Títol:
Anàlisi de l’impacte de les emissions de GEH associades al mercat europeu de gas natural, des de l’extracció fins el seu consum

Cognoms: Nualart Corpas
Nom: Josep
Titulació: Màster en Ciència i Tecnologia de la Sostenibilitat

Directors: Martí Rosas Casals (UPC) i Alfons Pérez López (ODG)

Data de lectura: juny de 2017
Índex

<table>
<thead>
<tr>
<th>Secció</th>
<th>Títol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resum</td>
<td>...</td>
</tr>
<tr>
<td>Paraules clau</td>
<td>...</td>
</tr>
<tr>
<td>1</td>
<td>Introducció</td>
</tr>
<tr>
<td>1.1</td>
<td>Què és el gas natural</td>
</tr>
<tr>
<td>1.1.1</td>
<td>Característiques generals</td>
</tr>
<tr>
<td>1.1.2</td>
<td>Potencial de Canvi Climàtic (PCC)</td>
</tr>
<tr>
<td>1.1.3</td>
<td>Gas convencional i no convencional</td>
</tr>
<tr>
<td>1.2</td>
<td>Etapes i operacions al llarg de la cadena del gas</td>
</tr>
<tr>
<td>1.3</td>
<td>Càlcul dels factors d’emissió</td>
</tr>
<tr>
<td>1.3.1</td>
<td>El paper fonamental de la U.S Environmental Protection Agency (EPA)</td>
</tr>
<tr>
<td>1.3.2</td>
<td>Bottom-up o Top-down</td>
</tr>
<tr>
<td>1.3.3</td>
<td>Limitacions i oportunitats del context actual</td>
</tr>
<tr>
<td>1.4</td>
<td>Gas natural, combustible de transició cap a on?</td>
</tr>
<tr>
<td>1.4.1</td>
<td>Acord de París</td>
</tr>
<tr>
<td>1.4.2</td>
<td>2030 EU targets</td>
</tr>
<tr>
<td>1.4.3</td>
<td>European Network Transmission System Operators – Gas (ENTSO-G)</td>
</tr>
<tr>
<td>1.4.4</td>
<td>Projectes d’Interès Comú (PIC)</td>
</tr>
<tr>
<td>1.4.5</td>
<td>Peak gas</td>
</tr>
<tr>
<td>1.4.6</td>
<td>Impactes climàtics i atmosfèrics del gas</td>
</tr>
<tr>
<td>1.4.7</td>
<td>Gas i carbò</td>
</tr>
<tr>
<td>1.5</td>
<td>Característiques del Gas Natural Liquat (GNL) i Boil-off Gas (BOG)</td>
</tr>
<tr>
<td>1.6</td>
<td>Característiques de la cadena de subministrament del GNL i dels vaixells metaners</td>
</tr>
<tr>
<td>1.6.1</td>
<td>Bunkering i methane slip</td>
</tr>
<tr>
<td>1.6.2</td>
<td>Criogenització</td>
</tr>
<tr>
<td>1.6.3</td>
<td>Característiques bàsiques dels vaixells metaners</td>
</tr>
<tr>
<td>1.6.4</td>
<td>Vida útil dels vaixells metaners</td>
</tr>
<tr>
<td>1.6.5</td>
<td>Tipus de vaixells metaners</td>
</tr>
<tr>
<td>1.6.6</td>
<td>Tipus de sistemes de propulsió</td>
</tr>
<tr>
<td>2</td>
<td>Objectius</td>
</tr>
<tr>
<td>3</td>
<td>Materials i metodologia</td>
</tr>
<tr>
<td>3.1</td>
<td>Bases de dades</td>
</tr>
<tr>
<td>3.1.1</td>
<td>ICIS LNG Edge</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Global LNG Info</td>
</tr>
<tr>
<td>3.1.3</td>
<td>Base de dades de l’estudi</td>
</tr>
<tr>
<td>3.2</td>
<td>Metodologia</td>
</tr>
</tbody>
</table>
Índex de figures

Figura 1: Comparativa del grau d'assoliment de cadascun dels escenaris (Font: ENTSOG (2017))... 18
Figura 2: Comparació de la producció de gas calculada a través del métode MHV per als tres escenaris definits (Font: Maggio & Cacciola (2012))... 22
Figura 3: Comparació de la producció del carbó, petroli i gas utilitzant l'escenari entremig (Font: Maggio & Cacciola (2012)).. 22
Figura 4: Escenaris d'aument de la temperatura mitja global respecte l'any 1900 en el cas que no s'apliqui cap mesura de reducció de GEH; si es fa pel CO2; pel metà i el black carbon o pel CO2, metà i black carbon. (Font: Howarth (2014)) ... 24
Figura 5: Concentració de fons del metà a nivell mundial. (Font: Schneising et al. (2014)) 25
Figura 6: Variació de la concentració de fons del metà als EE.UU entre els períodes 2006-2008 i 2009-2011, remarcant la influencia dels jaciment de Bakken (Nord), Eagle Ford (Sud) i Marcellus (Est). (Font: Schneising et al. (2014))... 25
Figura 7: Esquema de les configuracions dels tancs de membrana (superior) i esfèrica (inferior) (Font: MAN Diesel & Turbo (2008))... 30
Figura 8: Esquema de l'estructura d'un vaixell metaner (Font: API (2015)).......................... 30
Figura 9: Esquema simplificat del sistema de propulsió steam (Font: Browman & Briers (2009))... 33
Figura 10: Esquema simplificat dels sistemes de propulsió DFDE (BOG i MDO) i TFDE (BOG, MDO i HFO) (Font: Browman & Briers (2009))... 34
Figura 11: Esquema simplificat del sistema de propulsió SSD (Font: Browman & Briers (2009))... 35
Figura 12: Relació de volums i variació dels mateixos la (a) càrrega, (b) trànsit i (c) descàrrega dels vaixells metaners... 39
Figura 13: Histograma dels vaixells metaners que conformen la flota en actiu a l'any 2016 segons l'any de posada en funcionament... 43
Figura 14: Histograma dels vaixells metaners que conformen la flota en actiu a l'any 2016 segons la capacitat d'emmagatzematge, en m3... 44
Figura 15: Distribució del tipus de vaixell metaner de la flota en actiu a l'any 2016............ 44
Figura 16: Any de posada en funcionament vs. capacitat d'emmagatzematge de la flota en actiu al 2016 segons el tipus de vaixell metaner.. 45
Figura 17: Distribució del sistema de propulsió de la flota en actiu a l'any 2016................ 45
Figura 18: Any de posada en funcionament vs. capacitat d'emmagatzematge de la flota en actiu al 2016 segons el sistema de propulsió... 46
Figura 19: Països europeus importadors que formen part de la xarxa de transport de GNL l'any 2016 ... 46
Figura 20: Països de la resta del món que juguen el paper d'exportadors que formen part de la xarxa de transport de GNL l'any 2016 ... 47
Figura 21: Histograma dels vaixells que formen part de la xarxa de transport de GNL en el mercat gasístic europeu segons l'any de posada en funcionament...................... 47
Figura 22: Tipus de vaixells metaners segons el país de sortida.. 48
Figura 23: Número de trànsits realitzats per cadascun dels vaixells, distingint entre els tipus de vaixell metaner... 48
Figura 24: Xarxa de transport de GNL del mercat gasístic europeu, posant èmfasi en els ports importadors i els trànsits que es produeixen en el mar Mediterrani...................... 50
Figura 25: Xarxa de transport de GNL del mercat gasístic europeu, posant èmfasi en els ports exportadors... 51
Figura 26: Xarxa de transport de GNL del mercat gasístic europeu, posant èmfasi en els ports exportadors... 51
Figura 27: $\Delta VBOGreal$ generat segons la data de d'arribada del vaixell metaner al port de destí... 53
Figura 28: Caracterització dels tipus de vaixells metaners tenint en compte el $\Delta VBOGreal$ i la duració del trànsit.. 53
Índex de taules

Taula 1: Propietats de l’extracció de gas no convencional (Font: Broderick et al. (2011))... 8
Taula 2: Etapes del cadena del gas ... 9
Taula 3: Operacions del cadena del gas ... 9
Taula 4: Taula resum amb el percentatge de fuites i concentracions de fons de metàestro estimades en les diferents operacions de la cadena del gas en els estudis analitzats 15
Taula 5: Factors d’emissió de diferents combustibles fòssils quan són cremats i percentatge respecte el gas. (Font: EIA) ... 26
Taula 6: Percentatge d’emissions respecte el que ha utilitzat el consumidor estimat per els estudis analitzats. ... 27
Taula 7: Propietats termo-físiques del GNL (Font: Dobrota et al. (2013)) 27
Taula 8: Defectes i tècniques preventives més freqüents en les diferents etapes dels vaixells metaners .. 31
Taula 9: Capacitat i característiques de cadascun dels tipus de vaixell metaners existents ... 32
Taula 10: Taula amb els identificadors corresponents als noms dels port importadors (vermell) i exportadors (blau) i codi de colors pels trànsits, respecte el país de sortida 52
Taula 11: Taula resum amb els valors mitjors de diferents paràmetres avaluats durant els trànsits i la distribució de gas per gasoducte a diferents escales. Elaboració pròpia 61
Taula 12: Rang d’emissions de CO₂eq. des de l’extracció fins el port de Barcelona, tenint com a port de sortida Sabine Pass, per a dos vaixells metaners amb capacitats de 138.000 i 174.000, respectivament ... 62
Taula 13: Taula resum amb el nom dels paràmetres definits en les metodologies utilitzades, la seva definició les unitats amb les que es mesuren .. 72
Resum

El gas natural és el combustible fòssil que emet menys CO$_2$ a l’atmosfera quan és cremat. Per aquest motiu, la retòrica oficial promou el gas natural com el combustible de transició cap a les economies baixes en carboni. El gas natural està conformat bàsicament per metà, sobre el qual existeix poc coneixement referit a quin és el seu impacte climàtic i la seva contribució a l’escalfament global. També hi ha una manca de coneixement sobre la quantitat de fuites de metà que s’atribueixen a les diferents etapes de la cadena de subministrament del gas natural. Una de les operacions amb les que compta aquesta cadena és el transport en vaixell de Gas Natural Liquat (GNL), que ofereix un mercat més flexible i integrat a nivell mundial. En aquest estudi es volen analitzar les diferents dimensions i implicacions que té apostar pel gas natural, tant a nivell global com de la Unió Europea, intentant traduir la complexitat en arguments clars que ajudin al desenvolupament del debat, i prestando especial atenció en la influencia de la geopolítica i els interessos econòmic-financers en l’aposta pel gas natural. També s’ha avaluat en més detall el paper del transport de GNL en el mercat gasístic europeu i les emissions associades, ja que és l’alternativa per la que s’està apostant, i podríria comportar el consum de gas natural no convencional importat des dels Estats Units, que té un major impacte climàtic que el convencional.

Paraules clau

Metà, gas natural liquat, potencial de canvi climàtic, xarxa de transport, Unió Europea
1 Introducció

1.1 Què és el gas natural

1.1.1 Característiques generals

El gas natural és l’únic combustible fòssil que es troba en estat gasós a la naturalesa i s’extreu dels reservoris que contenen exclusivament aquest combustible fòssil o com a subproducte de l’extracció de petroli. Aquest està conformat en major part per metà, entre un 87% i un 97%, altres hidrocarburs com l’età, propà o butà i elements com el nitrogen i el diòxid de carboni, tots aquests en menor percentatge\(^1\). Des d’ara en endavant se l’anomenarà simplement “gas” o metà, ja que el nom de gas natural no visibilitza el fet que estigui conformat pràcticament en la seva totalitat per metà, on les emissions d’aquest són les segones principals contribuïdors a l’escalfament global al llarg de la història, després del CO\(_2\) (Shindell et al. 2009).

El temps de vida del metà en l’atmosfera és de només 12 anys, mentre que la del CO\(_2\) és de més de 100 anys (Howarth 2014). Per tant, sembla raonable el fet que és complicat comparar els dos principals contribuïdors al canvi climàtic en una mateixa escala de temps, que és el que es presenta en el següent punt.

El gas és incolor però, al contrari del que es pensa la majoria de la població, és inodor, encara que se li adereix una substància que facilita la detecció de fugues, i no és tòxic, tot i que pot desplaçar l’oxigen i matar per asfixia.

1.1.2 Potencial de Canvi Climàtic (PCC)

Encara que la vida del metà en l’atmosfera és de 12 anys, i que només queda un 2% d’aquest quan han transcorregut 50 anys, és molt més efectiu que el CO\(_2\) en atrapar la calor (Cremonese & Gusev 2016).

El PCC es basa en l’impacte radioactiu i el temps de permanència del gas en l’atmosfera, amb la possibilitat d’incloure els efectes de la radiació directa del propi gas i els possibles efectes radioactius indirectes a l’entrar en contacte amb altres components. L’actual concepte de PCC és molt limitat perquè només considera les propietats físiques del components emesos i no les químiques que poden desencadenar reaccions amb els que compo森 l’atmosfera. Quan els diferents components que poden ser emesos reaccionen amb els aerosols, l’efecte hivernacle d’aquests es veu potenciat.

Els informes del Intergovernmental Panel on Climate Change (IPCC) no tenen en compte la reacció dels aerosols amb els diferents Gasos d’Efecte Hivernacle (GEH) quan calcula el PCC. Els valors obtinguts en l’estudi realitzat per Shindell et al. (2009) quan no es consideren els aerosols són molt semblants als de l’IPCC, però difereixen quan s’ha considerat la reacció amb els aerosols. Les escales de temps que valoren els informes de l’IPCC són de 10, 20, 100 i 500 anys, tot i que la més utilitzada en l’esfera política és la de 100 anys, ja que els tractats internacionals han establert que s’utilitz aquest com a valor estandarditzar per facilitar la pressa de decisions (Howarth et al. 2012). Quan es parla d’escales de temps més curtes, 10 o 20 anys, és més complicat estimar el PCC perquè està íntimament lligat amb el moment en què s’han produït les emissions (Shindell et al. 2009).

Malgrat el que s'ha decidit en els tractats internacionals, el 5è informe de l'IPCC\(^2\) (AR5) especifica que "no hi ha cap argument científic per escollir l'escala de temps de 100 anys per comparar els diferents GEH" i que "la selecció de l'escala de temps depèn del pes relatiu assignat als efectes i l'avaluació que es vulgui fer d'aquests". Aquesta convenció d'escollir l'escala de temps de 100 anys fa que les emissions corresponents a components de vida curta com el NO\(_x\), el SO\(_2\) o el NH\(_4\) s'incloguin en la legislació de qualitat de l'aire locals, ja que els seus impactes no es poden comparar amb el que tenen una vida més llarga (Shindell et al. 2009).

La discusió existent sobre l'escala de temps que s'ha d'escollir, també es produeix perquè hi ha una part dels agents involucrats partidaris en emfatitzar els efectes climàtics que pot tenir a curt termini, 20 anys, i que pot ser el més apropiat degut a la vida en l’atmosfera del metà i els que creuen que és més important avaluar les dinàmiques climàtiques que es poden produir a llarg termini, centenars d’anys, on el CO\(_2\) serà el principal contribuidor (Sanchez & Mays 2015).

Tenint en compte la vida en l’atmosfera del metà, es creu que l’escala de temps més idònia per avaluar la contribució del metà en l’escalfament global és la de 20 anys. Els 4t\(^3\) (AR4) i 5è informe de l’IPCC han quantificat el PCC del metà per aquesta escala de temps en 72 i 86, respectivament, mentre que el valor determinat per l’estudi realitzat per Shindell et al. (2009) és de 79 quan es consideren els efectes radioactius directes dels aerosols i 105 quan es consideren els directes i els indirectes.

1.1.3 Gas convencional i no convencional

El gas convencional és el que es troba en els reservoris que són més accessibles i que la tècnica requerida per poder-lo extreure és la que s'ha utilitzat des dels inicis de la seva explotació. El gas no convencional és el que es troba en ubicacions i condicions més desfavorables per a la seva extracció i es requereixen de tècniques més sofisticades i agressives, com és el cas de la fractura hidràulica o fracking.

El gas no convencional el podem trobar en diferentes formes en la naturalesa, com és el cas del gas d’esquist, el tight gas o el coal-bed gas. En aquest estudi no es farà distinció entre ells, ja que les conseqüències climàtiques que es volen avaluar van més relacionades amb la tècnica del fracking que no pas en les propietats de cadascun d’ells. Tot i això, és important remarcar que tampoc existeix un criteri normalitzat a nivell internacional sobre quins tipus de gas són convencionals i quins no, ja que el tight gas és categoritzat com a no convencional en els EE.UU., però com a gas convencional a Europa (Cremonese & Gusev 2016).

En la construcció dels pous per extreure gas convencional cal fer una perforació vertical per tal de poder accedir al reservori, mentre que la corresponent a gas no convencional es necessita fer la perforació vertical i després una d’horitzontal. A més, la tècnica del fracking requereix grans volums d’aigua per poder trencar la roca que impedeix l’accés al reservori i aquesta és retornada com a flowback, el qual ha de ser tractat si es vol reutilitzar en qualsevol àmbit. Un dels principals inconvenients que es produeixen en l’operació de construcció dels pous per extreure gas no convencional és el fet que el flowback conté metà i aquest acostuma a ser alliberat a l’atmosfera.

La productivitat utilitzant la tècnica del fracking és molt alta a l’inici, però es veu reduïda ràpidament (Schneising et al. 2014). Per aquest motiu, s’han d’anar construint nous pous de manera regular per tal de poder mantenir la productivitat. Les majors concentracions de fons de metà (an., background concentration) s’han registrat en aquells pous que tenen una producció baixa-mitjana. Amb tot això es pot concloure que les majors concentracions de fons de metà no s’han donat en aquelles zones on existia major densitat de pous ni els que tenien la major extracció de gas. Cal dur a terme més estudis que permetin ratificar la relació entre el canvi de la concentració de fons de metà, l’augment de la producció de gas i el descens de la construcció de pous (Goetz et al. 2017). Un exemple és el jaciment Marcellus, que es troba a la costa est dels EE.UU. (veure figura 6) i és el més important del país. En el període del 2011 al 2014 han anat tancant pous de gas no convencional a un rati de 170 per any, el que ha fet que a l’any 2015 només quedessin el 58% dels que hi havia l’any 2012. Tot i això, l’extracció de gas no convencional entre el 2012 i el 2015 va augmentar un 110% i també les emissions associades a la seva explotació.

