(Sod,N)

 #print Smod

 if Smod==Smant:

 z+=1

 if z==len(Smant):

 finish=True

 else:

 z=0

 Smant=Smod

 #print Smant

 lenLinks+=1

 #Sod=S

 #print Sod

 for elem in range(len(Info_left)):

 if len(Parents[elem])>0 and Info_left[elem]>0:

 Info_left[elem]=0

 if Info_left[elem]>0:

 Links+=[[elem,0,Info_left[elem]]]

 if len(Parents[elem])==0:

 bat[elem]-=1

 i=1

 while i<N:

 Sons[0]+=[i]

 Parents[i]+=[0]

 i+=1

Page 66 Report

 Cost=0

 for elem in range(len(Links)):

 ig=Links[elem][0]

 j=Links[elem][1]

 t=Links[elem][2]

 Cost+=C[ig][3]*D[ig][j]*t

 return [Cost, Links]

def max_savings(SS,N):

 max_sav=0

 SX=copy.deepcopy(SS)

 Smm=[]

 while len(Smm)<N*N:

 i=0

 while i<len(SX):

 j=0

 while j<len(SX):

 if SX[i][j]>max_sav:

 max_sav=SX[i][j]

 c=i

 p=j

 j+=1

 i+=1

 if max_sav==0:

 break

 Smm+=[[c,p,max_sav]]

 SX[c][p]=-1

 #print "SS: " + str(SS)

 #print "SX: " + str(SX)

 max_sav=0

 return Smm

def depth(N):

 Depth=[]

 i=0

 while i<N:

 Depth+=[0]

 i+=1

 return Depth

def parents_sons(N):

 Sons=[]

 i=0

 while i<N:

 Sons+=[[]]

 i+=1

 return Sons

An optimized routing algorithm for data collection in IoT network Page 67

def XY(N): #Matriu de zeros NxN

 XY=[]

 XX=[]

 i=0

 while i<N:

 j=0

 while j<N:

 XX+=[0]

 j+=1

 XY+=[XX]

 XX=[]

 i+=1

 return XY

Page 68 Report

 Algorithm_new_2.py

-*- coding: utf-8 -*-

import networkx as nx

import matplotlib.pyplot as plt

import json

import numpy as np

import os

import sys

import time

def algor_2(DD,CC,N2,S2,Info_left2,Cost_i2):

 Space2=[]

 bat2=[]

 i=0

 while i<N2:

 Space2+=[CC[i][1]-CC[i][0]]

 bat2+=[CC[i][2]]

 i+=1

YY2=XY2(N2)

 Links_2=[]

 Depth2=depth2(N2)

 Sons2=parents_sons2(N2)

 Parents2=parents_sons2(N2)

 Sm2=max_savings2(S2,N2)

 z=0

 while z<len(Sm2):

 i=Sm2[z][0]

 j=Sm2[z][1]

 if DD[i][j]<=CC[i][4] and YY2[i][j]==0 and Info_left2[i]>0 and

Space2[j]>0 and len(Parents2[j])<1 and len(Sons2[i])<1:

 if bat2[j]>Depth2[i]+1 or CC[j][2]>Depth2[i]+1:

 if Info_left2[i]<=Space2[j] and len(Parents2[i])<1:

 feas2=0

 #for elem in Parents[j]:

 # if Space[elem]>=Info_left[i] and

bat[elem]>Depth[i]+1:

 # feas+=1

 if feas2==0: #len(Parents[j]):

#NOU

cu=0

low_cost=1000000

ex_i=[]

Found=False

for elem in Parents[j]:

if Space[elem]>=Info_left[i]:

ex_i+=[elem]

An optimized routing algorithm for data collection in IoT network Page 69

for elem3 in ex_i:

if C[elem3][3]<low_cost:

low_cost=C[elem3][3]

k=elem3

Found=True

if Found==True:

e=0

while e<len(Links_2):

if Links_2[e][0]==k:#**

 Links_2[e][2]+=Info_left[i] #**

if Links_2[e][0]==j and

Links_2[e][1]==k:

 Links_2[e][2]+=Info_left[i]

e+=1

 Links_2+=[[i,j,Info_left2[i]]]

 YY2[i][j]=1

 YY2[j][i]=1

 if i not in Sons2[j]:

 Sons2[j]+=[i] #Afegeixo I com a

fill de J

 if j not in Parents2[i]:

 Parents2[i]+=[j]

 for elem in Sons2[i]: #Els fills de I

tambe son els fills de J

 if elem not in Sons2[j]:

 Sons2[j]+=[elem]

 if j not in Parents2[elem]:

 Parents2[elem]+=[j]

 #for elem in Parents2[j]:

 # if i not in Sons2[elem]:

 # Sons2[elem]+=[i]

 # if elem not in Parents[2i]:

 # Parents2[i]+=[elem] #Els

pares de J tambe son els pares de I

 for elem in Sons2[i]:

 for elem2 in Parents2[j]:

 if elem2 not in

Parents2[elem]:

 Parents2[elem]+=[elem2]

 if elem not in Sons2[elem2]:

 Sons2[elem2]+=[elem]

 for elem in Parents2[i]:

 for elem2 in Sons2[j]:

Page 70 Report

 YY2[elem][elem2]=1

 #for elem in Parents[j]:

 # Info_left[elem]+=Info_left[i]

 # Space[elem]=Space[elem]-

Info_left[i] #Actualitzo el espai de tots els pares

 #if len(Parents[j])==0: #Si ja te

pares, ja esta afegida la info left al link amb els pares

if Found==False:

 Info_left2[j]+=Info_left2[i]

 Space2[j]=Space2[j]-Info_left2[i]

 Info_left2[i]=0

 bat2[i]=CC[i][2]-(Depth2[i]+1) #Actualitzo

bateria

 if Depth2[j]<Depth2[i]+1: #En cas que amb

la unio de I, augmenti la prof de J, actualitzo la prof

 Depth2[j]=Depth2[i]+1

 bat2[j]-=Depth2[i]+1

 #for elem in Parents[j]:

 # Depth[elem]=Depth[i]+1

 # bat[elem]-=Depth[i]+1

#Actualitzo bateria Parents[i]

 z+=1

 for elem in range(len(Info_left2)):

 if len(Parents2[elem])>0 and Info_left2[elem]>0:

 Info_left2[elem]=0

 if Info_left2[elem]>0:

 Links_2+=[[elem,0,Info_left2[elem]]]

 if len(Parents2[elem])==0:

 bat2[elem]-=1

 i=1

 while i<N2:

 Sons2[0]+=[i]

 Parents2[i]+=[0]

 i+=1

 Cost_2=0

 for elem in range(len(Links_2)):

 ig=Links_2[elem][0]

 j=Links_2[elem][1]

 t=Links_2[elem][2]

 Cost_2+=CC[ig][3]*DD[ig][j]*t

 return [Cost_2,Links_2]

An optimized routing algorithm for data collection in IoT network Page 71

def max_savings2(SS2,N2):

 max_sav2=0

 SX2=SS2

 Smm2=[]

 while len(Smm2)<N2*N2:

 i=0

 while i<len(SX2):

 j=0

 while j<len(SX2):

 if SX2[i][j]>max_sav2:

 max_sav2=SX2[i][j]

 c=i

 p=j

 j+=1

 i+=1

 if max_sav2==0:

 break

 Smm2+=[[c,p,max_sav2]]

 SX2[c][p]=0

 max_sav2=0

 return Smm2

def depth2(N2):

 Depth2=[]

 i=0

 while i<N2:

 Depth2+=[0]

 i+=1

 return Depth2

def parents_sons2(N2):

 Sons2=[]

 i=0

 while i<N2:

 Sons2+=[[]]

 i+=1

 return Sons2

def XY2(N2): #Matriu de zeros NxN

 XY2=[]

 XX2=[]

 i=0

 while i<N2:

 j=0

 while j<N2:

 XX2+=[0]

 j+=1

 XY2+=[XX2]

 XX2=[]

 i+=1

 return XY2

Page 72 Report

Annex 2: CPLEX program

int N=...;
int K=...;
float C[1..N][1..K]=...; //characteristics
int D[1..N][1..N]=...; //distances

dvar int X[1..N][1..N]; //data sent from i to j
dvar boolean Y[1..N][1..N]; //1 if i sends to j
dvar boolean Z[1..N][1..N];
dvar float fo;
dvar float BL;
dvar int M[1..N][1..N];

minimize
 fo;

subject to
{
 fo==sum(i in 2..N, j in 1..N)(C[i][4]*X[i][j]*D[i][j]);
 BL==sum(i in 2..N)(C[i][4]*C[i][1]*D[i][1]);

 forall(i in 1..N, j in 1..N, l in 1..N)
 {
 X[i][j]>=0;

 Y[1][j]==0;
 X[1][j]==0;
 Z[1][j]==0;