El fet que se li doni tanta importància al gas no convencional en aquest estudi, a part dels impactes climàtics associats, és el fet que els EE.UU. s’està projectant com un dels principals exportadors de gas no convencional a nivell europeu i mundial. Els percentatges d’extracció de

<table>
<thead>
<tr>
<th>Propietats del flowback</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Flowback recuperat</td>
<td>15% – 80% (60% en els primers 4 dies)</td>
</tr>
<tr>
<td>Emissions de metà del flowback durant la vida útil del pou</td>
<td>0,6% – 3,2% respecte el gas que arriba al consumidor</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Propietats del fracking</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Composició del líquid de fractura</td>
<td>98% aigua, 2% additius químics</td>
</tr>
<tr>
<td>Pressions pel fracking (Marcellus)</td>
<td>345 – 690 bar</td>
</tr>
<tr>
<td>Consum d’aigua per cada pou en cada etapa de fracking</td>
<td>1100 – 2200 m³</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Construcció del pou</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Duració de totes les activitats requerides abans que el pou entri en funcionament</td>
<td>92 – 221 dies</td>
</tr>
<tr>
<td>Duració de la construcció d’un pou horitzontal</td>
<td>4 – 5 setmanes (24h/dia)</td>
</tr>
<tr>
<td>Llargada vertical de la perforació</td>
<td>1000 – 3500 m</td>
</tr>
<tr>
<td>Llargada horitzontal de la perforació</td>
<td>300 – 1500 m</td>
</tr>
<tr>
<td>Emissions de la perforació vertical/horitzontal</td>
<td>49 kgCO₂/m</td>
</tr>
<tr>
<td>Número de viatges de camions abans de la producció (90% operació de fractura)</td>
<td>4300 - 6600</td>
</tr>
<tr>
<td>Extensió multi-well pad</td>
<td>1,5 – 2 ha</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Emissions generals</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Emissions per combustió en el procés d’extracció</td>
<td>0,2% - 2,9%</td>
</tr>
<tr>
<td>Emissions per combustió en el procés d’extracció + flowback</td>
<td>5,3% - 29,7%</td>
</tr>
<tr>
<td>Emissions en el upstream quan el pou està construït (15% emissions flowback capturades o cremades)</td>
<td>8,60%</td>
</tr>
<tr>
<td>Emissions en el tractament d’aigua residual</td>
<td>0,406 tCO₂/km³</td>
</tr>
<tr>
<td>Emissions en el transport d’aigua i aigua residual</td>
<td>983,11 gCO₂/km</td>
</tr>
</tbody>
</table>

Taula 1: Propietats de l’extracció de gas no convencional (Font: Broderick et al. (2011))
gas no convencional respecte el total als EE.UU. varia segons la font. L’estudi realitzat per Howarth (2014) exposa que a l’any 2012 el gas no convencional representava el 60% de la producció de gas i està previst que sigui el 70% a l’any 2035, mentre que Allen et al. (2013) afirma que a l’any 2013 el gas no convencional suposava el 30% de l’extracció de gas i del 50% l’any 2040.

1.2 Etapes i operacions al llarg de la cadena del gas

Per tal de poder explicar les diferents activitats que es duen a terme durant la cadena del gas, s’ha arribat a un acord entre especialistes i experts en aquest camp per poder dividir-lo en diferents etapes. Les tres etapes en qüestió són el upstream, midstream i downstream, tot i que en aquest estudi s’ha afegit l’abandonament del pou com a etapa a tenir en compte, degut a que es segueixen produint fuites de gas un cop abandonat. Dins d’aquestes etapes existeixen diferents operacions, tot i que no hi ha establert un criteri que identifiqui cada operació a quina etapa correspon, pel que hi ha certa disconformitat entre els estudis queavaluen les fuites que es produeixen en cada etapa.

A continuació s’identifiquen les operacions que es duen a terme en cadascuna de les etapes i es defineixen les operacions que s’han tingut en compte en aquest estudi. Cal remarcar que no existeix l’operació corresponent a la producció de gas, que va just després de l’extracció i s’ha unificat amb aquesta, ja que s’ha suposat que el gas és un recurs natural i no un producte perquè les activitats que s’han de realitzar per adequar-lo al seu transport i consum són mínimes.

<table>
<thead>
<tr>
<th>Etapa</th>
<th>Descripció</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upstream</td>
<td>Construcció del pou i extracció del gas</td>
</tr>
<tr>
<td>Midstream</td>
<td>Transport del gas per gasoducte dins del jaciment o recinte d’explotació</td>
</tr>
<tr>
<td>Downstream</td>
<td>Processament, emmagatzematge i transport en gasoducte fins als consumidors</td>
</tr>
</tbody>
</table>

Taula 2: Etapes del cadena del gas

<table>
<thead>
<tr>
<th>Operacions</th>
<th>Descripció</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perforació del pou</td>
<td>Activitats de perforació i canalització per tal de poder accedir al reservori</td>
</tr>
<tr>
<td>Flowback</td>
<td>Operació exclusiva per a la construcció del pou de gas natural no convencional corresponent a l’aigua que és retornada després de dur a terme fracking</td>
</tr>
<tr>
<td>Extracció</td>
<td>Explotació del reservori i obtenció del gas</td>
</tr>
<tr>
<td>“Descàrrega de liquids”</td>
<td>Separació del gas dels altres líquids amb els qual es troba barrejats, com és el cas de l’aigua</td>
</tr>
<tr>
<td>Transport per gasoducte</td>
<td>Injecció del gas extret fins a la planta de processament del propi jaciment o recinte d’explotació</td>
</tr>
<tr>
<td>Processament del gas</td>
<td>Operació necessària per eliminar impureses que puguin comportar problemes de corrosió en el gasoducte i injecció en el gasoducte de transmissió del gas</td>
</tr>
<tr>
<td>Transmissió</td>
<td>Transport en gasoducte i tractament en la planta de compressió del gas, des del jaciment fins la planta de distribució o de liqüefacció</td>
</tr>
<tr>
<td>Emmagatzematge</td>
<td>Emmagatzematge del gas en els dipòsits de la planta de distribució, liqüefacció o regasificació</td>
</tr>
<tr>
<td>Distribució</td>
<td>Transport del gas des de la planta de distribució, liqüefacció o regasificació fins al consumidor</td>
</tr>
</tbody>
</table>

Taula 3: Operacions del cadena del gas
1.3 Càlcul dels factors d’emissió

1.3.1 El paper fonamental de la *U.S Environmental Protection Agency* (EPA)

L’EPA, tot i ser una agència estatunidenca, és un dels majors referents a nivell mundial en l’estimació dels factors d’emissió de metà de les diferents etapes i operacions al llarg de la cadena del gas.

L’any 2009, l’EPA encara no distingia entre el gas convencional del que no ho és, utilitzant valors per estimar les emissions de metà d’un estudi realitzat l’any 1996 conjuntament amb la pròpia indústria⁴ (Howarth 2014).

A principis del 2010, l’EPA va fer constar la distinció entre el gas convencional i del que no ho és. En el cas del gas convencional es va actualitzar el valor del factor d’emissió corresponent a l’etapa *upstream*, de 0,2% a 1,6%, i pel no convencional de 0,2% a 3,0%. El valor del factor d’emissió de l’etapa *downstream* es va mantenir en 0,9% (Howarth 2014). Cal tenir en compte que un estudi realitzat per Dlugokencky (2003) demostrava valors més alts en l’etapa de *downstream* a Europa.

L’any 2013, l’EPA va disminuir el valor del factor d’emissió durant l’*upstream* basant-se en un informe realitzat per la indústria⁵ i sense contrastar, en el qual es consideraven negligibles les fuites de metà corresponents a la "descàrrega de líquids" i afirmant que les produïdes durant les activitats de refracturació eren més baixes que quan s’utilitza per primera vegada per la construcció d’un pou (Howarth 2014).

Les constants revisions dels valors corresponents als factors d’emissió en l’extracció de gas i petroli en els inventaris anuals de l’EPA es realitzen mitjançant la metodologia *bottom-up*, on el concepte i la discussió es troben en els següents punts.

L’EPA GreenHouse Gas Inventori (EPA GHGI) inclou l’operació d’extracció dins de la de processament. Es proposa que aquesta sigui distingida com operació independent, ja que té valors suficientment significatius per ser-ho considerada (Marchese et al. 2015).

L’EPA GHGI només dóna valors nacionals, pel que es fa difícil comparar amb aquells estudis que obtenen valors a nivell estatal/regional. Tampoc és fàcil atribuir les emissions a cadascun dels jaciments existents, ja que les fuites produïdes en aquests poden arribar a afectar a nivell nacional (Turner et al. 2016).

Fins el moment, l’EPA només té en compte les fuites de metà que es produeixen en els gasoductes dins del recinte d’explotació com una taxa per quilòmetre. L’estudi realitzat per Marchese et al. (2015) suggereix que es facin estudis més acurats per tal d’obtenir dades més fiables, ja que la xarxa de gasoductes dins dels recintes d’explotació dels EE.UU. tenen una llargària superior a 700.000 quilòmetres.

1.3.2 Bottom-up o Top-down

L’estimació dels factors d’emissió en les diferents operacions de la cadena del gas es poden dur a terme mitjançant dues metodologies diferents, bottom-up o top-down. Els inventaris de les àgències, com és el cas de l’EPA, o de la indústria del gas acostumen a ser calculats a través de la metodologia bottom-up, mentre que els estudis de camp que es realitzen per determinar els impactes dels diferents jaciments es fan amb metodologia top-down.

La metodologia bottom-up mesura les emissions directes de cadascun dels dispositius o elements de les instal·lacions i després es multipliquen per la quantitat de les que es troben en l’escala estudiada. El cost i dificultat per poder mesurar les fuites de les instal·lacions són molt elevats, ja que és la pròpia indústria la que determina en quins pous o jaciments es poden prendre les mesures (Caulton et al. 2014), pel que es necessari dur a terme la transformació del valor obtingut a altres escales. Aquest fet limita la mida i representativitat de la mostra.

Un dels motius pel qual les estimacions d’emissions de metà a nivell mundial, utilitzant la metodologia bottom-up, són tant baixes és perquè s’-utilitzen les dades obtingudes en les instal·lacions nord-americanes, les quals tenen una tecnologia més avançada que la majoria de la resta (Höglund-Isaksson 2017).

Una de les possibilitats perquè els factors d’emissió siguin més realistes, és que els inventaris obtinguts a través de la metodologia bottom-up siguin duts a terme per avaluracions y monitoratge independent, i no amb un pacte previ amb la pròpia indústria (Karion et al. 2013). Això també permetria tenir un major coneixement de quin és l’impacte real de les fuites de gas, ja que es podria atribuir un valor més fiable a cadascun dels dispositius i components de la instal-lació. A més, també suposaria una millora en l’estimació de fuites i emissions de metà perquè la metodologia bottom-up compte amb un procés més acurat (Caulton et al. 2014), degut a que no es pot atribuir fuites d’altres fonts d’emissió, com pot passar amb la top-down. Cal remarcar que en la majoria d’estudis bottom-up s’assumeix que en l’operació de perforació del pou, predecessora a la fractura hidràulica, no es generen emissions de metà (Caulton et al. 2014).

Els estudis que utilitzen la metodologia top-down o també anomenats “estudis atmosfèrics”, aproximnen la quantitat d’emissions de metà atribuïdes a la indústria del gas a través de la concentració de metà que es troba en l’atmosfera, mesurant-lo a través de satèl·lits, avions, torres o vehicles terrestres. Els valors obtinguts s’acomosten a comparar amb l’inventari de les agències oficials, com és el cas de l’EPA GHGI. Un dels majors problemes del estudis top-down és la falta de precisió a l’hora de determinar quin percentatge de les emissions són conseqüència de cadascuna de les diferents activitats antropogèniques o naturals que es produeixen en l’escala estudiada (Brandt et al. 2014). Altres activitats econòmiques que contribueixen a l’emissió de metà durant el seu funcionament i, per tant, interferir amb la quantificació atribuïble als pous, són la producció de carn i productes làctics, les quals contribueixen en un 33% del total de les emissions de metà mundials segons el 4t informe del IPCC, abocadors i plantes de tractament d’aigua residual (Pétron et al. 2014).

Les dades obtingudes mitjançant la metodologia top-down han de ser transformades per tal d’evitar la influència de la topografia i la no uniformitat de la distribució de les fonts d’emissió de GEH perquè siguin representatives de les concentracions de fons de metà a nivell local (Goetz et al. 2017). El vent i d’altres condicions meteorològiques són una de les principals causes d’incertesa per obtenir un valor acurat del flux d’emissions utilitzant el mass-balance approach, que és el sistema de mesura que incorporen la majoria d’avions destinats per a aquest tipus d’estudis (Schneising et al. 2014). El monitoratge mòbil per terra detecta els canvis que es van produint en la composició de l’aire mentre va avançant i això fa difícil determinar la influència que tenen les fonts d’emissions perquè depèn íntimament de la taxa d’emissions, la meteorologia i la distància a la que es troben. Per tant, es suposa que aquests
són més representatius a escala reduïda que no pas les mesures realitzades utilitzant avió (Goetz et al. 2017).

Una de les solucions per tal de poder arribar a un major consens entre els valors dels factors d’emissió de les dues metodologies és la proposada en l’estudi realitzat per Höglund-Isaksson (2017), el qual utilitza un nou mètode d’aproximació per tal de quantificar i atribuir les emissions de metà als pous de gas natural i petroli, combinant els inventaris nord-americans i les imatges obtingudes des del satèl·lit. També permet fer la distinció entre el metà emès pels jaciments de petroli i els de gas, que amb la metodologia top-down no era possible, ja que els isòtops de metà emeses per ambdues són els mateixos.

Un altre punt que permetria la convergència dels resultats obtinguts per ambdues metodologies és que els estudis top-down han de realitzar-se conjuntament amb altres àmbits de la ciència que estudien l’atmosfera (Brandt et al. 2014). Com a exemple, l’estudi realitzat per Karion et al. (2013) utilitzant la metodologia top-down ha obtingut un factor d’emissió 1,8 vegades superior a l’establert per la U.S Government Accountability Office (GAO). En el cas de l’estudi dut a terme per Pétron et al. (2014), el valor promig del factor d’emissió de les mesures durant l’any 2008 és del 4%, mentre que els valors de l’EPA pel 2014 eren de 1,6%. Les emissions de metà que s’atribueixen a la indústria petrolera i gasística representen el 75% de la quantitat mesura en l’estudi.

1.3.3 Limitacions i oportunitats del context actual

Com ja s’ha comentat anteriorment, la incoherència en les dades, la falta de mesures i informes, i la mancança d’una metodologia per establir els factors d’emissió, contribueixen a que la majoria de les revisions fetes fins el moment tinguin una tendència general a subestimar la magnitud real de les fuites (Cremonese & Gusev 2016). La problemàtica de l’avaluació de l’impacte climàtic, degut a l’augment en la producció de gas dels últims anys, és la mancança de fiabilitat de les estimacions dels factors d’emissió (Karion et al. 2013).

Les causes principals de la discrepància que existeix actualment en les dades referents a les fuites i emissions de metà en els pous de gas que ha identificat el Institute for Advanced Sustainability Studies (IASS), són els següents (Cremonese & Gusev 2016):

- Utilització de diferents metodologies i/o dispositius per calcular les fuites de metà.
- Anys de mesura diferents, el que implica diferents tecnologies, i manca d’actualitzacions.
- Requeriment i control de la qualitat de les dades, i enquestes, a nivell nacional.
- Falta d’unificació dels sistemes per dur a terme els informes per part del Conveni Marc de la Nacions Unides pel Canvi Climàtic (CMNUCC).
- Diferents nivells d’investigació en els sectors.
- Diferents factors d’emissió per infraestructures semblants.
- Bases de dades incomPLEtes.
- Estructura dels gasoductes i densitat de població.
- Qualitat de la infraestructura nacional.

La manca de coneixement que existeix en l’actualitat, referent a les fuites de metà produïdes durant l’extracció del gas, ha fet que no s’hagi pogut estimar i avaluar a nivell europeu un valor per a aquestes (Höglund-Isaksson 2017).

La gran majoria de publicacions que analitzen les emissions de metà arreu del món demostren que molt pocs factors d’emissió han estat verificats de manera empirica. Per tal de poder reduir la incertesa sobre les fuites de metà i els ràtis d’alliberament del gas que no pot ser canalitzat adequadament, cal dur a terme mesures directes en les diferents parts del món. Per tant, és necessari que existeixi una íntima relació de cooperació entre la indústria gasística
i petroliera i la comunitat científica, la qual hauria d’actuar de manera independent per tal de validar els factors d’emissió facilitats per la indústria, en cas que no pugui participar de manera directa (Höglund-Isaksson 2017; Alvarez et al. 2012).

Cal que es dugui a terme un esforç internacional per tal d’adreçar els diferents problemes associats a l’estimació de les fuites de metà i l’IPCC Guidelines no hauria de focalitzar-se en la participació científica, governamental i dels sectors privats, sinó que hauria de donar més importància als esforços requerits per la mitigació del canvi climàtic. Si aquest esforç també el realitzessin diferents governs, com el dels EE.UU., Alemanya i Rússia, es podria posar de rellevància la problemàtica de les fuites de metà en la indústria del gas i el petroli en l’agenda política de les diferents cimeres internacionals, com la del G20 i les Conferències de les Parts (COP, per les seves sigles en anglès) (Cremonese & Gusev 2016), que són organitzades anualment per la CMNUCC perquè es reuneixin els membres que formen part i discuteixin sobre les polítiques que s’han de dur a terme a nivell governamental, per tal de fer front al canvi climàtic.

Degut a que les fuites de metà generades al llarg de la cadena del gas són incertes, tot apunta a que les taxes de fuites reals són superiors a les calculades prèviament (Alvarez et al. 2012). Així ho corroboren els estudis que han utilitzat la metodologia top-down a nivell regional, mentre que en els corresponents a nivell nacional les fonts d’emissió naturals poden generar soroll en les dades obtingudes (Brandt et al. 2014). Per aquest motiu, és necessari realitzar estudis que permetin estimar de manera més acurada les emissions de GEH derivades de les operacions de la indústria del petroli i del gas a nivell regional i nacional, perquè ajudin a establir criteris i pràctiques per reduir els impactes climàtics i millorar la qualitat de l’aire (Pétron et al. 2014).

També cal dur a terme més estudis relacionats amb l’etapa de perforació del pou, per tal de poder entendre millor les operacions que es duen a terme, com millorar els sistemes de control i garantir que es redueixin les fuites (Caulton et al. 2014). Alhora s’ha de fer èmfasi en l’extracció de gas i petroli i les activitats i processos que comprèn, ja que la major part del metà corresponent a les fuites és cremat o alliberat durant aquesta operació perquè les canonades no tenen la capacitat suficient per tal que sigui injectat en elles o representa un cost econòmic molt elevat (Schneising et al. 2014). Les fuites produïdes en aquesta etapa i la de processament de gas es generen principalment en les vàlvules i compressors, a més de l’alliberament de manera descontrolada en les operacions rutinàries (dispositius pneumàtics) i en les operacions periòdiques de manteniment (Marchese et al. 2015).

Un dels inconvenients amb el que es segueixen trobant alguns dels estudis que han utilitzat la metodologia bottom-up que s’han realitzat en els últims anys, és que la majoria d’aquests utilitzen les emissions de metà estimades en un informe realitzat per l’EPA, juntament amb la pròpia indústria, de l’any 1996 (Howarth et al. 2012). Va ser durant els anys 2012 i 2013 que es van publicar estudis que es basaven en altres bases de dades (Howarth 2014).

El fet que la metodologia bottom-up es basi en l’Anàlisi de Cicle de Vida (ACV) per tal de prendre decisions, pot portar a confusió, ja que aquesta està intimament lligada amb l’ EPA GHGI, els valors del qual fa que es denoti una millora climàtica en la transició de carbó a gas (Brandt et al. 2014).

Les estratègies, polítiques i regulacions per mitigar les emissions de metà a curt termini són viables, a través de l’exigència a nivell legislatiu de les tècniques i tecnologies disponibles (Brandt et al. 2014), ja que la seva aplicació té un cost reduït (Cremonese & Gusev 2016). L’únic que falta és que existeixi la voluntat política per materialitzar-ho. També és imprescindible dur a terme una avaluació de la sostenibilitat que té l’explotació de gas i petroli.
amb tècniques no convencionals a tot el món, per tal de determinar unes polítiques energètiques i mediambientals més "savies" (Schneising et al. 2014).

Per tal de poder comparar les estimacions dels factors d’emissió i concentracions de fons de metà de les diferents operacions que conformen la cadena del gas, realitzades pels estudis que s’han citat fins el moment, s’ha generat una taula resum que també inclou la classificació de les operacions en les etapes d’*upstream*, *midstream* i *downstream* (veure taula 4):
Taula 4: Taula resum amb el percentatge de fuites i concentracions de fons de metà estimades en les diferents operacions de la cadena del gas en els estudis analitzats

<table>
<thead>
<tr>
<th>Etapes</th>
<th>Upstream</th>
<th>Midstream</th>
<th>Downstream</th>
<th>Abandonament del pou</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Drill-out</td>
<td>Flowback</td>
<td>Extracció</td>
<td>“Descàrrega liquids”</td>
</tr>
<tr>
<td>Howarth et al. 2011</td>
<td>Conv. -> 0,01% No -> 0,33%</td>
<td>Conv. --> 0% No -> 1,6%</td>
<td>0,3% - 1,9%</td>
<td>0% - 0,26%</td>
</tr>
<tr>
<td>Venkatesh et al. 2011</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alvarez et al. 2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Howarth et al. 2012</td>
<td></td>
<td>Mix gas natural 2009 --> 1,70%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karion et al. 2012</td>
<td></td>
<td>6,2% - 11,7%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allen et al. 2013</td>
<td></td>
<td>0,42%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brandt et al. 2013</td>
<td>-1% - 1,5%</td>
<td>0,5% - 9% (4%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miller et al. 2013</td>
<td></td>
<td>PNAS (Top-down) --> 1800 ppb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caulton et al. 2014</td>
<td></td>
<td>7%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Howarth 2014</td>
<td></td>
<td>PCC IPCC 2013 --> 86 (20 anys) i 34 (100 anys); Llavors Alvarez et al. 2012 --> 2,8%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pétron et al. 2014</td>
<td></td>
<td>4,1% ++ 1,5% (1870 - 1881 ppb + 4 ppb)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schneising et al. 2014</td>
<td>Bakken --> 10,1% ++ 7,3% i Eagle Ford --> 9,1% ++ 6,2%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marchese et al. 2015</td>
<td></td>
<td>0,47%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sánchez et al. 2015</td>
<td>No benefici climàtic --> 3,7% - 3,9% (20 anys) i 9,1% - 9,4% (100 anys)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Höglund-Issakson 2017</td>
<td></td>
<td>Conv. --> 4%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1.4 Gas natural, combustible de transició cap a on?

1.4.1 Acord de París

1.4.1.1 Definició i característiques generals

L’Acord de París és un tractat internacional que es va acordar entre els diferents països del món durant la COP21, per tal de combatre el canvi climàtic, en el context del desenvolupament sostenible i esforços per eliminar la pobresa. La COP21 es va celebrar entre el 30 de novembre i 11 de desembre del 2015 a París organitzada per la CMNUCC.

En l’article 2 de l’acord, que és on es defineixen els objectius, s’especifica que l’objectiu principal és el de mantenir la temperatura mitja global molt per sota dels 2ºC respecte els nivells preindustrials, i alhora intentar incrementar els esforços perquè aquest esclafament no superi els 1,5ºC. És important considerar que l’Organització Meteorològica Mundial (OMM) afirma que ja s’ha augmentat la temperatura mitja global en 1,1ºC respecte l’etapa preindustrial.

Un altre dels punts que es dóna més importància en l’Acord de París és el fet que ha d’existir un flux financer entre els països més desenvolupats i els que no ho estan, o els que es troben en risc sever de desaparèixer a causa del increment del nivell del mar, per tal que es promogui un desenvolupament sostenible en aquest últims.

En l’informe de la COP21 s’instava a que el secretari general de les Nacions Unides (NNUU) convoqués una cerimònia a Nova York el dia 22 d’abril del 2016, per tal de dur a terme la signatura de l’Acord de París. En aquest acte, 175 dels 195 membres de la COP van signar l’acord. Finalment els 195 membres han signat l’acord. El període establert per tal de poder dipositar la ratificació, acceptació o aprovació és del 22 d’abril del 2016 al 21 d’abril del 2017.

El fet que els països signin l’Acord de París, significa que es comprometen a fer un esforç per assolir els objectius establerts. Una de les principals diferències amb el protocol de Kyoto és que en la ratificació, acceptació o aprovació de l’acord és on els països especificen quines són les mesures que aplicaran per tal de complir amb els objectius esmentats anteriorment.

Una de les majors limitacions amb les que es troba l’Acord de París és que no s’estableix cap mecanisme de retroalimentació que digui als països quins són els ajustos que han de fer si s’està molt lluny d’assolir l’objectiu. L’agregació de les contribucions que han enviat els diferents països en les seves ratificacions, acceptacions o aprovacions de l’Acord de París fan que les reduccions l’any 2030 siguin de 5 GtCO2 respecte la tendència actual, però cal reduir-ne 14 GtCO2 més per tal de poder assolir l’objectiu dels 2ºC. Hi ha una gran variabilitat dels documents de ratificació. Per exemple, la Unió Europea (UE28) referencia la reducció de GEH per l’any 2030 respecte el 1990 i Algèria ho fa respecte la tendència que es seguiria si no s’apliqués cap mesura. En el cas de Qatar, totes les polítiques que s’esmenten són a nivell qualitatiu, sense entrar en detall en els percentatges de reducció.

L’Acord de París va entrar en vigència el 4 de novembre del 2016, ja que 55 països de la COP, els quals representen un mínim del 55% de les emissions totals de GEH, han dipositat la seva ratificació, acceptació o aprovació. La seva entrada en vigència va ser possible pel fet que el dia 3 de setembre de 2016 la Xina i els EE.UU. van presentar la seva ratificació i acceptació.

6 Intervenció de Josep Xercavins al programa “Els Matins” de TV3 https://sth.upc.edu/ca/ggcc/el-ggcc-als-mitjans-de-comunicacio

7 Intervenció d’Olga ALcaraz a Associació d’Amics de la UAB https://vimeo.com/203830220
respectivament. Degut a la compareixença dota a terme per l’actual president dels EE.UU., Donald Trump, el passat 1 de juny, on anunciava la desvinculació dels EE.UU. amb l’Acord de París, posa en perill la consecució dels objectius marcats, ja que juntament amb la Xina, són els dos països que actualment emeten major quantitat de GEH.

Una altra de les diferències amb el Protocol de Kyoto és que es podia presentar la ratificació, acceptació o aprovació com a grup supranacional, com és el cas de la UE28, on després es distribueix els objectius amb els que ha de complir cadascun dels països.

Angola, Egipte, Qatar i Trinitat i Tobago no han ratificat, acceptat o aprovat l’Acord de París. El fet que es doni importància a aquests països és perquè són 4 dels 9 països que han exportat Gas Natural Liquat (GNL) a la UE28 durant l’any 2016. Cal emfatitzar el cas de Qatar, ja que el volum exportat ha estat superior a la suma de la resta de països.

1.4.1.2 Model de justícia climàtica

L’objectiu principal de la justícia climàtica és que tots els països hagin emès la mateixa quantitat de CO₂ per càpita, tenint en compte l’objectiu principal de l’Acord de París\(^8\). L’eina que s’utilitza per quantificar-ho és el pressupost global de carboni, que consisteix en estimar quin és límit total de CO₂ que es pot emetre perquè la temperatura mitja global no augmenti més de 2ºC. La quantitat d’emissions de CO₂ acumulades que es poden emetre sense que s’augmentin 2ºC és de 2900 GtCO₂ i fins el moment s’han emès 2100 GtCO₂. Actualment queda un pressupost de carboni de 800 GtCO₂, aproximadament. Aquesta quantitat és la mateixa que s’ha emès des del 1970 fins el 2010 i, tenint en compte la tendència actual, s’emeten en els pròxims 20 anys\(^9\).

L’escenari RCP 2.6 del AR5 de l’IPCC és l’únic que permet assolir l’objectiu principal de l’Acord de París i comporta que el pic d’emissions s’ha de donar el 2020 i que al 2070 hi hagi emissions netes 0, és a dir, que la quantitat de CO₂ emès i absorbit sigui igual, i a partir de llavors negatives\(^10\).

1.4.2 2030 EU targets

La UE28 s’ha proposat com a objectiu principal per l’any 2030 una reducció del 40% de la quantitat de CO₂ generada respecte l’any 1990. També s’ha plantejat que el mix elèctric estigui format per un 27% de renovables.

Per tal de poder assolir l’objectiu principal, la UE28 ha generat quatre escenaris diferents, plantejant diverses polítiques que garantirien acomplir-lo i d’altres que no (ENTSOG 2017):

- **Slow Progression**: Poc impuls per canviar el sector energètic actual. Existeix una major utilització de carbó respecte del gas en la generació d’energia i l’economia no està concebuda per a una descarbonització efectiva.
- **Blue Transition**: La transició energètica de la UE28 està focalitzada en el gas com a solució, utilitzant la infraestructura existent. El gas substitueix al carbó per a la generació d’energia, es desenvolupa ràpidament perquè sigui utilitzat com a combustible pel transport i domina la generació de calor.
- **Green Evolution**: Desenvolupament de condicions econòmiques favorables per realitzar els plans nacionals de descarbonització. El gas recolza el desenvolupament de les energies renovables, el “gas verd” contribueix a la reducció de CO₂ i existeix una demanda de dispositius més eficients.

\(^8\) Intervenció de Josep Xercavins al programa “Els Matins” de TV3 https://sth.upc.edu/ca/ggcc/els-matins-de-comunicacio

\(^9\) Intervenció d’Olga Alcaraz a Associació d’Amics de la UAB https://vimeo.com/203830220

\(^10\) Intervenció d’Olga Alcaraz a Associació d’Amics de la UAB https://vimeo.com/203830220
• **EU Green Revolution**: Va més enllà dels possibles plans nacionals per tal de poder dur a terme una transició energètica coordinada a nivell europeu, a través dels tractats climàtics a nivell mundial (Acord de París), accelerant les característiques de l’escenari *Green evolution*.

![Diagrama](image)

Figura 1: Comparativa del grau d’assoliment de cadascun dels escenaris (Font: ENTSOG (2017))

L’únic escenari que no compleix amb la reducció del 40% de les emissions de CO₂ per l’any 2030 és el *Slow Progression*, per tant, queda descartat com a possibilitat perquè siguin les seves polítiques les que ha de desenvolupar la UE28. En el cas dels altres tres, la seva reducció va del 41% (*Blue Transition*) fins el 46% (*EU Green Evolution*) (ENTSOG 2017).

Cal remarcar que totes les figures que es troben en aquest estudi es pressuposen que són d’elaboració pròpia. En cas contrari, s’especifica de quines fonts han estat extretes.

1.4.3 European Network Transmission System Operators - Gas (ENTSO-G)

L’ENTSO-G és l’agència que va ser creada l’any 2009 amb l’aprovació del Tercer Paquet Energètic de la UE28 amb l’objectiu de liberalitzar el mercat del gas. Aquest agrupa els operadors del sistema de transmissió de gas de cadascun dels països que la conformen, amb l’objectiu d’assegurar que el desenvolupament de la infraestructura gasística està en consonància amb els objectius energètics. En el cas d’Espanya, l’operador del sistema de transmissió de gas és Enagás.

L’ENTSO-G és l’encarregat de realitzar el *Ten Year Network Development Plan* (TYNDP), que consisteix en especificar quins projectes són imprescindibles desenvolupar per a la infraestructura gasística actual. El període de temps de desenvolupament d’aquest és fins l’any 2030. El mètode utilitzat per avaluar-los és el següent (ENTSOG 2017):

- Establir diferents escenaris futurs.
- Especificar quins objectius de seguretat energètica, competitivitat i sostenibilitat s’han de millorar de la infraestructura actual.
- Analitzar si assoleixen mitigar les necessitats de la infraestructura actual.

Aquesta avaluació es fa juntament amb l’*Agency for the Cooperation of Energy Regulators* (ACER) i la Comissió Europea (CE).
1.4.4 Projectes d’Interès Comú (PIC)

1.4.4.1 Definició i criteris

Una vegada ja s’han analitzat i avaluat quins projectes poden ajudar a assolir les necessitats requerides, es procedeix a determinar quins d’aquests seran seleccionats com a PIC i incorporats en la llista. Aquest procés es repeteix cada dos anys, i el 2017 ho ha estat.

Els PIC són l’eina principal que té la UE28 per accelerar el desenvolupament de la infraestructura necessària per completar el mercat energètic europeu i assegurar que la UE28 compleix amb les metes establertes en abastiment, seguretat i sostenibilitat energètics.

La Trans-European Networks-Energy Regulation (TEN-E) conté els criteris i processos amb els quals han de complir els projectes per tal de poder ser definit com a PIC i són els següents:

- És necessari per almenys una de les àrees establertes (quatre en total).
- Els beneficis potencials en general, tenint en compte el seu cost, i que aquests també repercuteixin a llarg termini.
- Ha de complir amb algun d’aquests requeriment:
 - Involucrar almenys a dos estats membres, creuant directament les fronteres.
 - Està ubicat en el territori d’un dels estats membres.
 - Creua la frontera entre un estat membre i un país que sigui de l’Àrea Econòmica Europea.

A més, els projectes candidats a ser incorporats en la xarxa d’infraestructura de gas han de complir amb algun dels requeriments següents (Audidor 2015):

- Integració en el mercat de l’energia, reduint l’aïllament d’alguns dels estats membres o millorant la flexibilitat del sistema.
- Seguretat d’abastiment, incrementant la interconnexió i rutes existents o augmentant la diversificació de la de les fonts o països importadors.
- Competitivitat, incrementant la interconnexió i rutes existents o augmentant la diversificació de la de les fonts o països importadors.
- Sostenibilitat, reduint les emissions, permetre la generació renovable de manera intermitent i millorant el desenvolupament de gas renovable.

Considerant el llistat anterior, crida l’atenció que la sostenibilitat no és un dels criteris indispensables per tal de poder assolir la categorització de PIC. S’ha estimat que els PIC projectats en el passat TYNDP, des del 2015 al 2025, tenen un cost de 200.000 milions d’euros (Audidor 2015).

La majoria dels fons que es destinen als PIC provenen de diner públic que ofereix la pròpia UE28. Degut a que el mecanisme utilitzat és molt complex i no es correspon amb l’àmbit d’estudi que es vol analitzar, no s’entrarà en detall. A continuació s’anomenen alguns dels fons encarregats de finançar els PIC (Audidor 2015):

- Connecting Europe Facility (CEF), el qual sí que estableix com a prioritat primordial que la infraestructura finançada ha de contribuir al desenvolupament sostenible i la protecció del medi ambient.
- European Fund for Strategic Investement (“Pla Juncker”).
- European Structural and Investment Funds.

El que si que és important tenir en compte, és que el fet de destinar diner públic a la infraestructura gasística fa que aquest no s’estigui invertint en energies renovables, el que fa que aquestes no es puguin desenvolupar més ràpidament i que s’estan destinant a una
infraestructura que quedarà obsoleta en unes dècades, ja que no s’ha de perdre de vista que el gas és un combustible fòssil. En el cas de la CEF, aquest estudi posa entredit la seva prioritat sobre el desenvolupament sostenible i la protecció del medi ambient.

1.4.4.2 Procés de selecció i revisió
A continuació s’especifiquen les diferents etapes per les que ha de passar un projecte que hagi estat seleccionat per al TYNDP i sigui categoritzat com a PIC (Audidor 2015):

- Febrer: Els promotors dels projectes proposen els seus projectes a la CE.
- Març: Els projectes són avaluats amb un anàlisi de cost-benefici. S’obre un període de consulta participativa ciutadana de 12 setmanes. La data límit de participació ciutadana acaba el 17 de juny.
- Abril: Els grups regionals, corresponents a cadascuna de les àrees definides, avaluen, classifiquen i recopilen les llistes de cada àrea.
- Maig-Juny: Valoració dels candidats a PIC.
- Juny: Esborrany de les llistes de cada àrea.
- Juny-Octubre: Verificació que els projectes compleixen amb els requeriments establerts. La dur a terme la ACER.
- Octubre: Llista final de cada àrea.

Una vegada s’ha publicat quina és la llista final per a cadascuna de les àrees, el Parlament Europeu i la UE28 té dos mesos per aprovar-les o rebutjar-les. La qüestió és que s’ha de aprovar o rebutjar tota la llista, no es pot fer només per un projecte (Audidor 2015).

Tot i que es vol promoure la conscienciació per la participació ciutadana per part dels organismes polítics i estratègics europeus, la consulta participativa ciutadana està dissenyada perquè la població no ho faci. Aquest procés consisteix en una taula excel on es troben tots els PIC amb els noms tècnics que se’ls hi ha assignat, i algunes vegades amb un que no correspon a l’actual, i simplement deixen especificar si vols que sigui o no i que deixis els teus comentaris al respecte. En cap lloc es facilita informació sobre cap d’aquests, pel que és imprescindible haver-lo estudiat prèviament.

1.4.5 Peak gas

1.4.5.1 La segona llei de la termodinàmica com a mètode per quantificar les reserves de gas natural
Segurament que poques generacions, passades o futures, hauran estat tant extractives com ha estat la nostra. La veritat és que la nostra societat està basada en un ús d’energia que no està en consonància amb els límits biofísics, ni tampoc ho estan els mètodes econòmics utilitzats fins el moment per avaluar les reserves dels combustibles fòssils (Valero & Valero 2010).

Cal prendre en consideració que les previsions fetes tant per la pròpia indústria com per algunes de les agències oficials no donen detalls de com s’han fet aquestes prediccions. Per aquest motiu, és molt difícil d’avaluar i discutir les assumpcions i metodologies utilitzades, pel que són completament diferents als articles científics (Inman 2014). Un mètode més objectiu i que encaixar millor en les característiques dels recursos extrets és utilitzant la segona llei de la termodinàmica.

Un bon indicador per tal de dur a terme l’anàlisi pot ser l’exergia, ja que es poden integrar en un sol indicador les característiques que descriuen a un recurs mineral, com són la quantitat, la composició química i la concentració, a més de mesurar la quantitat mínima d’energia útil requerida per tal de poder reconstruir un sistema, considerant els elements que el constitueixen. L’exergia es mesura en les unitat internacionals amb les que es mesura l’energia. En el cas dels minerals fòssils, com el carbó, petroli o gas, es mesuren en termes de
contingut d’exergia i no de cost d’exergia, ja que aquest no poden recuperar part de la seva exergia després de ser utilitzats, degut a que són cremats (Valero & Valero 2011).

A l’hora de fer la predicció de quan es produirà el peak del gas és més complicat perquè és el combustible fòssil que compta amb més reserves fins al moment. Es suposa que durant el segle XX s’ha extret el 20% de les reserves existents l’any 2009. Cal tenir present que part de les reserves actuals encara no és viable explotar-les perquè el cost per transportar el gas en gasoductes i introduir-lo en el mercat és molt elevat, a més, entre el 20 i el 40% necessita un procés de tractament molt car, el qual no el fa viable econòmicament fins el moment (Friedmann 2015).

El que també és sorprenent és el fet que tradicionalment la classificació de la riquesa mineral s’ha fet a través de criteris qualitatius. Per exemple, els termes reserves o recursos van acompanyats del adjectiu econòmicament o tècnicament viables per extreure, hipotètics, identificats, indicats, probables, etc. (Valero & Valero 2010).