 C[i][3]>=1+sum(l in 1..N)(Y[l][i]);
 X[i][i]==0;
 Y[i][i]==0;
 Z[i][i]==0;

 if (i!=j && l!=j && l!=i)
 {
 if (i!=1)
 {
 sum(i in 1..N)(C[i][1]*Z[i][j])<=C[j][2]-C[j][1];
 sum(j in 1..N)(Y[i][j])==1;
 X[i][j]>=(C[i][1]+sum(l in 2..N)(C[l][1]*Z[l][i]))*Y[i][j];
 Y[i][j]<=Z[i][j];
 Y[i][j]+Y[j][i]<=1;
 Z[l][i]+Y[i][j]<=Z[l][j]+1;

 if (j!=1)
 {
 D[i][j]*Y[i][j]<=C[i][5];
 }
 }

 }
 }

}

An optimized routing algorithm for data collection in IoT network Page 73

Annex 3: Comparing results: Algorithm vs CPLEX

Page 74 Report

An optimized routing algorithm for data collection in IoT network Page 75

Page 76 Report

An optimized routing algorithm for data collection in IoT network Page 77

Page 78 Report

Showing the WORST case

SUMMARY:

- max_savings function could be N2 (we can use 1-

dimensional array where each element is a set of the value

and indices, so we only do N2 iterations to find the max one).

- Then, total complexity of algo function would be N3,

since:

N-2

N-2in both

cases

N-1

Annex 4: Complexity analysis
def algor(D,C,N,S,Info_left,Cost_i):

 Space=[]

 bat=[]

 IC=[]

 i=0

 while i<N:

 Space+=[C[i][1]-C[i][0]]

 bat+=[C[i][2]]

 IC+=[C[i][0]]

 i+=1

 YY=XY(N)

 Links=[]

 lenLinks=0

 lenLinksAnt=0

 Depth=depth(N)

 Sons=parents_sons(N)

 Parents=parents_sons(N)

 Sod=S #Em servira per anar canviar la matriu destalvis (sense ordenar)

 #print S

 Sm=max_savings(S,N)

 #print Sm

 Smod=Sm #Copio la matriu destalvis ordenada perque es la que anire modificant

 Smant=Sm #Em servira per saber quina era lanterior. En un inici poso que es igual que Sm

 #p

 z=0

 finish=False

 while not finish and lenLinks<N and z<len(Smant):

 i=Smant[z][0]

 j=Smant[z][1]

 if D[i][j]<=C[i][4] and YY[i][j]==0 and Info_left[i]>0 and Space[j]>0:

 if bat[j]>Depth[i]+1 or C[j][2]>Depth[i]+1:

 if Info_left[i]<=Space[j] and len(Parents[i])<1:

 feas=0

 for elem in Parents[j]:

 if Space[elem]>=Info_left[i] and bat[elem]>Depth[i]+1:

 feas+=1

 if feas==len(Parents[j]):

 #NOU

 cu=0

 low_cost=1000000

 ex_i=[]

 Found=False

 for elem in Parents[j]:

 if Space[elem]>=Info_left[i]:

 ex_i+=[elem]

 for elem3 in ex_i:

 if C[elem3][3]<low_cost:

 low_cost=C[elem3][3]

 k=elem3

 Found=True

An optimized routing algorithm for data collection in IoT network Page 79

N-1

N-2

N-2

(N-2) * (N-2)

N-2

N-2

 if Found==True:

 e=0

 while e<len(Links):

 if Links[e][0]==k:

 Links[e][2]+=Info_left[i]

 if Links[e][0]==j and Links[e][1]==k:

 Links[e][2]+=Info_left[i]

 e+=1

 Links+=[[i,j,Info_left[i]]]

 lenLinks+=1

 YY[i][j]=1

 YY[j][i]=1

 if i not in Sons[j]:

 Sons[j]+=[i]

 if j not in Parents[i]:

 Parents[i]+=[j]

 for elem in Sons[i]:

 if elem not in Sons[j]:

 Sons[j]+=[elem]

 if j not in Parents[elem]:

 Parents[elem]+=[j]

 for elem in Parents[j]:

 if i not in Sons[elem]:

 Sons[elem]+=[i]

 if elem not in Parents[i]:

 Parents[i]+=[elem]

 for elem in Sons[i]:

 for elem2 in Parents[j]:

 if elem2 not in Parents[elem]:

 Parents[elem]+=[elem2]

 if elem not in Sons[elem2]:

 Sons[elem2]+=[elem]

 for elem in Parents[i]:

 for elem2 in Sons[j]:

 YY[elem][elem2]=1

 for elem in Parents[j]:

 Info_left[elem]+=Info_left[i]

 Space[elem]=Space[elem]-Info_left[i]