1.4.5.2 Mètodes utilitzats per predir el peak gas

Un dels mètodes més utilitzats per tal de generar escenaris que permetin estimar el peak de cadascun dels combustibles fòssils és el Hubbert peak theory. Aquest mètode va ser desenvolupat pel geofísic M. K. Hubbert i es basava en les observacions que el subministrament de qualsevol recurs és finit i que el seu rati de producció tendeix a augmentar de manera exponencial durant la seva fase inicial de desenvolupament, arriba al pic màxim i després disminueix exponencialment fins esgotar-se.

Aquesta primera aproximació considerava que només podia produir-se un pic de producció al llarg de tot el subministrament del recurs, i s’ha acabat anomenant Single-Hubbert approach (SH). Degut al desenvolupament de les noves tecnologies, s’han pogut extreure els combustibles fòssils que no es creia possible, com és el cas dels no convencionals, i s’ha modificat el mètode inicial per obtenir-ne d’un que permet considerar aquest nous descobriments, que és el Multi-Hubbert approach (MH). Aquest mètode, juntament amb el Multi-Hubbert Variant approach (MVH), el qual només es diferencia per l’afegit d’un nou paràmetre, consideren que pot existir més d’un pic de producció. La fórmula utilitzada fa que la figura obtinguda tingui forma de campana simètrica (Maggio & Cacciola 2012).

En l’estudi realitzat per Maggio & Cacciola (2012) s’estima que els recursos de gas recuperables tenen un rang de entre 9500 i 15400 tcf (269 i 436 tcm), sent el primer un escenari conservador i el segon un d’optimista. També es valora un tercer escenari entremig de 12500 tcf (354 tcm).

El pic de producció de l’escenari més conservador es produirà a l’any 2024, el de l’escenari entremig al 2035 i el més optimista a l’any 2046 (veure figura 2). En el cas del petroli, el pic de producció s’ha produït l’any 2015, mentre que el del carbó està previst que sigui el 2052, considerant els escenaris entremig en ambdós casos (veure figura 3).
Figura 2: Comparació de la producció de gas calculada a través del mètode MHV per els tres escenaris definits (Font: Maggio & Cacciola (2012))

Figura 3: Comparació de la producció del carbó, petroli i gas utilitzant l’escenari entremit (Font: Maggio & Cacciola (2012))

El motiu pel que s’ha agafat les prediccions fetes amb el mètode MVH i no la resta, és que els valors de l’error absolut mitjà, l’error mitjà al quadrat i la desviació estàndard relativa són més baixos.

En l’estudi dut a terme per Valero & Valero (2011) s’han utilitzat els escenaris per a les emissions de GEH que proposa l’IPCC a través del 3r informe, més concretament els corresponents al Special Report on Emissions Scenarios (SRES)\(^\text{11}\), degut a que han estat dissenyats per explorar el desenvolupament del medi ambient a nivell global. El SRES defineix quatre escenaris (A1, A2, B1 i B2), els quals descriuen les relacions entre les emissions de GEH i aerosols amb la seva evolució durant el segle XXI, considerant factors demogràfics, socials, econòmics, tecnològics i medi ambientals. S’ha generat un cinquè escenari que correspon a l’anàlisi utilitzant el mètode SH, el qual té en compte les reserves de gas existents l’any 2010.

Aquest estudi demostra que si es disposa del doble de les reserves existents l’any 2009, el peak de producció del gas es podria desplaçar 26 anys, del 2023 al 2049.

El fet que en tots els escenaris generats per l’IPCC SRES es necessitin unes reserves de combustibles fòssils molt superiors a les que existeixen actualment, fa que sigui un clar indicator que les seves assumpcions són basades en la demanda energètica, pel que es pot arribar a qüestionar la credibilitat d’aquest estudi. Això no pot passar en l’escenari Hubbert, ja que la degradació de les reserves mai poden superar el 100%, degut a que es suposa que només estan disponibles els recursos descoberts.

La *U.S Energy Information Administration* (EIA) estima que en 57 anys s’extingiran les reserves de gas a nivell mundial, si es considera que la taxa de consum és l’actual. En cas que aquesta augmenti un 7%, les reserves s’extingiran en la meitat de temps, 28,5 anys. El gas convencional va assolir el seu peak l’any 1973 i des de llavors ha tingut un rati de decreixement en la producció anual del 5%. El gas no convencional tindrà el seu peak l’any 2020 (Friedmann 2015).

1.4.5.3 Projeccions pels EE.UU.

El boom del gas no convencional ha agafat a tots per sorpresa. Les tecnologies per dur a terme aquesta activitat ja existien, però quan el preu d’aquest era més baix, es creia que aplicar aquestes tecnologies no era rendible, ja que eren molt cares. Amb l’aplicació de les tecnologies que permet la perforació de pous horitzontals més llargs, ha permès que els EE.UU. es consolidessin com el major productor de gas natural a nivell mundial.

Un equip de geòlegs, enginyers del petroli i economistes de la Universitat de Texas han realitzat un estudi durant tres anys (Weijermars 2014). Tenint en compte l’escenari del preu del gas que ha desenvolupat la EIA, la producció dels 4 majors jaciments dels EE.UU. (Marcellus, Haynesville, Fayetteville i Barnett) haurien d’arribar al seu pic de producció l’any 2020 i decreixer a partir de llavors. L’any 2030, només estarien produint la meitat del que projecta la EIA. La projecció més conservadora de la EIA és més conservadora que la realitzada per la Universitat de Texas. Una de les principals diferències en la metodologia és la resolució utilitzada. A més, la EIA ha assumit que la productivitat dels nous pous serà com a mínim la que s’ha donat durant el passat, pel que repercuteix en un escenari optimista. També és imprescindible considerar que si la producció cau de manera significativa, tal i com preveu la *Hubbert peak theory*, les plantes d’exportació quedaran inutilitzades abans d’acabar la seva vida útil (Inman 2014).

1.4.6 Impactes climàtics i atmosfèrics del gas

Actualment, l’activitat humana contribueix en el 50-65% d’emissions de metà a nivell mundial (Miller et al. 2013) i l’extracció de gas és la principal font d’emissions de metà de caràcter antropogènic en els EE.UU. (Caulton et al. 2014). Els resultats obtinguts en l’estudi realitzat per Turner et al. (2016) suggereix que l’increment de les emissions de metà de fonts antropogèniques poden representar entre 30 - 60% de l’augment total.

Els 4 factors necessaris per avaluar la petjada ecològica del metà dins dels GEH són els següents (Howarth 2014):

- Quantitat de CO₂ emès de manera directa i indirecta per obtenir el gas.
- Percentatge de fuites produïdes al llarg de la cadena del gas.
- PCC del metà.
- Eficiència en la utilització del gas en el sistema energètic.
I l’expressió que ens permet quantificar-ho a partir dels factors esmentats anteriorment és:

\[\text{Petjada dels GEH} = \frac{\text{emissions } CO_2 + (PCC \cdot fuites metà)}{\text{eficiència}} \] \[1\]

En l’estudi realitzat per Howarth (2014) s’estima que la temperatura mitjana global haurà augmentat 1,5ºC i 2ºC en els anys 2030 i 2045-2050, respectivament, respecte l’any 1900, si no es reduceixen les emissions de GEH actuals (veure Figura 4). Tot i això, cal fer grans esforços per tal que es tinguin en compte els efectes produïts pel metà, ja que pot generar un tipping point en les pròximes dues o tres dècades. Aquesta dada posa en entredit l’Acord de París, ja que els seus objectius estan marcats respecte la temperatura mitjana global en l’era preindustrial. Si s’acaba assolint aquest augment, això pot repercutir en la pèrdua de certs feedbacks en els ecosistemes i el fet que el "permagel" de l’Àrtic es fongui i alliberi més metà, provocant un positive loop que induirà un escalfament global que no podrà ser revertit (Howarth et al. 2012).

Reduint les emissions de metà i black carbon, tot i no fer-ho amb les de CO₂, el punt que s’assoliria l’augment de la temperatura global mitja de 1,5ºC i 2ºC es retardaria entre 15 i 20 anys (Howarth 2014).

![Diagrama de les tendències de la temperatura mitjana global] (Figura 4: Escenaris d’augment de la temperatura mitja global respecte l’any 1900 en el cas que no s’apliqui cap mesura de reducció de GEH; si es fa pel CO2; pel metà i el black carbon o pel CO2, metà i black carbon. (Font: Howarth (2014)))

No se sap amb certesa quina és la causa de l’augment de la concentració de fons del metà en l’atmosfera, però es creu que les emissions que procedeixen de l’activitat humana, com és el cas del fracking, poden tenir-hi influència, ja que l’any 2009 és el punt on aquesta tècnica cobra major importància (veure Figura 5) (Schneising et al. 2014).
La concentració de fons de metà mitjana actual a nivell mundial és de 1800 ppb (part per bilió anglosaxó) que és gairebé el triple que les registrades en la era preindustrial, 680-715 ppb (Miller et al. 2013). Els resultats obtinguts en l’estudi realitzat per Schneising et al. (2014) mostren anomalies en la concentració de fons del metà en l’atmosfera durant els períodes analitzats. L’increment d’emissions de metà en els dos jaciments estudiats, Bakken i Eagle Ford, es poden atribuir directament a la influència humana, com és el cas del fracking, ja que els punts on s’ha observat la major variació correspon a on estan situats els pous de gas i petroli (veure Figura 6).

La concentració de fons de metà registrada en la zona corresponent al jaciment de Denver-Julenburg de l’estat de Colorado és de 1891 ppb a una altura de 3000 msnm (800 msnt) i de 1854 ppb a una altura superior a aquesta (Pétron et al. 2014). Les mesures realitzades en l’estudi dut a terme per Goetz et al. (2017) durant l’any 2012 en el jaciment Marcellus, més concretament en el sud-oest i el nord-est de l’estat de Pennsilvània, han donat unes concentracions de metà de 2100 i 1960 ppb, respectivament. Els resultats obtingut l’any 2015, on només es va realitzar al nord-est, donen un augment de 125 ppb de mitjana respecte el 2012.
1.4.7 Gas i carbó

El gas s’està promovent com el combustible fòssil de suport a les renovables mentre es produeix la transició, ja que compte amb els factor d’emissió de CO₂ més baix dels combustibles fòssils existents, sense prendre en consideració l’energia nuclear (veure taula 5).

Taula 5: Factors d’emissió de diferents combustibles fòssils quan són cremats i percentatge respecte el gas.

(Font: EIA)

<table>
<thead>
<tr>
<th>Combustible</th>
<th>CO₂/MMBtu (Milions de Btu)</th>
<th>% respecte gas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbó (antracita)</td>
<td>228,6</td>
<td>195%</td>
</tr>
<tr>
<td>Carbó (bituminós)</td>
<td>205,7</td>
<td>176%</td>
</tr>
<tr>
<td>Carbó (lignit)</td>
<td>215,4</td>
<td>184%</td>
</tr>
<tr>
<td>Carbó (subbituminós)</td>
<td>214,3</td>
<td>183%</td>
</tr>
<tr>
<td>Diesel i gasoil de calefacci</td>
<td>161,3</td>
<td>138%</td>
</tr>
<tr>
<td>Gasolina</td>
<td>157,2</td>
<td>134%</td>
</tr>
<tr>
<td>Propà</td>
<td>139</td>
<td>119%</td>
</tr>
<tr>
<td>Gas</td>
<td>117</td>
<td>100%</td>
</tr>
</tbody>
</table>

Algunes de les polítiques desenvolupades per mitigar els impactes del canvi climàtic han utilitzat mètodes d’ACV per tal de comparar les emissions de GEH dels diferents combustibles fòssils i estimar les possibles reduccions que suposarien l’ús de combustibles baixos en carboni (Venkatesh et al. 2011), però com ja s’ha comentat en el punt 1.1.2(Potencial de Canvi Climàtic), també cap la possibilitat de comparar la substitució d’uns combustibles fòssils a d’altres a través de les tecnologies disponibles.

Estudis realitzats pel U.S Department of Energy (DOE) mostren que si les fuites de metà són superiors al 2,7% del total de gas que és utilitzat pel consumidor, no existeix cap benefici per part d’aquest vers el carbó (Cremonese & Gusev 2016).

L’estudi realitzat per Alvarez et al. (2012) mostra que els beneficis de la substitució de les plantes de generació elèctrica de carbó, que compten amb la major eficiència, per gas es produeixen en totes les escales de temps si el percentatge de fuites des de l’extracció fins que arriba a la planta són inferiors al 3,2%. En aquest estudi no es consideren els efectes afegits que suposa la reacció del metà amb els aerosols i el black carbon. També cal tenir en compte que s’avaluen les emissions quan el pou ja està en funcionament, per tant, tampoc té en compte les fuites produïdes en les operacions de perforació que, en el cas del gas no convencional, té un impacte considerable.

Donat que l’estudi dut a terme per Alvarez et al. (2012) va fer els càlculs amb les dades del AR4, si s’actualitza el PCC pel del AR5, aquest percentatge es reduirà fins el 2,8% (Howarth 2014).

L’estudi realitzat per Sanchez & Mays (2015) estableix que el percentatge de fuites de metà, a partir de les quals el gas deixa de tenir beneficis en el impacte climàtic respecte el carbó, són de 3,7-3,9% a l’esca de 20 anys, en les mateixes condicions i consideracions que l’estudi dut a terme per Alvarez et al. (2012). És necessari considerar que l’aproximació realitzada en l’estudi és molt senzilla, pel que compta amb certes limitacions.

A través dels diferents estudis que s’han analitzat, es pot afirmar que el gas deixa de tenir beneficis climàtics respecte del carbó si el percentatge de pèrdues produïdes durant tota la cadena és de entre el 2,7% i 3,9% (veure taula 6). Tot i això, es creu que el valor està més pròxim a la part baixa del rang, ja que la majoria dels estudis així ho confirmen.
Taula 6: Percentatge d’emissions respecte el que ha utilitzat el consumidor estimat per els estudis analitzats.

<table>
<thead>
<tr>
<th>Estudi</th>
<th>% d’emissions respecte consumit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alvarez et al. 2012</td>
<td>3,2%</td>
</tr>
<tr>
<td>Howarth 2014</td>
<td>2,8%</td>
</tr>
<tr>
<td>Sánchez & Mays 2015</td>
<td>3,7% – 3,9%</td>
</tr>
<tr>
<td>Cremonese & Gusev 2016</td>
<td>2,7%</td>
</tr>
</tbody>
</table>

1.5 Característiques del Gas Natural Liquat (GNL) i Boil-off Gas (BOG)

1.5.1.1 GNL

Per convertir el gas en estat gasós a GNL cal fer-lo passar per un procés de criogenització a aproximadament -160ºC, el qual reduïx el seu volum en més de 600 vegades. Les condicions amb les que ha de complir el gas abans de se liquat són més estrictes que les corresponents a transportar-lo en estat gasós per gasoducte. Les impureses que es troben en el gas han de ser reduïdes a valors inferiors, per tal de prevenir inconvenients en el procés de liqüefacció.

El tractament del gas abans de ser liquat consisteix en:

- Eliminar els metalls pesats per gravetat.
- Absorbir el CO₂ i el sulfur d’hidrogen amb un dissolvent de base aquosa, ja que si es congelen poden provocar obstruccions.
- Remoure l’aigua i congelar-la.
- Les partícules de mercuri que queden també són filtrades.
- Finalment, els líquids lleugers derivats del gas (propà i butà), són extrets per ser utilitzats com a refrigerants pel procés de refrigeració.

La composició del GNL depèn directament de les característiques del gas que s’ha extret del pou i del pretractament i procés de liqüefacció que es duen a terme en la pròpia planta de liqüefacció (veure taula 7). En alguns casos els requeriments del consumidor i la finalitat que se li donarà també poden influir.

Taula 7: Propietats termo-físiques del GNL. (Font: Dobrota et al. (2013))

<table>
<thead>
<tr>
<th>Paràmetre</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Punt d’ebullició</td>
<td>-160ºC a -162ºC</td>
</tr>
<tr>
<td>Densitat</td>
<td>425 – 485 kg/m³</td>
</tr>
<tr>
<td>Poder calorífic superior</td>
<td>5325 – 6077 MJ/m³</td>
</tr>
</tbody>
</table>

Les aplicacions que se li poden donar al GNL són la de generació d’energia, demanda residencial i industrial, emmagatzematge de gas per fer front als pics de demanda i com a combustible per a vehicles pesats per al transport marítim (els propis vaixells metaners), per carretera i ferrocarrils.
La cadena de subministrament del GNL està constituïda per les següents etapes (API 2015):

- Tractament del gas natural.
- Liqüefacció.
- Transport en vaixell metaner del GNL i emmagatzematge.
- Regasificació.

1.5.1.2 BOG

El BOG es genera quan la temperatura del GNL passa del seu punt d’ebullició, degut a la calor intercanviada amb l’exterior, que depèn íntimament dels factors que s’anomenen a continuació, els quals estan ordenats de més o menys influent:

- Temperatura ambient.
- Temperatura del mar.
- Estat del mar.
- Quant ple està el dipòsit.

L’intercanvi de calor entre el GNL i l’entorn, degut a la gran diferència de temperatura que existeix entre ells, pot ser mitjançant conducció, o radiació.

Els components del GNL que es volatilitzen primer són el nitrogen i el metà, que són els principals components del BOG, i fan que la composició i qualitat del GNL variï al llarg del temps. Aquest fenomen rep el nom de *ageing* i té una gran importància en la comercialització del GNL, ja que el preu d’aquest depèn directament del seu poder calorífic (Dobrota et al. 2013). La majoria del BOG es genera durant el transport en vaixell del GNL i majoritàriament és utilitzat com a combustible, tot i que també pot ser reliquit, depenen del tipus de vaixell metaner, o cremat en una torxa, en cas que s’hagi produït en excés.

La quantitat de GNL que ha estat evaporat durant el transport en vaixell acostuma a expressar-se com una pèrdua diària, respecte el volum total de GNL, i s’anomena *Boil-off Rate* (BOR). En el transport en vaixell de GNL amb el dipòsit carregat, el valor del BOR, degut principalment a l’intercanvi de calor, és del 0,10 al 0,15%, mentre que quan aquest està descarregat és del 0,06 al 0,10%. Ambdós casos considerant que es disposa de les millors tecnologies disponibles. Els dipòsits per a l’emmagatzematge de GNL en les plantes de liqüefacció i regasificació estan dissenyats per reduir l’intercanvi de calor amb l’entorn i la influència de la radiació solar, pel que la generació de BOG sigui inferior al 0,05% del volum total contingut en el dipòsit per dia, tot i que pot variar entre el 0,02 i el 0,1% (Dobrota et al. 2013).

1.6 Característiques de la cadena de subministrament del GNL i dels vaixells metaners

1.6.1 Bunkering i methane slip

El *bunkering* són les fuites de metà, a través del BOG generat, que s’atribueixen a les activitats de recàrrega i descàrrega del dipòsits de GNL dels vaixells metaner en les plantes de liqüefacció i regasificació, respectivament (Corbett et al. 2015). La quantitat de BOG generat corresponent al *bunkering* és entre 8 i 10 vegades superior al generat en els dipòsits d’emmagatzematge (Dobrota et al. 2013).

El *methane slip* són les fuites de metà que corresponen al BOG que no ha arribat a cremar-se al motor, quan aquest és utilitzat com a combustible (Corbett et al. 2015). El *methane slip* només es produeix en els sistemes de propulsió Dual-Fuel Diesel Electric (DFDE), Tri-Fuel Diesel Electric (TFDE) i Main Engine Gas Injector (MEGI) que són els que compten amb un motor per utilitzar el BOG com a combustible. En el punt 1.6.6 (Tipus de sistemes de
propulsió) s’explica en més detall les característiques de cadascun dels sistemes de propulsió pels vaixells metaners que existeixen en l’actualitat.

1.6.2 Criogenització

Com ja s’ha comentat en el punt 1.5.1.1 (GNL), el GNL es produeix mitjançant un procés de criogenització que es realitza a aproximadament -160ºC i pressió atmosfèrica.

En l’estudi realitzat per Franco & Casarosa (2014), considerant les configuracions reals de les plantes de líquefacció, l’energia consumida per aquest procés és de 0,81 kWh/kg, la qual és majoritàriament de procedència elèctrica. El fet que sigui un consum energètic tant elevat és degut a que es realitzen diferents etapes de compressió. La majoria de l’energia utilitzada es despren en forma de calor i la resta s’anomena *cold energy*, que és la que està emmagatzemada en el GNL i s’allibera durant el procés de regasificació. Aproximadament el 70% de l’energia consumida es despren en forma de calor, 0,58 kWh/kg, i la resta roman en el GNL com a *cold energy*, 0,23 kWh/kg.

Els resultats obtinguts en l’estudi dut a terme per Qiang et al. (2004) són molts semblants a l’anterior, ja que el consum energètic requerit pel procés de criogenització és de 0,85kWh/kg i el que emmagatzema el GNL com a *cold energy* 0,24 kWh/kg.

Cal remarcar que la major part de la *cold energy* es pot recuperar a través de l’aplicació de cicles termodinàmics com els d’expansió directe, Rankine o Brayton (Franco & Casarosa 2014). Per tal de poder millorar l’eficiència del procés de recuperació d’energia, és convenient instal·lar un sistema de recuperació amb més d’una etapa, combinat amb un altre de generació d’energia de cicle doble o triple (Qiang et al. 2004).

Tenint en compte que l’energia requerida per tal de poder realitzar el procés de criogenització prové de l’electricitat, és important saber quin és el mix elèctric del país per determinar les emissions de CO₂ associades a aquest procés.

En l’estudi realitzat per Ang & Su (2016) es defineix el concepte d’*Aggregate Carbon Intensity* (ACI) que fa referència al fet que cal tenir en compte com es produeix l’electricitat per tal especificar quines són les seves emissions de CO₂. Els factors que determinen l’ACI són els següents:

- Proporció de combustibles fòssils en la producció d’electricitat.
- Mix dels combustibles fòssils en la producció d’electricitat.
- Eficiència tèrmica per a la generació d’electricitat de cada combustible fòssil.
- Factor d’emissió de CO₂ de cada combustible fòssil. (es suposa que aquest factor és 0 per a l’energia nuclear i les energies renovables)

Considerant les dades de producció d’electricitat utilitzades que van des de l’any 1990 fins el 2013 i que corresponen a 124 països que representen el 97% de la producció d’electricitat mundial, hi ha hagut una reducció de l’ACI des de l’any 1990 al 2013, ja que s’ha passat de 0,54 kgCO₂/kWh a 0,52 kgCO₂/kWh.

1.6.3 Característiques bàsiques dels vaixells metaners

Els vaixells metaners poden tenir dues configuracions dels tancs diferents. La primera és la de membrana, que és similar als vaixells de càrrega tradicionals, i també existeix la esfèrica, que és semblant a la que s’utilitza per transportar agents químics (veure figura 7). Una de les característiques particulars dels vaixells metaners és que els dipòsits estan conformats per materials especials i sistemes tecnològics avançats per tal de poder mantenir el gas criogenitzat. Tot i que la configuració dels tancs pot ser diferent, la resta d’elements que configuren l’estructura del vaixell no canvien (veure figura 8).
La International Maritime Organization (IMO) estableix que durant l’operació de càrrega, el dipòsit s’ha d’omplir fins el 98% de la seva capacitat, ja que el 2% restant es requereix per evitar que el GNL entri al sistema de ventilació o que es derrami per el casc del vaixell. En el cas de l’operació de descàrrega, es descarrega entre el 98,5 i el 99% del volum que arriba al port de destí perquè la quantitat que roman en el dipòsit, anomenada *heel*, és necessària per mantenir-lo a baixa temperatura, a més de complir amb el paper de combustible pel sistema de propulsió i energètic (Dobrota et al. 2013).

La velocitat mitjana óptima pels vaixells metaners que s’han fabricat durant aquests últims anys és de 19,5 nussos nàutics (Browman & Briers 2009).
1.6.4 Vida útil dels vaixells metaners

L’*International Code for the Construction and Equipment of ships Carrying Liquefied Gases in Bulk* (IGC Code) que està desenvolupat per la IMO estableix els paràmetres que s’han de complir en la construcció d’un vaixell metaner, per tal que pugui realitzar satisfactòriament les diferents operacions relacionades amb el transport de GNL que tenen programades els primers 20 anys. La vida útil dels vaixells metaners pot ser allargada, però cal tenir en compte que les operacions de manteniment s’han de realitzar de manera més curosa i amb una freqüència més elevada.

L’empresa experta en auditories tècniques ABS ha creat el programa ABS *SafeHull Condition Assessment Services* (ABS-SHCAS) per tal d’avaluar l’estat en el que es troben els vaixells metaners. Cal remarcar que aquest programa no és obligatori i pot realitzar-se de manera voluntària (Gaughan & Noble 1994).

Per una altra banda, *Mitsubishi Heavy Industries* utilitza mesures de manteniment correctives i preventives, per tal de fer front als possibles defectes que poden aparèixer en els vaixells metaners. A continuació es mostren els defectes més freqüents que es produeixen en les diferents etapes de la vida d’un vaixell metaner (veure taula 8):

Taula 8: Defectes i tècniques preventives més freqüents en les diferents etapes dels vaixells metaners

<table>
<thead>
<tr>
<th>Edat del vaixell metaner</th>
<th>Tipus de defectes o tècniques aplicades</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-5 anys</td>
<td>Defectes de disseny o mala praxis en la construcció</td>
</tr>
<tr>
<td>5-20 anys</td>
<td>Tècniques preventives sobre aquelles parts amb valors més preocupants</td>
</tr>
<tr>
<td>+20 anys</td>
<td>Defectes causats per l’edat, corrosió, afebliment, esquinçament o fatiga</td>
</tr>
</tbody>
</table>

El programa de restauració per a l’extensió de vida dels vaixells metaners desenvolupat per *Mitsubishi Heavy Industries* s’acostuma a aplicar a l’estructura del casc, a la sala de màquines (caldera), a la instal·lació elèctrica (sistema de control i alarma) i als sistemes de càrrega (contenidors i aïllament gasoducte/mengera) (Yuasa et al. 2003).

Alguns dels vaixells metaners es reconverteixen en *Floating Storage and Regasification Units* (FSRU) o *Floating LNG production vessel* (FLNG) per tal d’allargar la seva vida útil. Dins de la pròpia indústria s’ha acordat que tots aquells vaixells metaners que han estat construïts abans del 1975, han de convertir-se obligatòriament, ja que al no estar en moviment, està sotmès a menys estrés. Amb aquests canvis d’ús, que necessiten una conversió, es vol que un vaixell metaner no estigui actiu en el transport més de 50 anys (GIIGNL & SIGTTO 2014).

El cost de producció d’un vaixell metaner estàrdard és d’uns 200 milions de dòlars i el temps de construcció requerit és de entre 28 i 34 mesos (Chen 2014).
1.6.5 Tipus de vaixells metaners

Els vaixells metaners es poden classificar segons a quin tipus pertanyen o pel sistema de propulsió que utilitzen. En aquest estudi només es tindran en compte aquells que estan destinats al transport de GNL, descartant els FSRU i els FLNG. En aquest apartat es defineixen els diferents tipus de vaixells metaners que existeixen, els quals es classifiquen segons la seva capacitat d’emmagatzematge de GNL (veure taula 9):

Taula 9: Capacitat i característiques de cadascun dels tipus de vaixell metaners existents

<table>
<thead>
<tr>
<th>Tipus</th>
<th>Capacitat (m3)</th>
<th>Característiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small</td>
<td>Fins a 90.000</td>
<td>Aquests s’acostumen a utilitzar en trajectes curts i donen flexibilitat al mercat del GNL, ja que permeten fer front a situacions desfavorables per satisfar la demanda de consum</td>
</tr>
<tr>
<td>Small conventional</td>
<td>120.000-150.000</td>
<td>Degut a que la seva capacitat, juntament amb la dels large conventional, es troba en un punt óptim per transportar un volum considerable i poder realitzar els trajectes en temps raonables, són els que predominen en la flota actual de vaixells metaners</td>
</tr>
<tr>
<td>Large conventional</td>
<td>150.000-180.000</td>
<td>Aquest tipus de vaixell és el que més s’ha construït en la última dècada perquè, amb l’evolució de la tecnologia, s’ha pogut aconseguir que tingui les propietats del small conventional, però amb una capacitat major</td>
</tr>
<tr>
<td>Q-Flex</td>
<td>200.000-220.000</td>
<td>Aquests són els únics vaixells que compten amb una planta de reliqüefacció integrada per tal de poder retornar el BOG a estat gasós i que es produeixin les mínimes pèrdues durant el trajecte, ja que aquests acostumen a ser molt llargs. La resta solen utilitzar el BOG com a combustible.</td>
</tr>
<tr>
<td>Q-Max</td>
<td>260.000-300.000</td>
<td></td>
</tr>
</tbody>
</table>

1.6.6 Tipus de sistemes de propulsió

L’únic sistema de propulsió operatiu que ha suposat una solució pel tractament del BOG durant més de 40 anys ha estat el steam turbine propulsion, ja que permetia utilitzar-lo com a combustible. A partir del 2004 s’han començat a utilitzar el DFDE i el SSD, aquest últim amb planta de reliqüefacció perquè no utilitzà el BOG com a combustible.

El cost del combustible és un dels factors més influents a l’hora d’escollir el sistema de propulsió. Aquell que pugui adaptar-se a qualsevol dels combustibles depenent del seu preu podrà oferir la major flexibilitat. Un altre del factors que influeixen en la selecció del sistema de propulsió és la restrictiva regulació d’emissions que s’està començant a implementar. A mesura que la reducció d’emissions vagi a més, aquells sistemes de propulsió que siguin més eficients i permetin la utilització del BOG seran els que agafaren l’iniciativa (Browman & Briers 2009).

Quan el vaixell metaner està a l’espera de l’entrada a port, les condicions climatològiques requereixen disminuir la velocitat o el metaner es troba amarrat a port, és important disposar d’una solució a l’excés de generació de BOG que no podrà ser utilitzat com a combustible. L’alternativa que existeix pels dos primers casos és la Gas Combustion Unit (torxa) que crema l’excés de BOG produït. El problema és que l’energia cremada no se li doni cap ús i va en contra dels interessos del venedor i el comprador. A més, també contribueix a la generació d’emissions de CO₂ que no han repercutit en el desenvolupament d’un treball útil. En el cas
que el vaixell es trobi amarrotat a port, com que esta prohibit utilitzar la torxa, s’allibera aquesta part del BOG, el que suposa un impacte climàtic més significatiu que la crema amb la torxa, ja que la composició del BOG és de pràcticament el 100% metà (Browman & Briers 2009).

1.6.6.1 Steam turbine propulsion (Steam)

Com ja s’ha comentat en aquest mateix apartat, el sistema de propulsió Steam utilitza el BOG produït en els dipòsits de GNL com a combustible. En el cas que aquest no sigui suficient per abastir de combustible al vaixell metaner, es pot provocar la producció d’un excés de BOG o complementar-ho amb Heavy Fuel Oil (HFO) (Browman & Briers 2009).

El sistema de propulsió Steam consisteix en dues calderes que cremen el BOG per generar vapor d’aigua, el qual es fa passar per dues turbines de doble reducció. El vapor d’aigua també s’utilitza per a generar electricitat a través de dos turbogeneradors per satisfacer d’altres serveis auxiliars del vaixell. Aquest sistema de propulsió ofereix una gestió del BOG adequada i fàcil, però és el que requereix la major quantitat de combustible. A més, aquest sistema de propulsió és el que té la menor eficiència de tots els existents (veure figura 9).

Els vaixells metaners convencionals que s’estan fabricant en els últims anys ja no compten amb aquest sistema de propulsió, pel que la gran quantitat de personal d’operacions qualificats per a aquest tipus de sistema de propulsió poden generar un problema en el sector, si no se’ls troba una alternativa (Browman & Briers 2009).

Figura 9: Esquema simplificat del sistema de propulsió steam (Font: Browman & Briers (2009))

1.6.6.2 Dual-Fuel Diesel Electric (DFDE) i Tri-Fuel Diesel Engine (TFDE)

Primer de tot, és necessari aclarir que les característiques i funcionament d’aquests dos sistemes de propulsió són iguals, però l’única diferència és que el DFDE pot utilitzar com a combustible el BOG o Marine Diesel Oil (MDO), mentre el TFDE també compte amb el HFO com a combustible. El BOG és recollit en els dipòsits de GNL, comprimit a 6 bars i conduit cap als motors, mitjançant una mànega de doble paret. És necessari un 1% de MDO perquè el motor pugui usar el BOG com a combustible, en ambdós casos. Al igual que el Steam, utilitzen l’energia generada a través dels motors per alimentar els sistemes auxiliars del vaixell (veure figura 10) (Browman & Briers 2009).

L’eficiència d’aquests sistemes de propulsió és equiparable a la dels SSD, ja que la planta de reliquèfacció d’aquest últim requereix una gran quantitat d’energia (Browman & Briers 2009).
1.6.6.3 Main Engine Gas Injector (MEGI)

El sistema de propulsió MEGI és una variant del TFDE, ja que pot utilitzar com a combustibles el BOG i el HFO, i el seu funcionament és molt semblant (veure figura 10). També pot usar el MDO com a combustible auxiliar perquè funcioni el motor, tot i que es requereix un 5% d’aquest quan el BOG és el combustible principal (Al-Mulla 2012).

Una de les majors diferències amb el TFDE és que el BOG és injectat a molt alta pressió, 300 bar, el que fa que es produeixin menys pèrdues per methane slip i la seva eficiència sigui superior a la de la resta de sistemes de propulsió. Cal remarcar que el compressor que dur a terme aquest treball requereix una gran quantitat d’energia, pel que ens trobem en una situació semblant que el SSD que requereix la planta de reliqüefacció. Una de les principals característiques del MEGI és que es poden utilitzar com a combustibles de manera simultània el BOG i el HFO (Al-Mulla 2012).

1.6.6.4 Slow-Speed Diesel (SSD)

Aquest sistema de propulsió és el que té la major eficiència tèrmica, degut a que l’hèlix està directament connectada al motor, pel que no hi ha tantes pèrdues per transmissió. També cal dir que utilitzar HFO, que és el combustible més barat, però a la vegada el més contaminant, que s’utilitza en la indústria marítima. En aquest cas, l’energia requerida pels sistemes auxiliars del vaixell també es genera a través de la crema del HFO (veure figura 11) (Browman & Briers 2009).

A causa de la grandària que tenen els Q-Flex i Q-Max, la quantitat de BOG generat és considerable, pel que és factible la instal·lació d’una planta de reliqüefacció integrada en el vaixell. En el cas que la generació de BOG sigui superior a la capacitat de reliqüefacció de la planta, el SSD també compte amb una torxa. Que la planta de reliqüefacció estigui instal·lada en el vaixell fa que augmentin els riscos que es poden donar durant els trajectes, tot i que alguns estudis han apuntat que la seguretat es troba en nivells acceptables (Browman & Briers 2009).
Figura 11: Esquema simplificat del sistema de propulsió SSD (Font: Browman & Briers 2009)
2 Objectius

De la presentació realitzada fins aquest punt, es poden detectar:

- En l’actualitat existeix una subestimació de l’impacte climàtic de les fuites de metà a l’atmosfera, per part de les agències nacionals i internacionals, ja que s’utilitzen inventaris on els valors de cadascuna de les etapes del cadena del gas estan acordats amb la pròpia indústria del del gas i del petroli.
- Els estudis que avaluen les emissions de gas al llarg de la seva cadena es focalitzen en les etapes de l’*upstream* i el *midstream*. A més, els únics que analitzen el *downstream* ho fan bàsicament del transport en gasoducte, sense prendre en consideració el corresponent al GNL en vaixell metaner.
- Existeix molt poc coneixement respecte la cadena de subministrament del GNL, més concretament en els tipus de vaixells metaners i les característiques dels sistemes de propulsió existents.
- Els programes utilitzats actualment per avaluar l’estat en el que es troben les diferents parts o sistemes del vaixell metaner no són obligatoris, el que suposa un risc perquè la construcció es fa per a una vida útil de 20 anys i poden allargar fins els 50.

Per tot això, els objectius que cerca aquest Treball de Fi de Master són:

- Determinar el percentatge de fuites en cadascuna de les etapes de la cadena del gas, distingint entre el gas convencional i el no convencional.
- Analitzar la xarxa de transport dels diferents ports involucrats en el trànsit de GNL dins del mercat europeu, tenint en compte les relacions que existeixen entre els ports exportadors i importadors.
- Quantificar les emissions de CO₂ associades al tractament de la generació de BOG durant el trànsit i el consum de combustible.
- Estudiar quina és la vida útil dels vaixells metaners i analitzar si amb el pas del temps la probabilitat d’emetre fuges augmenta degut al deteriorament i la falta de manteniment.
- Analitzar el consum energètic dels procés de criogenització de les plantes líquefactores, per tal de liquar el gas.
- Determinar el *peak gas* per comprovar si és adequada la justificació d’invertir grans pressupostos en aquestes megainfraestructures, i si l’amortització d’aquestes esdevé més tard que aquest s’hagi produït.
3 Materials i metodologia

3.1 Bases de dades

La base de dades que s’ha utilitzat per dur a terme aquest estudi es divideix en dues parts. La primera fa referència als paràmetres avaluats en els trànsits i la segona a les característiques dels vaixells metaners.

La base de dades corresponent als paràmetres avaluats en els trànsits està conformada per les dades facilitades per l’equip d’ICIS LNG Edge\(^{12}\), que aglutina els trànsits que han arribat a la UE28 des de l’1 de gener de 2016 fins el 15 de maig del 2017. En el cas de la base de dades referent a les característiques del vaixells metaners, les dades s’han extret de Global LNG Info\(^{13}\).

3.1.1 ICIS LNG Edge

A continuació s’enumeren els paràmetres dels trànsits avaluats en la base de dades facilitada per ICIS LNG Edge (veure Annex 1 per tenir la relació en detall):

- Número d’identificació del trànsit
- Nom del vaixell metaner
- Codi IMO del vaixell metaner
- Estat de càrrega del vaixell metaner
- Estat del trànsit
- Hora de sortida del trànsit
- Capacitat del vaixell metaner
- Massa de GNL que s’ha de descarregat en el port de destí
- Volum de GNL que s’ha de descarregat en el port de destí
- Contingut energètic del GNL que s’ha de descarregat en el port de destí
- Port de sortida de la càrrega de GNL
- País de sortida de la càrrega de GNL
- Port de sortida del vaixell metaner
- País de sortida del vaixell metaner
- Port de destí de la càrrega de GNL
- País de destí de la càrrega de GNL
- Port de destí del vaixell metaner
- País de destí del vaixell metaner
- Hora d’arribada del trànsit
- Duració del trànsit
- Tipus de trànsit

El fet que el port/país de sortida/destí de la càrrega de GNL i del vaixell metaner siguin diferents, significa que ha existit un port/país en el qual el vaixell metaner ha amarrat, però no ha descarregat.