 IC[elem]=max(IC[elem],Info_left[elem])

 if Found==False:

 Info_left[j]+=Info_left[i]

 Space[j]=Space[j]-Info_left[i]

 IC[j]=max(IC[j],Info_left[j])

 Info_left[i]=0

 bat[i]=C[i][2]-(Depth[i]+1)

 if Depth[j]<Depth[i]+1:

 Depth[j]=Depth[i]+1

 bat[j]-=Depth[i]+1

 for elem in Parents[j]:
 Depth[elem]=Depth[i]+1
 bat[elem]-=Depth[i]+1

Page 80 Report

N-2

N

N-2

N-2

N-2

N-2

 #Actualitzo cost de i per arribar al gw

 Cost_i[i]=(C[j][3]*D[j][0]*IC[i])+(D[i][j]*C[i][3]*IC[i])

 #Si val la pena per i tambe ho valdra pels seus fills

 for elem in Sons[i]:

 Cost_i[elem]=Cost_i[i]+(C[elem][3]*D[elem][i]*IC[elem])

 for elem2 in range(N):

 Sod[i][elem2]=-1

 if elem2!=0 and elem2!=j and elem2!=i

and Sod[elem2][i]!=-1:

 if len(Parents[i])==1:

 Sod[elem2][i]=round(Cost_i[elem2]-

((C[i][3]*D[i][j]*IC[elem2])+(C[j][3]*D[j][0]*IC[elem2])+(C[elem2][3]*D[elem2][i]*IC[elem2])),4)

 else:

 ll=[]

 for elex in Parents[i]:

 if

len(Parents[elex])>0:

 ll+=[[elex,len(Parents[elex])]]

 #print ll

 order=[]

 mini=10000000000

 acabat=False

 ind=-1

 eles=0

 while not acabat and

eles<len(ll):

 if ll[eles][1]<mini:

 mini=ll[eles][1]

 ind=ll[eles][0]

 pp=eles

 eles+=1

 if ind!=-1:

 order+=[ind]

 ll[pp]=10000000000

 if len(ll)==0:

 acabat=True

 io=1

 SA=C[order[0]][3]*D[order[0]][0]*IC[elem2]

 while io<(len(order)):

 SA+=C[order[io]][3]*D[order[io]][order[io-1]]*IC[elem2]

 io+=1

 Sod[elem2][i]=round(Cost_i[elem2]-((C[i][3]*D[i][j]*IC[elem2])+(SA)+(C[elem2][3]*D[elem2][i]*IC[elem2])),4)

An optimized routing algorithm for data collection in IoT network Page 81

N

Calling a function

N N

 for elem3 in range(N):

 if Sod[elem3][i]==0:

 Sod[elem3][i]=-1

 if elem3!=0 and elem3!=i and elem3!=j and

Sod[j][elem3]!=0 and Sod[j][elem3]!=-1:

 Sod[j][elem3]=round((C[j][3]*D[j][0]*IC[j])-((C[elem3][3]*D[elem3][0]*IC[j])+(C[j][3]*D[j][elem3]*IC[j])),4)

 Smod=max_savings(Sod,N)

 if Smod==Smant:

 z+=1

 if z==len(Smant):

 finish=True

 else:

 z=0

 Smant=Smod

 lenLinks+=1

 for elem in range(len(Info_left)):

 if len(Parents[elem])>0 and Info_left[elem]>0:

 Info_left[elem]=0

 if Info_left[elem]>0:

 Links+=[[elem,0,Info_left[elem]]]

 if len(Parents[elem])==0:

 bat[elem]-=1

 i=1

 while i<N:

 Sons[0]+=[i]

 Parents[i]+=[0]

 i+=1

 Cost=0

 for elem in range(len(Links)):

 ig=Links[elem][0]

 j=Links[elem][1]

 t=Links[elem][2]

 Cost+=C[ig][3]*D[ig][j]*t

 return [Cost, Links]

__

Page 82 Report

(N*N) * N * N

(N*N) * N * N

def max_savings(SS,N):

 max_sav=0

 SX=copy.deepcopy(SS)

 Smm=[]

 while len(Smm)<N*N:

 i=0

 while i<len(SX):

 j=0

 while j<len(SX):

 if SX[i][j]>max_sav:

 max_sav=SX[i][j]

 c=i

 p=j

 j+=1

 i+=1

 if max_sav==0:

 break

 Smm+=[[c,p,max_sav]]

 SX[c][p]=-1

 #print "SS: " + str(SS)

 #print "SX: " + str(SX)

 max_sav=0

return Smm