\(^{13}\) Global LNG Info http://www.globallnginfo.com/GLNG_Database.aspx
3.1.2 **Global LNG Info**

Les característiques dels vaixells metaners que considera **Global LNG Info** són les següents (veure Annex 1 per tenir la relació en detall):

- Nom del vaixell metaner
- Tipus de vaixell metaner
- Any de posada en funcionament
- Tipus de sistema de propulsió
- Propietaris del vaixell metaner
- Constructor del vaixell metaner
- Capacitat del vaixell metaner
- Codi IMO del vaixell metaner

3.1.3 **Base de dades de l’estudi**

La base de dades finalment filtrada i utilitzada per a realitzar els càlculs d’aquest estudi està conformada pels paràmetres dels trànsits i les característiques dels vaixells metaners que es llisten a continuació (veure Annex 1 per tenir la relació en detall):

- Nom dels vaixells metaner
- Capacitat del vaixell metaner
- Volum de GNL que s’ha de descarregar en el port de destí
- Contingut energètic del GNL que s’ha de descarregar en el port de destí
- Hora de sortida del trànsit
- Hora d’arribada del trànsit
- Port de sortida del vaixell metaner
- País de sortida del vaixell metaner
- Port de destí del vaixell metaner
- País de destí del vaixell metaner
- Tipus de vaixell metaner
- Tipus de sistema de propulsió
- Any de posada en funcionament

Per tal de poder estudiar les possibles afectacions que poden tenir les situacions climatològiques durant l’any, s’han escollit els trànsits que han arribat a la UE28 durant l’any 2016, des de l’1 de gener fins el 31 de desembre. En l’estudi s’han tingut en compte els trànsits que tenen Turquia com a país de destí, tot i que aquest no formi part de la UE28, ja que està assumint un paper determinant en les relacions geopolítiques de la UE28. Es compta amb 673 trànsits (Annex 1, pestanya: Historic deliveries). Degut a que en la base de dades facilitada per **ICIS LNG Edge** existeixen reexportacions i trànsits que surten des de països de la UE28 que no compten amb plantes de liqüefacció, s’han descartat a l’hora de realitzar l’estudi. La mostra s’ha reduït a 667 trànsits (Annex 1, pestanya: Base de dades trànsits).

En el cas dels vaixells metaners que han realitzat trànsits durant l’any 2016 i que no es tenia constància en la base de dades de **Global LNG Info** a quin tipus pertanyien, se’ls hi ha assignat tenint en compte la seva capacitat, considerant la definició d’aquests en la taula 9 (Capacitat i característiques de cadascun dels tipus de vaixell metaners existents).

En aquest estudi només s’han avaluat els trànsits dels vaixells, sense prendre en consideració l’origen i destí de la càrrega de GNL.
3.2 Metodología

En aquest estudi s’han desenvolupat dues metodologies diferents per a determinar les emissions de CO₂ que s’emeten durant els trànsits.

La primera metodologia, a la qual es referirà d’ara en endavant com metodologia 1, té en compte la potència requerida pel motor del vaixell en condicions òptimes, mentre que en la segona, metodologia 2, s’han utilitzat el temps facilitat per la base de dades i el temps òptim del trànsit, aquest últim estimat amb el programa BP Port to Port14.

En el cas del volum de GNL descarregat en el port de destí, els tècnics de ICIS LNG Edge utilitzen el següent mètode per estimarlo:

1. El vaixell metaner surt del port de sortida amb la càrrega de GNL.
2. El portal ICIS LNG Edge fa una estimació del volum que es descarregarà al port de destí, tenint en compte:
 a. Trànsits idèntics a aquest que ja han tingut lloc.
 b. Creuament de dades amb la base de dades que tenen sobre les característiques dels vaixells (sistema de propulsió, any de posada en funcionament, etc.).
 c. Es calcula la quantitat de BOG que s’ha pogut produir.
3. El vaixell és descarregat a la planta de regasificació del port de destí.
4. Entre 4 i 6 setmanes més tard, les dades d’aduanes es fan publiques per part de les terminals de destí.
5. Amb les dades d’aduanes, els analistes les utilitzen per creuar-les amb les estimacions dutes a terme i confirmar el volum exacte que s’ha descarregat.

En l’actualitat, no existeix un mètode o base de dades que permeti saber el volum carregat en el port de sortida si no es té l’albarà d’entrega, el qual és gairebé impossible d’aconseguir. Per aquest motiu, la base de dades facilitada per ICIS LNG Edge no compta amb el volum de GNL amb el que surt carregat el vaixell metaner des del port de sortida, però sí que dóna quina és la seva capacitat. Per tal de calcular quin ha estat la quantitat de BOG que s’ha generat durant el trànsit, s’assumeix la capacitat com el volum del vaixell metaner en el port de sortida, el valor de la qual ja considera el 2% que s’ha de deixar sense omplir en la part superior del dipòsit perquè no es derrami ni es filtr i en el sistema de ventilació i el 1-1,5% que està permanentment ple pel heel.

\[\text{Figura 12: Relació de volums i variació dels mateixos la (a) càrrega, (b) trànsit i (c) descàrrega dels vaixells metaners.} \]
Degut a que les metodologies s’han definit per tal de poder determinar quina és la proporcio del BOG generat que s’utilitza com a combustible i el que és produït en excés i ha de ser cremat mitjançant una torxa, aquestes només són aplicables als tipus de vaixell metaner small, small conventional i large conventional. Tot i això, els vaixells metaners Q-Flex i Q-Max s’han inclòs en l’avaluació de les emissions de CO₂ generades i comparar-los amb la resta.

Tenint en compte que la base de dades de ICIS LNG Edge es basa en trànsits reals, els paràmetres de les metodologies que es calculen a través de les dades facilitades per aquesta s’identifiquen amb el subíndex “real”. També s’han definit els superíndex “motor” i “torxa” per aquells paràmetres que determinen la part proporcional de BOG generat i energia que corresponen a cadascun d’aquests. El subíndex “BOG” fa referència al fet que s’està considerant el gas en estat líquid.

Per tal de determinar les emissions de CO₂ eq. que es generen de la crema de diesel i gas/BOG, s’ha utilitzat els factors d’emissió definits en el últim informe d’operacions relacionades amb el GNL del American Petroleum Institute (API)\(^{15}\).

3.2.1 Metodologia 1

En primer lloc, s’ha determinat quin és el volum de BOG generat durant el trànsit \(\Delta V_{BOG, real}^{real}\), en m\(^3\):

\[
\Delta V_{BOG, real} = (V_{inicial} - V_{final})_{real}
\]

On \(V_{inicial}\) és el volum de GNL carregat en el port de sortida, en m\(^3\), i \(V_{final}\) és el volum de GNL descarregat en el port de destí, en m\(^3\).

Cal remarcar que hi ha hagut trànsits on \(\Delta V_{BOG, real}^{real}\) tenia valor negatiu, pel que s’ha optat per no considerar-los en l’anàlisi, ja que no existeix la possibilitat perquè això succeixi. També s’han descartat aquells trànsits on la proporcio de \(\Delta V_{BOG, real}^{real}\) respecte el \(V_{final}\) era superior al 12%, ja que representa un valor poc real i que des del punt de vista logístic i econòmic no interessa a la pròpia indústria. Aquesta mesura s’ha pres per tal que es puguin fer un anàlisi estadístic coherent, per tant, no s’ha de perdre de vista que aquests trànsits es produeixen i representen una amenaça perquè el sistema energètic europeu estigui en consonància amb els objectius establerts per combatre l’escalfament global i el canvi climàtic.

Degut a aquests canvis, la metodologia 1 s’ha dut a terme amb el 88% de la mostra de la base de dades de l’estudi, amb un número de 587 trànsits, 503 dels quals són de vaixell metaners tipus small, small conventional o large conventional.

El volum de BOG generat durant el trànsit també és pot definir de la següent manera:

\[
\Delta V_{BOG, real}^{motor} = \Delta V_{BOG, real}^{torxa}
\]

On \(\Delta V_{BOG, real}^{motor}\) és al volum proporcional de BOG generat durant el trànsit que és utilitzat com a combustible pel motor i \(\Delta V_{BOG, real}^{torxa}\) és el corresponent a l’excés de BOG generat que ha de ser cremat en la torxa.

A continuació, l’energia associada al BOG generat durant el trànsit $E_{BOG_{real}}$, en kWh, es determina amb la següent fórmula:

$$E_{BOG_{real}} = \Delta V_{BOG_{real}} \cdot PC_{GNL}$$ \[4\]

On PC_{GNL} és el poder calorífic volumètric superior, en kWh/m3.

El poder calorífic volumètric superior que s’utilitzarà com a constant per tots els trànsits és de 5700 kWh/m3, i s’ha obtingut de multiplicar el poder calorífic màssic superior per la densitat mitja del GNL (taula 7: Propietats termo-físiques del GNL), 455 kg/m3. El poder calorífic màssic superior del GNL, en kWh/kg, s’ha obtingut de la base de dades de combustibles del Instituto para la Diversificación y Ahorro de Energía (IDAE) del Ministeri d’Energia, Turisme i Agenda Digital.16

Posteriorment, cal quantificar l’energia associada al BOG generat que requereix el motor del vaixell metaner per realitzar el trànsit E_{motor}, en kWh, la qual ha de ser satisfeta amb una part BOG generat:

$$E_{motor} = \overline{W}_{vaixell} \cdot t_{real}$$ \[5\]

On $\overline{W}_{vaixell}$ és la potència nominal mitjana del vaixell metaner, en kW, i t_{real} és el temps que es tarda en realitzar el trànsit, tenint en compte la base de dades ICIS LNG Edge, en h.

Finalment, falta calcular quina és l’energia associada que té el BOG que s’ha generat en excés hi ha de ser cremat mitjançant la torxa E_{torxa}, en kWh:

$$E_{torxa} = E_{BOG_{real}} - E_{motor}$$ \[6\]

3.2.2 Metodologia 2

En primer lloc, cal definir quin és el volum proporcional de BOG generat durant el trànsit que és utilitzat com a combustible pel motor ΔV_{motor} en m3:

$$\Delta V_{motor} = \Delta V_{BOG_{real}} \cdot \tau$$ \[7\]

On τ és la proporció entre el temps estimat en què es realitzaria el trànsit en les condicions més òptimes t_{ideal}, en h, i el que s’ha extret de la base de dades de ICIS LNG Edge t_{real}, també en h.

Cal tenir en compte que en les millors condicions, $0 < \tau \leq 1$. Però, hi ha trànsits que tenen valors majors a 1. Per aquest motiu, s’han desestimat aquells amb $\tau > 1.1$, i per entrades amb valor $1 < \tau \leq 1.1$, se’ls ha assignat el valor corresponent a $\Delta V_{BOG_{real}}$, ja que es suposa que aquest 10% pot ser utilitzat com a combustible.

El número de trànsits amb els que compte la mostra per a la metodologia 2 és de 543, dels quals 459 són vaixells metaners tipus small, small conventional o large conventional.

16 IDAE http://www.idae.es/
Posteriorment, és necessari determinar l’energia associada al BOG generat que requereix el motor del vaixell metaner per realitzar el trànsit $E_{BOGreal}^{motor}$, en kWh:

$$E_{BOGreal}^{motor} = E_{BOGreal} \cdot \tau$$ \[8\]

On $E_{BOGreal}$ l’energia associada al BOG generat durant el trànsit, en kWh.

A continuació, cal calcular el volum proporcional de BOG generat durant el trànsit que ha estat produït en excés i ha de ser cremat mitjançant la torxa $\Delta V_{BOGreal}^{torxa}$, en m3:

$$\Delta V_{BOGreal}^{torxa} = \Delta V_{BOGreal} \cdot (1 - \tau)$$ \[9\]

Finalment, es determina l’energia associada al BOG generat que s’ha produït en excés i ha de ser cremat mitjançant la torxa $E_{BOGreal}^{torxa}$, en kWh:

$$E_{BOGreal}^{torxa} = E_{BOGreal} \cdot (1 - \tau)$$ \[10\]

En l’annex 2 es troba la taula resum que conté la definició i unitats dels paràmetres que s’han definit en les dues metodologies.
4 Resultats

En primer lloc, és necessari remarcar que els resultats obtinguts en aquest estudi tenen en compte nombres de trànsits diferents, degut a les característiques dels paràmetres i metodologies definides.

Per aquest motiu, aquells resultats que tenen un caràcter informatiu i fan referència a la base de dades facilitada per *ICIS LNG Edge*, tindran en compte els trànsits que pertanyen a la base de dades generada per a aquest estudi (Annex 1, pestanya: Base de dades transits), i els que són fruit de les metodologies definides, als trànsits considerats en cadascuna d’aquestes (Annex 1, pestanya: Metodologia 1 i Metodologia 2).

4.1 Característiques de la flota al 2016

La flota de vaixells metaners a l’any 2016 comptava amb 426 vaixells, 421 dels quals estaven destinats al transport de GNL i 5 havien estat convertits en FSRU.

Un fet curiós és que entre els rangs de capacitats teòrics de cadascun dels tipus de vaixells que s’han exposat en l’apartat 1.6.5 (Tipus de vaixells metaners), només hi ha 3 vaixells en tota la flota en actiu a l’any 2016 que no compleixin (veure figura 14). Degut a la falta de coneixement sobre aquest camp d’investigació, no es troba en l’àmbit d’aquest estudi aprofundir-hi.

![Figura 13: Histograma dels vaixells metaners que conformen la flota en actiu a l’any 2016 segons l’any de posada en funcionament.](image-url)
Figura 14: Histograma dels vaixells metaners que conformen la flota en actiu a l’any 2016 segons la capacitat d’emmagatzematge, en m3.

Com ja s’ha comentat en l’apartat 1.6.5 (Tipus de vaixells metaners), els dos tipus de vaixells que compten amb major presència en la flota en actiu a l’any 2016 són el small conventional (120.000-150.000 m3) i el large conventional (150.000-180.000 m3), amb un 49,88% i 37,29%, respectivament (veure figura 15).

La constant millora de la tecnologia ha permès que any rere any s’hagi pogut augmentar la capacitat d’emmagatzematge dels vaixells metaners, mantenint la mateixa funcionalitat. Això ha fet que a partir de l’any 2005 predominin els large conventional i es pogués començar a construir els Q-Flex i Q-Max, ja que es poder desenvolupar la tecnologia necessària per poder integrar la planta de reliqüefacció en aquests (veure figura 16).

Figura 15: Distribució del tipus de vaixell metaner de la flota en actiu a l’any 2016.
En el cas del sistema de propulsió, el més utilitzat per la flota en actiu a l’any 2016 és el Steam, 60,71%, seguit del TFDE amb un 26,79% (veure figura 17). Cal remarcar que la resta tenen una participació molt baixa, entre un 2% i un 5%, i que en el cas del SSD és el que s’utilitza pels Q-Flex i els Q-Max.

La millora i desenvolupament de noves tecnologies, tal i com ha passat amb l’aument de la capacitat d’emmagatzematge, ha permès que en la última dècada es pugui comptar amb més d’un sistema de propulsió, ja que anteriorment només s’utilitzava el Steam (veure figura 18). Els vaixells metaners que s’estan fabricant en els últims anys ja no incorporen el sistema de propulsió Steam, ja que la resta tenen una eficiència més alta, però si que s’ha desenvolupat el Steam Reheat, en el qual s’ha optat per aprofitar part de la calor generada (Browman & Briers 2009).
Figura 18: Any de posada en funcionament vs. capacitat d’emmagatzematge de la flota en actiu al 2016 segons el sistema de propulsió.

4.2 Base de dades trànsits
Un dels objectius d’aquest estudi és determinar quina és la xarxa de transport de GNL que existeix en el mercat gasístic europeu. Per tant, cal especificar quins són els països europeus importadors (veure figura 19) i la resta de països del món que juguen el paper d’exportadors (veure figura 20), i la importància que ha tingut cadascun d’ells durant l’any 2016.

Figura 19: Països europeus importadors que formen part de la xarxa de transport de GNL l’any 2016.
Figura 20: Països de la resta del món que juguen el paper d'exportadors que formen part de la xarxa de transport de GNL l'any 2016.

Tenint en compte l’any de posada en funcionament del vaixells metaners que conformen la flota a nivell mundial fins a la 2016 (figura 13: Histograma dels vaixells metaners que conformen la flota en actiu a l’any 2016 segons l’any de posada en funcionament), pot ser d’interès comparar si els utilitzats en la xarxa de transport de GNL a nivell europeu segueixen la mateixa tendència (veure figura 21). En el cas dels països exportadors, també és interessant saber quins tipus de vaixell metaner utilitzar cadascun d’aquests (veure figura 22).

Es pot apreciar com els histogrames de l’any de posada en funcionament del vaixells metaners que conformen la flota, tant a nivell mundial com europeu, segueixen la mateixa tendència, tot i que en aquesta última hi ha un període de temps de 20 anys en el que cap dels vaixells metaners va ser construït. En el cas dels vaixells metaners que utilitza cadascun dels països exportadors, Algèria és l’únic que transporta GNL amb vaixells metaners tipus small, mentre que Qatar és l’únic que ho fa amb Q-Flex i Q-Max.

Figura 21: Histograma dels vaixells que formen part de la xarxa de transport de GNL en el mercat gasístic europeu segons l’any de posada en funcionament.
Figura 22: Tipus de vaixells metaners segons el país de sortida.

A més, el número de trànsits que realitza cada vaixell metaner, distingint entre els diferents tipus que s’han definit, pot ajudar a determinar quina és la seva influència (veure figura 23). Cal remarcar que els vaixells metaners que tenen capacitats més petites, com és el cas dels small o small conventional, poden realitzar més número de trànsits perquè s’utilitzen en trajectes més curts i les operacions de càrrega i descàrrega són més ràpides. Per aquest motiu, es creu més oportú fer la comparació considerant el volum de GNL que s’ha transportat en total (veure figura 24), i no pas el número de trànsits.

Així, s’observa com dos dels vaixells metaners tipus small són el que han fet més trànsits, gairebé el doble que el tercer, però quan es compara el volum de GNL total transportat, s’aprecia que els dos small i small conventional que han transportat més GNL ho han fet gairebé amb el mateix volum total.

Figura 23: Número de trànsits realitzats per cadascun dels vaixells, distingint entre els tipus de vaixell metaner.
Figura 24: Volum de GNL transportat per cadascun dels vaixells, distingint entre els tipus de vaixell metaner.

4.3 Xarxa de transport de GNL del mercat gasístic europeu durant l’any 2016

Per tal que la xarxa de transport de GNL del mercat gasístic europeu sigui més interpretativa, tenint en compte les dades dels trànsits facilitades per ICIS LNG Edge durant l’any 2016, s’han ressaltat en un mapa mundial els països importadors, de color vermell, i els exportadors, de color blau. A més, s’han ubicat tots els port importadors i exportadors que formen part de la xarxa, i també s’han definit els trànsits que s’han produït entre els diferents ports. En el cas dels trànsits, també s’han utilitzat diferents colors per representar el país de sortida que té cadascun d’ells.

El fet que el continent europeu tingui una extensió reduïda en comparació amb la resta de regions i continents del món, s’ha optat per fer un zoom d’aquesta àrea, ja que en el mar Mediterrani, i més concretament en l’estret de Gibraltar, existeix una gran afluència de trànsits, degut a que alguns dels ports europeus més importants es troben al sud del continent (veure figura 25). També es mostra el mapa a nivell mundial perquè els països exportadors es troben ubicats en els continents americà, europeu, africà i asiàtic (veure figura 26).

Cal remarcar que els ports de Isle of Grain (20) i South Hook LNG (21) es troben molt a prop l’un de l’altre, pel que el número del segon es superposar al del primer.
Figura 25: Xarxa de transport de GNL del mercat gasístic europeu, posant èmfasi en els ports importadors i els trànsits que es produeixen en el mar Mediterrani.
Figura 26: Xarxa de transport de GNL del mercat gasístic europeu, posant èmfasi en els ports exportadors.
A continuació es mostra una taula que identifica els port importadors i exportadors amb els números que se’ls hi ha atribuït en les figures anteriors i el codi de colors dels trànsits que correspon a cadascun dels països exportadors (veure taula 10):

Taula 10: Taula amb els identificadors corresponents als noms dels port importadors (vermell) i exportadors (blau) i codi de colors pels trànsits, respecte el país de sortida.

<table>
<thead>
<tr>
<th>Ports importadors (vermell)</th>
<th>Identificador</th>
<th>Nom del port</th>
<th>Identificador</th>
<th>Nom del port</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Zeebrugge</td>
<td>Bèlgica</td>
<td>13</td>
<td>Panigaglia</td>
</tr>
<tr>
<td>2</td>
<td>Barcelona</td>
<td>Espanya</td>
<td>14</td>
<td>Rovigo</td>
</tr>
<tr>
<td>3</td>
<td>Bilbao</td>
<td>Espanya</td>
<td>15</td>
<td>Klaipeda</td>
</tr>
<tr>
<td>4</td>
<td>Cartagena</td>
<td>Espanya</td>
<td>16</td>
<td>Gate Terminal</td>
</tr>
<tr>
<td>5</td>
<td>Ferrol</td>
<td>Espanya</td>
<td>17</td>
<td>Swinoujscie</td>
</tr>
<tr>
<td>6</td>
<td>Huelva</td>
<td>Espanya</td>
<td>18</td>
<td>Sines</td>
</tr>
<tr>
<td>7</td>
<td>Sagunto</td>
<td>Espanya</td>
<td>19</td>
<td>Dragon LNG</td>
</tr>
<tr>
<td>8</td>
<td>Dunkirk</td>
<td>França</td>
<td>20</td>
<td>Isle of Grain</td>
</tr>
<tr>
<td>9</td>
<td>Fos Cavaou</td>
<td>França</td>
<td>21</td>
<td>South Hook LNG</td>
</tr>
<tr>
<td>10</td>
<td>Montoir</td>
<td>França</td>
<td>22</td>
<td>Aliaga</td>
</tr>
<tr>
<td>11</td>
<td>Revithoussa</td>
<td>Grècia</td>
<td>23</td>
<td>Marmara Erenglisi</td>
</tr>
<tr>
<td>12</td>
<td>Offshore LNG Toscana</td>
<td>Itàlia</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ports importadors (blau)</th>
<th>Identificador</th>
<th>Nom del port</th>
<th>Codi de colors</th>
<th>País de sortida</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Skikda</td>
<td>Algèria</td>
<td>■■■■</td>
<td>Algèria</td>
</tr>
<tr>
<td>2</td>
<td>Arzew</td>
<td>Algèria</td>
<td>■■■■</td>
<td>Angola</td>
</tr>
<tr>
<td>3</td>
<td>Soyo</td>
<td>Angola</td>
<td>■■■■</td>
<td>Egipte</td>
</tr>
<tr>
<td>4</td>
<td>Ain Sukhna</td>
<td>Egipte</td>
<td>■■■■</td>
<td>Estats Units</td>
</tr>
<tr>
<td>5</td>
<td>Idku</td>
<td>Egipte</td>
<td>■■■■■</td>
<td>Nigèria</td>
</tr>
<tr>
<td>6</td>
<td>Sabine Pass</td>
<td>Estats Units</td>
<td>■■■■</td>
<td>Noruega</td>
</tr>
<tr>
<td>7</td>
<td>Bonny</td>
<td>Nigèria</td>
<td>■■■</td>
<td>Perú</td>
</tr>
<tr>
<td>8</td>
<td>Hammerfest</td>
<td>Noruega</td>
<td>■■■■</td>
<td>Qatar</td>
</tr>
<tr>
<td>9</td>
<td>Pampa Melchorita</td>
<td>Perú</td>
<td>■■■■■</td>
<td>Trinitat i Tobago</td>
</tr>
<tr>
<td>10</td>
<td>Ras Laffan</td>
<td>Qatar</td>
<td>■■■■</td>
<td>Trinitat i Tobago</td>
</tr>
<tr>
<td>11</td>
<td>Point Fortin</td>
<td>Trinitat i Tobago</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.4 Metodologia 1

Com ja s’ha comentat anteriorment en el punt referent a la definició de la metodologia 1 (3.2.1 Metodologia 1), els trànsits que s’analitzen aquí no poden tenir valors on la quantitat de BOG que s’ha generat durant el trànsit sigui negativ o estigui per sobre del 12%, respecte el volum que s’ha descarregat en el port de destí (ΔV\text{BOG}_{\text{real}}), ja que són situacions irreals o que a la pròpia indústria no li interessa que es produeixin per qüestions econòmiques. Aprofitant en el que s’ha exposat en el mateix punt, aquesta decisió s’ha pres per dur a terme l’anàlisi estadística i, per tant, no s’ha de perdre de vista que aquests trànsits es produeixen i representen una amenaça perquè el sistema energètic europeu estigui en consonància amb els objectius establerts per combatre l’escalfament global i el canvi climàtic.

Un dels aspectes que també es volien analitzar en aquest estudi és l’estacionalitat de la generació de BOG durant el trànsit, és a dir, si aquest es produeix en major quantitat en els mesos d’estiu en l’hemisferi nord, degut a l’aument de la temperatura atmosfèrica i del mar (veure figura 27). Es pot observar com no és el cas dels trànsits que s’han produït durant l’any 2016, ja que generació de BOG durant tot l’any té un comportament uniforme i no es produeix una variabilitat significativa entre les diferents èpoques de l’any.
Figura 27: $\Delta V_{BOG_{real}}$ generat segons la data de d’arribada del vaixell metaner al port de destí.

A més, també s’ha cregut convenient analitzar si aquest percentatge de BOG generat ($\Delta V_{BOG_{real}}$) respecte la duració del trànsit, permetia caracteritzar els tipus de vaixells metaners (veure figura 28) i els sistemes de propulsió (veure figura 29).

Figura 28: Caracterització dels tipus de vaixells metaners tenint en compte el $\Delta V_{BOG_{real}}$ i la duració del trànsit.
Degut a que la relació entre el $\Delta V_{BOG_{real}}$ i la duració del trànsit no ha permès la caracterització dels tipus de vaixells metaners i els sistemes de propulsió, una altra possibilitat és determinar-ho a través del $\Delta V_{BOG_{real}}$ diari, que és la integració dels dos conceptes anteriors. Per tal que la representació gràfica ajudi a interpretar els resultats obtinguts, s’ha optat per fer-ho a través de diagrames de caixes (veure figures 30 i 31).

Es compta amb alguns vaixells metaners que han realitzat trànsits durant l’any 2016 que en la base de dades de Global LNG Info no estan identificats, pel que no es pot assignar-li’s un sistema de propulsió, i se’ls ha categoritzat amb l’abreviació N/A. Tal i com es pot apreciar, els tipus de vaixells metaners que generen més BOG diari durant el trànsit, de manera molt destacada de la resta, són els small, mentre que no es pot afirmar quin és el sistema de propulsió que es caracteritza per una major generació de BOG diari durant el trànsit.
4.5 Metodología 2

La metodología 2 tan sols inclou aquells trànsits en que la relació entre el temps ideal i el real sigui $\tau \leq 1.1$, ja que com s’ha exposat en la definició d’aquesta metodologia (3.2.2 Metodología 2), aquells que tenen valors superiors distorsionen la mostra i els compresos entre 1 i 1,1 es pot assignar el BOG generat durant el trànsit com el que requereix el motor, en el cas dels small, small conventional i large conventional.

El primer que s’ha volgut representar és la relació que existeix entre els temps reals i ideals dels diferents trànsits i marcar amb una línia la relació igual a 1 entre aquests paràmetres (veure figura 32). Tal i com era d’esperar, molts dels trànsits es troben a la part dreta de la línia, ja que el valor del temps real del trànsit és superior a l’ideal, però també hi ha alguns a l’esquerra, que són aquells on $\tau > 1$.

Figura 31: Caracterització del sistema de propulsió tenint en compte el $\Delta V_{BOG_{real}}$ diari.

Figura 32: Relació existent entre el temps real i ideal dels trànsits (punts) i la relació entre aquests quan és igual a 1 (llínia).
El temps de torxa (t\text{torxa}) es defineix com la diferència entre el temps real i l’ideal i representa el temps que haurà d’estar encesa la torxa per cremar l’excés de BOG generat durant el trànsit. Si la relació entre el temps ideal i el real és més gran que 1, això vol dir que el temps de torxa serà 0.

Entendre la magnitud del temps de torxa en els trànsits o en els vaixells metaners, ajuda a veure quant influent és respecte el temps real. En el cas dels trànsits, la variable més interessant a analitzar és la corresponent al país, ja que es pot determinar si existeix alguna tendència en els trànsits que surten d’un mateix país (veure figura 33), i pels vaixell metaners, el tipus al que pertany (veure figura 34) i el número de trànsits (veure figura 35).

Figura 33: Magnitud del temps de torxa respecte els temps real i ideal en els trànsits, considerant el país de sortida del vaixell metaner.

Figura 34: Magnitud del temps de torxa respecte els temps real i ideal en els vaixells metaners, considerant el tipus de vaixell metaner.
Figura 35: Magnitud del temps de torxa respecte els temps real i ideal en els vaixells metaners, considerant el tipus de vaixell metaner.

Finalment, s’ha determinat l’$E_{motor}^{BOG_{real}}$ (veure figura 36) i l’$E_{torxa}^{BOG_{real}}$ (veure figura 37), a més de les emissions associades a la suma d’aquestes dues (veure figura 38), distingint entre els tipus de vaixell metaner.

Cal remarcar que l’$E_{motor}^{BOG_{real}}$ i l’$E_{torxa}^{BOG_{real}}$ han estat determinades per l’aplicació de les metodologies 1 i 2, en color verd i groc, respectivament, pel que només es troben els vaixells metaners que són small, small conventional o large conventional. En el cas de les emissions associades, s’ha incorporat els vaixells metaners Q-Flex i Q-Max, ja que s’han utilitzat factors d’emissió especificats en l’apartat de metodologia (3.2 Metodologia).

Figura 36: $E_{motor}^{BOG_{real}}$, aplicant les metodologies 1 (verd) i 2 (groc), distingint entre el tipus de vaixells metaners.
Figura 37: E_{torxa}, aplicant les metodologies 1 (verd) i 2 (groc), distingint entre el tipus de vaixells metaners.

Figura 38: Emissions associades a la E_{motor} i la torxa aplicant les metodologies 1 (verd) i 2 (groc) i els factors d’emissió (blau), distingint entre tipus de vaixells metaners.
Degut a que els valors de l’energia consumida pel motor obtinguts a través de les dues metodologies són de gairebé d’una ordre de magnitud, ja que la metodologia 1 té en compte la potència òptima del motor i la 2 els requeriments que generen les circumstàncies de cada trànsit, s’han comparat els valors obtinguts per a cadascuna d’aquestes en els trànsits analitzats en la metodologia 2 (veure figura 39). En aquest cas també s’ha afegit una línia que marca la relació entre valors igual a 1.

La línia ens indica quina hauria de ser la tendència del núvol de punts perquè els valors obtinguts per l’EMotor \(\varepsilon_{\text{BoGreal}} \) amb les dues metodologies fossin els mateixos. El fet que el núvol de punts estigui desplaçat gairebé paral·lelament cap al marge superior esquerra de la figura, indica que, tal i com s’ha comentat en el paràgraf anterior, els valors obtinguts aplicant la metodologia 2 són majors als de la metodologia 1.

Figura 39: Relació de la \(E_{\text{BoGreal}} \) en cada trànsit obtingudes a través d’aplicar les dues metodologies (punts) i la tendència entre elles que és igual a 1 (línia).
5 Discussió

5.1 Metodologia i resultats obtinguts

Les dues metodologies aplicades per estimar quina són les parts corresponents a l’$E_{\text{motor}}^{\text{BOGreal}}$ i l’$E_{\text{torxa}}^{\text{BOGreal}}$, respecte el BOG generat durant el trànsit, i les emissions associades a aquestes, es creu que són adequades dins les limitacions expressades amb anterioritat. En aquest sentit, les dues metodologies ens permeten avaluar condicions diferents en les que es poden trobar els trànsits que realitzen el transport de GNL en el mercat europeu.

La metodologia 1 considera la potència del motor requerida per a cadascun dels tipus de vaixells metaners en les condicions nominals de funcionament, el que fa l’energia requerida pel motor és aproximadament un 5% de la corresponent al BOG generat durant el trànsit, el qual es suposa que és un percentatge molt baix i una situació que la pròpia indústria no li interessa, ja que tot el que és cremat en la torxa són pèrdues econòmiques.

En el cas de la metodologia 2, tot i que el consum del motor considera les condicions climatològiques en cada trànsit, ja que es basa en els temps facilitats per ICIS LNG Edge, un percentatge elevat dels trànsits tenen temps de trànsits reals inferiors als ideals, el que fa que no puguin tenir-se en compte a causa de la definició de la metodologia.

Els resultats obtinguts mostren que quan major és la capacitat del vaixell metaner, major és el valor d’emissions associades al trànsit. Amb aquests resultats no es vol donar l’opinió sobre quin és el millor tipus de vaixell metaner a utilitzar, sinó que es vol mostrar quina és la situació actual del transport de GNL, ja que no existeix un coneixement exhaustiu fora de la pròpia indústria sobre aquesta etapa de la cadena del gas.

Per tal de mostrar els valors obtinguts amb unitats que siguin més fàcil d’entendre i avaluar quina és la seva magnitud, les emissions d’un trànsit mitjà d’un vaixell metaner tipus small, small conventional, large conventional, Q-Flex i Q-Max són iguals a les emissions associades a 504, 1206, 2035, 3047 i 4271 ciutadans de la UE28 durant tot un any, respectivament.

Finalment, s’ha conformat una taula resum on s’especifiquen els valors mitjans de diferents paràmetres per a diferents escales. Els paràmetres que s’han incorporat són les emissions associades a l’$E_{\text{motor}}^{\text{BOGreal}}$ i l’$E_{\text{torxa}}^{\text{BOGreal}}$, a més de quin és el percentatge d’aquest que es genera durant el trànsit respecte el volum al port de destí, el volum al port de destí, les emissions associades a les fuites produïdes durant la distribució del gas pel gasoducte, estimades en l’estudi Howarth et al. (2011) que es mouen entre el 1,4% i el 3,6%, i el volum de gas que finalment arriba al consumidor (veure taula 11).

Les escales que s’han cregut oportunes avaluar són les referents a la UE28, país, port i tipus de vaixell metaner. En el cas del país, s’han escollit Espanya, França i Itàlia perquè són els majors importadors europeus de GNL durant l’any 2016, i s’han analitzat tant a importacions des de tots els països a nivell mundial, com per a cadascun dels majors exportadors en el mercat gasístic europeu com són Algèria, Nigèria i Qatar. El port que s’ha avaluat és el de Barcelona, ja que és el que toca més de prop i que es projecte com el Hub dels sud de la UE28, pels tres majors exportadors i, en últim lloc, s’ha caracteritzat els tipus de vaixell metaner small, small conventional i large conventional, ja que s’han utilitzat com a base de dades els trànsits de la metodologia 1.

60
Degut a que s’han utilitzat els trànsits referents a la metodologia 1, les emissions associades a l’\(E_{\text{motor}} \) són molt inferiors a les corresponents a l’\(E_{\text{torxa}} \). El rang de BOG generat durant el trànsit es mou entre el 4% i el 7% per a totes les escales. En el cas del volum que arriba al port de destí, es pot apreciar com a nivell europeu, per a Espanya i França, la majoria de les importacions són amb vaixells metaners small o small conventional. A Itàlia, les importacions amb vaixells small conventional o large conventional són majoritàries. Aquest fet també queda reflectit en els països exportadors, tant a l’escala de país com de port, ja que Algèria acostuma a fer-ho amb small, Qatar amb small conventional i Nigèria amb small conventional o large conventional. Cal remarcar que el cas de Qatar és excepcional, ja que en els trànsits analitzats no estan inclosos els Q-Flex i els Q-Max, els quals són realitzats per aquest país.

5.2 Escenari de trànsits provinents de Sabine Pass al port de Barcelona

Els EE.UU. han realitzat 5 trànsits cap a la UE28 durant l’any 2016 i es projecta que en siguin més, ja que els EE.UU. podrien convertir-se en un del majors exportadors a nivell mundial. Cal tenir en compte que la seva preferència pot ser introduir-se en el mercat gasístic asiàtic, degut a que és la regió del món amb el número més alt d’importacions, més concretament el Japó, que ha apostat per suplir la demanda energètica que satisfeia l’energia nuclear per gas després del desastre de Fukushima, i perquè el preu de mercat és més alt que l’euopeu.

Com la Península Ibèrica juga un paper geoestratègic en l’entrada de vaixells al mar Mediterrani i el port de Barcelona ho fa com a Hub gasístic del sud de la UE28, Gas Natural Fenosa ha llogat 4 vaixells metaners, com és el cas del La Mancha Knutsen, per tal d’importar gas no convencional de la planta liqüefactora de Sabine Pass, Texas, cap a l’estat espanyol durant els pròxims vint anys (The Free Organisation 2017).
Tenint en compte les fuites de metà que es produeixen en les diferents etapes de la cadena del gas, des de la construcció del pou fins que el GNL és descarregat en el port de destí, i les estimacions dels valors per a cadascuna d’aquestes realitzades per Howarth et al. (2011), els valors obtinguts per a un trànsit des de Sabine Pass fins al port de Barcelona en mostren en la taula següent:

<table>
<thead>
<tr>
<th>Emissions (tCO$_2$eq.)</th>
<th>Capacitat (m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mín. 213.092</td>
<td>138.000</td>
</tr>
<tr>
<td>Màx. 217.172</td>
<td></td>
</tr>
<tr>
<td>Mín. 275.506</td>
<td>174.000</td>
</tr>
<tr>
<td>Màx. 548.509</td>
<td></td>
</tr>
</tbody>
</table>

Considerant la quantitat d’emissions de CO$_2$ que emet un ciutadà europeu a l’any17, les emissions d’un trànsit de 138.000 m3 és igual a les que generen entre 31.734 i 47.233 ciutadans europeus, mentre que per un vaixell metaner amb una capacitat de 174.000 m3 equival entre 41.029 i 81.693 ciutadans europeus.

En aquest càlcul s’han incorporat les emissions corresponents a l’operació de criogenització del gas, però no les fuites generades durant l’operació de bunkering i les corresponents al methane slip, aquest últim en el cas que fossin vaixells metaners que no utilitzessin el sistema de propulsió steam.

17 Banc Mundial http://datos.bancomundial.org/indicador/EN.ATM.CO2E.PC?name_desc=false
6 Conclusions

Com s’ha demostrat en aquest estudi, existeix una gran variabilitat dels valors associats a les fuites de gas que s’atribueixen a cadascuna de les operacions que formen part de la cadena del gas. Aquesta manca de consens s’associa amb la necessitat d’assolir un coneixement més profund sobre quines són les fonts de fuites de gas en els jaciments, un consens sobre les metodologies utilitzades i la intervenció per part de científics independents. Aquest últim punt és imprescindible que es porti a la pràctica, ja que els inventaris de les àgencies oficials, com és el cas de l'EPA, normalment contenen els valors que s’han obtingut d’estudis realitzats conjuntament amb la pròpia indústria. Aquest fet pot comportar una falta d’aleatorietat en els pous mesurats i que els resultats no siguin extrapolables a la resta de pous i regions del món, perquè utilitzen les millors tecnologies existents. A més, l’EPA ha anat modificant els valors dels inventaris en els últims cinc anys de manera poc rigorosa, degut a que aquests no reflectien els valors obtinguts en els diferents estudis de científics independents que s’anaven publicant.

L’Acord de París considera el gas com un combustible de suport per a les energies renovables mentre es realitza la transició energètica, ja que és el combustible fòssil amb les emissions més baixes durant la seva combustió. També és cert que en cap moment es posa en entredit l’efecte que tenen les fuites de metà en les diferents etapes abans de ser consumit per l’usuari, el que pot donar a entendre que a nivell polític i institucional es vol mantenir l’status quo amb les empreses que exploten els recursos fòssils i que no estan interessades en realitzar una transició cap a les energies renovables completa, tal i com exigeix la situació climàtica actual.

Per tal de satisfacer l’objectiu principal de l’Acord de París, evitar que la temperatura mitjana global no augmenti més de 2ºC respecte la de l’era preindustrial, és imprescindible complir amb les projeccions de l’escenari RCP 2.6 de l’IPCC, el qual comporta que l’any 2020 s’ha de produir el pic d’emissions de CO₂ a partir del 2070 han de ser negatives, és a dir, que s’ha d’absorbir més CO₂ del que és emès. Per aquest motiu, es proposa que la UE28 aposti per dur a terme les politiques i accions referents a l’escenari EU Green Revolution, degut a que compta amb la major reducció de emissions de CO₂, compleix amb els objectius d’eficiència energètica i promou l’electrificació de la generació de calor. A més, es creu que l’aplicació de l’escenari Blue Transition no compliria amb la reducció del 40% de les emissions de GEH, considerant l’impacte climàtic del gas que es posa en rellevància en aquest estudi i no ha estat aplicat en l’estimació de les emissions de CO₂ corresponents.

També val a dir que l’esfera política i institucional ha establert un PCC en una escala de temps que no es correspon amb quan els efectes del metà són més considerable, degut a la seva curta vida en l’atmosfera en comparació amb el CO₂. A més, no s’actualitzen els càlculs referents a l’impacte climàtic del metà amb el PCC facilitat per l’últim informe de l’IPCC. Un altre punt que s’hauria de tenir en compte amb el PCC és que el que ha estat calculat per l’IPCC no considera les interaccions que pot tenir el metà a nivell químic quan entra en contacte amb els aerosols, que comportaria valors més alts als vigents en el seu informe.

Un punt que sembla que no es considera prou rellevant en la presa de decisions en l’esfera política i institucional, és que la majoria d’estudis científics coincideixen en que el peak gas es produirà durant la dècada del 2020, o com a molt tard a la del 2030. Per això, es compta amb un marge d’entre 5 i 20 anys perquè es produeixi, i si es segueix amb el ritme de consum actual, uns 60 perquè s’acabi esgotant. Una vegada s’hagi produït el peak gas, tot i que depen de la regió, la major part de les reserves que quedaran seran de gas no convencional i molt difícils d’accèder, que requeriran utilitzar tècniques molt agressives pel medi ambient i costes econòmicament.
Aquests marges de temps fan reflexionar si està justificat per part de l’esfera política i institucional de la UE28 les grans inversions que s’estan fent en megainfraestructures de gas i el sistema gasístic d’importacions que es vol implantar, ja que no s’assegura que s’arribin a amortitzar perquè la vida útil d’aquestes s’estima que és d’entre 30 i 50 anys i n’hi ha que s’estan projectant perquè entrin en funcionament en la pròxima dècada. Un dels aspectes que s’han de tenir en compte en les inversions en les infraestructures de gas, és que aquesta desplaça a la que li correspondria a les energies renovables, obstaculitzant la construcció i consolidació d’un model renovable. A més, també s’estan promovent infraestructures de diversificació, és a dir, infraestructures per deixar de depender del gas rus, i es promou el GNL com l’alternativa al transport en gasoducte entre països exportadors i importadors, ja que aquest permet una flexibilitat al mercat a l’hora de poder abastir un país de gas, considerant la demanda en cada moment. També val a dir que el procés de desenvolupament de la xarxa d’infraestructures que proposa l’ENTSO-G en el seu TYNDP, farà que la UE28 no pugui complir amb els objectius establerts en 2030 EU targets, ja que plantejaria un escenari semblant al Blue Transition.

La xarxa de transport de GNL que s’ha conformat en aquest estudi pel mercat gasístic europeu, considerant les dades de l’any 2016 facilitades per ICIS LNG Edge, mostra que existeixen nou països exportadors, distribuïts en quatre continents diferents. El fet que els EE.UU. pugui ser el major exportador de GNL a nivell mundial, i donat que ja han arribat trànsits a la UE28, requereix un seguiment i anàlisi més exhaustiu, ja que la totalitat del gas exportat és no convencional, el que repercuteix encara més de forma negativa sobre el medi ambient.

A més, cal remarcar que l’anàlisi del transport de GNL d’aquest estudi ha avaluat el procés de criogenització i el trànsit, considerant els valors conservadors i amb les millors praxis possibles. Per aquest motiu, en les anàlisis que es derivin d’aquest estudi també haurien d’incloure l’operació de bunkering, que tot i tenir una curta durada, la proporció de fuites de metà generades és elevada, i el methane slip, ja que també són fuites de metà que es produeixen durant el trànsit i en els sistemes de propulsió que estan agafant major protagonisme en els últims anys.

A nivell tècnic i intern de la pròpia indústria, és necessari que s’estableixi un procediment obligatori pel manteniment de l’estructura i els diferents sistemes dels vaixells metaners, ja que la vida útil amb la que es projecten i construeixen és de només 20 anys, mentre que se’ls hi pot allargar fins als 50. Aquest fet pot representar l’augment de fuites de metà, pel que l’impacte climàtic corresponent als trànsls encara seria superior a l’estimat en aquest estudi.

Amb tot això, la societat actual necessita deixa de dependre dels combustibles fòssils perquè el fet de substituir alguns d’aquests, com el carbó i petroli per d’altres com el gas, no serà suficient per combatre l’escalfament global i es produirà el que vaticina Robert W. Howarth, “Natural gas is a bridge to nowhere”.
7 Referències

Cremonese, L. & Gusev, A., 2016. *The Uncertain Climate Cost of Natural Gas*,

ENTSOG, 2017. TYNDP 2017 Presentation, p.43.

GIIGNL & SIGTTO, 2014. *Lng Shipping At 50*,

Pétron, G. et al., 2014. A new look at methane and nonmethane hydrocarbon emissions from

8 Annex

Annex 1: Excel amb la base de dades i càlculs utilitzats per la realització de l’estudi (https://drive.caminstech.upc.edu/index.php/s/ICmVxPAAKfGgQZv)

Pestanya: Flota 2016

- Columna B: Nom del vaixell metaner
- Columna C: Tipus de vaixell metaner
- Columna D: Any de posada en funcionament
- Columna E: Tipus de sistema de propulsió
- Columna F: Propietaris del vaixell metaner
- Columna G: Constructor del vaixell metaner
- Columna H: Capacitat del vaixell metaner
- Columna I: Codi IMO del vaixell metaner

Pestanya: Base de dades trànsits

- Columna B: Nom del vaixell metaner
- Columna C: Capacitat del vaixell metaner
- Columna D: Volum de GNL que s’ha de descarregat en el port de destí
- Columna E: Contingut energètic del GNL que s’ha de descarregat en el port de destí, en MMBtu
- Columna F: Contingut energètic del GNL que s’ha de descarregat en el port de destí, en kWh
- Columna G: Hora de sortida del trànsit
- Columna H: Hora d’arribada del trànsit
- Columna I: Port de sortida del vaixell metaner
- Columna J: País de sortida del vaixell metaner
- Columna K: Port de destí del vaixell metaner
- Columna L: País de destí del vaixell metaner

Pestanya: Base de dades metaners

- Columna B: Nom del vaixell metaner
- Columna C: Tipus de vaixell metaner
- Columna D: Tipus de sistema de propulsió
- Columna E: Any de posada en funcionament
- Columna F: Port de sortida del vaixell metaner
- Columna G: País de sortida del vaixell metaner
- Columna H: Volum port de sortida, que és igual a la capacitat del vaixell

Pestanya: Metodologia 1

- Columna B: Nom del vaixell metaner
- Columna C: Capacitat del vaixell metaner
- Columna D: Volum de GNL que s’ha de descarregat en el port de destí
- Columna E: Contingut energètic del GNL que s’ha de descarregat en el port de destí, en kWh
- Columna F: Port de sortida del vaixell metaner
- Columna G: País de sortida del vaixell metaner
- Columna H: País de destí del vaixell metaner
- Columna I: Hora de sortida del trànsit
- Columna J: Hora d’arribada del trànsit
- Columna K: Volum de BOG generat durant el trànsit
- Columna L: Percentatge de BOG generat durant el trànsit respecte el volum de destí
- Columna M: Poder calorífic volumètric superior del GNL
- Columna N: Tipus de vaixell metaner
- Columna O: Potència requerida pel motor de vaixell en condicions òptimes
- Columna P: Duració, en dies, del trànsit tenint en compte les dates d’arribada i sortida del vaixell que ha realitzat el trànsit (t real)
- Columna Q: Duració, en hores, del trànsit tenint en compte les dates d’arribada i sortida del vaixell que ha realitzat el trànsit (t real)
- Columna R: Columna de referència de la taula on es troben els temps ideals pels trànsits que s’han dut a terme durant l’any 2016
- Columna S: Fila de referència de la taula on es troben els temps ideals pels trànsits que s’han dut a terme durant l’any 2016
- Columna T: Duració del trànsit en condicions òptimes (t ideal)
- Columna U: Energia associada al BOG que s’ha generat durant el trànsit
- Columna V: Energia requerida pel motor per poder realitzar el trànsit aplicant la metodologia 1
- Columna W: Energia consumida per la torxa durant el trànsit aplicant la metodologia 1
- Columna X: Relació entre l’energia requerida pel motor i la consumida per la torxa aplicant la metodologia 1
- Columna Y: Relació entre els temps ideal i el real de duració del trànsit
- Columna Z: Energia requerida pel motor per poder realitzar el trànsit aplicant la metodologia 2
- Columna AA: Columna V: Energia consumida per la torxa durant el trànsit aplicant la metodologia 2
- Columna AB: Relació entre l’energia requerida pel motor i la consumida per la torxa aplicant la metodologia 2
- Columna AC: Rati entre l’energia requerida pel motor en la metodologia 2 i la 1

Pestanya: Metodologia 2 [és la mateixa que la Metodologia 1, però considerant els trànsits que compleixen amb els requeriments de la metodologia 2]

Pestanya: Resultats trànsits (Base dades)

- Columna B: Nom del vaixell metaner
- Columna C: Capacitat del vaixell metaner
- Columna D: Volum de GNL que s’ha de descarregat en el port de destí
- Columna E: Contingut energètic del GNL que s’ha de descarregat en el port de destí, en kWh
- Columna F: Port de sortida del vaixell metaner
- Columna G: Païs de sortida del vaixell metaner
- Columna H: Port de destí del vaixell metaner
- Columna I: Païs de destí del vaixell metaner
- Columna J: Hora de sortida del trànsit
- Columna K: Hora d’arribada del trànsit
Pestanya: Resultats trànsits (Metod. 1)

- Columna B: Nom del vaixell metaner
- Columna C: Capacitat del vaixell metaner
- Columna D: Volum de GNL que s’ha de descarregat en el port de destí
- Columna E: Contingut energètic del GNL que s’ha de descarregat en el port de destí, en kWh
- Columna F: Port de sortida del vaixell metaner
- Columna G: Port de destí del vaixell metaner
- Columna H: Hora de sortida del trànsit
- Columna I: Hora d’arribada del trànsit
- Columna J: Percentatge de BOG generat durant el trànsit respecte el volum de destí
- Columna K: Duració, en dies, del trànsit tenint en compte les dates d’arribada i sortida del vaixell que ha realitzat el trànsit (t real)
- Columna L: Percentatge de BOG generat durant el trànsit respecte el volum de destí per dia
- Columna M: Probabilitat acumulada del BOG generat durant el trànsit

Pestanya: Resultats trànsits (Metod. 2)

- Columna B: Nom del vaixell metaner
- Columna C: Capacitat del vaixell metaner
- Columna D: Volum de GNL que s’ha de descarregat en el port de destí
- Columna E: Contingut energètic del GNL que s’ha de descarregat en el port de destí, en kWh
- Columna F: País de sortida del vaixell metaner
- Columna G: Port de sortida del vaixell metaner
- Columna H: Port de destí del vaixell metaner
- Columna I: Hora de sortida del trànsit
- Columna J: Hora d’arribada del trànsit
- Columna K: Duració, en dies, del trànsit tenint en compte les dates d’arribada i sortida del vaixell que ha realitzat el trànsit (t real)
- Columna L: Duració del trànsit en condicions òptimes (t ideal)
- Columna M: Relació entre els temps ideal i el real de duració del trànsit
- Columna N: Temps durant el trànsit està cremant BOG en la torxa

Pestanya: Resultats metaners (Base dades)

- Columna B: Nom del vaixell metaner
- Columna C: Tipus de vaixell metaner
- Columna D: Tipus de sistema de propulsió
- Columna E: Any de posada en funcionament
- Columna F: Port de sortida del vaixell metaner
- Columna G: País de sortida del vaixell metaner
- Columna H: Volum port de sortida, que és igual a la capacitat del vaixell
- Columna I: Número de trànsits que ha realitzat el vaixell metaner durant l’any 2016
- Columna J: Volum de GNL promig que el vaixell metaner ha descarregat en els ports de destí
- Columna K: Volum de GNL total que el vaixell metaner ha descarregat en els ports de destí
Pestanya: Resultats metaners (Metod. 1)

- Columna B: Nom del vaixell metaner
- Columna C: Tipus de vaixell metaner
- Columna D: Tipus de sistema de propulsió
- Columna E: Any de posada en funcionament
- Columna F: Port de sortida del vaixell metaner
- Columna G: País de sortida del vaixell metaner
- Columna H: Volum port de sortida, que és igual a la capacitat del vaixell
- Columna I: Percentatge de BOG generat durant el trànsit respecte el volum de destí
- Columna J: Percentatge de BOG generat durant el trànsit respecte el volum de destí per dia
- Columna K: Duració, en dies, del trànsit tenint en compte les dates d’arribada i sortida del vaixell que ha realitzat el trànsit (t real)

Pestanya: Resultats metaners (Metod. 2)

- Columna B: Nom del vaixell metaner
- Columna C: Tipus de vaixell metaner
- Columna D: Tipus de sistema de propulsió
- Columna E: Any de posada en funcionament
- Columna F: Port de sortida del vaixell metaner
- Columna G: País de sortida del vaixell metaner
- Columna H: Volum port de sortida, que és igual a la capacitat del vaixell
- Columna I: Número de trànsits que ha realitzat el vaixell metaner durant l’any 2016
- Columna J: Duració, en dies, del trànsit tenint en compte les dates d’arribada i sortida del vaixell que ha realitzat el trànsit (t real)
- Columna K: Duració del trànsit en condicions òptimes (t ideal)
- Columna L: Relació entre els temps ideal i el real de duració del trànsit
- Columna M: Temps durant el trànsit està cremant BOG en la torxa

Pestanya: Discussió (taula escales)

- Columna B: Escales en la que s’ha dut a terme l’anàlisi en la discussió
- Columna C: Emissions associades al BOG requerit pel motor
- Columna D: Emissions associades al BOG consumit per la torxa
- Columna E: Percentatge de BOG generat durant el trànsit respecte el volum de destí
- Columna F: Volum de GNL que s’ha de descarregat en el port de destí
- Columna G: Fuites de metà produïdes durant la distribució del gas en estat gasós
- Columna H: Volum de gas que arriba al consumidor
Annex 2: Taula resum que conté la definició i unitats dels paràmetres que s’han definit en les dues metodologies

Taula 13: Taula resum amb el nom dels paràmetres definits en les metodologies utilitzades, la seva definició les unitats amb les que es mesuren.

<table>
<thead>
<tr>
<th>Paràmetre</th>
<th>Definició</th>
<th>Unitats</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{initial}</td>
<td>Volum de GNL carregat en el port de sortida</td>
<td>m3</td>
</tr>
<tr>
<td>V_{final}</td>
<td>Volum de GNL descarregat en el port de destí</td>
<td>m3</td>
</tr>
<tr>
<td>$\Delta V_{\text{BOG real}}$</td>
<td>Volum de BOG generat durant el trànsit</td>
<td>m3</td>
</tr>
<tr>
<td>$\Delta V_{\text{motor BOG real}}$</td>
<td>Volum proporcional de BOG generat durant el trànsit que és utilitzat com a combustible pel motor</td>
<td>m3</td>
</tr>
<tr>
<td>$\Delta V_{\text{torxa BOG real}}$</td>
<td>Volum proporcional de BOG generat durant el trànsit que ha estat produït en excés i ha de ser cremat mitjançant la torxa</td>
<td>m3</td>
</tr>
<tr>
<td>$P_{\text{C GNL}}$</td>
<td>Poder calorífic volumètric superior</td>
<td>kWh/m3</td>
</tr>
<tr>
<td>W_{vaixell}</td>
<td>Potència òptima del vaixell metaner</td>
<td>kW</td>
</tr>
<tr>
<td>t_{real}</td>
<td>Temps estimat en què es realitzaria el trànsit en les condicions més òptimes</td>
<td>h</td>
</tr>
<tr>
<td>t_{ideal}</td>
<td>Temps extret de la base de dades d’ICIS LNG Edge</td>
<td>h</td>
</tr>
<tr>
<td>$E_{\text{BOG real}}$</td>
<td>Energia associada al BOG generat durant el trànsit</td>
<td>kWh</td>
</tr>
<tr>
<td>$E_{\text{motor BOG real}}$</td>
<td>Energia associada al BOG generat que requereix el motor del vaixell metaner per realitzar el trànsit</td>
<td>kWh</td>
</tr>
<tr>
<td>$E_{\text{torxa BOG real}}$</td>
<td>Energia associada al BOG generat que s’ha produït en excés i ha de ser cremat mitjançant la torxa</td>
<td>kWh</td>
</tr>
</tbody>
</table>